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Climate change-driven increases in drought frequency and severity could 23 

compromise forest ecosystems and the terrestrial carbon sink1–3. While the impacts of 24 

single droughts on forests have been widely studied4–6, understanding whether forests 25 

acclimate to or become more vulnerable to sequential droughts remains largely unknown 26 

and is crucial for predicting future forest health. We combine cross-biome datasets of tree 27 

growth, tree mortality, and ecosystem water content to quantify the effects of multiple 28 

droughts at a range of scales from individual trees to the globe from 1900-2018. We find 29 

that subsequent droughts generally have a more deleterious impact than initial droughts, 30 

but this effect differs enormously by clade and ecosystem, with gymnosperms and conifer-31 

dominated ecosystems more often exhibiting increased vulnerability to multiple droughts. 32 

The differential impacts of multiple droughts across clades and biomes indicate that 33 

drought frequency changes may have fundamentally different ecological and carbon cycle 34 

consequences across ecosystems.   35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

One sentence summary: Differing ecosystem sensitivity to repeated droughts  45 
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Main text 46 

Climate extremes have major impacts on the terrestrial carbon cycle1–3. Climate models 47 

project increases in the frequency and severity of prominent climate extremes such as 48 

drought3,7,8. Thus, the response of ecosystems to climate extremes represents an important 49 

uncertainty in carbon cycle feedbacks and may have the potential to alter terrestrial ecosystems 50 

from a net sink to a carbon source over the 21st century2,3,9,10. Severe droughts are one of the 51 

most consequential types of climate extremes when considering carbon cycle impacts11 and can 52 

have reverberating societal impacts. The effects of single extreme droughts have been widely 53 

studied, such as for severe droughts in Europe1, North America4, and the Amazon5. By contrast, 54 

the ecosystem impacts of repeated extremes remains poorly understood. We remain unable to 55 

predict whether, after a severe drought, an ecosystem emerges more or less vulnerable to the next 56 

drought12–14. Thus, understanding ecosystem response to multiple, repeated droughts is crucial 57 

for predicting long-term climate change impacts on ecosystems and the subsequent carbon cycle 58 

feedbacks.  59 

Ecosystem resilience to extreme droughts is an integrated combination of i) the capacity 60 

of the ecosystem to persist and maintain its state and function during the disturbance, often called 61 

‘sensitivity’ or ‘resistance’, and ii) the recovery trajectory following the disturbance15–17. 62 

Multiple resilience-increasing and resilience-decreasing mechanisms exist at both organism- 63 

(e.g. tree) and ecosystem-scales. The net impact of repeated droughts on Earth’s forests will 64 

depend on their balance. At a tree scale, adjustments in functional traits such as wood density or 65 

leaf turgor loss thresholds or in allometric patterns such as increased root or sapwood areas and 66 

decreased leaf area can improve tree resilience to future stress18,19. By contrast, lingering 67 

drought-driven physiological damage such as embolism of the xylem, decreased reserves or 68 
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defenses, or pest/pathogen attacks and infections, among other mechanisms, may decrease tree 69 

resilience to subsequent droughts20,21. At an ecosystem scale, forest density changes that lead to 70 

lower community-level water loss or changes in species composition that result in a more 71 

drought-tolerant community may increase resilience6,22–24. By contrast, microclimate feedbacks 72 

that drive hotter and drier canopy microenvironments, or landscape-scale pest or pathogen 73 

population dynamics triggered by an initial drought that lead to higher pest pressures on 74 

communities, could decrease resilience25–27. Determining which of these mechanisms dominate 75 

under which circumstances and in which forest systems will be fundamental to predicting the 76 

future of Earth’s forests and their carbon cycle feedbacks. 77 

Here, we examine the drought sensitivity (i.e. inverse of resistance) of forests to repeated 78 

droughts based on growth increment at the tree level, mortality at the forest level, and water 79 

content at the ecosystem level. When multiple droughts strike a forest, we predict that a system 80 

that exhibited increased sensitivity would experience larger growth declines, higher mortality 81 

rates, and larger declines in canopy water content during a subsequent drought due to 82 

accumulated physiological damage from the initial drought. We leverage a cross-biome tree ring 83 

dataset, long-term forest monitoring plots, satellite measurements of canopy water content, and 84 

global drought datasets to quantify the effects of repeated droughts across scales. We quantify 85 

drought severity here from a climate perspective of the statistical distribution of drought metrics. 86 

