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Abstract

Theoretical and numerical works indicate that a strong magnetic field should suppress fragmentation in dense
cores. However, this has never been tested observationally in a relatively large sample of fragmenting massive
dense cores. Here, we use the polarization data obtained in the Submillimeter Array Legacy Survey of Zhang et al.
to build a sample of 18 massive dense cores where both fragmentation and magnetic field properties are studied in
a uniform way. We measured the fragmentation level, Nmm, within the field of view common to all regions of
∼0.15 pc, with a mass sensitivity of ∼0.5M☉, and a spatial resolution of ∼1000 au. In order to obtain the magnetic
field strength using the Davis–Chandrasekhar–Fermi method, we estimated the dispersion of the polarization
position angles, the velocity dispersion of the H13CO+

(4–3) gas, and the density of each core, all averaged within
0.15 pc. A strong correlation is found between Nmm and the average density of the parental core, although with
significant scatter. When large-scale systematic motions are separated from the velocity dispersion and only the
small-scale (turbulent) contribution is taken into account, a tentative correlation is found between Nmm and the
mass-to-flux ratio, as suggested by numerical and theoretical works.

Unified Astronomy Thesaurus concepts: Young star clusters (1833); Star formation (1569); Interstellar magnetic
fields (845)

1. Introduction

How stellar clusters form and what determines their number
of objects and stellar densities are long-standing questions,
intimately related to the fragmentation properties of molecular
clouds. It is thought that a number of properties of molecular
clouds could influence and determine how clouds fragment.
First, their density and temperature structures determine the
balance between thermal support and gravity required for pure
thermal Jeans fragmentation (e.g., Myhill & Kaula 1992;
Burkert et al. 1997; Girichidis et al. 2011). There are a number
of additional properties, however, which could play a crucial
role as well. The most important ones are the properties of
turbulence (solenoidal/compressive and Mach number; e.g.,
Vázquez-Semadeni et al. 1996; Padoan & Nordlund 2002;
Schmeja & Klessen 2004; Federrath et al. 2008; Girichidis
et al. 2011; Keto et al. 2020), stellar feedback (e.g., Myers et al.
2013; Cunningham et al. 2018), initial angular momentum
(e.g., Boss & Bodenheimer 1979; Boss 1999; Hennebelle et al.
2004; Machida et al. 2005; Chen et al. 2012b, 2019; Forgan &
Rice 2012), and magnetic fields.

A number of theoretical and numerical studies suggest that
magnetic fields could be a key ingredient in the fragmentation

process of molecular clouds because it is a form of support
against gravitational contraction (e.g., Boss 2004; Vázquez-
Semadeni et al. 2005, 2011; Ziegler 2005; Price & Bate 2007;
Commerçon et al. 2011; Peters et al. 2011; Bailey & Basu 2012;
Boss & Keiser 2013, 2014; Myers et al. 2013; Girichidis et al.
2018; Hennebelle & Inutsuka 2019). Therefore, it is expected
that those cores with stronger magnetic fields should present a
smaller degree of fragmentation, along with fragment masses
larger than the pure thermal Jeans mass, compared to cores
with weaker magnetic fields. This should hold at least for cores
with similar densities and turbulence.
Massive dense cores are excellent targets to study the

formation of stellar clusters. These are dense cores embedded
within molecular clumps, with large masses (50 M☉) and
typical sizes of 0.1–0.5 pc, which do not necessarily collapse
into one star but can fragment into compact condensations and
form a small cluster of stars15 (Williams et al. 2000; Motte et al.
2007; Bontemps et al. 2010). This makes massive dense cores
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15 Strictly speaking, the entity that will contain the entire cluster should be the
molecular clump (with sizes ∼1 pc), while probably the massive dense core
will contain only the central or most embedded part of the stellar cluster (Zhang
et al. 2009, 2015; Csengeri et al. 2011).

1



excellent candidates to study forming clusters, which are
usually associated with intermediate-/high-mass stars. The
fragmentation properties in samples of about ∼20 massive
dense cores have been studied by a number of authors (e.g.,
Bontemps et al. 2010; Palau et al. 2014, 2015; Beuther et al.
2018; Fontani et al. 2018; Sanhueza et al. 2019; Svoboda et al.
2019). In these works, relations between the fragmentation
level and density structure, turbulence, and initial angular
momentum were searched for, but none of these works studied
if there is the expected relation between the fragmentation level
and the magnetic field strength from an observational point
of view.

Observational studies of fragmentation versus magnetic
fields are very scarce. Most of the studies approaching this
key question are based on a comparison of observations of dust
continuum emission to the outputs of magnetohydrodynamical
simulations. For example, for the low-mass case, Maury et al.
(2010) find that magnetohydrodynamical models agree much
better with their observations. And for the intermediate-/high-
mass case, Peretto et al. (2007) find difficulties matching the
observed masses and number of fragments with the results of
hydrodynamical simulations, suggesting that extra support such
as protostellar feedback or magnetic fields is at play. This is
supported by the more recent works of Palau et al. (2013) and
Fontani et al. (2016, 2018), where the number, mass, and
spatial distribution of the fragments of particular regions are
consistent with simulations of fragmenting cores with different
mass-to-flux ratios (Commerçon et al. 2011). However, the
extreme fragmentation in the DR21OH core cannot be fully
reproduced in these simulations because its measured mass-to-
flux ratio is 20 times smaller than the one used in the
simulations for the highly fragmenting cores (Girart et al.
2013).

Regarding studies reporting a direct measure of the magnetic
field strength compared to fragmentation levels, Santos et al.
(2016) present polarimetric data at optical and near-infrared
wavelengths toward an infrared dark cloud with different
fragmentation levels in two hubs (Busquet et al. 2016), and find
no significant differences between the magnetic field at each
hub at clump scales, while submillimeter polarization observa-
tions at core scales for the same two hubs reveal hints of a
stronger magnetic field in the non-fragmenting case (Añez-
López et al. 2020a). On the other hand, in the mini-starburst
star-forming region W43, very recent Atacama Large
Millimeter/submillimeter Array observations show similar
magnetic field strengths for cores with different fragmentation
levels (Cortes et al. 2019). Also, in the G34.43+00.24 region,
the three cores studied by Tang et al. (2019) present different
fragmentation levels, but they seem to result from an interplay
between gravity, turbulence, and magnetic field, with no clear
evidence for a unique role of the magnetic field. In a high-
resolution polarimetric imaging study of a massive infrared
dark cloud, Liu et al. (2020) find that magnetic fields play a role
at the early stages of cluster formation, similar to the
conclusion of Pillai et al. (2015). On the other hand, more
sensitive recent works show that the magnetic field seems to be
dragged by flows of material inflowing toward the hubs of
hub–filament systems (e.g., Beuther et al. 2020; Pillai et al.
2020; Wang et al. 2020). However, all of the aforementioned
observational works do not perform a uniform study in a
relatively large sample of regions but focus only on a single or
a handful of regions at most. Galametz et al. (2018) study the

submillimeter polarized emission in a sample of 12 low-mass
Class 0 protostars and find that the morphology of the magnetic
field could be related to the rotational energy and the formation
of single or multiple systems, with the magnetic field being
aligned along the outflow direction for single sources. Actually,
in a subsequent study of a sample of 20 low-mass protostellar
cores, Galametz et al. (2020) found a positive correlation
between the angular momentum in the envelope and the
misalignment between the outflow axis and the magnetic field,
indicating that the magnetic field could be regulating some of
the processes of low-mass star formation. However, the
Galametz works focus on the low-mass regime. Thus, a
uniform study of the fragmentation and magnetic field
properties in a relatively large sample of massive dense cores
is lacking and therefore imperative.
Here we used the submillimeter polarization data of the

Submillimeter Array (SMA) Legacy Survey of Zhang et al.
(2014), together with regions from the literature with similar
observational properties to build a sample of 18 massive dense
cores. In Section 2, we describe the sample and observations; in
Section 3, we present the continuum, polarization, and H13CO+

data; in Section 4, we analyze the polarization data, determine
density profiles for all the sample, measure line widths, and
perform the angular dispersion function (ADF) analysis to
finally infer magnetic field strengths. In Section 5, a discussion
of the results is presented, and in Section 6, our main
conclusions are given.

2. The Sample

In Table 1, we present the sample of 18 massive dense
cores16 studied in this work. Among the 18 regions, the
0.87 mm polarization data of 11 were presented in the
Submillimeter Array Legacy Survey of Zhang et al. (2014;
see also Ching et al. 2017). The 0.87 mm polarization data of
the remaining regions were taken from the literature or the
SMA archive (see the last column of Table 1). We thus refer to
these works for the details of the polarization observations. In
general, the typical 1σ rms noise in the Stokes Q and U images
is ∼2 mJy beam−1. It is worth noting that we took special care
to build a sample as uniformly as possible. Thus, to avoid
biases with distance, we restricted our sample to regions in the
range 1.4–2.6 kpc, i.e., there is less than a factor of 2 in
distance for the sources of our sample. Two of the regions were
observed down to similar rms noises as the other regions, but
no signal of polarized emission was detected: N53 from Ching
et al. (2017) and I20126 from H. Shinnaga et al. (2021, in
preparation).
Regarding the continuum images used to assess the

fragmentation level, Table 1 provides the properties of the
images along with the references. For most of the regions, we
used the 0.87 mm continuum emission observed with the SMA
using the extended configuration only from Zhang et al. (2014).
Only those marked with an asterisk in Table 1 were observed
with the Plateau de Bure (PdBI)/NOrthern Extended Milli-
meter Array (NOEMA) at 1.3 mm. In order to build a uniform
sample, we specifically checked to ensure that the uv coverage
of both the SMA and PdBI/NOEMA are comparable (see

16 The radii of our core/clumps estimated from the FWHM in the JCMT
images is about 0.2–0.4 pc. Thus, they are structures in the transition between
cores (∼0.1 pc) and clumps (∼1 pc). Because in this work we focus on the
inner parts of these structures of 0.075 pc of radius, the term “core” has been
chosen to emphasize that the study is at these scales.
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column (6) of Table 1). This implied in some cases re-imaging
using the visibilities only from the extended configuration. This
will ensure not only a similar spatial resolution of ∼1000 au for
all the regions but also that the largest angular scale filtered out
by the interferometers is similar for all regions (see columns
(7), (8) and (9) of Table 1). Finally, special care was also taken
regarding the sensitivity, which was required to be around
∼0.5M☉ (at 6σ) or better. For this purpose, we self-calibrated
some of the regions, with the final rms noises listed also in the
table. We note that six of the regions included in the present
sample (W3IRS5, I20126, DR21OH, N48, N53, and N63)
overlap with the sample of Palau et al. (2014).

3. Results

Figures 1(a) and (b) present the resulting continuum images
(with extended configuration only) used to assess the
fragmentation level. The fragmentation level is estimated by
counting the number of submillimeter sources above a 6σ
threshold and within a region of 0.15 pc in diameter, which
corresponds to the smallest field of view in our sample (given
by the primary beam of the PdBI/NOEMA observations and
the distance for each region). Table 2 lists the fragmentation
level Nmm estimated for each region. As can be seen from the
table, the measured fragmentation level ranges from almost no
fragmentation (1–2 fragments for G192, I20126, and N63) to

highly fragmenting regions (with up to 18 fragments, such as
DR21OH). A total number of 160 fragments were identified
within the 18 massive dense cores. For each core, the mass and
size (at the 3σ level) for each fragment was calculated (see
details in Table 2), along with the average mass and size in
each core, and their standard deviations. In addition, each
massive dense core has been classified according to a
“fragmentation type,” following Tang et al. (2019): “clustered
fragmentation” corresponds to cores with fragments distributed
more or less homogeneously within the core (eight regions);
“aligned fragmentation” corresponds to cores with fragments
predominantly aligned along a particular direction (seven
regions); “no fragmentation” corresponds to cores with only
one or two fragments (three regions).
In order to ensure that the fragmentation level is not affected

by biases with distance, sensitivity, or evolutionary stage, in
Figure 13 of Appendix A, we present Nmm versus spatial
resolution, mass and column density sensitivity, and the
evolutionary indicator L Mbol core (Molinari et al. 2016, with
Lbol being the bolometric luminosity of the massive dense core
and Mcore being its mass estimated from our modeling, see
Section 4.1 and Table 1). The figure shows that there are no
trends and thus the sample is well suited to compare the
fragmentation properties between the different regions.
While the fragmentation level was assessed using only the

SMA or PdBI/NOEMA extended configuration, yielding typical

Table 1

Properties of the Observations Used to Assess the Fragmentation Level in the Sample of Massive Dense Cores at 0.87 and 1.3 mm

D Lbol
b

Mcore
b rmsc Mmin

c
uv-range Spat. Res.d LASd

Sourcea (kpc) (L☉) (M☉) (mJy) (M☉) (kλ) (au) (au) Referencese

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1-W3IRS5 1.95 140000 510 2.4 0.31 22–210 1600 8050 1
2-W3H2O 1.95 36000 540 2.6* 1.22 55–585 682 3230 2,3
3-G192 1.52 2700 40 3.3 0.27 40–260 1070 3460 4,5
4-NGC 6334V 1.30 40000 370 7.0 0.42 25–210 1140 4730 4,6
5-NGC 6334A(IV) 1.30 1000 600 6.6 0.40 25–210 1200 4730 4
6-NGC 6334I 1.30 48000 300 12 0.72 25–210 1130 4730 4
7-NGC 6334In 1.30 1300 730 17 1.03 25–210 1190 4730 4
8-G34.4.0 1.57 2300 150 7.0 0.62 40–260 1110 3570 4
9-G34.4.1 1.57 1100 310 2.0 0.17 40–260 1160 3570 4
10-G35.2N 2.19 15000 1060 1.3 0.22 40–260 1620 4980 4
11-IRAS 20126+4104 1.64 8900 60 0.7* 0.46 48–551 629 3120 7,8
12-CygX-N3(DR17) 1.40 200 400 1.0* 0.26 20–200 1400 6370 9, 10
13-W75N(CygX-N30) 1.40 20000 270 2.6* 0.72 20–160 1650 6370 11
14-DR21OH(CygX-N44) 1.40 10000 490 4.7 0.33 40–260 1050 3150 4, 12
15-CygX-N48(DR21OHS) 1.40 4400 610 1.5* 0.39 20–200 1400 6370 9, 13
16-CygX-N53 1.40 300 240 1.9* 0.49 20–200 1400 6370 9, 13
17-CygX-N63(DR22) 1.40 470 70 3.0* 0.77 20–200 1400 6370 9, 10
18-NGC 7538S 2.65 12000 1120 0.4* 0.43 68–765 848 3520 2, 14

