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ABSTRACT: Metal-ligand cooperative binding modes were interrogated in a series of zinc bis(thiophenoxide) complexes.
A weak B-S binding interaction is observed in solution between the weakly Lewis basic thiophenoxide ligands and an ap-
pended trialkylborane. The energy of this binding event is dependent upon the strength of the Lewis acid and its proximity

to the zinc-thiophenoxide.

Many new vistas employed by synthetic systems for
small molecule binding/activation attempt to rely not only
on a central metal active site, but also on a metal’s sur-
rounding environment.! Such secondary coordination
sphere groups often use cooperative interactions to facili-
tate substrate coordination, stabilize high-energy transi-
tion states, and facilitate charge transfer.> Although com-
monly encountered within metalloenzyme active sites as
regulatory components, design principles that enable syn-
thetic systems to reliably exploit secondary sphere acidic
groups are challenging to translate.

The use of added Lewis acids to facilitate substrate bind-
ing and activation have demonstrated improvements in se-
lectivity and activity for a variety of organic,? organometal-
lic,* and electrochemical reactions.> However, many such
reactions use highly Lewis acidic reagents (e.g. BF; or
B(CeFs);)® or exhibit product inhibition by generating an
irreversible acid base adduct, and thereby limiting efficient
catalysis.” Alternatively, designed ligands containing intra-
molecular (tethered) Lewis acids can facilitate substrate
binding and can direct reactivity.®

A challenge associated with synthetic systems that use
extremely electrophilic acids, or feature high rigidity, is
that the acidic interactions are rendered strong and stag-
nant. The result is that synthetic acidic/basic residues are
often either directed® and too strong—preventing subse-
quent reactivity—or lack the acidity/basicity required to
change the thermodynamic landscape of substrate bind-
ing/activation.” Synthetic molecular scaffolds whose
acidic groups are flexible, and thereby mobile, may hold
key advantages over rigid platforms.” Particularly, entropic
penalties can be used to favor (or disfavor) cooperative in-
teractions at a metal center and may be determined by the
size and shape of a substrate/product. In cases where the
ligand scaffold is pre-organized for favorable interactions

with a metal-substrate, even modest strength Lewis acids
(weaker enthalpy of acid-base binding) can impart large
differences to both binding and activation of a given sub-
strate.”” Because the substrate shape and binding modes
necessarily impact metal/Lewis acid cooperativity,3 sys-
tematic studies to categorize distance effects are needed
for substrates across multiple binding modes.
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Fig. 1 Top: A dynamic binding regime enabled by a mobile
Lewis acid design contrasts typical approaches that involve in-
termolecular acids or highly rigid systems. Bottom: specific
substrates’ binding modes interrogated with this framework.

Recently, our lab investigated a key design component
of metal-ligand cooperativity: distance dependent bind-
ing/activation.** By varying the physical separation be-
tween zinc and a flexibly appended boron Lewis acid by ca.
1 A increments (Fig. 1), we found that the binding mode
and extent of activation/acidification were systematically
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Fig. 2 Synthesis of B-3 and B-4 and solution dynamic process. The molecular structures of B-3 and B-4 are displayed with 50%
probability ellipsoids. All hydrogen atoms are omitted and the 9-BBN substituents are displayed in wireframe for improved clarity.

altered. While these methodical variations heightened our
understanding of the system’s ability to accommodate a -
1,2-substrate, we recognized that these guiding principles
may not necessarily be applicable across substrates that
vary in size, shape, and electronics.

An inherent challenge in predicting the formation and
favorability of a Lewis acid/base adduct is that Lewis acid-
ities are substrate dependent: a consequence of both
hard/soft-acid/base and steric considerations.” For analy-
sis/optimization of a ligand’s secondary sphere environ-
ment, combinations of acids/bases that form strong ad-
ducts (i.e. strong Lewis acids, or strong Lewis bases) pro-
vide limited insight into the geometric requirements
needed for reversible binding when using an intramolecu-
lar tethered Lewis acid.'¢ We selected thiophenoxides, sub-
strates that we previously identified to exhibit dynamic
binding with borane Lewis acids.” For example, modest
binding energies for the [Ni(CO);SPh]-/BMe; adduct (AH
= -4 kcal/mol) were calculated.” Herein, we describe our
investigation to systematically evaluate the effects of Lewis
acid proximity and strength on cooperative Zn-SPh-BR;
binding by using a series of bidentate 2-(pyrazol-3-yl)pyri-
dine ligands.