We ask: 1) Are tree growth and mortality more, less, or similarly sensitive to a subsequent 87 

drought compared to an initial drought? 2) Do changes in tree-level drought sensitivity differ by 88 

clade, biome, or region? 3) Does drought sensitivity scale from the tree to ecosystem-level and 89 

how does this vary by biome and region? We analyze all ecological datasets at multiple levels of 90 
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drought severity and use a number of approaches to control for potential confounding factors like 91 

differences in drought severity (see Methods).  92 

We first examined tree growth patterns using a dataset of 1,208 stand growth 93 

chronologies spanning 1900-2015 from the International Tree Ring DataBank. Tree growth 94 

decline was larger in a subsequent drought at severe drought values (pSPEI<-2 < 0.001) and then 95 

converged to initial drought levels at more moderate drought values (pSPEI(-1.5,-1.2] = 0.33) (Fig. 96 

1A; Extended Data Fig. 1). This suggests a critical role of drought severity whereby an initial 97 

severe drought was associated with higher vulnerability to a subsequent severe drought, perhaps 98 

due to residual physiological damage. We next examined tree mortality patterns using the 99 

extensive U.S. Forest Inventory and Analysis dataset spanning >100,000 forested plots from 100 

2000-2018. In contrast to the growth findings, we found that mortality was relatively similar 101 

between initial and subsequent droughts with no significant differences (e.g. pSPEI<-2=0.13) (Fig. 102 

1B). Drought severity between the initial and subsequent droughts was not significantly different 103 

and thus did not drive these patterns (Extended Data Fig. 2A-B). Tree-level drought sensitivity 104 

patterns held when accounting for differences in tree-ring analysis methods (Extended Data Fig. 105 

3), multiple drought metrics (Extended Data Fig. 4), and spatial autocorrelation (Extended Data 106 

Fig. 5).  107 

We then examined what factors mediated growth and mortality responses to multiple 108 

droughts. Clade (angiosperm-gymnosperm) and family were important predictors of tree ring-109 

based growth sensitivity differences to severe droughts (pclade=0.0009, ANOVA: pfamily=0.01) 110 

with gymnosperms and pine species (Pinaceae) exhibiting the highest sensitivity to subsequent 111 

droughts (Fig. 2A-B, Extended Data Fig. 1B). By contrast, angiosperms and oak species 112 

(Fagaceae) showed an ‘acclimation-type’ response where growth was less sensitive to 113 
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subsequent drought than the initial drought (p=0.03) (Fig 2A-B). Increased time between the 114 

initial and subsequent droughts was associated with smaller growth decline differences, although 115 

this effect was modest (R2=0.01, p=0.02). When examining mortality from forest inventory data 116 

in response to repeated droughts, angiosperms and gymnosperms sensitivities diverged at 117 

moderate drought severities (p(-2,-1.8]=0.03, p(-1.8,-1.5]=0.01). Gymnosperms appeared to show 118 

slightly elevated mortality in the initial drought at severe drought levels (e.g. p<-2=0.02), whereas 119 

angiosperms exhibited higher mortality rates to subsequent droughts at more moderate drought 120 

levels (p(-1.8,-1.5]=0.004) (Fig. 2C). These contrasting clade patterns may explain the relatively 121 

muted mortality signal on the full dataset (Fig. 1B). We hypothesize that higher gymnosperm 122 

mortality during initial droughts may be due a “culling of the weak” effect where death of the 123 

most vulnerable trees in a population results in less vulnerable trees on average during 124 

subsequent droughts, potentially associated with differences in biotic agent attack differences 125 

between droughts (e.g. higher beetle attack prevalence in initial droughts).   126 

Both decreases in growth and increases in mortality are likely to negatively impact 127 

ecosystem resilience and carbon sequestration over the long-term. Tree bole growth provides a 128 

key ecosystem function of carbon storage in a pool with a long residence time (decades to 129 

centuries), although extrapolation of tree-rings to whole forest carbon is often challenging, and 130 

low growth can be a warning signal preceding large-scale mortality28,29. Elevated mortality due 131 

to drought will have manifold ecological and carbon cycle consequences, including changes in 132 

community composition and carbon sequestration23. The higher mortality rate in subsequent 133 

droughts for angiosperms during moderate droughts (Fig. 2C) could be due to accumulated 134 

physiological damage20 or because of “structural overshoot” whereby these species might 135 

allocate too much carbon to leaf area during non-drought conditions, leading them to experience 136 
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elevated mortality when drought strikes30. We note, however, that the coarse temporal nature of 137 

inventory data adds uncertainty and is a caveat in our mortality rate analyses (see Methods).      138 

