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ABSTRACT

Lake Magadi is an internally-drained, saline and alkaline terminal sump in the southern
Kenya Rift. Geochemistry of samples from a ~200-m core representing the past ~1 Myr of the
lake’s history show some of the highest concentrations of transition metals and metalloids ever
reported from lacustrine sediment, including redox-sensitive elements Mo, As, and V. Elevated
concentrations of these elements represent times when the lake’s hypolimnion was euxinic —
that is, anoxic, saline, and sulfide-rich. Euxinia was common over the past ~700 ka, tending to
occur during intervals of high orbital eccentricity. These were likely times when high frequency
hydrologic changes favored repeated episodes of euxinia and sulfide precipitation. High-
amplitude environmental fluctuations at peak eccentricity likely impacted water balance in
terrestrial habitats and resource availability for early hominins. These are associated with
important events in human evolution, including the first appearance of Middle Stone Age

technology between about 500 and 320 ka in the southern Kenya Rift.
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INTRODUCTION

The Hominin Sites and Paleolakes Drilling Project (HSPDP) drilled cores in several rift
basins of eastern Africa to obtain long, continuous paleoenvironmental records close to
important fossil and archaeological sites (Cohen et al., 2016; Campisano et al., 2017). Lake
Magadi (Figure 1) is within 100 km of several important sites for human origins research,
including Olduvai Gorge, Laetoli, and Peninj, with Olorgesailie <20 km distant. Monsoon
intensity fluctuations due to orbital and other factors are hypothesized to have influenced early
hominin habitat structure, selective pressures, and speciation (Potts and Faith, 2015). Results
from Core HSPDP-MAG14-2A, Olorgesailie outcrops, and Core ODP-OLO12-1A in the Koora
Graben (Figure 1), suggest that environmental variability, especially the intensity of arid
episodes, between ~500 and 300 ka played a role in mammal species turnover and the first
appearance of Middle Stone Age technology (Owen et al., 2018a; 2019; Potts et al., 2018;
2020). Paleolimnological records from the regional drainage sump can offer unique

perspectives on environmental change and the timing and drivers of human evolution.

GEOLOGIC SETTING

Lake Magadi occupies a set of subparallel grabens in the rift between metamorphic
highlands to the east and west. Magadi Trachyte (~1.4-0.8 Ma) covers much of the rift floor, cut
by rift-parallel faulting. Plio-Pleistocene volcanos are found throughout the region, mostly
trachyandesitic to basaltic, with a few carbonatites (Baker and Mitchell, 1976).

Lake Magadi is a saline, alkaline ephemeral lake fed by hydrothermal groundwater and

ephemeral streams (Jones et al., 1977). It was part of a large Pleistocene paleolake extending
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south to Lake Natron (Hillaire-Marcel and Casanova, 1987). Inflow waters are Na-CO3 brines,
with evaporation producing some of the most concentrated alkaline fluids on earth (Deocampo
and Jones, 2014). With pH>10, authigenic silicates such as zeolites and magadiite (Na-silicate)
are common (Eugster, 1967). Despite hypersaline modern conditions, some Middle to late
Pleistocene deposits represent much fresher conditions, including diatomaceous mud with fish

fossils (Owen et al., 2018b).

METHODS

Core HSPDP-MAG14-2A was drilled to a depth of 194 m and halted in basal trachyte.
Lithologies including dm-scale interbedded resistant chert and soft muds made drilling difficult;
total recovery was approximately 60% (Campisano et al., 2017). A Bayesian geochronology was
based on radiocarbon, 40Ar/39Ar, paleomagnetic, and U-series dates using Bacon v.2.2 (Owen et
al., 2018a). 344 samples were collected every ~30 cm from intact core segments at the National
Lacustrine Core Facility, and analyzed by ICP-MS following a four-acid digestion by ACTLABS
(Toronto; Hu and Qi, 2014). Mineralogy was determined with a Panalytical XRD, analyzing

randomly oriented powders from 5-65° 26 at 45mV and 40mA (Rabideaux, 2018).

RESULTS
The top ~60 m of core are dominated by trona and trona-bearing zeolitic mud (Cohen et
al., 2016). The remainder of the core is mostly laminated to massive zeolitic mud, interbedded

with chert. Some intervals contain silt- to sand-sized euhedral cubic pyrite crystals.
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Sediments older than ~700 ka have Zr/TiO, = ~100, whereas younger sediments have
~2200, with increased variability in bedded trona in the upper part of the core (Figure 2).
Zr/TiO; ratios reflect source rock geochemistry and are generally unaffected by weathering, so
this implies little change in the composition of detrital sources for the basin after the shift ~700
ka. Many samples have Mo (up to 1500 mg/kg), As (up to 200 mg/kg), and V (up to 450 mg/kg)
concentrations among the highest ever reported in lacustrine sediments (e.g. Owen et al.,
2018b). These transition metals and metalloids are often associated with euxinic sulfide
deposits such as pyrite that scavenge them from saline bottom waters (Vorlicek et al., 2004;
Thiam et al., 2014). Variable concentrations of Mo, As, and V are found throughout the clays
and silts, which are generally dark-colored and reduced; high concentrations are found
preferentially in lithologies containing coarse grained pyrite (Figure 2; Sup. Table 1). La/Lu in
the core increases from the start of the record at ~1 Ma to ~600 ka, after which La/Lu strongly
correlates with Mo, particularly during peak eccentricity intervals (Sup. Tab. 3), with a possible

long-term declining trend.