Notes.
a Complete name commonly used for each massive dense core. In the following tables and figures, a short version of the name will be used.
b
Lbol is calculated with the flux densities used to build the spectral energy distribution for the model described in Section 4.1. Mcore is calculated by integrating our

modeled density structure for each core (Section 4.1) up to the observed radius with the JCMT.
c rms at 870 μm (from SMA observations) for all sources, except for those marked with an asterisk, for which the rms corresponds to the image at ∼1.3 mm (Plateau
de Bure and/or NOEMA observations). Mmin, the mass sensitivity, is taken at 6 times the rms noise of each image (identification threshold), assuming a dust
temperature of 20 K and a dust (+gas) mass opacity coefficient at 0.87(1.3) mm of 0.0175(0.00899)cm2 g−1

(column 6 of Table 1 of Ossenkopf & Henning 1994,
corresponding to agglomerated dust grains with thin ice mantles at densities of 106 cm−3

).
d Spatial resolution taken from the synthesized beam of each image and the distance to the source. LAS stands for largest angular scale, estimated using the smallest uv
distance given in column (7), and following Equation A5 of Palau et al. (2010). This corresponds to the maximum spatial scale the interferometer was able to recover.
e References for the continuum emission used to assess the fragmentation level Nmm and for the polarization data used to study the polarization angle dispersion: (1)
H.-R. V. Chen et al. (2021, in preparation); (2) Beuther et al. (2018) and Ahmadi et al. (2018): this region is part of the CORE Large Project carried out with NOEMA;
(3) Chen et al. (2012a); (4) Zhang et al. (2014); (5) Liu et al. (2013); (6) Juárez et al. (2017); (7) Cesaroni et al. (2014); (8) H. Shinnaga et al. (2021, in preparation); (9)
Bontemps et al. (2010); (10) SMA archive; (11) F. O. Alves et al. (2021, in preparation); (12) Girart et al. (2013); (13) Ching et al. (2017); (14) Beuther et al. (2012).
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synthesized beams below 1″ (∼0 8) and filtering emission
typically above ∼3″, the polarized emission was obtained using
all available SMA configurations, including compact and/or
subcompact configurations, and therefore, only emission about
14″–30″was filtered out (Zhang et al. 2014). Thus, the polarized
emission includes emission at much larger scales compared to
the continuum emission used to study the fragmentation.

Figures 2(a) and (b) present the magnetic field segments
overplotted on the images of continuum emission used to
assess the fragmentation level. From these figures, it is clear
that I20126 and N53 do not have enough detections to calculate
their magnetic field strength and hence will not be considered
further for the analysis of the polarization data.

In Figures 14(a) and (b) of Appendix A, we present the first-
order moment of the H13CO+

(4–3) (346.998344GHz) transition
for each region. The observations of the H13CO+

(4–3) transition
were carried out simultaneously with the submillimeter polariza-
tion data from the SMA, with a spectral resolution of 0.7 km s−1

for all cases, except for W3H2O and N7538S, for which the
spectral resolution is 1.4 km s−1. The images presented in
Figures 14(a) and (b) correspond to images built using all SMA
available configurations for each region, as for the polarized
emission presented in Figures 2(a) and (b) (therefore again
including compact and/or subcompact configurations).
Figures 14(a) and (b) also show the outflow directions reported
in the literature for each massive dense core. In general, velocity

Figure 1. (a) 0.87 or 1.3 mm continuum high-angular-resolution maps. Contours for all regions are −4, 4, 8, 12, 16, 20, 24, 28, 36, 40, 50, 60, 70, 80, 100, and 120
times the rms noise, listed in Table 1, except for G192, N6334I, and G34-0, for which contours are −4, 4, 8, 16, 32, 64, and 128 times the rms noise. Synthesized
beams are plotted in the bottom-right corner of each panel, and the black circle corresponds to a field of view of 0.15 pc diameter (the field of view common to all the
regions, given their primary beams). In all panels, the red contour corresponds to the identification level of 6σ, and the plus signs correspond to the identified
fragments. (b) 0.87 or 1.3 mm continuum high-angular-resolution maps. Contours for all regions are −4, 4, 8, 12, 16, 20, 24, 28, 36, 40, 50, 60, 70, 80, 100, and 120
times the rms noise, listed in Table 1, except for I20126, N63, and N7538S for which contours are −4, 4, 8, 16, 32, (48), 64, and 128 times the rms noise, and for G35,
for which contours are −4, 4, 8, 12, 20, 28, 36, 44, 52, 60, 80, 100, 120, 150, and 200 times the rms noise. Synthesized beams are plotted in the bottom-right corner of
each panel, and the black circle corresponds to a field of view of 0.15 pc diameter (the field of view common to all the regions, given their primary beams). In all
panels, the red contour corresponds to the identification level of 6σ, and the plus signs correspond to the identified fragments.
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gradients are present in all regions, indicating that they could have
a nonnegligible contribution to the velocity line widths obtained
from spectra averaged over the region, required to estimate the
magnetic field strength. This is further discussed in Section 4.2.

4. Analysis

4.1. Determination of the Density Structure

In order to estimate the density averaged within 0.15 pc in
diameter (the field of view where the fragmentation level was
assessed), we inferred the radial density profile of each massive
dense core. To do this, we followed the same approach
described in Palau et al. (2014), where a model was developed
to simultaneously fit the radial intensity profiles at 450 and
850 μm SCUBA images (from the James Clerk Maxwell
Telescope) from di Francesco et al. (2008),17 along with the

spectral energy distribution (SED). The constraint imposed by
the SED allows the degeneracy between temperature and
density to the intensity of the source to be broken. The model
assumes spherical symmetry, takes into account opacity effects
(i.e., the emission is not assumed to be optically thin), does not
assume the Rayleigh–Jeans approximation and considers that
the density and temperature decrease with radius following
power laws with indices p and q, respectively: ( )r r= -r r p

0 0

and ( )= -T T r r q
0 0 , with ρ0 and T0 being the density and

temperature values at a reference radius r0 taken to be 1000 au.
Regarding the dust opacity law, it was assumed to follow a
power law of frequency with index β, ( )k k n n= b

0 0 , where
ν0 is an arbitrary reference frequency. The value of κ0=
0.008991 cm2 g−1 at ν0= 230 GHz was adopted (Ossenkopf &
Henning 1994). Given a dust cloud heated radiatively by a
central luminous source, it has been shown that β and q are
related according to q= 2/(4+ β) (Scoville & Kwan 1976;
Adams 1991; Chandler et al. 1998). Thus, there are four final
free parameters of the model: the dust emissivity index, β;
the envelope temperature at the reference radius r0, T0; the

Figure 1. (Continued.)

17 For the cases of N3 and N63, the SCUBA data are not available and the
IRAM 30 m data at 1.2 mm from Motte et al. (2007) were used (Palau et al.
2014).
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envelope density at the reference radius r0, ρ0; and the density
power-law index, p.

The fitting procedure was the same as the one described
in Palau et al. (2014), with initial search ranges for the
four parameters being β= 1.5± 1.5, T0= 300± 300 K, ρ0=
(1.0± 1.0)× 10−16 g cm−3, and p= 1.5± 1.0. The search
range was reduced by a factor of 0.8 around the best-fit value
found for each loop. In turn, each loop consisted of 2000
samples of the parameter space, and the final best-fit values
were taken after 10 loops. Once the best-fit parameters were
found, their uncertainties were estimated through the increase
in χ2. We refer to Palau et al. (2014) for further details of the
model and the fitting procedure, and to Appendix C for
additional details on the SED building for two particular
regions of the sample. In Table 3 we list the best-fit values for
the four free parameters of the model, along with the reduced
χ2, the temperature power-law index q, the mass within a
region of 0.15 pc in diameter,18 and the density averaged within
the same region. The uncertainties associated with the averaged

density and mass are obtained taking into account the
uncertainty in the reference density ρ0, which is about 10%–

20% of the fitted value, while the uncertainty in the density
power-law index p is always< 5% (Table 3) and is not
considered. Our results for the density power-law index are
consistent, within the errors, with very recent estimates at
smaller scales (∼2000 au) from the CORE sample (W3H2O;
Gieser et al. 2021). In Figures 3(b) and (c), the observational
data and the best-fit model for each region are presented.

4.2. Determination of the Velocity Dispersion

One of the common techniques to estimate velocity
dispersions is to fit a Gaussian to the line spectrum of the
region. We extracted the H13CO+

(4–3) spectrum averaged over
a region of 0.15 pc in diameter (the field of view where
fragmentation was assessed) and fitted one Gaussian for
each region of our sample.19 For the case of N6334I, there is

Table 2

Fragmentation Properties of the Massive Dense Cores

Frag. 〈Rfragm〉
c σ(Rfragm)

c 〈Mfragm〉
c σ(Mfragm)

c 〈nfrag〉
c

MJeans
d

Mcrit
d

Source Nmm
a typeb (au) (au) (M☉) (M☉) (107 cm−3

) (M☉) (M☉)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1-W3IRS5 4 cl 1490 70 0.1 0.1 0.2 1.3–19 0.8
2-W3H2O 8 cl 730 430 2.8 3.9 15 0.8–6.8 0.6
3-G192 1 no 1770 L 2.7 L 1.8 1.9–5.7 2.7
4-N6334V 5 cl 1310 460 1.1 1.3 1.1 0.9–4.1 1.6
5-N6334A 16 al 1270 370 1.3 1.1 2.0 0.9–2.6 1.0
6-N6334I 7 cl 1070 620 3.8 6.8 3.4 0.7–4.8 3.3
7-N6334In 15 al 1000 200 1.0 1.2 3.1 0.7–2.8 4.4
8-G34-0 5 cl 1090 840 2.9 5.8 3.2 0.9–3.3 1.4
9-G34-1 10 al 1170 440 0.7 1.1 1.0 1.0–2.0 3.4
10-G35 15 al 1820 690 2.8 4.3 0.9 1.0–3.6 3.6
11-I20126 1 no L L L L L 1.4–7.2 L

12-N3 6 al 1220 270 0.7 0.7 1.1 1.2–1.4 0.4
13-W75N 14 cl 1980 660 2.1 2.5 0.7 0.9–5.5 3.5
14-DR21OH 18 cl 1250 440 1.2 1.3 1.7 0.6–1.9 1.7
15-N48 12 cl 1320 410 0.7 0.6 0.4 0.8–1.6 0.7
16-N53 9 al L L L L L 0.9–1.1 L

17-N63 2 no 1950 1380 7.8 10 2.4 1.4–2.2 1.1
18-N7538S 12 al 1100 440 1.6 1.7 3.3 0.7–2.8 1.3

Notes.
a
Nmm is the fragmentation level, estimated counting the number of millimeter sources above a 6σ threshold, covering at least half a beam at 4σ, and closing at least

one contour, within the common field of view for all the regions of 0.15 pc in diameter.
b Fragmentation type according to Tang et al. (2019). “cl” corresponds to “clustered fragmentation”; “al” corresponds to “aligned fragmentation”; and “no”
corresponds to “no fragmentation” (see Section 3).
c 〈Rfragm〉 and 〈Mfragm〉 correspond to the average radius and mass (at the 3σ level), respectively, of all fragments in a given massive dense core. σ(Rfragm) and
σ(Mfragm) correspond to the standard deviation of the radius and mass of the fragments in each massive dense core. The mass of the fragments was calculated using the
flux density within the 3σ contour, and considering the temperature corresponding to the temperature power-law derived in Section 4.1, using as distance the projected
distance measured from the fragment to the peak of the single-dish submillimeter source. The opacity law used is the same as the opacity given in the notes of Table 1.

〈nfrag〉 is the average density of the fragments in each region. For each fragment, its density was calculated as ( )/= p
n M Rfrag frag

4

3 frag
3 .

d
MJeans corresponds to the Jeans mass calculated following Equation (15) and using the values of n0.15 pc listed in Table 3. The range of values corresponds to the

range of temperatures assumed, 20 K (lower limit) or T0.15 pc from Table 3 (upper limit). Mcrit is the magnetic critical mass (the Jeans mass analog in the magnetic
support case) calculated following Equation (16), using 〈Rfragm〉 and the magnetic field strength Bstdev (Table 5) scaled in density to the average density of all the

fragments, of 3 × 107cm−3, assuming that ⎡
⎣

⎤
⎦

= ´ -
B B

nfrag stdev
3 10 cm

0.47 3

0.15 pc
(Li et al. 2015).

18 The mass given in Table 3 is not the total mass of the core, but the mass
only within a region of 0.15 pc in diameter. An estimate of the total mass of the
core is given in Table 1 and results from integrating the density of our model up
to the observed radius for each region as seen with the JCMT. This yields
values typically about a factor of 4–10 larger than the mass within 0.15 pc in
diameter.

19 The H13CO+
(4–3) spectrum of W3H2O clearly presents two well-separated

velocity components. The blueshifted component was found to be very well
associated with the polarized emission while the redshifted component was
found to be much more extended. For this reason, in this case, two Gaussians
had to be fitted and the line width of the blueshifted component was used for
our analysis. The first-order moment shown in Figure 14(a) for W3H2O
corresponds also to the blueshifted velocity component.
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absorption toward the two strongest continuum sources and
some emission from 5 to 10 km s−1

(velocities given with
respect to the local standard of rest), but these features are very
compact. The main emission is found in the velocity range
from −15 to 0 km s−1, and the Gaussian was fitted in this
velocity range.

The spectra and the corresponding fits are shown in Figure 4,
and the velocity line widths, Δv0.15 pc, are listed in Table 4. As
can be seen from the figure, most spectra appear to be well
fitted with only one Gaussian.