We further examined ecosystem-scale responses to multiple droughts via remotely-139 

sensed vegetation optical depth (VOD), which captures dynamics of canopy water content and 140 

ecosystem drought stress31,32. Ecosystem-scale responses showed generally greater magnitudes 141 

and similar patterns to tree-level responses, with larger VOD declines in the subsequent drought 142 

that were most prominent at severe drought levels (pSPEI<-2<0.0001; pSPEI(-1.5,-1.2]<0.001) (Fig. 143 

3A). In this dataset alone, we detected slight differences in drought severity between initial and 144 

subsequent droughts at severe drought levels (SPEI<-2; Extended Data Fig. 2C) and thus 145 

implemented multiple models to account for these differences (see Methods). All of our patterns 146 

were robust when accounting for drought severity differences and drought legacy effects 147 

(Extended Data Fig. 6; Extended Data Fig. 7). At biome scales, temperate conifer forests and wet 148 

tropical forests showed the largest drought-severity-normalized increase in sensitivity in the 149 

second drought (p<0.001 for both) (Fig 3B; Fig 4). The decrease in drought sensitivity in boreal 150 

forests and Mediterranean-type woodlands is intriguing and may be due to community turnover 151 

favoring more drought-tolerance species33. The Amazonian rainforest stands out as a region of 152 

increased sensitivity, which is highly relevant because the Amazon experienced two very severe 153 

droughts in 2005 and 2010, which had widely-documented effects on growth, mortality, and 154 

carbon cycling in the region5,34. Given the importance of the Amazon in the global carbon 155 

cycle35, and that climate projections indicate increased vapor pressure deficit (atmospheric 156 

dryness) and in some cases rainfall reductions in this region36, increased sensitivity to repeated 157 

droughts is of critical concern (Fig. 4).  158 
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While forests on average showed increasing sensitivity to a subsequent drought, forests 159 

diverged enormously and with several broad patterns that were revealed across diverse datasets 160 

spanning a wide range of spatial and temporal scales. Angiosperm trees and angiosperm-161 

dominated forests tended to show more acclimation (decreased sensitivity) responses. In 162 

contrast, gymnosperms tended to exhibit more stress accumulation (increased sensitivity) 163 

responses, except for mortality. These patterns are consistent with anatomical and physiological 164 

differences between these two clades. Angiosperms have much higher anatomical flexibility than 165 

gymnosperms, for example in terms of xylem anatomy, parenchyma fractions, and whole-plant 166 

allocation patterns, that allows angiosperms far more plastic responses when faced with 167 

drought37,38. Our results are broadly consistent with a recent study39 that found differences in 168 

gymnosperms’ and angiosperms’ growth responses to drought were linked to subsequent 169 

mortality risk, although our analyses examine a greater number of sites and diversity of biomes 170 

and include ecosystem-level assessments of multiple drought impacts as well. Changes in 171 

competition, light environment, and pest/pathogen dynamics – for example, co-occurring 172 

drought and beetle outbreaks have been widely observed in western US gymnosperm species and 173 

could drive high mortality levels in initial droughts when stand densities are higher – are other 174 

potential mechanisms that might give rise to these responses. One notable exception to the broad 175 

clade patterns, however, was the strong increases in sensitivity observed in canopy water content 176 

in the Amazon between two severe and closely-timed droughts, which might indicate that 177 

drought severity and timing overwhelmed the acclimation responses. Further detailed and long-178 

term studies on tree physiology and forest demography are greatly needed to elucidate and test 179 

the various mechanisms that might underlie these patterns.  180 
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Current vegetation and Earth system models largely do not contain the major potential 181 

mechanisms, such as accumulated physiological damage or pest/pathogen infections, that might 182 

generate the patterns observed here. However, representations of physiological processes of 183 

drought stress, such as plant hydraulics and forest demography are major priorities in Earth 184 

system model development24,40,41. These advances hold substantial promise for improving Earth 185 

system model simulation of the response of forests to single severe droughts24,42. Our results 186 

highlight that we must also consider including mechanisms that might mediate changes in forest 187 

responses to repeated droughts. For example, trait plasticity and allocation changes based on 188 

mechanistic understanding are currently possible to include in large-scale models43,44 and may 189 

enable capturing the responses documented here. We hypothesize that both trait plasticity and 190 

clade-specific limits to plasticity have potential to capture the differential responses documented 191 

here. Our results further indicate that broad functional-type categories may be useful in setting 192 

the limits and directions of changes in acclimation and plasticity.  193 

We have shown both at an individual tree scale and at an ecosystem scale that the 194 

response to repeated droughts can diverge from that of a single drought. While there are a few 195 

cases of similar or decreasing sensitivity to a subsequent drought, we generally see increased 196 

vulnerability to a subsequent drought. These responses were strongly mediated by the clade and 197 

family, with gymnosperms broadly showing much higher vulnerability to subsequent droughts. 198 