DISCUSSION

Very high concentrations of Mo, As, and V have not previously been observed in East
Africa, though high levels are reported in Lake Kivu hot springs (Degens and Kulbicki, 1973).
Owen et al. (2018b) found Mo concentrations above typical ICP-MS detection limits (2 mg/kg)
to be rare among hundreds of samples across the region. High Mo, As, and V generally require
euxinia: anoxic, sulfide-rich brine. High salinity can occur due to saline hydrothermal input,

evaporative concentration, or both; an anoxic hypolimnion in Lake Magadi implies persistent
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chemostratification. Shallow saline lakes may be anoxic because dense brines resist wind shear,
have low O, solubility, and rapidly consume oxygen when warmed (Deocampo and Jones, 2014;
De Cort et al.,, 2019). Therefore, it is not unexpected that mixing and oxygenation only occur
during flooding events (Talling, 1992). Freshening, lake level rise, and oxygenation are also
supported by bioturbated magadiite beds (~25-9 ka) overlain by muds (Buatois et al., 2020). If
lake level rise persists, eventually meromixis may occur, restoring stratification, perhaps with a
freshwater cap.

A range of environmental conditions is represented geochemically: well-mixed, well-
stratified, and euxinia (Figure 3). Euxinia is likely triggered during negative water balance
episodes; complete desiccation is not implied, however, because sulfide precipitation persists.
This is consistent with a lack of paleosols in the core (Muiruri et al., 2021), though some cherts
show evidence of subaerial exposure (Leet et al., 2021). Hypolimnic euxinia could persist into
episodes of lake level rise, as dense bottom waters lie beneath fresher surface waters — perhaps
even until thorough mixing occurs. Stratification may be enhanced by lake deepening, but it is
not required; for example, shallow water anoxia (<0.1mg/L O;) is observed at nearby Nasikie
Engida with <2 m water depth (De Cort et al., 2019).

Geochemical cyclicity is observed after ~820 ka (Figure 4). Intervals in which Mo >1o0
above the mean co-occur with maximum eccentricity over the past ~700 ka, suggesting
sensitivity due to hydrologic closure. Before ~700 ka, the geochemical record was likely not
sensitive to paleohydrology and the lake may have been hydrologically open. Nearly constant
Zr/TiO; before and after ~700 ka suggests a shift in detrital source at that time, likely related to

volcanic, tectonic, or geomorphic events (e.g. stream capture or fault movements).
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Correlation between La/Lu and Mo after ~600 ka suggests that light rare earth element
(LREE) enrichment was highest during euxinia. This is consistent with marine observations
where anoxic brines become LREE-enriched due to redox cycling of Mn- and Fe-oxides (Bau et
al., 1997). Late Pleistocene Magadi cherts (Kerrich et al., 2002) have an order of magnitude
lower La/Lu, suggesting they formed in less euxinic conditions, perhaps even in oxygenated
waters. The high La/Lu and Mo values in the uppermost part of the core dominated by
evaporite trona reflect the most recent euxinia in the lake over the past ~100kyr, possibly
related to basin tectonics rather than climatic forcing (Owen et al., 2019).

Mo and eccentricity have no correlation over the dataset as a whole, but significant
correlations (p<0.01) were found in 50 kyr and 100 kyr windows across most of the dataset
(Supp. Table 2). Euxinia tends to peak during eccentricity maxima, associated with eccentricity-
driven aspects of global paleoclimate records, including sapropel and benthic foraminiferal 20
records from the eastern Mediterranean (Emeis et al., 2000; Konijnendijk et al., 2014), and the
record of glacial terminations over the past 700 ka (Figure 4). Euxinia as indicated by peak Mo
concentrations was high at all glacial terminations or shortly thereafter, except Term. V, which
fell during an eccentricity minimum when precession forcing was weakest (Supp. Figure 1).
Significant cyclicity in the 100 kyr band is observed for the record from ~820 ka to ~200 ka
(Figure 4).

High-frequency hydroclimatic changes are known from across eastern Africa during this
time interval. At nearby Olorgesailie, shifts between lacustrine and subaerial conditions occur
throughout the record over thousands of years (Owen et al., 2008; Deocampo et al., 2010).

High-frequency episodic desiccation was shown in the Koora Graben core, ~¥11 km east of
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Magadi (Potts et al., 2020). High-frequency change is also known from Lake Malawi to the south
(Lyons et al., 2015; Ivory et al., 2016) and Chew Babhir to the north (Foerster et al., 2018).