The velocity dispersion associated with turbulence is
estimated assuming that it is a factor Q of the nonthermal
dispersion. The nonthermal dispersions, σnonth, are listed in

Table 4 and were calculated by assuming the average
temperature reported in Table 3, T0.15 pc. As can be seen from
Table 4, in our case, the nonthermal dispersions are essentially
the same as the total velocity dispersions. Thus, we estimate
that the 1D (along the line of sight) turbulent dispersion is

( )s = DQ v 8 ln 2 , 1turb,spec 0.15 pc

where the subindex “spec” is written to remind that this
estimate makes use of the line width inferred from the
spectrum. In this equation, we assumed that Q∼ 0.5. The Q

factor, defined here as s sºQ turb nonth, is required to take into
account the fact that systematic large-scale motions could be

Figure 2. (a) 0.87 or 1.3 mm continuum high-angular-resolution maps with the magnetic field segments overplotted in blue. Contours for all regions are −4, 4, 8, 12,
16, 20, 24, 28, 36, 40, 50, 60, 70, 80, 100, and 120 times the rms noise, listed in Table 1, except for G192, N6334I, G34-0, and G34-1, for which contours are −4, 4, 8,
16, 32, 64, and 128 times the rms noise. For W3H2O, contours are −4, 4, 8, 16, 24, 32, 64, and 120 times the rms noise. Synthesized beams are plotted in the bottom-
right corner of each panel, and the black circle corresponds to the common field of view of 0.15 pc diameter. (b) 0.87 or 1.3 mm continuum high-angular-resolution
maps with the magnetic field segments overplotted in blue. Contours for all regions are −4, 4, 8, 12, 16, 20, 24, 28, 36, 40, 50, 60, 70, 80, 100, and 120 times the rms
noise, listed in Table 1, except for I20126, W75N, N53, N63, and N7538S, for which contours are −4, 4, 8, 16, 32, 64, and 128 times the rms noise, and for G35, for
which contours are −4, 4, 8, 12, 20, 28, 36, 44, 52, 60, 80, 100, 120, 150, and 200 times the rms noise. Synthesized beams are plotted in the bottom-right corner of
each panel, and the black circle corresponds to the common field of view of 0.15 pc diameter.
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contributing a nonnegligible part of the total nonthermal
dispersion, as shown by recent simulations of gravitational
contraction of turbulent cores (e.g., Guerrero-Gamboa &
Vázquez-Semadeni 2020). An uncertainty of ∼10% is assumed
for σturb,spec (e.g., Guerrero-Gamboa & Vázquez-Semadeni
2020).

A first estimate of the Q factor was performed from our
H13CO+

(4–3) first-order moment maps of Figures 14(a) and
(b). These figures show that velocity gradients are clearly
present in our regions. In an attempt to separate the turbulent
component of the kinetic energy, Eturb, from the total kinetic
energy, Ekin, which could be dominated by large-scale motions
(e.g., rotation, infall), velocity dispersion functions (VDFs)
were built for the same regions for which the ADF were also
calculated in Section 4.4. The VDFs were calculated as

[ ( )]
( )

[ ( ) ( )] ( )

( )

åá D ñ º - +
=

x xV ℓ
N ℓ

V V ℓ
1

, 2
i

N ℓ
2 1 2

1

2

where V is the velocity along the line of sight at each position
of our maps. We refer the reader to Section 4.4 for further
details on the dispersion function. The results are shown in
Figure 5 and σturb,VDF, listed in Table 4, was estimated from the
intercept value. Table 4 also reports the ratio s sturb nonth or Q.
With the exception of W3IRS5 and N6334I, s sturb nonth

averages to 0.4, with a standard deviation of 0.2, very
consistent with the value measured in the simulations of
Guerrero-Gamboa & Vázquez-Semadeni (2020). The two
regions with s s ~ 2turb nonth could be affected by small-scale
rotation or infalling motions, as found in previous works (e.g.,
Zhang et al. 1998, 2002). Actually, the spectrum of N6334I
presents an absorption signature due to infall (Figure 4). Thus,
our adopted value of Q∼ 0.5 seems reasonable.
For completeness, Table 4 also lists the values of the Mach

number,, ranging from 3 to 11, and the values of the total
kinetic energy Ekin, the turbulent kinetic energy Eturb, their
ratio, and the gravitational energy Egrav.

Figure 2. (Continued.)
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4.3. Determination of the Magnetic Field Strength: The
Davis–Chandrasekhar–Fermi Method

Polarization observations of thermal dust emission at
submillimeter wavelengths constitute a powerful tool to
estimate the magnetic field strength onto the plane of the sky,
Bpos. In order to estimate this, the Davis–Chandrasekhar–Fermi
method (DCF, Davis 1951; Chandrasekhar & Fermi 1953) has
been widely used. In this method, it is assumed that the
turbulent kinetic energy and the turbulent magnetic energy are
equal and that the turbulent gas induces the observed dispersion
in the polarization position angles (PAs). Therefore, higher PA
dispersions correspond to weak magnetic fields such that the
turbulent gas can drag the field lines. Following Chandrasekhar
& Fermi (1953), the magnetic field strength of the ordered
component of the magnetic field, B0, can be estimated from the
following relation, once the density, ρ, turbulent velocity
dispersion along the line of sight, σturb, and PA dispersion, σPA,
are known:

( )pr
s
d

pr
s
s

~ = ~B B
B B

f4 4 , 30 pos
turb

0

turb

PA

where it is assumed that δB/B0∼ σPA, with δB being the perturbed
magnetic field on the top of B0. In this equation, f is a numerical
correction factor usually adopted to be 0.5 (Ostriker et al. 2001).
This numerical factor was derived for cases where Equation (3) is
valid, mainly for σPA 25°. For larger dispersions, σPA should be
replaced by stan PA (Falceta-Gonçalves et al. 2008), and there is no

need to apply the numerical correction factor f. The tangent
correction is required in our case because our measured σPA are in
some regions large (see below), up to 50°, and thus stan PA, which
is what strictly corresponds to δB/B0, cannot be approximated
to σPA.
In the following subsections, we present two different

approaches for estimating σPA following the DCF method.

4.3.1. Polarization PA Dispersion from Standard Deviation

In order to estimate a dispersion in polarization PA, we
extracted the PA values, Φ, from each PA image, for the same
region where fragmentation was assessed (0.15 pc in diameter),
and rejected those angles with an error larger than∼10° (11°
for G34-1, and 15° for G19220), which corresponds to a signal-
to-noise ratio smaller than 3 for the signal in polarization
(Zhang et al. 2014). Three PA points per beam were extracted
for each region.
A first approach to estimate σPA is based on the calculation

of the standard deviation of the weighted mean. However,
given the fact that the PA values have an error associated, it is
desirable to subtract the contribution of the PA error to σPA.

Table 3

Fitted Parameters of the Density and Temperature Structure of the Massive Dense Cores and Inferred Properties

T0
a ρ0

a
M0.15 pc

b
n0.15 pc

b
T0.15 pc

b

ID-Source βa (K) (g cm−3
) p

a χr
a

q
b

(M☉) (105 cm−3
) (K)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1-W3IRS5 1.04 ± 0.12 260 ± 30 (2.4 ± 0.3) × 10−17 1.46 ± 0.04 0.602 0.40 22 ± 3 1.8 ± 0.2 118
2-W3H2O 1.30 ± 0.16 152 ± 16 (1.5 ± 0.2) × 10−16 1.90 ± 0.05 0.532 0.38 59 ± 8 4.8 ± 0.6 82
3-G192 1.36 ± 0.23 66 ± 6 (4.1 ± 0.6) × 10−17 2.13 ± 0.08 0.338 0.37 11 ± 2 0.9 ± 0.1 42
4-N6334V 2.19 ± 0.25 96 ± 11 (1.3 ± 0.3) × 10−16 1.89 ± 0.08 0.334 0.32 51 ± 12 4.2 ± 1.0 56
5-N6334A 2.18 ± 0.15 78 ± 8 (4.6 ± 0.7) × 10−17 1.42 ± 0.05 0.455 0.33 46 ± 7 3.8 ± 0.6 40
6-N6334I 2.55 ± 0.22 111 ± 12 (2.3 ± 0.4) × 10−16 2.02 ± 0.05 0.461 0.31 73 ± 13 6.0 ± 1.0 70
7-N6334In 2.10 ± 0.19 98 ± 12 (8.8 ± 1.5) × 10−17 1.46 ± 0.05 0.518 0.32 81 ± 14 6.6 ± 1.0 52
8-G34-0 1.96 ± 0.24 63 ± 6 (2.0 ± 0.4) × 10−16 2.26 ± 0.09 0.483 0.34 44 ± 9 3.6 ± 0.7 46
9-G34-1 1.39 ± 0.23 63 ± 7 (8.2 ± 1.5) × 10−17 1.76 ± 0.08 0.488 0.37 42 ± 8 3.4 ± 0.6 33
10-G35 1.86 ± 0.15 90 ± 7 (4.4 ± 0.6) × 10−17 1.53 ± 0.03 0.463 0.34 36 ± 5 3.0 ± 0.4 46
11-I20126 1.82 ± 0.24 86 ± 9 (8.4 ± 1.6) × 10−17 2.21 ± 0.11 0.607 0.34 20 ± 4 1.6 ± 0.3 59
12-N3c 1.69 ± 0.31 45 ± 4 (4.0 ± 0.5) × 10−17 1.58 ± 0.04 0.648 0.35 29 ± 4 2.4 ± 0.3 23
13-W75N 2.04 ± 0.18 112 ± 12 (1.4 ± 0.2) × 10−16 1.99 ± 0.05 0.729 0.33 48 ± 7 4.0 ± 0.5 67
14-DR21OH 1.60 ± 0.26 73 ± 7 (3.1 ± 0.6) × 10−16 1.98 ± 0.08 0.808 0.36 110 ± 20 8.6 ± 1.7 42
15-N48 1.88 ± 0.18 58 ± 5 (1.0 ± 0.2) × 10−16 1.71 ± 0.05 0.459 0.34 56 ± 11 4.6 ± 0.9 31
16-N53c 1.55 ± 0.22 45 ± 4 (9.7 ± 1.8) × 10−17 1.76 ± 0.07 0.487 0.36 49 ± 9 4.0 ± 0.7 24
17-N63c 1.80 ± 0.33 45 ± 3 (6.5 ± 1.1) × 10−17 2.03 ± 0.07 0.570 0.34 20 ± 3 1.7 ± 0.3 27
18-N7538S 1.74 ± 0.19 93 ± 10 (1.3 ± 0.2) × 10−16 1.72 ± 0.05 0.304 0.35 72 ± 5 5.9 ± 0.5 49

Notes.
a Free parameter fitted by the model: β is the dust emissivity index; T0 and ρ0 are the temperature and density at the reference radius, 1000 au; p is the density power-
law index; χr is the reduced χ as defined in Equation (6) of Palau et al. (2014).
b Parameters of the massive dense cores inferred from the modeled density and temperature structures. q is the temperature power-law index. M0.15 pc is the mass

inside a region 0.15 pc in diameter computed according to ( ) p r= = =
-

-
M M R r0.075pc 4 ;p R

p0.15 pc 0 0 3

p3

n0.15 pc and T0.15 pc correspond to the average H2 density

and temperature inside a region 0.15 pc in diameter. T0.15 pc was estimated as
( ) ( )

( )
=
ò

ò

r

r
T

T r r r dr

r r dr
R

R

R
0

2

0
2

, where T(r) and ρ(r) were calculated as power laws with temperature

at the reference radius given in column (3), temperature power-law index given in column (7), density at reference radius given in column (4) and density power-law

index given in column (5) of this table. The final expression is ( )( )= -
- -

-
T

T p

p q

r

r

q

R
3

3

0

0
.

c Sources for which only the radial intensity profile at 1.2 mm was fitted.

20 Only for the case of G192 did we include PA with errors ∼15° because an
inspection of the PA values showed that there were two PA components, one
around 20° and the other around 85°. The component around 20° is the one
with large errors in the PA, but the different values of this component are very
similar, making this component more significant (see Figure 2(a)). 15° of PA
error corresponds to a signal-to-noise ratio ∼ 2.
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Thus, given a number N of PAs measured in a certain region,
we have used the following expression:

( )

( )

( )
å

å å
s =

F - F

-
-=

=

=

N w

N w

N

w
1

, 4i

N
i i w

i

N

i i

N
i

PA,stdev
1

2

1

1

where F = å F

å
=

=
w

w

w

i

N
i i

i
N

i

1

1

is the weighted mean of PAs, and the

second term within the square root corresponds to the
contribution of the PA errors to the dispersion (Equation A2
of Añez-López et al. 2020b). In these equations, wi are the
weights of each PA Φi, d= Fw 1i i

2, with δΦi the PA error of
each PA measurement. This final σPA,stdev can be considered as

an intrinsic standard deviation because the contribution from
the PA errors has been removed. The magnetic field strength in
the plane of the sky following this approach is calculated as

( )pr
s
s

=B 4
tan

, 5stdev
turb

PA,stdev

where σturb has been obtained from Equation (1) adopting
Q∼ 0.5 (Section 4.2).
The obtained values of σPA,stdev and Bstdev for each region

are listed in Table 5. σPA,stdev ranges from 6° to 50°, and their
associated uncertainties were estimated from Monte Carlo
simulations, to take into account the sparse sampling in our PA
images (see Appendix D for further details). The uncertainties
in Bstdev were estimated by propagating the uncertainties in the
density, velocity dispersion, and σPA,stdev.

Figure 3. Best fits for six regions of the sample (see Table 3 for the exact fitted parameters). Each row corresponds to one core, the left (middle) panel shows the radial
intensity profile at 850 (450) μm, with the empty blue circles corresponding to the data, the black solid line corresponding to the model, and the dashed red line
showing the beam profile; panels on the right show the SED, with blue empty circles indicating the observed fluxes, the black solid line showing the model for a fixed
aperture, and the red squares corresponding to the model for the same aperture where each flux was measured.
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4.3.2. Polarization PA Dispersion from Multiple Gaussian Fittings

In the previous section, σPA was estimated by calculating the
standard deviation of the PAs. However, the dispersion values
calculated from Equation (4) would systematically over-
estimate the dispersion in the cases where multiple components
of the magnetic field are present. Thus, another approach to
estimate the σPA is to fit Gaussians to the histogram of PAs.
The number of bins was determined using the “auto” option of
the “histogram” function of Python, and the resulting
histograms are presented in Figure 6. For the cases of G192,
N3 and N63, ∼4 points per beam were extracted from the PA
image to allow a more robust fit of the histogram. In some
cases, the histogram could be fitted with one single Gaussian
component. In other cases, two (three) components were

clearly separated in the PA histogram, and each component was
fitted with a different Gaussian. However, there were cases
clearly deviating from one single Gaussian but still with the
two components merged so that it is ambiguous whether there
are two (narrower) components or one (broader) component. In
general, we considered separated PA components if the second
peak of the tentative component is separated in y-axis by more
than half of the peak of the strongest component while still
being significant in number of points (around five). This
implied fitting two components for the ambiguous cases of
N6334I, DR21OH, and N63,21 and three components
for W75N.

Figure 3. (Continued.)

21 For the case of N63, we also tried to fit three PA components. This implied a
stronger magnetic field by less than a factor of 2.
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The final PA dispersions following this approach, σPA,gauss,
were computed as the average width of the different
components, weighted by the area of each Gaussian, and range
from 6° to 24°. The magnetic field strength in the plane of the
sky following this approach is calculated as

( )pr
s
s

=B 4
tan

, 6gauss
turb

PA,gauss

where σturb has been obtained from Equation (1) adopting
Q∼ 0.5 (Section 4.2).