Given projected increases in drought frequency in the 21st century in many regions, our findings 199 

point towards decreasing ecosystem resilience, in the near term at least, that may portend ill 200 

news for the land carbon sink and Earth’s forests in future climates.   201 

 202 

 203 
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Figures 416 

 417 

Figure 1: Impacts of a subsequent drought are more deleterious than an initial drought for trees. 418 

Growth declines (Dring width index; A) from 1,208 sites in the International Tree-Ring Data 419 

Bank to an initial drought (Initial, light red) and subsequent drought (Subseq, dark red), 420 

categorized by drought severity of both droughts via the Standardized Precipitation 421 

Evapotranspiration Index (SPEI) (left-to-right Nchronologies= 516, 214, 347, 291). Tree mortality 422 

rates (m2 ha-1 yr-1; B) across the U.S. Forest Inventory and Analysis plots to initial and 423 

subsequent droughts (left-to-right Nplots=6414, 1638, 2781, 958; Ngrid-cells=140, 62, 112, 59). 424 

Error bars indicate ± 1 standard error. Stars indicate statistically significant differences (*p<0.05, 425 

**p<0.01)   426 
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 428 

Figure 2: Impacts of multiple droughts on tree growth are mediated by clade. Growth declines 429 

differences from the International Tree-Ring Data Bank by family (A) and clade (B) where 430 

negative numbers indicate a more deleterious effect of the subsequent drought (left-to-right 431 

Nchronologies= 100, 332, 36, 106, 410). Tree mortality differences (C) across the U.S. Forest 432 

Inventory and Analysis plots between angiosperm-dominated (green) and gymnosperm-433 

dominated (red) forests with negative numbers indicating a more deleterious effect of the 434 

subsequent drought, categorized by drought severity of both droughts via the Standardized 435 

Precipitation Evapotranspiration Index (SPEI) (left-to-right Nplots= 2740, 3674, 1011, 627, 1980, 436 

801, 868, 90). Error bars indicate ± 1 standard error.  Stars indicate statistically significant 437 

differences (***p<0.001; *p<0.05). Note that the order of subtraction is different between (A-B) 438 

and (C) to maintain the convention that negative values indicate a more deleterious impact of the 439 

subsequent drought across all panels.   440 
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 445 

 446 

Figure 3: Ecosystem impacts of a subsequent drought are more deleterious than an initial 447 

drought. Vegetation optical depth (VOD) anomaly (A) in response to an initial drought (Initial, 448 

light red) and subsequent drought (Subseq, dark red), categorized by drought severity of both 449 

droughts via the Standardized Precipitation Evapotranspiration Index (SPEI) thresholds (left-to-450 

right Ngrid-cells= 745, 425, 1491, 2398). Differences in VOD anomalies (B) during a drought of 451 

SPEI < -2 across different forest biomes between initial and subsequent droughts, with negative 452 

numbers indicating a more deleterious effect of the subsequent drought. Biomes: tropical moist 453 

broadleaf (TropMB), tropical dry broadleaf (TropDB), temperate broadleaf (TemB), temperate 454 

conifer (TemC), boreal (Bor), and Mediterranean-type/shrubland (Med/Sh) (left-to-right Ngrid-455 

cells= 248, 50, 89, 46, 291, 21). Error bars indicate ± 1 standard error.  Stars indicate statistically 456 

significant differences (***p<0.001)   457 
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 459 

Figure 4: Ecosystem impacts of a subsequent drought compared to an initial drought diverge 460 

across global forests. Vegetation optical depth (VOD) anomalies in response to a subsequent 461 

drought (Sub) minus an initial drought (Init), with red colors indicating a more deleterious effect 462 

of the second drought, categorized by drought severity of both droughts via the Standardized 463 

Precipitation Evapotranspiration Index (SPEI) thresholds of a moderate drought (A; SPEI: (-1.8,-464 

1.2]) or severe drought (B; SPEI < -1.8). Gray areas indicate regions not dominated by forests; 465 

white areas in Panel B indicate that two droughts exceeding that SPEI severity did not occur in 466 

the record.  467 
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Methods 468 