Diatom flora in the upper part of the core show high-frequency flood events (Owen et
al., 2018a; 2019) and pollen taxa show frequent expansion and contraction of Podocarpus
forests (Muiruri et al., 2021). These are not represented geochemically likely because dense,
euxinic waters can persist long beyond the onset of euxinia, extending even into early
diagenesis (Domagalski et al., 1990), and so may not be specifically tied to surface hydrology on
short time scales. Absent an oxidizing event such as lake overturning, euxinia indicators could
then be time-averaged, smoothing the signal. Accumulation may continue even as a freshwater
cap develops, only subsiding upon depletion of the brine, or mixing of the water column.

100 kyr cyclicity in the euxinia signal therefore suggests that intervals of high
eccentricity were times when episodes of euxinia were favored, driven by intervals of negative
water balance, even as lake level rose and fell. In the diatomaceous upper part of the core,
Owen et al. (2018) found high frequency pulses of freshwater benthic taxa representing flood
events. While they occurred at higher frequencies, and are not restricted to high-eccentricity
times, they occurred more often during high eccentricity intervals, and they correlate with
diatom-inferred lake transgressions in the Koora core (Figure 4; Potts et al. 2020).

Euxinia indicators, then, are associated with both aridity and flooding - high amplitude
salinity events occurring over precessional or other high frequency timescales, even though the
signal may be smoothed out. The greater amplitude of such events during eccentricity maxima
argue for an orbital source of the variability (i.e. precession), as the amplitude of precession is

itself modulated by eccentricity over the Pleistocene (Berger and Loutre, 1994). When the
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amplitude of precession was weakest during low eccentricity (e.g. ~400 ka), Mo is
correspondingly low, suggesting breakdown in euxinia (Figure 4). High Mo at the beginning of
this low eccentricity interval may represent a lag after the eccentricity peak ~495 ka.

High amplitude (i.e. precession-scale) environmental fluctuations undoubtedly had a
profound impact on moisture availability and vegetation over evolutionary timescales (Potts,
2013). This likely influenced habitats for early hominins and other vertebrates, vertebrate
faunal turnover, expansion of early hominin material transport range, and the development of

Middle Stone Age technologies (Potts et al., 2018; 2020).

CONCLUSIONS

Drilling in the Lake Magadi basin and geochemical analyses have yielded lake sediments
with some of the highest Mo, As, and V concentrations ever reported. These indicate euxinia,
strong stratification with anoxic, sulfidic, and saline hypolimnic waters, beginning at ~700 ka.
Before then, the basin likely was not sensitive to orbitally induced changes in regional
hydrology, and perhaps was not even hydrologically closed. At ~700 ka, a significant event
occurred that changed the sediment source and made the lake hydrologically sensitive. REE
data suggest a gradual increase in anoxia from ~700-450 ka, after which eccentricity-scale
variability dominates. Peaks in euxinia indicators (Mo, As, V) tended to occur during intervals of
high eccentricity and are associated with most glacial terminations over the past 700 ka.

The Lake Magadi geochemical record adds to the body of evidence emphasizing the
importance of eccentricity modulation of precession in Pleistocene records of hydroclimate in

eastern Africa. It also provides a clear indicator of intense droughts in the region during glacial
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maxima since ~700 ka, superimposed on a long-term increase in aridity known from other proxy
records. Euxinia episodes in Lake Magadi are consistent with environmental fluctuations
hypothesized to play a role in vertebrate and human evolution and the emergence of the

Middle Stone Age in East Africa.
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FIGURE CAPTIONS

Figure 1. Location and stratigraphy of Core MAG14-2A. A: Topography of the south Kenya Rift,
view toward the west (GeomappApp.org). B: View north over Lake Magadi (June 2019) showing
trona rafts and seasonally flooded lake. C: Bayesian chronological model for Core MAG14-2A.

See Owen et al., 2018a. D. Simplified lithological log.
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Figure 2. Trace metal geochemistry of core MAG14-2A, calculated as running 5-point averages.
A shift in Zr/TiO, ratios suggests basin reorganization at ~700 kyr, and otherwise fairly constant
source area geochemistry. La/Lu ratios suggest a gradual increase in anoxia up until ~600 kyr,

after which it is cyclical, correlating with euxinia indicators Mo, As, and V.

Figure 3. Model of euxinia indicator accumulation in Lake Magadi. (A) Well-mixed waters
preserve only traces of Mo, As, and V especially during lake level rise, as these elements sorb or
precipitate easily. (B) stratified waters accumulate significant concentrations as sustained
anoxia mobilizes these elements into the aqueous phase. (C) hyperaccumulation in sulfide
phases (i.e. pyrite) as extreme evaporative concentration and anoxia combine to raise

concentrations in anoxic bottom waters.

Figure 4. Paleoclimate context of Lake Magadi euxinia. Mo shows 100 kyr cyclicity after ~820 ka,
with peaks occurring in high eccentricity intervals, associated with the last eight glacial
terminations, and the Mediterranean benthic foraminiferal and sapropel records (Emeis et al.,
2000; Konijnendijk et al., 2014). Diatom assemblages suggesting flood events are found at a
much higher frequency, and may occur more frequently during interglacials, though not
exclusively (Owen et al., 2018a). Insolation curve from Laskar et al. (2004). Mo wavelet shows
power in the 100 kyr band, with cone of influence and p=0.05 significance contour indicated by

black lines.
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