We initiated our studies with a set of complexes, (™
BENNN®Y)ZnBr, (n = 2, 3, 4; complexes A),"» ® that differ
only in the number of methylene units connecting the 2-
(1-({CH,}-BBN)-5-(tert-butyl)-1H-pyrazol-3-yl)-6-
methylpyridine ligand to the appended 9-borabicy-
clo[3.3.1]lnonane (BBN) Lewis acid (Fig. 2). Treating com-
plexes A with two equiv. thiophenol followed by two equiv.
potassium bis(trimethylsilyl)amide at low temperature
produced divergent results. For A-3 and A-4 (e.g. A denotes
compound series; 3 denotes number of methylene units),
the bis(thiophenoxide) product, ("®®NNN*®")Zn(SPh), (B-3
and B-4), were obtained in high yield as malodorous white

powders. In contrast, the reaction with A-2 resulted in
rapid demetallation of the bidentate ligand, >®®¥"NN®*" and
formation of an insoluble species, presumably of the type
[Zn(SPh),],." Attempts to form B-2 through alternate syn-
thetic methods were also unsuccessful (see SI for details).

To further understand the formation of complexes B, we
performed variable temperature NMR experiments to
probe whether pre-association between A and thiophenol
occurred in solution prior to deprotonation. Treating each
complex A with one equiv. thiophenol did not result in
changes to the 'H NMR spectrum at 25 °C (CD,Cl,). Simi-
larly, no changes were observed (in comparison to samples
not containing thiophenol, see SI) when cooling the sam-
ples (-80 °C) to favor a B-S interaction. These data suggest
that a pre-association of thiophenol and the appended bo-
ron Lewis acid is not occurring prior to deprotonation. We
also attempted to form mono(thiophenoxide) complexes
of the type ("BBNNN®Y)Zn(SPh)Br. These attempts were
unsuccessful for all complexes A; NMR analysis of the re-
actions indicated primarily formation of complexes B with
remaining unreacted A, highlighting a thermodynamic
driving force to form [Zn(SPh),].

Structural confirmation of complexes B-3 and B-4 was
achieved via single crystal X-ray diffraction studies (Fig. 2).
The solid-state structures of the tetrahedral zinc bis(thio-
phenoxide) (t, = 0.83-0.89)*° complexes differ significantly:
B-3 displays acid/base adduct formation between the trial-
kylborane and the thiophenoxide ligand while B-4 does
not. In B-3, the B-S interaction is evident by a deviation
from planarity of the borane and a close B-S contact (XB, =
316.31(11)% 2.1279(18) A) as compared to B-4 (EB, =
359.43(17)% 5.62 A). Comparing the two thiophenoxide lig-
ands in B-3 illustrates the consequences of Lewis-acid acti-
vation: 1) elongation of the Zn-S bond distance from



2.251(5) to 2.3089(4) A, and 2) increased bending of the
Zn-S-C angles from 109.36(5) to 100.36(5)°.*

The solid-state structures clearly indicate a binding pref-
erence that is dependent on the tether length to the Lewis
acid and that, for thiophenoxide, B-3 may contain the most
favorable host/guest interaction. In related work with five-
coordinate iron(II)-bis(thiophenoxide) complexes, the B-S
interaction was estimated computationally to be thermo-
dynamically disfavored by ca. 9 kcal/mol.” However, this
value should be highly dependent on the identity of the
metal, the geometry at the metal, and the Lewis acid/base
proximity (i.e. tether length). The room temperature 'H
NMR spectra of complexes B are both C; symmetric, indi-
cating that the B-S interaction is either not present in so-
lution or is dynamic. Upon cooling samples of B (+25 to -
70 °C), resonances in the '"H NMR spectra (CD,CL,) exhibit
slight broadening and shifting with those of B-3 more pro-
nounced than B-4. While we were unable to reach the co-
alescence temperature, the solution 'H NMR data suggest,
qualitatively, B-S adduct formation is more favorable for B-
3 than B-4 (see SI).
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Fig. 3 Synthesis of B-3-BPin from A-3-BPin. The molecular
structures of each compound are displayed with 50% proba-
bility ellipsoids. All hydrogen atoms are omitted for improved
clarity.