Drought datasets 469 

We used the Standardized Precipitation Evapotranspiration Index (SPEI) as our primary 470 

drought metric in this study for several reasons. First, as an agricultural drought index, SPEI 471 

integrates both water supply through precipitation and water demand through potential 472 

evapotranspiration (PET), which makes it a simple and physiologically-relevant drought index 473 

based on a water budget that is more relevant to ecosystem water stress than meteorological 474 

drought indices based only on precipitation and temperature45–47. SPEI has been widely used to 475 

assess ecosystem response to drought at multiple spatial and temporal scales14,48,49. Second, 476 

unlike other agricultural drought metrics such as the Palmer Drought Severity Index (PDSI), 477 

SPEI is standardized within each grid cell to a mean of zero and standard deviation of one with a 478 

gaussian distribution46. Thus, drought severity can be quantitatively compared across regions and 479 

ecosystems, normalized by each grid cell’s climatology. Finally, current publicly available 480 

datasets of SPEI contain global coverage of drought data over the full historical record (1900-481 

2019)45, enabling us to maximize the sample size of ecological data collected over 1900-2018.  482 

We downloaded the full SPEI Global Drought Monitor dataset on 1 March, 2019, which 483 

provides global SPEI data at 1-degree resolution from 1900-201945,46. This dataset uses the 484 

precipitation data from the Global Precipitation Climatology Centre (GPCC) and calculates PET 485 

using a Thornthwaite algorithm, with temperature based on the National Oceanic and 486 

Atmospheric Administration National Center for Environmental Prediction’s Global Historical 487 

Climatology Network (NOAA NCEP GHCN) dataset47. Because the Thornthwaite PET 488 

calculation is a simplification, we also performed analyses with SPEI calculated via the more 489 

robust Penman-Monteith PET algorithm in the Global SPEI Database45. We observed very 490 
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similar patterns and because the SPEI Global Drought Monitor Database covers 1900-2019 (as 491 

opposed to 1900-2015 for the SPEI Global Database), we used it for our primary analysis. SPEI 492 

can be calculated with respect to different “integration windows” over which drought severity is 493 

calculated and normalized to the climatological period49. We chose a 12-month integration 494 

window because an annual time-step is consistent with both the tree-ring and forest inventory 495 

plot datasets. We calculated 12-month SPEI values for both calendar year and water year (Oct-496 

Sept) in the Northern Hemisphere and observed very similar results in the tree-ring analysis and 497 

thus present calendar year results in all figures.  498 

For all analyses, we examined four levels of drought severity that span a range from 499 

moderate to severe drought. We chose SPEI drought severity bins of [-1.2,-1.5), [-1.5,-1.8), [-500 

1.8,-2) and <-2.0 for these drought severity levels. Because SPEI values are based on z-scores, an 501 

SPEI value of -2.0 indicates a 2 standard deviation drought. This range of values allowed us to 502 

assess whether ecosystem response to moderate drought differed from that of severe droughts.  503 

 504 

Tree-ring analysis 505 

To quantify tree growth responses to multiple droughts, we used tree-ring chronologies 506 

from the extensive International Tree-Ring Data Bank (ITRDB). The ITRDB is a publicly 507 

available dataset that contains tree-ring chronologies for >2,000 sites around the world. 508 

Following a recent global analysis that examined drought recovery periods in ITRDB tree-ring 509 

chronologies13, we analyzed 1,208 chronologies that had standard formatting and included at 510 

least 25 years in the observational record (1900-2018) (Extended Data Fig. 8). These 511 

chronologies span >40 species and a wide array of temperate and boreal forest types, although 512 

they are concentrated in the Northern Hemisphere, primarily in North America and Europe. For 513 
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each chronology, we analyzed the detrended ring width index where detrending had been 514 

performed by the individual data contributor of that chronology, following previous studies13,50.  515 

Based on the latitude and longitude coordinates of each chronology, we calculated the 516 

ring width reduction during the first two droughts that exceeded the given drought threshold in 517 

each chronology. We imposed a criterion that the two droughts had to be temporally separated by 518 

more than two years with SPEI values above the drought threshold in order to avoid counting 519 

multi-year single droughts as two different droughts. This minimum gap between droughts is 520 

based on previous research on these tree-ring chronologies that indicated that drought legacy 521 

effects typically lasted 1-2 years13 and thus our analysis avoids these effects. For a given drought 522 

event if multiple years in a row exceeded the drought threshold, we used the ring width of the 523 

final year of the drought. For example, for a drought threshold of SPEI < -2, if a given 524 

chronology experienced an SPEI time-series of 0, -2.2, -2.1, 0, -2.1 and no other droughts, it 525 

would not be used due to insufficient time between two droughts.  If the SPEI time-series were 0, 526 