The results are presented in Figure 6 and listed in Table 5.
The uncertainty in σPA,gauss was estimated from Monte Carlo
simulations as in the previous section (see Appendix D for
further details).

4.4. Determination of the Magnetic Field Strength: The ADF
Method

The previous approaches to estimate the PA dispersion
could be introducing biases. First, the “standard deviation”
approach could be overestimating σPA because it is ignoring
the fact that there could be different magnetic field
components within the same region and takes into account
the large-scale variations of the PA. Second, the “multiple
Gaussian” approach might be biased because of the decision
of how many Gaussian components should be used. Both the
“standard deviation” and the “multiple Gaussian” approaches
might also be biased for broad PA distributions where PAs
separated about 180° actually correspond to the same

Figure 3. (Continued.)
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direction. Figure 6 shows that for 12 out the 16 regions
studied here, the different PA components are separated by
less than 90° and should not be strongly affected by this
problem. Only four regions present very broad distributions,
W3H2O, W75N, N48, and N63, with W3H2O being the most
striking case (see also Table 5).

A possible way to estimate σPA or δB/B0 more robustly is
the statistical method proposed by Hildebrand et al. (2009) and
Houde et al. (2009). This method is based on the calculation of
the ADF, defined as

[ ( )]
( )

[ ( ) ( )] ( )

( )

åá DF ñ º F - F +
=

x xℓ
N ℓ

ℓ
1

, 7
i

N ℓ
2 1 2

1

2

where x is the position vector in the plane of the sky, ℓ≡ |ℓ|,
and N(ℓ) is the number of pairs of vectors separated by the
displacement ℓ. The square of Equation (7) is also referred to
as the structure function of the second order, but the structure
function does not have angle units, and for this reason we
refer to 〈[ΔΦ(ℓ)]2〉1/2 as the ADF. The ADF can be calculated
for those regions with a large number of detections of
polarization PA so that calculating an average for each
distance bin is feasible. For our sample, we applied this
approach only to 11 regions, which are those with more than
45 PA detections. Figure 7 presents the ADF for these 11
regions. The ADF can be used in two different approaches to
estimate δB/B0.

4.4.1. The ADF at the Smallest (Beam) Scales

From the ADF, one can directly measure the PA dispersion
at the smallest resolved scale in our observations, naturally
separating the large-scale component of the magnetic field from
the small-scale perturbations (Hildebrand et al. 2009). We
define σPA, ADFbeam as the value of the ADF at scales equal to
half the spatial scale of the beam, ℓB:

[ ( )] ( )s º á DF ñℓ 2 . 8PA,ADFbeam B
2 1 2

The obtained values of σPA, ADFbeam along with the magnetic
field strength in the plane of the sky following this approach,

( )pr
s
s

=B 4
tan

, 9ADFbeam
turb

PA,ADFbeam

are listed in Table 5. Here, σturb has been obtained from
Equation (1) adopting Q∼ 0.5 (Section 4.2). We refer to this
approach as the “ADF beam” approach.

4.4.2. Fitting the ADF Following Houde et al. (2009)

Another approach to estimate δB/B0 using the ADF was
introduced by Houde et al. (2009). This approach takes into
account the smoothing effect due to finite resolutions and the
integration along the line of sight. In addition, it separates the
contribution of large-scale magnetic fields to angle dispersions
because it assumes that there are two statistically independent
components of the magnetic field. One component is related to
the large-scale, ordered, magnetic field, B0, and the other
component corresponds to a perturbed or turbulent magnetic
field, Bt (or δB). With this assumption, Houde et al. (2009)

Figure 4. H13CO+
(4–3) spectra (black) with the Gaussian fits (blue curves) performed to estimate the velocity dispersion in each region. For the case of W3H2O, the

velocity component associated with the polarized emission is marked with a red arrow.
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calculated the ADF to study the change of polarization PA
differences with ℓ and related the output of this statistical
analysis to the ratio of Bt energy to B0 energy, º á ñ á ñb B Bt

2
0
2 ,

which corresponds to ( )dB B0
2 and can thus be used in

Equation (3). We refer the reader to Houde et al. (2009) for
further details on this approach. In short, Houde et al. (2009)
calculate the ADF in the form

[ ( )] ( ) ( )( )- á DF ñ - + ¢d- +ℓ
b

N
e a ℓ1 cos 1 , 10ℓ W2 4

2
22 2 2

where δ is the magnetic field turbulent correlation length, W is
the “beam radius” ( =W FWHM 8 ln 2 ), ¢a2 is the coefficient
of the parabolic approximation for the uniform part of the
magnetic field in the ADF,22 and N is the number of turbulent
cells:

( ) ( ) ( )d p dº D¢ +N W2 2 , 112 2 3

with D¢ being the effective thickness of the cloud, expected to
be slightly smaller than the cloud thickness.23 Here we assume
thatD¢ is equal to the core’s thickness, taken as the diameter of

the dense core in the plane of the sky as measured with the
SMA (Koch et al. 2010). Thus, Equation (10) can be
decomposed into a correlated component ( )( )- d- +e

b

N

ℓ W2 42 2 2

,
blue line in the bottom panels of Figure 8) and the contribution
of the large-scale uniform magnetic field ( + ¢b N a ℓ2

2, red
dashed line in the top panels of Figure 8).
By fitting Equation (10) to the observational data, the values

for the three free parameters, b/N, δ, and ¢a2, are obtained. Only
distances smaller than the physical distance of the largest
angular scale of the SMA polarization observations (∼ 12″24)
were taken into account to perform the fit. The b/N free
parameter was allowed to vary from 0.025 to 5 in steps of
0.005, the δ free parameter was allowed to vary from 5 mpc to
half the effective cloud thickness25 (Table 6), and the ¢a2 free
parameter was allowed to vary from −120 to 120 pc−2 in steps
of 1 pc−2. The fitted parameters were determined by
minimizing χ2.
Table 6 lists the three fitted parameters, δ, b/N, and ¢a2, along

with the adopted value for D¢ (estimated from the SMA
continuum images combining all available configurations), and

Table 4

Kinematic Properties of the Sample from the H13CO+
(4–3) SMA Data

Δv0.15 pc
a σtot

a σnonth
a σturb,VDF

b
Ekin

c
Eturb

c
Egrav
d

Source (km s−1
) (km s−1

) (km s−1
) (km s−1

) a s
s
turb

nonth

b
(1045 erg)c (1045 erg)c (1045 erg)c

E

E

turb

kin

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1-W3IRS5 3.20 1.36 1.35 2.63 3.6 1.95 1.24 4.62 0.34 3.7
2-W3H2O 6.72 2.85 2.84 1.30 9.1 0.46 14 2.96 2.36 0.2
3-G192 2.43 1.03 1.03 L 4.6 L 0.35 L 0.08 L

4-N6334V 4.87 2.07 2.06 1.05 8.0 0.51 6.59 1.69 1.81 0.3
5-N6334A 1.34 0.57 0.56 0.54 2.6 0.97 0.45 0.40 1.47 0.9
6-N6334I 2.31 0.98 0.97 2.87 3.4 2.96 2.11 18 3.65 8.5
7-N6334In 3.28 1.39 1.39 0.48 5.6 0.35 4.71 0.56 4.48 0.1
8-G34-0 2.54 1.08 1.07 L 4.6 L 1.53 L 1.31 L

9-G34-1 1.98 0.84 0.84 L 4.2 L 0.89 L 1.20 L

10-G35 5.34 2.27 2.26 0.64 9.7 0.28 5.57 0.44 0.90 0.1
11-I20126 L L L L L L L L 0.26 L

12-N3 2.22 0.94 0.94 L 5.7 L 0.78 L 0.59 L

13-W75N 4.70 2.00 1.99 0.50 7.0 0.25 5.78 0.36 1.60 0.1
14-DR21OH 4.66 1.98 1.98 0.52 8.8 0.26 12.3 0.85 7.55 0.1
15-N48 2.87 1.22 1.22 0.47 6.3 0.39 2.50 0.37 2.16 0.2
16-N53 L L L L L L L L 1.67 L

17-N63 2.36 1.00 1.00 L 5.5 L 0.61 L 0.28 L

18-N7538S 6.18 2.62 2.62 0.70 11 0.27 15 1.05 3.50 0.1

Notes.
a
Δv0.15 pc is the line width obtained from fitting a Gaussian to the H13CO+

(4–3) spectrum averaged over a region 0.15 pc in diameter. ( )s = Dv 8 ln 2tot 0.15 pc

corresponds to the 1D total (thermal+nonthermal) velocity dispersion. s s s= -nonth tot
2

th
2 , with ( )s m= k T mth B H (kB being the Boltzmann constant, μ the

molecular weight(30 for H13CO+
), mH the mass of the hydrogen atom, and T the temperature of the region, taken from column (10) of Table 3). The Mach number

is calculated as σ3D,nth/cs, with cs being the sound speed calculated as ( )m=c k T ms B H , using μ = 2.3, and s s= 33D,nth nonth.
b
σturb,VDF is taken from the velocity dispersion function at the smallest scale (Section 4.2) and thus should be free of large-scale systematic motions. s

s
turb

nonth
is

calculated using σturb,VDF and corresponds to Q in Section 4.2 and Equation (1).
c
Ekin is the total kinetic energy calculated as sM

3

2 0.15 pc tot
2 , Eturb is the turbulent kinetic energy calculated as sM

3

2 0.15 pc turb,VDF
2 , and Egrav is the gravitational energy

calculated as G M R
3

5 0.15 pc
2 , with R = 0.15/2 = 0.075 pc, and M0.15 pc taken from Table 3.

22 The fact that the contribution of the uniform magnetic field in the ADF is
approximated by a parabola does not necessarily mean that the morphology of
the magnetic field follows a parabola, it rather corresponds to keeping the first
ℓ
2 term in the Taylor expansion of Equation (42) of Houde et al. (2009), which
is acceptable if ℓis less than a few times the beam radius W (Houde et al. 2009).
23 As explained in Section 3.2 of Houde et al. (2009),D¢ can be interpreted as
the width of the large-scale autocorrelation function, and can be thought as the
proportion of the cloud that contains the bulk of the polarized flux. Thus, it
necessarily needs to be smaller than the physical cloud thickness.

24 For the particular cases of N6334V and N6334A, the largest distance
considered for the fit is ∼20″, because these two regions have slightly larger
beams, of ∼5″, than the beams for the other regions, ∼2″–3″, and we require
that at least a distance of four times the beam is covered. For W3H2O and
N6334I, the largest distance considered for the fit was set to 0.06 pc because
there were no data for larger distances.
25 In the method described by Houde et al. (2009), δ is assumed to be much
smaller than the thickness of the cloud. For this reason, we require that the
upper limit of δ must be about half the effective thickness of the cloud D¢.

14

The Astrophysical Journal, 912:159 (33pp), 2021 May 10 Palau et al.



the corresponding values for N. á ñ á ñB Bt
2

0
2 and ºBADFH09

á ñB0
2 1 2 are given in Table 5 to ease the comparison with the

other methods/approaches used in this work. BADFH09 has been
calculated following equation (57) of Houde et al. (2009):

( )pr
s

º á ñ =
á ñ á ñ

B B
B B

4 , 12ADFH09 0
2 1 2 turb

t
2

0
2

where á ñ á ñ =B B bt
2

0
2 . σturb has been obtained from

Equation (1) by adopting Q∼ 0.5 (Section 4.2). We refer to
this approach as the “ADF H09” approach. The uncertainty of
the free parameter b/N controlling á ñ á ñB Bt

2
0
2 has been

estimated from Monte Carlo simulations as described in
Appendix D (where we followed Liu et al. 2019).

A discussion of how these values compare to the previous
methods/approaches is presented below.

4.5. A Comparison between the DCF and ADF Methods

In Sections 4.3.1, 4.3.2, 4.4.1, and 4.4.2, δB/B0 was
estimated using two different methods (DCF, ADF), with two
approaches for each method. We then calculated the magnetic
field strength following Equations (5), (6), (9), and (12),
and using the density and velocity dispersion inferred in
Sections 4.1 and 4.2 (Equation (1)), with all quantities averaged

within 0.15 pc in diameter. It is important to emphasize that
while the fragmentation level is measured in SMA/PdBI/
NOEMA images obtained using only extended configurations,
thus filtering out typically angular scales larger than∼ 3″
(Table 1), the polarized and H13CO+ emissions are obtained
from images including also subcompact and/or compact SMA
configurations, thus filtering out much larger scales, of 14″–
30″. The density is obtained from the modeling of the radial
intensity profiles and SEDs obtained from single-dish data with
angular resolutions 11″. Thus, the magnetic field strength is
calculated using data sensitive to the core scale and averaged
within this same scale (0.15 pc in diameter), while the
fragmentation level is obtained using data sensitive only to
much smaller scales (<0.03 pc).
Now we would like to compare the results of the four

different approaches followed to estimate δB/B0 in
Equation (3). The ”ADF H09” approach should be more
robust than the “standard deviation” and the “multiple
Gaussian” approaches because it decomposes the total magn-
etic field into the perturbed and the uniform parts taking into
account the effects of the beam smoothing and the average
along the line of sight (although it also has large uncertainties
associated, as shown by Liu et al. 2019). The “ADF beam”

approach should also provide a very good estimate of the PA
dispersion at small scales (turbulent component of the magnetic

Figure 5. Velocity dispersion functions in km s−1
(i.e., 〈[ΔV(ℓ)]2〉1/2, as defined in Equation (2)), for the regions for which the ADF (Section 4.4) was also calculated,

measured using the H13CO+
(4–3) first-order moment maps of Figures 14(a) and (b). The dashed gray vertical line indicates the largest angular scale that the SMA is

able to recover for the H13CO+
(4–3) emission.
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Table 5