We hypothesize that a greater entropic penalty is the
origin of the differences observed in the B-S binding favor-
ability. An alternate approach to favor (or disfavor) an
acid/base adduct is to alter the Lewis acidity rather than
the tether length.>> The Lewis acidities of A-3 and A-4 were
experimentally measured to be identical.* We hypothe-
sized that by exchanging the moderately acidic 9-BBN in
complexes A for a weakly acidic -BO,C,Me, (BPin), an en-
thalpic penalty would disfavor a B-S interaction. To probe
this hypothesis, we synthesized a new ligand, 2-(1-({CH.}-
BPin)-5-(tert-butyl)-1H-pyrazol-3-yl)-6-methylpyridine,
which was metalated with zinc(II) bromide to afford (>
BPINNN®")ZnBr, (A-3-BPin; Fig. 3). Treating A-3-BPin
with two equiv. of each thiophenol and potassium bis(tri-
methylsilyl)Jamide afforded the bis(thiophenoxide) prod-
uct, (BP"NN®")Zn(SPh), (B-3-BPin).

To ascertain the effect of the weakened Lewis acidity in
A-3-BPin vs A-3 (decreased acceptor number by ca. 20)*+ 24
to interact with thiophenoxide, we analysed B-3-BPin by
single crystal X-ray diffraction. Data refinement of the tet-
rahedral bis(thiophenoxide) zinc complex (t, = 0.85) re-
vealed the absence of a B-S interaction, with a long B-S dis-
tance (>5.3 A) and a trigonal boron (£B, =359.9(4)°). These
data directly contrast those observed for B-3: decreased
Lewis acidity in B-3-BPin disallows a B-S interaction. This
is further borne out by VT 'H NMR spectroscopy. Cooling
samples of B-3-BPin to -71 °C does not have an effect on
the NMR resonances (CD,CL,) suggesting a greater barrier
to form a B-S interaction as compared to B-3 (see SI).
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(3BENNN®BY)ZnBr,
(+BENNN®Y)ZnBr,
(I!-BPinNNrBu)ZnBr2

+10.3 kcal/imol
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Fig. 4 DFT calculated thermodynamics associated with a B-S
interaction.

To further elucidate the thermodynamic consequences
on the dynamic B-S bonding regime, we undertook a DFT
survey of complexes B (Fig. 4). For each complex, we cal-
culated the change in free energy associated with a Lewis
acid/base interaction by optimizing the molecules’ geome-
tries with and without a B-S interaction at the B3LYP/6-
31G(d) (PCM: CH,CL,) level of theory. The calculations sup-
port our experimental analysis: B-S bond formation is least
unfavorable for B-3 (AG = +10.3 kcal/mol). Upon increasing
the distance between the Lewis acid and the thiophenoxide
by one methylene unit (B-4), the B-S interaction becomes
less favorable by an additional 7.2 kcal/mol. Enthalpically,
the difference between B-3 and B-4 was greater than ini-
tially anticipated. While an additional gauche interaction
in the alkyl chain of B-4 may account for an upper limit of
4 kcal/mol of decreased favorability,* greater penalties are
incurred by deformations of the primary coordination
sphere that are necessary to accommodate a B-S interac-
tion. In the optimized structure of B-4 (B-S = 2.128 A), a
long Zn-pyrazole distance is observed (2.1765 A) as a result
of an increased pyridine-pyrazole dihedral angle (12.49° for
the B-S bound species, compared to 4.50° in the B-S un-
bound B-4 X-ray structure)—we propose these phenom-
ena are a direct consequence of the imposed B-S interac-
tion. Therefore, the increased AG for B-S binding in B-4 is
complicated and likely due to a composite of contributions
beyond a simple boron-sulfur distance argument.

The discrepancies observed between the optimized
structures of B-3 and B-4 are not observed when compar-
ing B-3 and B-3-BPin. In agreement with the experimental
NMR studies and prior computed examples,' B-S bond for-



mation in B-3-BPin is least favorable of all by a wide mar-
gin (AG = +22.4 kcal/mol). The difference between the AG
and AH values in B-3-BPin suggest B-S binding is governed
primarily by enthalpic considerations. These results high-
light a necessity for secondary coordination sphere groups
to be matched in both acidity/basicity and in proximity.

We have described a system where proximity and
strength can be used to regulate the bonding dynamics be-
tween a tri-coordinate borane and a metal-bound thiophe-
noxide. In this system, a three-methylene spacer between
the appended borane and the ligating-portion of the ligand
was found to afford an ideal fit for a weakly basic thiophe-
noxide ligand. Less optimal bonding situations resulted
from expanding the tether length or decreasing the Lewis
acidity. These studies contribute to research that is chal-
lenging to investigate: modulating Lewis acidity by chang-
ing the entropic term in addition to the enthalpic term.™
We anticipate that this approach may enable a tethered
Lewis acid to facilitate substrate-matched cooperative cap-
ture and product release—key features needed for catalytic
turnover.
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