-2.2, -2.1, 0, 0, -2.1, then Year 3 would be calculated as “Drought 1” and Year 6 as “Drought 2”. 527 

These criteria allowed us to assess the impact of multiple droughts while avoiding a potential 528 

confounding effect of analyzing two years in essentially the same individual drought. We did a 529 

sensitivity analysis both on the drought severity recovery threshold (e.g. recovery threshold of 530 

SPEI>-1.2, SPEI>0, etc.) and 1-4 years of recovery period and neither had a major effect on our 531 

results. We did not include an upper limit to the time between two droughts because several of 532 

the hypothesized ecological and physiological mechanisms that might mediate changes in tree 533 

sensitivity to drought, such as changes in canopy architecture, allocation, or species composition, 534 

certainly operate on multi-decadal timescales23. Individual chronologies could occur in multiple 535 

drought severity bins if they experienced four droughts or more. We note that we did not 536 
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explicitly include drought duration in these analyses, but we do not think it would likely 537 

influence our results given that we observed similar patterns across a wide suite of sensitivity 538 

analyses. 539 

We detected no systematic differences in drought severity between initial and subsequent 540 

droughts in the ITRDB dataset (Extended Data Fig. 2). It is also highly unlikely that trends in 541 

ring width due to ontogeny/stand development, given that tree-ring chronologies are detrended to 542 

explicitly remove such patterns, or trends in drought metrics might confound our results. 543 

Nevertheless, we conducted a sensitivity analysis to ensure that detrending and/or removal of an 544 

autoregressive model (“prewhitening”) did not influence our results. In this analysis, we 545 

compared the “standardized” chronology (.crn file) in ITRDB used in Fig. 1 with application of a 546 

single, consistent detrending spline method or a single, consistent detrending and prewhitening 547 

method (method “spline” and “ar”, respectively, in the detrend.series function standard settings 548 

in dplR) and our results were robust (Extended Data Fig. 3). In addition, because only a subset of 549 

species in a given region or community yield easily readable tree ring series, this may amplify 550 

the phylogenetic drought response observed here. Finally, we note that the chronologies in the 551 

ITRDB dataset are not randomly-distributed and tend to over-estimate climate sensitivity due to 552 

site selection compared to randomly-distributed inventory plots51, but this should not greatly 553 

influence our results. This is because spatial or population biases in ITRDB (higher climate 554 

sensitivities) would give, on average, a greater decline in growth during any given drought but 555 

should not, a priori, affect the temporal changes in growth responses between multiple droughts 556 

within the same chronology. This site selection bias would make scaling ITRDB tree-ring 557 

chronologies to whole-forest carbon pools challenging, however, and thus we use only VOD for 558 

whole-ecosystem assessments here.  559 
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 560 

Forest Inventory analysis 561 

To quantify tree mortality responses to multiple droughts, we used the U.S. Forest 562 

Service Forest Inventory and Analysis (FIA) long-term permanent plot network. The FIA 563 

network contains >250,000 permanent plots on all lands with at least 10% tree cover in the 564 

contiguous United States52–54. Since the plot protocols were standardized nationwide in 2000, 565 

FIA plots are set up on a stratified random sampling design and tree status (living/dead) is 566 

measured on a plot return interval that varies by state, typically every five years (i.e. 20% of 567 

plots censused each year) in the eastern U.S. and every ten years (i.e. 10% of plots censused each 568 

year) in the western U.S.52–54. This means that as of 2018 many eastern states have 3-4 censuses 569 

and many western states have 1-2 censuses. States in the Intermountain West FIA region 570 

(Colorado, Arizona, New Mexico, Utah, Idaho, Montana) also estimated a mortality in the past 571 

five years during the initial census of plots, which allows these states’ inventory plots with two 572 

censuses to be used in this study because the plots contain two mortality rates (i.e. mortality rate 573 

0-5 years prior to census 1 and a mortality rate between census 1 and census 2). Thus, while FIA 574 

data in both the western US and eastern US can be used for this analysis, we note that limitations 575 

associated with relatively sparse temporal sampling of FIA remains an uncertainty and caveat.  576 

We calculated total basal area mortality for forested plots with FIA plot condition classes 577 

that occupied >30% of a given plot area. Plots with fire damage, human damage, and treatments 578 