Magnetic Field Properties Derived Using the DCF and ADF Methods

sstdev
PA a sgauss

PA b sADFbeam
PA c

Bstdev
a

Bgauss
b

BADFbeam
c

BADFH09
c

Blit
d

ID (°) (°) (°)
á ñ
á ñ
B

B

t
2

0
2

c
(mG) (mG) (mG) (mG) (mG) μstdev

a μgauss
b μADFbeam

c μADFH09
c m

gauss
S21 b

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

1 50 ± 7 23 ± 4 18 ± 2 1.37 ± 0.93 0.2 ± 0.1 0.5 ± 0.1 0.7 ± 0.1 0.2 ± 0.1 L 1.8 ± 0.6 0.6 ± 0.2 0.5 ± 0.1 1.8 ± 0.8 1.4
2 41 ± 11 9 ± 3 16 ± 2 1.01 ± 0.69 0.9 ± 0.4 4.7 ± 1.5 2.7 ± 0.5 0.8 ± 0.3 4.6 1.0 ± 0.5 0.2 ± 0.1 0.3 ± 0.1 1.2 ± 0.5 0.7
3 18 ± 6 8 ± 8 L L 0.4 ± 0.1 0.8 ± 0.9 L L L 0.5 ± 0.2 0.2 ± 0.2 L L 0.7
4 35 ± 6 12 ± 5 14 ± 1 0.66 ± 0.54 0.7 ± 0.2 2.4 ± 1.2 2.1 ± 0.5 0.6 ± 0.3 0.7 1.1 ± 0.5 0.3 ± 0.2 0.4 ± 0.2 1.2 ± 0.7 1.0
5 16 ± 6 7 ± 3 11 ± 2 0.16 ± 0.03 0.5 ± 0.2 1.1 ± 0.5 0.7 ± 0.2 0.3 ± 0.1 L 1.5 ± 0.7 0.6 ± 0.3 1.0 ± 0.4 2.1 ± 0.7 2.5
6 7 ± 3 8 ± 3 6 ± 1 0.04 ± 0.01 2.6 ± 1.4 2.1 ± 1.0 2.9 ± 0.7 1.4 ± 0.3 2.8 0.4 ± 0.3 0.5 ± 0.3 0.4 ± 0.1 0.8 ± 0.3 2.0
7 6 ± 3 7 ± 4 5 ± 1 0.08 ± 0.01 4.1 ± 2.3 3.3 ± 2.1 4.7 ± 1.3 1.6 ± 0.3 3.2 0.3 ± 0.2 0.4 ± 0.2 0.3 ± 0.1 0.8 ± 0.3 1.4
8 17 ± 6 18 ± 7 L L 0.8 ± 0.4 0.8 ± 0.4 L L 0.5 0.8 ± 0.4 0.9 ± 0.5 L L 2.1
9 6 ± 2 6 ± 5 L L 1.8 ± 0.7 1.8 ± 1.5 L L 1.1 0.4 ± 0.2 0.4 ± 0.3 L L 1.6
10 33 ± 5 23 ± 3 9 ± 2 0.32 ± 0.11 0.7 ± 0.2 1.1 ± 0.2 2.9 ± 0.6 0.8 ± 0.2 1.4 0.7 ± 0.2 0.5 ± 0.1 0.2 ± 0.1 0.7 ± 0.2 1.1
11 L L L L L L L L 1.8 L L L L L

12 47 ± 16 9 ± 7 L L 0.2 ± 0.1 1.2 ± 0.9 L L 0.3 2.6 ± 1.6 0.4 ± 0.3 L L 1.4
13 35 ± 16 24 ± 13 21 ± 1 2.08 ± 0.91 0.7 ± 0.4 1.1 ± 0.7 1.2 ± 0.2 0.3 ± 0.1 L 1.1 ± 0.7 0.7 ± 0.4 0.6 ± 0.2 2.2 ± 0.8 1.4
14 32 ± 13 22 ± 12 19 ± 2 1.21 ± 0.30 1.1 ± 0.6 1.7 ± 1.0 2.1 ± 0.4 0.6 ± 0.1 1.8 1.4 ± 0.9 0.9 ± 0.6 0.8 ± 0.3 2.5 ± 1.0 2.0
15 43 ± 12 19 ± 9 20 ± 2 2.73 ± 0.54 0.3 ± 0.2 0.9 ± 0.5 0.9 ± 0.2 0.2 ± 0.1 0.5 2.5 ± 1.4 0.9 ± 0.6 1.0 ± 0.4 4.4 ± 1.6 2.2
16 L L L L L L L L 0.8 L L L L L

17 46 ± 20 25 ± 14 L L 0.2 ± 0.1 0.3 ± 0.2 L L L 2.0 ± 1.5 0.9 ± 0.7 L L 1.9
18 38 ± 4 8 ± 2 6.0 ± 1 0.51 ± 0.60 1.0 ± 0.2 5.2 ± 1.5 7.3 ± 2.0 1.1 ± 0.7 L 1.1 ± 0.4 0.2 ± 0.1 0.2 ± 0.1 1.0 ± 0.7 0.8

Notes.
a sstdev

PA corresponds to the PA dispersion calculated within a region 0.15 pc in diameter and using the “standard deviation” approach as described in Section 4.3.1. Bstdev is calculated using the DCF method and following
Equation (5), for which n0.15 pc is taken from Table 3 and Δv0.15 pc is taken from Table 4. μstdev is the observed mass-to-flux ratio over the critical value, calculated following Equation (14) (Section 4.6) and using Bstdev.
b sgauss

PA corresponds to the PA dispersion calculated within a region 0.15 pc in diameter and using the “multiple Gaussian” approach as described in Section 4.3.2. Bgauss is calculated using the DCF method and

following Equation (6). μgauss is the observed mass-to-flux ratio over the critical value, calculated following Equation (14) and using Bgauss. mgauss
S21 corresponds to the observed mass-to-flux ratio over the critical calculated

following Skalidis & Tassis (2021), see Section 5.1.4).
c sADFbeam

PA corresponds to the PA dispersion calculated within a region 0.15 pc in diameter and using the “ADF beam” approach as described in Section 4.4.1. BADFbeam is calculated following Equation (9). μADFbeam is
the observed mass-to-flux ratio over the critical value, calculated following Equation (14) and using BADFbeam. á ñ á ñB Bt

2
0
2 is the ratio of the perturbed magnetic field energy versus the ordered magnetic field energy.

BADFH09 is calculated using the “ADF H09” approach following Equation (12). μADFH09 is the corresponding observed mass-to-flux ratio over the critical.
d
Blit is the magnetic field strength for each region as reported in the literature (see Section 5.1.5). The references and the method used in each case are as follows: W3H2O: Chen et al. (2012a, DCF); N6334V: Juárez

et al. (2017, ADF); N6334I and N6334In: Li et al. (2015, force equilibrium between gravity, magnetic tension, and magnetic pressure); G34-0 and G34-1: Tang et al. (2019, ADF for single dish); G35: Qiu et al. (2013,
ADF); I20126: Edris et al. (2005, Zeeman effect of OH masers); N3 and N53: Hezareh et al. (2013, ion–neutral); DR21OH: Girart et al. (2013, ADF) and Hezareh et al. (2010, ion–neutral); N48: Ching et al.
(2017, ADF).
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field) because it requires no assumptions with respect to the
large-scale field. However, both the “ADF beam” and the
“ADF H09” approaches could be applied only to 11 regions of
our sample, while the other two approaches (“standard
deviation” and “multiple Gaussian”) could be applied to 16
regions. If σPA,stdev or σPA,gauss were shown to correlate to
σPA,ADFbeam or á ñ á ñB Bt

2
0
2 , this would suggest that such a

determination of σPA is a reasonable approach.
In Figure 9, we present plots comparing the four different

approaches used in this work to estimate δ B/B0 (σPA,stdev,
σPA,gauss, á ñ á ñB Bt

2
0
2 , and σPA,ADFbeam). In each panel of the

figure, the p value is listed (probability that the null hypothesis
is true, i.e., that the correlation is due to a random process). As
can be seen from the figure, the p values are in all cases 0.01
(with the exception of the σPA,stdev versus σPA,ADFbeam plot).
This comparison reveals that (i) σPA,ADFbeam is very well
correlated with the á ñ á ñB Bt

2
0
2 of the “ADF H09” approach.

This was expected because the Houde et al. (2009) method is
precisely aimed at separating the PA dispersion at the small
scales from the large-scale ordered field. However, á ñ á ñB Bt

2
0
2

systematically deviates more for increasing σPA,ADFbeam. (ii)
σPA,gauss correlates quite well with σPA,ADFbeam, and actually,
their relation is very close to the one-to-one relation. This
indicates that the “multiple Gaussian” approach is achieving a
reasonable estimate of the PA dispersion at the smallest scales.
(iii) While all of the approaches correlate to each other, the
tighter correlation is found between σPA,stdev and á ñ á ñB Bt

2
0
2 ,

with a p value of 0.0046. σPA,stdev might be better related to

á ñ á ñB Bt
2

0
2 than σPA,gauss because of the uncertainty in the

decision of how many Gaussians should be fitted to the PA
histograms to finally obtain σPA,gauss. (iv) The relation between
σPA,stdev and á ñ á ñB Bt

2
0
2 is very close to the one-to-one relation,

meaning that the á ñ á ñB Bt
2

0
2 probably includes “intermediate-

scale” dispersion perhaps due to deviations from the parabolic
approximation.
This comparison suggests that the determination of σPA,stdev

is a reasonably good approach to σPA because it presents the
lowest p value and the best correlation with the results of the
ADF method. In the following, we will consider the value of
σPA,stdev as the reference value for δB/B0. A consistency check
was performed by plotting Bstdev versus n0.15 pc in Figure 15 of
Appendix E. The figure shows that there is a relation between
these two quantities, as expected from Equation (3). Diagrams
of the fragmentation level Nmm versus Bpos for the four
approaches used here are presented in Figure 10.

4.6. The Mass-to-magnetic Flux Ratio μ

The ratio of the observed mass-to-magnetic flux over the
critical mass-to-magnetic flux, μ, was calculated by following
Equation (1) of Crutcher et al. (2004), which reads:

( )

( )

( )
( )m

p
º

F
F

=
M

M

m N H A B A

G1 2
, 13

B observed

B crit

2 tot

1 2

where A refers to the area over which the mass M and the
magnetic flux ΦB are measured, m= 2.8mH, with mH the mass

Figure 6. Polarization angle histograms (black) with the Gaussian fits (blue curves) performed in Python to estimate σPA,gauss in each region. In all panels, the full
range of 180° is shown.
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of the hydrogen atom and Btot the total (deprojected) magnetic
field strength. In practical units, and writing the equation in
terms of the magnetic field strength in the plane of the sky, for
which its statistical average value is = p

B Bpos 4 tot (Crutcher
et al. 2004), Equation (13) reads as

( )
( )m = ´ - N

B
5.969 10

H
, 1424 2

pos

with Bpos given in mG. N(H2) was calculated as M0.15 pc/
π R2

= n0.15 pc R 4/3 for R= 0.15/2= 0.075 pc.
The results are given in Table 5, and the right-hand panels of

Figure 10 show Nmm versus μ for the four approaches used
here. The figure reveals no apparent relation between Nmm and
Bpos, or Nmm and μ, for any of the methods/approaches
used here.

In Figure 10, the cores classified as presenting “aligned
fragmentation” (Table 2) are marked with blue squares. In
general, these cores with “aligned fragmentation” present high
fragmentation levels, and in most cases (four out of six), the
magnetic field follows the direction perpendicular to the
filamentary structure, which is fragmented. These cores span
a wide range of magnetic field strengths and μ.

5. Discussion

5.1. Uncertainties in the Determination of the Magnetic Field
Strength and Mass-to-flux Ratio μ

In previous sections, we estimated the magnetic field
strength in the plane of sky following the DCF and ADF
methods, and searched for a possible trend of this quantity with
the fragmentation level. We found no clear trend between these
two quantities. Before discussing the physical implications of
this result, we should consider how robust our determination of
the magnetic field strength is. In Figure 10 we plotted the
magnetic field strength and μ with the corresponding
uncertainties after taking into account the uncertainties in the
density (Section 4.1), velocity dispersion (Section 4.2),and
polarization PA dispersion (Appendix D).

5.1.1. Uncertainty in the Density

The estimate of the density uncertainty was described in
Section 4.1 and was obtained by increasing the χ2 in our
model. However, an additional uncertainty could come from
the different spatial filtering of single dishes (used to assess
density) versus interferometers (used to assess velocity and PA
dispersions). To assess how much the different spatial filtering

Figure 7. ADF (i.e., 〈[ΔΦ(ℓ)]2〉1/2, as defined in Equation (7)) for each region with enough polarization detections. The dashed gray vertical line indicates the largest
angular scale that the SMA is able to recover for the polarized emission.
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of each telescope could affect our determination of the
magnetic field strength, the average density was estimated
using the SMA continuum flux densities, including all of the
configurations available as in the case of the polarization and
H13CO+ data. For each region, we estimated the total mass
recovered by the SMA (Appendix F) and found that the amount
of mass filtered out by the SMA is on average only ∼25% of
the mass inferred from the modeling of the single-dish data
presented in Section 4.1. In Figure 16 of Appendix F, we
present a plot of the SMA average density versus single-dish
average density, showing a relation close to one to one, with
the SMA densities only slightly below the single-dish densities.

Therefore, the slightly different spatial filtering between the
single dish and the SMA is not heavily affecting our results.
The figure also indicates that the deviation from the spherical
assumption of our model should not strongly affect our results
either. The advantage of using single-dish telescopes to infer
the density structure is that the temperature structure can be
better determined, thanks to the simultaneous fitting of the SED
and the radial intensity profiles.

5.1.2. Uncertainty in the Velocity Dispersion

Regarding the estimate of the velocity dispersion, the
H13CO+

(4–3) transition was used. This is a good tracer of

Figure 8. Results of the “ADF H09” approach (Section 4.4.2) for each region with enough polarization detections. For each region, the top panel corresponds to the
( [ ( )]- á DF ñl1 cos ) function, and the bottom panel corresponds to the correlated component (exponential term of Equation (10)). In both upper and lower panels, the
black solid line and error bars correspond to the mean and standard deviation of all pairs in each bin. The red dashed line corresponds to the large-scale uniform
magnetic field (i.e., it does not contain the correlated component of the function and is + ¢b N a l2

2). In the upper panel, the blue line shows the fit to the data using
Equation (10), and in the bottom panel, the blue line shows the correlation due to the beam and the turbulent component of the magnetic field, while the solid red line
corresponds to the correlation due to the beam alone. The dashed gray vertical line indicates the largest angular scale that the SMA is able to recover for the polarized
emission, below which the fit was performed.
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dense regions, which should correlate well with the polarized
emission, as shown in Figures 14(a) and (b) of Appendix B.
However, both the velocity dispersion and the PA dispersion
could still be affected by the presence of outflows. As shown in
Figures 14(a) and (b), the magnetic field is, for most of the
cases, perpendicular to the outflows directions, with the only
clear exception of N6334In and N7538S. Other cases where the
polarized emission seems to follow the outflow directions are
DR21OH and N48. In none of the regions is there evidence of
the magnetic field segments being especially perturbed along
the outflow directions. Thus, it is unlikely that the velocity and
PA dispersions are strongly affected by outflows. It should also
be noticed that both the velocity dispersion and the PA
dispersion could be affected by large-scale systematic motions
such as gas inflows. We discuss this possible effect in
Section 5.4 and in Appendix G.