(e.g. timber harvesting) were excluded. For all states with 3+ censuses, we calculated mortality 579 

rates using the basal area mortality documented in the return census and measured plot return 580 

interval. For Intermountain West states with only 2 censuses, we calculated the initial mortality 581 

rate using the “estimated” 5-year mortality rate in the first census and then the documented 582 
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mortality between the first and second census. This “estimated mortality” is determined by the 583 

FIA field crew during the first census as all trees that have died in the past five years based on 584 

crown decay conditions and has been validated55,56, but we note that our results were robust to 585 

excluding plots with “estimated mortality” (Extended Data Fig. 9). We then implemented a 586 

similar algorithm to detect plots where two droughts of a given severity level had occurred. 587 

Specifically, we analyzed plots that had at least two mortality rate estimates and where each 588 

drought that exceeded the selected threshold had occurred in the five years prior to the census. 589 

When more than two droughts occurred at a plot, we analyzed the first and second droughts 590 

similar to the tree-ring analysis, provided the droughts were in different census intervals.  591 

While there are many potential drivers of mortality rates in U.S. forests, our analysis 592 

aimed to screen out major alternate confounding drivers and drought has been identified in a 593 

wide body of literature of having a major impact on tree mortality in both eastern and western 594 

U.S. forests since 200057–60, which can be widely observed in FIA plot mortality rates57,60,61. We 595 

further analyzed mortality responses to multiple droughts by forest type, using the FIA “Field 596 

type code” variable, to categorize plots as angiosperm-dominated or gymnosperm-dominated 597 

forests. In addition, we detected no significant differences in drought severity between initial and 598 

subsequent at all drought severity levels in FIA data (Extended Data Fig. 2B), indicating that 599 

differences in drought severity were unlikely to drive our results.  600 

 601 

Satellite vegetation optical depth analysis 602 

Vegetation optical depth (VOD) is a measure of the degree to which graybody emission 603 

from the surface of the earth attenuates as it passes through both the woody and leafy 604 

components of the vegetation canopy.  It is sensitive to canopy water content (CWC)62, and thus 605 
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varies with both biomass63,64 and water stress65,66. The constant of proportionality between VOD 606 

and CWC is poorly understood. However, it appears to vary primarily with canopy type and 607 

electromagnetic frequency, suggesting it is relatively constant for a given land cover type67.  At 608 

the annual and longer timescales considered here, variations in VOD can be interpreted as due to 609 

variations in biomass growth and mortality68. Here, we use VOD from the Land Parameter Data 610 

Record 69, which are retrieved from brightness temperatures measured by the Advanced 611 

Microwave Scanning Radiometer - Enhanced (AMSR-E) ) and Advanced Microwave Scanning 612 

Radiometer 2 (AMSR-2). For full details on the retrieval methods see publications70–72 We used 613 

data from January 2003–December 2018. 614 

We aggregated annual VOD values to the same resolution (1 degree) as the SPEI drought 615 

dataset and subtracted the grid cell mean VOD to generate a time-series of VOD anomalies in 616 

each grid cell. Similar to the tree-ring analysis, we searched the SPEI time-series for each grid 617 

cell that contained two or more drought years that fell within the same SPEI drought severity 618 

bins. We further constrained this such that the grid cell had to have at least one non-drought year 619 

between the two drought years, so as to avoid counting the same multi-year drought as two 620 

individual drought events. We performed a sensitivity analysis of detrending individual VOD 621 

grid cells to ensure that directional trends, potentially due to other drivers such as land-use 622 

change, were not driving our results and our findings were robust (Extended Data Fig. 10). We 623 

used the biome map of Olson et al. (2001) to analyze VOD responses over forest and woodland 624 

biomes only (Fig. 3A) and to analyze impacts by individual biomes (Fig. 3B). While the VOD 625 

record is relatively short, it is similar in length to the FIA plot network and there are multiple 626 

regions in the world where two moderate or severe droughts occurred (Fig. 4), including two 1 in 627 
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100 year droughts in the Amazon rainforest5,34,73. Thus, it provides an integrated assessment of 628 

ecosystem-level drought impacts for many forest biomes across the globe24,31,32.  629 

We detected significant differences in drought severity between the initial and subsequent 630 

droughts in VOD grid cells that experienced two droughts for severe drought levels (see 631 

Analyses and statistics) (Extended Data Fig. 2), which must be accounted for to estimate 632 

ecosystem changes in sensitivity to drought between multiple droughts. We took two separate 633 

approaches to accounting for these drought severity differences. First, we performed an analysis 634 

where we only considered VOD grid cells where the SPEI values were nearly identical (i.e. 635 

within 0.1 of each other) for both droughts. Second, we built a model that accounted for drought 636 

severity in each grid cell. For each grid cell, we constructed an ordinary least squares regression 637 

between annual values of VOD anomaly and SPEI using a linear or quadratic relationship. We 638 

then calculated the relative drought impact of the first and second droughts in that grid cell as the 639 

residual of the drought years’ VOD values from the regression, which subtracts out the effect of 640 

drought severity. Both approaches – and both functional forms in the second approach – revealed 641 

the similar findings that the impact of a second drought on ecosystem VOD was more severe 642 

than the first drought (Extended Data Fig. 6), indicating that the result is robust even when 643 

accounting for drought severity differences.  644 

To ensure that our results were not influenced by substantial drought legacy effects in 645 

VOD, we calculated the VOD anomaly for each grid cell in the 1-7 years following droughts of 646 

severity SPEI (-2, -1.2] or SPEI < -2. We observed minor legacy effects lasting 1 year for SPEI 647 

(-2,-1.2] droughts and moderate legacy effects lasting 3 years for SPEI < -2 droughts. We 648 

conducted a sensitivity analysis where initial and subsequent droughts had to be separated by 3 649 
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years or more and observed that our findings were robust (Extended Data Fig. 7), indicating that 650 

our results are robust to drought legacy effects in VOD.  651 

 652 

Analyses and statistics 653 

For each of the three datasets (tree rings, forest inventory plots, VOD), we analyzed the 654 

impacts of the initial drought versus the subsequent drought using either paired t-tests (tree ring, 655 

VOD) or Wilcoxon signed rank tests (FIA) when data could not be transformed to meet 656 

assumptions of normality. Tree ring and VOD data were often transformed using an arctangent 657 

transformation. We note that we do not test for differences in tree or ecosystem sensitivity across 658 

drought severity categories (i.e. we only test for sensitivity differences between an initial and 659 

subsequent drought at the same drought severity level) and we used a Sidak correction for 660 

multiple hypothesis testing within each dataset’s analyses where necessary74. We ensured that 661 

assumptions of normality and homogeneity of variances were met with Q-Q plots via the qqPlot 662 

diagnostic in the ‘car’ R package75,76.  663 

To ensure that tree or ecosystem sensitivity to multiple droughts was not driven by 664 

systematic drought severity differences, we tested for differences in drought severity using 665 

Wilcoxon signed rank tests. Statistically significant differences were detected only in the VOD 666 

dataset at SPEI <-2 drought severities (p=0.005) and were addressed as described above.  667 

We tested for spatial autocorrelation in the differences between the initial and subsequent 668 

drought impacts using Moran’s I77 and found significant positive spatial autocorrelation in all 669 

three datasets (p<0.01). In the tree-ring and VOD datasets, autocorrelation was addressed by 670 

using spatial autoregressive models that model the correlation structure of the data, using the gls 671 

function in the ‘nlme’ R package78. Per standard practice77, we included the latitude and 672 
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longitude coordinates of each grid cell in the regression and tested the following spatial 673 

correlation structures – linear, quadratic ratio, exponential, spherical, and Gaussian – selecting 674 

the most likely and parsimonious model using the difference in Akaike Information Criterion of 675 

<-2 or more. The quadratic or exponential correlation structure was typically selected as most 676 

parsimonious. For FIA data, no transformations could achieve reasonable Q-Q plots for any 677 

family of generalized linear model and thus we first averaged individual plot values at a 1 degree 678 

grid to account for spatial autocorrelation and then subsequently modeled the correlation 679 

structure. All results were robust to accounting for spatial autocorrelation (Extended Data Fig. 5). 680 

All analyses were conducted in the R statistical software79.  681 

 682 

 683 

Data availability: All datasets are publicly available. The International Tree-Ring Data Bank is available 684 

from the National Oceanic and Atmospheric Administration (https://www.ncdc.noaa.gov/data-685 

access/paleoclimatology-data/datasets/tree-ring); the U.S. Forest Inventory and Analysis plot data are available from 686 

U.S. Department of Agriculture (https://www.fia.fs.fed.us/); and the vegetation optical depth data are available from 687 

the University of Montana (https://www.ntsg.umt.edu/project/default.php). 688 

 689 

Code availability: All analysis was done in the open-source software R with the packages that are 690 

documented and cited in the Methods section of the paper. Code will be made available upon request.   691 