5.1.3. Uncertainty in the PA Dispersion

Here we list the main contributions to the PA dispersion
uncertainty.

Sparse sampling of the data/poor sensitivity—In many cases,
the polarized emission is detected only in certain portions of the
entire continuum emission, preventing us from fully sampling
it. This could be due to, for example, a lack of sensitivity. Poor
sensitivity would hinder the detection of the polarized emission
from low-density gas, which would probably add to the PA
dispersion because the turbulent power should be larger in
larger scales (Heitsch et al. 2001). This typically tends to
overestimate the magnetic field strength. As already mentioned
above, our adopted uncertainties take into account the sparse
sampling effect (Appendix D).

Beam smoothing, average along the line of sight—Both
effects imply an overestimation of the magnetic field strength
because they tend to blur out the PA dispersion (Heitsch et al.
2001). In our case, both effects are taken into account in the
“ADF H09” approach and it was shown in Section 4.5 that
σPA,stdev correlates very well with á ñ á ñB Bt

2
0
2 . Thus, it does not

seem likely that our inferred values of the magnetic field
strength are strongly affected by this.
Small-angle approximation—Given that some of our PA

dispersions are large, the correction by Falceta-Gonçalves et al.
(2008) was applied (Section 4.3), but there are other
alternatives in the literature such as the one proposed by
Heitsch et al. (2001). We applied Equation (12) of Heitsch et al.
(2001) for the “standard deviation” case, and in general, the
values of the B-field strength are smaller by 10%, except in a
few cases, implying an average magnetic field with the Heitsch
+01 equation, which is about 40% smaller than the average
value with Falceta-Gonçalves equation. Other corrections have
been proposed (Hildebrand et al. 2009; Houde et al.
2009, 2011; Franco et al. 2010; Koch et al. 2010), but they
typically imply a factor well below 4 (see Cortes et al.
2016, 2019 for a comparison among the values obtained using
the different corrections).
Very strong ordered magnetic fields—The superposition of

δB with a strong and uniform large-scale field could produce an
underestimation of the small-scale turbulent dispersion because
the weight of almost no large-scale dispersion will effectively
reduce the small-scale turbulent dispersion. Such extremely
ordered configurations are not typical in our sample.
Very weak magnetic fields—In the “ADF H09” approach,

á ñ á ñB Bt
2

0
2 could be underestimated for the cases of very weak

magnetic fields. In these cases, the magnetic field could be so
strongly perturbed that it could resemble a random field with no
important changes with distance, implying an overestimation of
the large-scale ordered field. However, such an extremely
disordered and random-like magnetic field is not seen in our
observations (Figures 2(a) and (b)).

5.1.4. Intrinsic Uncertainty of the Methods Applied

In addition to all the specific uncertainties mentioned above,
a number of caveats have been raised in the literature regarding
the use of Equation (3), summarized below.
Additional MHD modes to Alfvén modes—A recent work by

Skalidis & Tassis (2021) suggests a new equation to estimate
the magnetic field strength to take into account not only
the Alfvén modes but also other additional magnetosonic
compressive modes, which must be present in molecular
clouds. This requires a modification of Equation (3) to

pr= s
s

B 2pos
turb

PA

. We applied this new equation using
σPA,gauss (the dispersion from the approach yielding largest
magnetic field strengths) and the average magnetic field in our
sample decreased by a factor of 3 (from 1.8 to 0.6 mG) while μ
increased by the same factor. The new values of μgauss after
applying this method are listed in the last column of Table 5 for
comparison.
Deviation from equipartition—One of the basic assumptions

of Equation (3) could be violated if the perturbed magnetic field
with energy Eδ B is not in equipartition with the turbulent
kinetic energy, Eturb. In this case, the magnetic field should be
multiplied by a factor (equal to the square root of EδB/Eturb)

ranging from 0.4 to 1 in the simulations of Heitsch et al. (2001)
and μ could increase up to a factor of 2.5. There could also be

Table 6

Magnetic Field Properties Derived Using the ADF with the Houde et al. (2009)
Approach “ADF H09”

δa ¢a2
a D¢a

Source (mpc) b

N

a
(pc−2

) (mpc) N
a

(1) (2) (3) (4) (5) (6)

1-W3IRS5 31 ± 1 1.03 ± 0.69 -77 ± 1 85 ± 24 1.3 ± 0.1
2-W3H2O 14 ± 1 0.56 ± 0.38 10 ± 1 47 ± 14 1.8 ± 0.2
4-N6334V 28 ± 1 0.59 ± 0.47 7 ± 1 57 ± 29 1.1 ± 0.1
5-N6334A 31 ± 1 0.14 ± 0.03 25 ± 1 63 ± 32 1.1 ± 0.1
6-N6334I 24 ± 1 0.05 ± 0.01 7 ± 1 50 ± 10 0.9 ± 0.1
7-N6334In 12 ± 1 0.03 ± 0.01 13 ± 1 50 ± 15 2.6 ± 0.3
10-G35 35 ± 1 0.31 ± 0.10 36 ± 1 85 ± 16 1.0 ± 0.1
13-W75N 15 ± 1 0.59 ± 0.25 -38 ± 1 81 ± 20 3.5 ± 0.4
14-DR21OH 17 ± 1 0.69 ± 0.16 -100 ± 1 68 ± 10 1.8 ± 0.2
15-N48 15 ± 1 0.59 ± 0.10 -37 ± 1 102 ± 21 4.6 ± 0.5
18-N7538S 32 ± 1 0.54 ± 0.63 1 ± 1 64 ± 23 0.9 ± 0.1

Note.
a
δ, b/N, and ¢a2 are the three free parameters of the “ADF H09” approach

(Section 4.4.2). δ is the magnetic field turbulent correlation length, b/N is the
value of the correlated component at the origin, and ¢a2 is the coefficient of the
uniform parabolic approximation adopted in Equation (10). D¢ is the effective
thickness of the cloud, estimated from the size of the SMA continuum emission
obtained using all configurations. N is the number of turbulent cells along the
line of sight. See Section 4.4.2 for further details on each parameter. The
uncertainty in δ and ¢a2 are taken to be equal to the step of the explored
parameter space, the uncertainty in D¢ is taken equal to one beam, and the
uncertainty in N is assumed to be 10%. The uncertainty in b/N is estimated
from Monte Carlo simulations performed to take into account the sparse
sampling in our observations (Appendix D).
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deviations from equipartition if the total kinetic energy of the
gas, Ekin, typically assumed to be equal to Eturb, has a
nonnegligible contribution from systematic motions such as
inflow/infall motions, i.e., the gravitational energy is not
negligible. This could easily be the case in our cores because
bulk motions of gas flowing toward the center of massive dense
cores have been observed (e.g., Csengeri et al. 2011; Lee et al.
2013; Battisti & Heyer 2014; Liu et al. 2015; Motte et al. 2018;
Schwörer et al. 2019). Actually, the morphology of the
magnetic field segments in several regions studied here
suggests such kinds of motions (see, for example, the cases
of W3IRS5, N6334V,W75N, DR21OH, N48, and N7538S in
Figures 2(a) and (b)). In these cases, it would be required to
separate not only the turbulent component of the magnetic field
out of the large-scale uniform field but the systematic motions
should also be separated from the line width to finally have the
true turbulent kinetic energy Eturb. Because in many cases it is
assumed that Eturb∼ Ekin, there is an overestimation of the
magnetic field strength and an underestimation of μ. In our case
we used the s sºQ turb nonth factor to take this into account.
However, assuming the same Q factor for all regions might not
be correct, and we further discuss this in Section 5.4. A
comparison with simulations for one of our regions that
presents converging flows (N6334V; Juárez et al. 2017) is
given in Appendix G, showing that the “standard deviation”
approach yields results comparable to those in the simulations.

Averaged quantities—Our measured magnetic field strengths
and μ are averaged values: within the studied area, densities
can change by orders of magnitudes and the magnetic field also
scales with density to some power. However, while the density
structure is much better resolved and the mass can be more
accurately estimated, the DCF and ADF methods give
statistically average values for the magnetic field strength for
which uncertainties are not easy to quantify. Actually, in a
recent paper by Añez-López et al. (2020a) it was found μ< 1
in a star-forming massive core. But for the same core, the
technique of Koch et al. (2012a) was applied to locally assess

the force ratio between the magnetic field and gravity, revealing
specific portions within the initially studied area that clearly
were supercritical (while the average μ was below 1).

5.1.5. Comparison to Other Determinations of the Magnetic Field

Strength in the Literature

A final way to test the robustness of our determination of the
magnetic field strength is to compare it to other values reported
in the literature, especially when completely independent
methods are used, such as the “ion–neutral drift” technique. In
Table 5, the magnetic field strengths obtained in other works in
the literature are reported (see table notes of Table 5 for a
reference to the different methods), and in Appendix H, more
details are given about the comparison between the values
determined here and the values obtained for the same regions in
previous works.
Figure 17 of Appendix H shows a plot of the magnetic field

strength reported in the literature and the strengths derived in
this work. The figure reveals a relation quite close to a one-to-
one relation. The cases of N6334I, N6334In, DR21OH, and N3
are particularly significant, as the methods used in the literature
for these regions are independent of the method used here. This
figure indicates that the method used here to infer the magnetic
field strength seems to be reasonable.

5.1.6. Uncertainty in μ

In Table 5, μ has values very close to 1 or even< 1,
especially for the “multiple Gaussians” and “ADF beam”

approaches. This is kind of unexpected because all the cores in
our sample are known to undergo active star formation and
should thus be supercritical. However, our calculation of μ is
obviously affected by all the aforementioned uncertainties
associated with the calculation of the magnetic field strength,
which in some cases would imply a factor of 2.5 or even 3
larger μ. In addition, the absolute value of the column density
might also be affected by the fact of not taking into account the

Figure 9. Comparison of the four different approaches used here to estimate δB/B0 (Sections 4.3.1, 4.3.2, 4.4.1, and 4.4.2), with the results of the linear regression fits
(blue line) and the p values (probability that the null hypothesis is true) listed in each panel. The gray dashed line indicates the one-to-one relation.
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mass already blocked in stars. The core masses within 0.15 pc
in diameter, used to estimate the column density in
Equation (14), range from 20 to 100M☉ (Table 3). If half of
this mass is considered to be in stars, this would imply an
additional factor of 1.5 larger μ (see also Section 5.7 in Girart
et al. 2013). Therefore, the absolute values of μ reported in
Table 5 would be probably shifted to higher values if the
aforementioned caveats could be quantified and taken into
account. While providing accurate absolute values of μ is well
beyond the scope of this paper, the relative values of μ between

the regions of our sample should not be that strongly affected
and are probably a good measure of this quantity.
Finally, it is worth noting that measuring μ smaller than 1

does not necessarily imply that the magnetic field is dominating
over gravity because μ can actually depend on the spatial scale
where it is measured (e.g., Koch et al. 2012b). For example, in
Gómez et al. (2021; see Section 4.3), it is shown that if the
density is a power law of the radius “r,” and the magnetic field
strength follows a power law of the density with index 2/3,
then μ(r)∼ r1− p/3, where p is the density power-law index.

Figure 10. The four panels on the left show the plots of Nmm vs. the magnetic field strength for the different approaches used in this work: “standard deviation”
(Bstdev), “multiple Gaussian” (Bgauss), “ADF beam” (BADFbeam), and “ADF H09” (BADFH09). The four panels on the right show the plots of Nmm vs. the ratio of mass-
to-flux to critical mass-to-flux, μ, for the same four approaches. In the top panels, the blue squares correspond to the cores classified as presenting “aligned
fragmentation” in Table 2.
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Thus, for the values of p reported in this work, which average
to p∼ 1.8, μ(r)∼ r0.4, and thus μ should decrease for smaller
radii. Such a decrease of μ for smaller radii has actually been
measured by Crutcher et al. (2009), Tang et al. (2019), and
Arzoumanian et al. (2021). In addition to this, there is still the
fact that the superficial terms in the virial theorem have been
ignored in the standard definition of μ, while these could yield
up to a factor of 2 smaller critical masses and therefore a factor
of 2 larger μ (Strittmatter 1966).

5.1.7. Summary of Uncertainties

In spite of all the caveats mentioned in this section, the
crucial aspect of the analysis presented here is that it is
performed uniformly for the entire sample, measuring each
parameter using exactly the same method and within the same
field of view for all the regions. For the validity of
Equation (3), one of the most crucial aspects probably is the
separation of the perturbed/turbulent component of the
velocity dispersion, σturb, and of the magnetic field, δB, from
the ordered or large-scale component, B0, and this can be
specifically done using the ADF method (any of the two
approaches presented in Section 4.4) as it allows to calculate
the PA dispersion as a function of distance. The fact that
σPA,stdev was found to correlate well with á ñ á ñB Bt

2
0
2 (Figure 9)

is indicative that this separation was successfully done in terms
of relative variations of δB/B0 in our sample.

Given the goal of our work, it is important to use Bstdev

instead of BADF because Bstdev could be calculated for 16
regions while BADF was only calculated to 11 regions, and this
allowed us to improve the statistics to test the Nmm versus Bpos

or Nmm versus μ relations. Therefore, far from intending to
provide accurate absolute values, our reported values of the
magnetic field strength and μ should be useful to assess the
relative variation of these quantities in this sample.

5.2. A Strong Correlation of Fragmentation Level with Density
within 0.15 pc

In the top panel of Figure 11, we present a plot of the
fragmentation level versus the density averaged within 0.15 pc.
As can be seen from this plot, a correlation between the
fragmentation level and the averaged density is apparent.
Because we determined the density for a fixed size, such a
relation with density is equivalent to a relation with mass. A
linear regression fit gives a correlation coefficient of 0.71,
while the Spearman’s rank correlation coefficient ρ is 0.65 and
the p value is 0.0035. The relation is consistent with previous
observational studies (e.g., Gutermuth et al. 2011; Palau et al.
2014; Lee et al. 2015; Liu et al. 2016; Nguyen-Luong et al.
2016; Pokhrel et al. 2016, 2018, 2020; Mercimek et al. 2017;
Alfaro & Román-Zúñiga 2018; Mendigutía et al. 2018; Murillo
et al. 2018; Li et al. 2019; Lin et al. 2019; Orkisz et al. 2019;
Sanhueza et al. 2019; Sokol et al. 2019; Svoboda et al. 2019;
Zhang et al. 2019) and theoretical/numerical studies (Bur-
khart 2018; Guszejnov et al. 2018; Dobbs et al. 2019) reporting
an important role of density in determining fragmentation of
massive dense cores and is expected for the case of thermal
Jeans fragmentation.

5.3. Interplay between Density and the Magnetic Field Strength

The lack of correlation between the fragmentation level and
the magnetic field strength or μ could be due to the fact that our
sample includes massive dense cores with too broad a range of
densities. In other words, because density and magnetic field
could both affect the fragmentation level simultaneously, we
consider here whether a relation is found when only regions
with very similar densities are considered. Looking at the top
panel of Figure 11, the range (3–6)× 105 cm−3 includes a large
number of regions and could be good to perform the
aforementioned test.
In the middle-left panel of Figure 11, we present a plot of

Nmm versus Bstdev, only for the regions within the narrow
density range given above. In the bottom-left panel of the same
figure, the plot of Nmm versus μstdev is also shown. While
statistically these samples are too small (implying p values
larger than 0.09) and the uncertainties are high, a possible
connection between Nmm and the magnetic field strength or μ
cannot be ruled out. What we find here is in full agreement with
a recent work toward the infrared dark cloud G14.225−0.506,
where the two main hubs of the cloud have very similar
densities, and their different fragmentation levels can be
explained by the different measured magnetic field strengths
(Añez-López et al. 2020a).

5.4. A Tentative Trend of Fragmentation Level with Mass-to-
flux Ratio

In the measurements of Bpos and μ calculated so far, a
constant factor Q∼ 0.5, was adopted. Q was defined in
Section 4.2 as s sºQ turb nonth. However, in the same
Section 4.2, the Q factor was also estimated from the VDFs
for the same regions where the ADFs were calculated in
Section 4.4.1. We consider here the fact that Q might actually
vary from one region to the other (as shown in Table 4) and
recalculated Bpos and μ for the “ADF beam” approach. We
chose the “ADF beam” approach because this is the approach
for which σPA is calculated with exactly the same technique as
σturb,VDF, taking the value of the dispersion function (structure
function) at the smallest scales, both in velocity and
polarization PA. By doing this, the effects of large-scale
motions (e.g., due to gravity) should be avoided, and
Equation (3) (DCF) should be fully valid.
In the right panels of Figure 11, we present the result for

Nmm versus Bpos and μ following this technique, and the figure
reveals a tentative trend for the case of Nmm versus μ, with a p
value of ∼0.03, where Nmm increases for regions with larger μ,
as expected from numerical simulations and theoretical work.
According to this figure, the magnetic field in our sample seems
to play a nonnegligible role in the determination of the
fragmentation level of massive dense cores.
If confirmed with new more sensitive observations carried

out in larger samples, our work would strongly indicate that,
when the DCF method is applied (Equation (3)), it is crucial to
properly separate the large-scale motions from the small-scale
turbulent motions in the velocity dispersion, and that the
velocity dispersions inferred from averaging spectra could have
a nonnegligible part due to systematic motions. Thus, the
common assumption made in the literature that the nonthermal
velocity dispersions are due entirely to turbulence is not
probably correct, at least in our sample.
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5.5. Comparison of Average Fragment Masses with Jeans and
Magnetic Critical Masses

The fact that the Nmm versus n0.15 pc relation is stronger than
the Nmm versus Bstdev relation suggests that thermal Jeans
fragmentation has a nonnegligible role in the fragmentation of
our sample. If this is the case, the mass of the fragments should
be comparable to the Jeans mass. Using the density averaged
within 0.15 pc reported in Table 3, we calculated the Jeans
mass following Equation (6) of Palau et al. (2015):

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

( )
☉

=
-

-M

M

T n
0.6285

10 K 10 cm
. 15

Jeans
3 2

H

5 3

1 2
2

The values of the Jeans mass for each massive dense core,
MJeans, are reported in Table 2. The table gives a range ofMJeans

corresponding to the range of temperatures assumed, from 20 K
(lower limit) to T0.15 pc (Table 3, upper limit). As can be seen
from this table, MJeans is of the order of 1–5M☉, very similar to
the average mass of the fragments in each core.

In order to assess whether the measured magnetic field in each
region is able to prevent the collapse of the detected fragments,
the critical masses for magnetic support were calculated
following Equation (16) of McKee & Ostriker (2007):

( )º
F

FM c
G

, 16crit
B

1 2

where G is the gravitational constant, ΦB is the magnetic field
flux threading the core, and cΦ is a numerical coefficient
adopted as cΦ= 1/2π, which corresponds to the value for an
infinite cold sheet and is nearly identical to the value for a core
with a poloidal field and a constant mass-to-flux ratio (McKee
& Ostriker 2007). The magnetic flux was calculated as
ΦB= πR2 Bpos, yielding the equation:

( )=M
R B

G2
. 17crit

2
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1 2

In this equation, R was taken equal to 〈Rfragm〉 (Table 2), and
Bpos was estimated by scaling Bstdev (Table 5) in density to the

Figure 11. Top: fragmentation level vs. density averaged within the same field of view where fragmentation, line width, and PA dispersion were assessed (0.15 pc in

diameter). The blue line indicates the result of a linear regression of the form ⎡⎣ ⎤⎦( ) ( )=  +  -N 1 2 1.9 0.5
n

mm
10 cm

0.15 pc

5 3
, with a correlation coefficient of 0.71.

Middle left and bottom left: fragmentation level vs. Bstdev (middle) and vs. μstdev (bottom) for regions with similar density (in the range (3–6) × 105 cm−3, marked with
vertical dotted lines in the top panel) and using the σturb = σturb,spec calculated from a Gaussian fit to the H13CO+

(4–3) spectrum following Equation (1). Middle right
and bottom right: fragmentation level vs. BADFbeam+VDF (middle) and vs. μADFbeam+VDF (bottom) for all the regions in our sample where ADF was applied, and using
σturb = σturb,VDF calculated from the velocity dispersion function (column (5) of Table 4), thus separating in velocity the small-scale turbulent motions from the
systematic large-scale motions. The blue line indicates the result of a linear regression of the form Nmm = (8 ± 2) + (6 ± 3)μADFbeam+VDF, with a correlation
coefficient of 0.58. In all panels, the Spearman’s rank correlation coefficient ρ and the p value are annotated in the bottom/top-right corner.
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average density of all the fragments, of 3× 107 cm−3
(Table 2),

assuming that ⎡
⎣

⎤
⎦

= ´ -
B B

nfrag stdev
3 10 cm

0.47 3

0.15 pc
(Li et al. 2015).

The resulting values of Mcrit are listed in Table 2 and are
within the range calculated forMJeans. Therefore, in general, the
fragments studied in our sample have enough masses to
overcome both the thermal and the magnetic support.

5.6. Fragment Sizes versus Magnetic Field Strength

We explore here whether there is any relation between the
sizes or masses of the fragments and the magnetic field strength
of their parental core. Figure 12 presents a plot with the masses
(top) and 3σ radii (bottom) for all 160 detected fragments
versus the magnetic field strength. Both panels indicate that
there could be an upper envelope with the more massive/
largest fragments tending to occur where the magnetic field is
weaker. In addition, the scatter in the masses and sizes of the
fragments appears to decrease with growing field strength. For
the largest field strength (corresponding to N6334In), the
scatter appears to be very small (although statistics are not very
large—see the standard deviations of the fragment sizes for
each region in Table 2). Assuming that a fragment under a
strong magnetic field is not accreting material from its
surroundings as efficiently as a fragment under a weak
magnetic field (because the magnetic field should slow the
collapse down), the smaller sizes observed for regions with
larger magnetic fields could indicate that the magnetic field is
preventing these fragments from growing fast in both mass and
size, consistent with theoretical work (e.g., Hennebelle &
Inutsuka 2019).

In addition, two of the regions with the strongest magnetic
field, N6334In and G34-1, have their fragments aligned along a
prevailing direction, and as such, they were classified as
undergoing “aligned fragmentation” in Table 2. This finding is
fully consistent with the work of Fontani et al. (2018), who also
report that a filamentary distribution of the fragments is favored
for strong magnetic fields. For these cases, the magnetic field
morphology is rather uniform and perpendicular to the axis of
the aligned fragments. With such a geometry, and with a
relatively strong magnetic field strength, the fragmentation
process should happen along the field lines, with material
moving more easily along the field lines from the outer regions
toward a midplane. This could explain the relatively small
scatter in size for such a configuration. Note that G35 also
presents “aligned fragmentation,” but has the magnetic field
along the main axis of the filamentary structure, its magnetic
field strength is relatively low, and it presents a large scatter in
the fragment masses and sizes (Table 2), thus also fitting within
this picture. In summary, the magnetic field strength, the small
scatter in the sizes of the fragments, and the field morphology
all suggest that the magnetic field in these cases is regulating at
least partially the fragmentation process.

5.7. Implications of Our Results

As mentioned in the introduction, a number of theoretical
and numerical studies suggest that magnetic fields could be
crucial to determine the fragmentation level of molecular
clumps and cores, because strong magnetic fields should
suppress fragmentation. In a recent review about the role of
magnetic fields in the formation of molecular clouds,
Hennebelle & Inutsuka (2019) present the assumptions leading
to ideal MHD equations, taking into account ion–neutral drift.

They consider the influence that the magnetic field may have
on the interstellar filaments and the molecular clouds, and its
role on the formation of stellar clusters. They argue that the
magnetic field could be responsible for reducing the star
formation rate and the numbers of clumps, cores and stars.
In this paper, we aimed at testing this from direct

observations. From our uniform analysis of the entire sample
of 18 massive dense cores at ∼0.15 pc scales, a correlation
between fragmentation level and density (within 0.15 pc) is
clear from our analysis (Section 5.2 and Figure 11), indicating
that the fragmentation process in our sample is mainly
dominated by gravity. This is consistent with very recent
numerical simulations from Krumholz & Federrath (2019),
who find that the magnetic field strength should not strongly
affect the star formation rate or initial mass function in star-
forming clouds at their earliest stages of formation.
The lack of a strong correlation of the fragmentation level

with the magnetic field strength or μ could arise from the
decoupling (diffusion) of the magnetic field at the scales
studied in this work. However, this is difficult to assess because
there is little work in the literature reporting signs of diffusion

Figure 12. Top: masses of the fragments identified within each massive dense
core vs. Bstdev. The horizontal red dotted lines indicate the range of average
MJeans found for our sample assuming T = 20 K and T = T0.15 pc (Table 2). The
horizontal gray line indicates the typical mass sensitivity of our observations
(Table 1). Bottom: radii (at the 3σ contour) of the fragments identified within
each massive dense core vs. Bstdev. The horizontal gray line indicates the
typical spatial resolution of our observations (Table 1). Oblique lines are drawn
to guide the eye.
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on the scales and densities studied in this work. On one hand,
Yen et al. (2018) looked at the ion–neutral drift velocity in the
B335 Class 0 protostar which should result from ambipolar
diffusion. Although these authors concentrated on much
smaller scales (100 au) and higher densities than the ones
studied in this work, where ambipolar diffusion is supposed to
be efficient (Tassis & Mouschovias 2007), no clear drift
velocity was detected, suggesting that the magnetic field is still
well coupled to the gas even on these small and dense scales.
On the other hand, for the case of DR21OH, Girart et al. (2013,
Section 5.5) suggest that magnetic flux diffusion or dissipation
is taking place at the scales studied here via fast magnetic
reconnection in the presence of turbulence (Lazarian &
Vishniac 1999; Santos-Lima et al. 2010). Clearly this needs
to be further explored.

It is worth mentioning that the magnetic field strengths
inferred in this work cover a range of about one order of
magnitude (from 0.2 to 4 mG, or μ from 0.3 to 2.5) and are also
subject to a number of uncertainties (see Section 5.1), while
simulations showing very different fragmentation levels
correspond to setups differing by two orders of magnitude in
μ (e.g., from 2 to 130; Commerçon et al. 2011; Hennebelle
et al. 2011). This suggests that the typical magnetic fields in the
massive dense cores of our sample probably do not cover a
sufficiently large range to leave a clear trace on the
fragmentation level and that this is rather determined by other
environmental factors such as density.

However, finer details of our observational data set seem to
be consistent with the magnetic field affecting the fragmenta-
tion process at least partially. First, when large-scale systematic
motions are separated from the velocity dispersion and only the
small-scale (turbulent) contribution is taken into account, a
tentative correlation is found between Nmm and the mass-to-
flux ratio, as expected theoretically and numerically. This could
explain the significant scatter found in the Nmm versus density
relation. Second, regions with strongest magnetic field
(N6334In and G34-1) undergo fragmentation along a prefer-
ential direction, which is perpendicular to the magnetic field
lines. Third, regions with strong magnetic fields are also the
regions with small fragments and with almost all fragments
with similar sizes. These three findings suggest that the
magnetic field, at least in these cases, is somehow affecting
the fragmentation process. It is therefore necessary to test this
in a larger sample to strengthen the hints found here.

6. Conclusions

We have compiled a sample of 18 massive dense cores for
which submillimeter polarization observations from the Legacy
Program of the SMA (Zhang et al. 2014), as well as
submillimeter continuum images at high angular resolution
were available. The sample was built to strictly fulfill
constraints of spatial resolution of ∼1000 au and mass
sensitivities (from the submillimeter continuum) around
∼0.5M☉, so that a fragmentation level can be measured in a
uniform and reliable way (and within the same field of view of
0.15 pc) for all cores. The polarization images were analyzed to
infer polarization PA dispersions using four different
approaches. In addition, H13CO+

(4–3) data from the SMA
observations were used to infer velocity dispersions for each
core. Finally, the temperature and density structure were
modeled for each massive dense core using submillimeter
continuum emission from single-dish telescopes and the

spectral energy distribution, following Palau et al. (2014). All
of the quantities were measured in a uniform way and within
the same field of view of 0.15 pc. The aforementioned inferred
properties of the massive dense cores allowed us to calculate
magnetic field strengths using the DCF and ADF methods, and
search for possible trends between the fragmentation level and
any of the derived properties of the parental cores. Our main
conclusions can be summarized as follows:

1. A total of 160 fragments have been identified within the
18 massive dense cores. We have assigned a fragmenta-
tion level within a field of view of 0.15 pc, Nmm, to each
massive dense core. We found a variety of fragmentation
levels, with 17% of the cores presenting almost no
fragmentation, and 39% of the cores presenting a high
fragmentation level. Additionally, cores were classified
according to their fragmentation type, mainly “aligned
fragmentation” (seven cores), “clustered fragmentation”
(eight cores), and “no fragmentation” (three cores).

2. The inferred power-law indices for the density of the
massive dense cores range from 1.46 to 2.26. The
densities, masses, and temperatures, all (averaged) within
0.15 pc, range from 1.1 to 10.5× 105 cm−3, from 11 to
105M☉, and from 23 to 120 K, respectively.

3. The line widths of the H13CO+
(4–3) transition measured

in each core range from 1.3 to 6.7 km s−1, and no clear
trend was found between Nmm and these line widths.

4. Four approaches were used to estimate polarization PA
dispersions. First, the PA dispersion was estimated from
the standard deviation of the PA corrected for the PA
uncertainties. Second, different Gaussians were fitted to
the PA histograms. Additionally, the ADF analysis was
performed following Houde et al. (2009), and the PA
dispersion was estimated from the smallest value (beam
scale) of the ADF. It was found that the PA dispersion,
inferred from the standard deviation, correlates with the
corresponding quantity from the ADF analysis, and the
first one was used as a reference to calculate the magnetic
field strengths. In combination with the line widths and
average densities, this yielded magnetic field strengths
ranging from 0.2 to 4.1 mG.

5. When considering the entire sample, a strong correlation
of Nmm with density averaged within 0.15 pc is found
although with significant scatter. In addition, Nmm seems
to tentatively correlate with the mass-to-flux ratio, once
the large-scale systematic motions are properly separated
from the velocity dispersion in the magnetic field strength
calculation. These findings clearly need to be studied in
larger and more sensitive samples.

6. The separation of the large-scale systematic motions from
the small-scale (turbulent) motions was performed
through the analysis of the VDF, allowing us to calculate
that the turbulent velocity dispersion is typically 40% of
the nonthermal velocity dispersion.

7. The sizes and masses of each fragment were measured.
The average masses of the fragments ranged from 2 to
4M☉ in most cases, comparable to the thermal Jeans
mass. Regarding the sizes of the fragments, hints of
more compact and less massive fragments for stronger
magnetic fields were found, suggesting that in the cases
of strong magnetic fields, this might slow down
the accretion process compared to the nonmagnetic
case. In addition, for the strong magnetic field cases,
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fragmentation seems to take place along a preferred
direction perpendicularly to the magnetic field.

In summary, our entire sample of massive dense cores presents
a strong correlation of the fragmentation level with the density
of the parental core and a tentative trend of the fragmentation
level with the mass-to-flux ratio. In addition, hints were found
of the magnetic field influencing the fragmentation process
(size and mass of the fragments) for the cores with strongest
magnetic fields. Overall, the observed properties of our sample
are consistent with thermal Jeans fragmentation, and the
magnetic field seems to act as a modulating process required
to explain the finer details of the fragmenting cores.
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Appendix A
Tests for Biases of the Fragmentation Level Nmm

Figure 13 presents the plots of Nmm (Section 3) versus the
mass sensitivity, column density sensitivity, the evolutionary
indicator L Mbol core (Molinari et al. 2016), and the spatial
resolution for each region (Table 1). If Nmm were biased with
the mass sensitivity or the spatial resolution, one would expect
a large Nmm for smaller (better) mass sensitivities, and a large
Nmm for smaller (better) spatial resolutions. As can be seen
from the figure, none of the relations is appreciable for Nmm

with any of the tested quantities.

26 http://www.astropy.org
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Figure 13. Top left: fragmentation level Nmm vs. mass sensitivity for each massive dense core of our sample. Top right: fragmentation level Nmm vs. column density
sensitivity (calculated from the mass sensitivity and the beam of our observations). Bottom left: fragmentation level Nmm vs. L Mbol core. Bottom right: fragmentation
level Nmm vs. spatial resolution. These figures show that there are no biases of Nmm with respect to any of these observational parameters.
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Appendix B
First-order Moments for H13CO+

(4–3) Data

Figures 14(a) and (b) show the first-order moments of the
H13CO+

(4–3) transition in color scale, with the magnetic field
segments overplotted as well as arrows for the known outflows
in each core (taken from the literature).

Figure 14. (a) First-order moments for H13CO+
(4–3) data with the magnetic field segments (black) overplotted. Red and blue arrows indicate the approximate

orientations of the redshifted and blueshifted outflow emission according to Zapata et al. (2011) and Zhang et al. (2014). The synthesized beam is shown in the
bottom-right corner. The circle corresponds to the field of view 0.15 pc in diameter used in this work to assess the magnetic field strength. Wedge units are km s−1.
(b) First-order moments for H13CO+

(4–3) data with the magnetic field segments (black) overplotted. Red and blue arrows indicate the approximate orientations of the
redshifted and blueshifted outflow emission according to Naranjo-Romero et al. (2012), Duarte-Cabral et al. (2013, 2014), Girart et al. (2013), and Zhang et al. (2014).
The synthesized beam is shown in the bottom-right corner. The circle corresponds to the field of view 0.15 pc in diameter used in this work to assess the magnetic field
strength. Wedge units are km s−1.
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Appendix C
Particular Cases in the Density and Temperature Structure

Modeling of Section 4.1

In Section 4.1, a density and temperature structure model
was fit to observational data for each region of our sample. The
observational data consisted of radial intensity profiles and the
spectral energy distribution, and the model allowed us to infer
an average density within 0.15 pc for each region. We
comment here on the particularities of some of the sources to
perform the fit.

W3H2O—The model includes an optically thin radio source
of 2.5 Jy at 30 GHz (Dreher & Welch 1981).

N6334A—The assumption of the core being centrally heated
might not be fulfilled because there is a Herschel core (core
number 38 from Tigé et al. 2017) that only lies about∼13″
from the SCUBA peak at 450 μm and for which the flux
density at 70 μm is a factor of ∼20 larger than the flux at 70 μm
for the core directly associated with the 450 μm peak. In this
case, we did several tests to fit the model. First, to build the
SED, we considered only the Herschel intensities associated
with core number 41 (core associated with the 450 μm peak).

This yielded an average density within 0.15 pc of 4.8×
105 cm−3. This should be a reasonable approach as long as we
are considering only peak intensities of the core directly
associated with the SCUBA peak, and the excess due to heating
by core 38 (and 10) should not be strong because its effect
should be only in specific directions compared to the entire
radially averaged profile. Second, we considered only the
contribution of core 41 and used peak intensities to build the
SED, except for Herschel wavelengths where the beam cannot
separate the different sources (i.e., 250, 350, and 500 μm,
where the beam is> 12″). For these wavelengths, we included
in the SED the flux density of all three cores and used the core
size as the aperture radius for the model to compute the flux.
This method yielded an average density within 0.15 pc of
3.8× 105 cm−3, and in Table 3 and Figure 11, we use the fitted
values corresponding to this second method, to be
conservative.
G35—The IRAS flux at 100 μm is a factor of 3 smaller than

the Herschel-PACS measurements at 70 and 160 μm. We
calculated the model including both Herschel and IRAS fluxes
(best-fit values reported in Table 3, yielding an average density
within 0.15 pc of 2.96× 105 cm−3

).

Figure 14. (Continued.)
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Appendix D
Uncertainty Estimates Running Monte Carlo Simulations

One of the main uncertainties associated with the derivation
of the magnetic field strength or μ from polarized submillimeter
emission is the sparse sampling of the data. In order to have a
first estimate of these uncertainties, Monte Carlo simulations
were run as described in the appendix of Liu et al. (2019). For
each region, we modeled the large-scale field as a parabola of
the form y= g+ g C x2, with C being the curvature parameter
set as C= σPA,stdev/3000. A random dispersion equal to twice
the average error in PA of each region was introduced. This
was run 10 times for each region. In each run, two PA maps
were produced: the unbiased (fully sampled) PA map and the
sparsely sampled map specific to each region. Then, for each
run and for each unbiased/sparsely sampled map, we applied
our four approaches used in the analysis to estimate the PA
dispersions (Sections 4.3.1, 4.3.2, 4.4.1, and 4.4.2) and
measured the difference in the dispersion between the unbiased
and the sparsely sampled images. This gave us an idea of how
far the measured dispersion might be from the unbiased “real”
dispersion. We then averaged these differences for the 10 runs
(for each approach) and took this average difference as the
uncertainty in each case. The uncertainties in dispersion were
propagated to the magnetic field strength and mass-to-flux
ratio. In general, we obtained larger uncertainties for the poorly
sampled regions, as expected.

Appendix E
Magnetic Field Strength versus Density

In Figure 15, we present a plot of the magnetic field strength
as calculated in Section 4.3.1, Bstdev (Table 5), versus density
averaged within 0.15 pc in diameter (Table 3). The log–log plot
shows a trend, with a slope of 1.1 ± 0.3.

Appendix F
Comparison of SMA and Single-dish Densities

In Section 4.1, the density structure for each massive dense
core was inferred using data from single-dish telescopes,
mainly the James Clerk Maxwell Telescope (with main beams
of 19 5 at 850 μm and 11 0 at 450 μm) and the IRAM 30m
telescope (with a main beam of 11 0 at 1.2 mm). From this
model, the average density within 0.15 pc was derived. In order
to assess if the different spatial filtering of the single-dish
telescopes and the SMA is affecting our determination of the
density and the magnetic field strength, we compare here how
the inferred densities in Section 4.1 compare to the densities
inferred using the SMA data.
The average density (within 0.15 pc in diameter) was

estimated using the SMA continuum flux densities, including
all of the configurations available as for the case of the H13CO+

and PA data. This includes in many cases the subcompact
configuration and in all cases the compact configuration of the
SMA. These configurations allow us to recover angular scales
as large as 30″ and 14″, respectively (following the appendix of
Palau et al. 2010). Therefore, using these SMA data, we are
sensitive to scales comparable to the scales of the single-dish
telescopes.
To infer the masses and densities from the SMA data, we

measured the flux density within the region of 0.15 pc in
diameter, and assumed the average temperature within the same
diameter inferred from our modeling (given in Table 3), as well
as the opacity law of Ossenkopf & Henning (1994) (grains
covered by thin ice mantles at 106 cm−3, 0.0175 cm2 per gram
of gas and dust at 870 μm). Figure 16 presents the relation
between the SMA average density (within 0.15 pc in diameter)
versus the average density inferred using the modeling of the
single-dish data presented in Section 4.1. As can be seen from
the figure, by doing this, we recover with the SMA ∼75% of

Figure 15. Magnetic field strength calculated with the “standard deviation”
approach, Bstdev, vs. density averaged within 0.15 pc. The blue line corresponds
to a linear fit in logarithmic scales with a slope of 1.1 ± 0.3 and a correlation
coefficient of 0.69.

Figure 16. Plot of the SMA average density (within 0.15 pc in diameter) vs. the
average density inferred using the modeling of the single-dish data presented in
Section 4.1. The light gray line indicates the one-to-one relation to guide the
eye. To make the comparison, we converted the densities reported in Table 3,
n0.15 pc, from the density of H2 particles to the total density of particles. The
uncertainties for the SMA average density have been adopted to be 20%, the
typical uncertainty in the flux absolute scale.
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the mass inferred from the modeling of the single-dish data
presented in Section 4.1.

Appendix G
Comparison of Magnetic Field Strength Inferred from the
Simulations of a Globally Collapsing and Hierarchical

Cloud and One of the Cores Studied Here

We compared the magnetic field strength inferred in
simulations dominated by gravity with the measured strength
from observations for the particular case of N6334V, where
simulations of a collapsing magnetized molecular cloud were
specifically tuned to explain the magnetic field and dynamics of
the region (Juárez et al. 2017). In these simulations, the gas flows
from the large scales toward the center of the massive dense
cores, and the magnetic field is dragged by the gas. The
magnetic field in the simulations was measured within 0.15 pc of
the massive dense core and a value of 0.94mG was found
(M. Zamora-Avilés 2021, private communication), very similar
to the values obtained here for N6334V using the “standard
deviation” or “ADF H09” approaches, of 0.6–0.7 mG, and only
a factor of 2 smaller than the values obtained with the “multiple
Gaussians” or “ADF beam” approaches. Thus, for the particular
case of N6334V, the magnetic field measured in the simulations
is very comparable to the magnetic field inferred in our work.

Appendix H
Comparison of Magnetic Field Strength Inferred in This
Work and the Magnetic Field Strength in Other Works of

the Literature

Here we provide details, for each region, of previous works
reporting magnetic field strengths in regions of our sample.

DR21OH, N3, N53—Hezareh et al. (2010, 2013) estimated
the magnetic field in the DR21 region, including DR21OH, N3,
and N53, by comparing the velocity dispersions of ion and
neutral pairs at different length scales and find values in the
range 0.33–1.8 mG (for densities very similar to the ones we
obtained here).

NGC 6334—Li et al. (2015) present evidence that magnetic
fields regulate the dynamics in NGC 6334, based on their
findings of hourglass-shaped field lines at gas column density
peaks and from the fact that the field strength is found to be
proportional to the 0.4-power of the density. They infer the
magnetic field strength by assuming force equilibrium between
gravity, magnetic tension, and magnetic pressure at different
scales, and derive a relation between magnetic field strength
and density. The value given in Table 5 for the magnetic field
strength in N6334I and N6334In is the one corresponding to
the density given in Table 3 and applies the aforementioned
relation between field strength and density.

G34—Tang et al. (2019) report submillimeter polarization
observations using the Caltech Submillimeter Observatory
and infer the magnetic field strength using the “ADF beam”

approach for both G34-0 and G34-1 (Table 5; Tang et al. 2019
report densities of 1.6× 105 cm−3 for these two cores).

W3H2O—Chen et al. (2012a) estimate the magnetic field
strength using the DCF method with a density of 1.5× 107

cm−3 and obtained 17 mG. To compare this value to our
measurement, we scaled the magnetic field strength assuming a
dependence with density as a power law with index 0.4
(Li et al. 2015) and used our estimate for the density reported in
Table 3, obtaining a value of 4.6 mG.

G35—Qiu et al. (2013) report a value of the magnetic field
strength of 0.9–1.4 using the same SMA data set used in this
work and the “ADF H09” method.
I20126—This region has been observed with the SMA in

submillimeter polarization but no sufficient detections were found
to estimate a reliable PA dispersion (H. Shinnaga et al. 2021, in
preparation). However, Edris et al. (2005) perform estimates of the
magnetic field at scales of ∼1000 au through Zeeman splitting
of OH masers and obtain 11mG within 0 5. Assuming that
the density at ∼1000 au is around 8.4× 10−17 g cm−3

(Table 3),
we estimate a magnetic field strength of 1.8 mG for the density we
have calculated within 0.15 pc.
Figure 17 presents a plot comparing the magnetic field

strength reported in the literature with the magnetic field
strength derived in this work for the “standard deviation”
approach.
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