
An Asynchronous FPGA THx2 Programmable Cell
for Mitigating Side-Channel Attacks

John M. Emmert
Dept. of EECS

University of Cincinnati
Cincinnati, OH, USA
john.emmert@uc.edu

Anvesh Perumalla
Dept. of EECS

University of Cincinnati
Cincinnati, OH, USA
perumaak@mail.uc.edu

Luis Concha
Dept. of EECS

University of Cincinnati
Cincinnati, OH, USA

luis.concha@uc.edu

Abstract—One approach to mitigate side-channel attacks
(SCAs) is to use clockless, asynchronous digital logic. To simplify
this process, we propose a unique asynchronous FPGA based
on a new THx2 programmable threshold cell. At a minimum,
FPGAs require a programmable logic cell that can implement
a complete set of logic so that it can be connected through the
programmable interconnect network to form any digital system.
To meet that criteria, we take advantage of CMOS transistors
to implement a programmable THx2 threshold cell capable of
performing both TH12 and TH22 asynchronous operations. Our
complete sixteen transistor FPGA cell includes eight transistors to
implement the base THx2 threshold operation, three transistors
to switch between the TH12 and TH22 modes, and five memory
cell transistors for mode storage. Our unique minimal transistor,
programmable THx2 implementation enables formation of a
complete set of asynchronous threshold gates and a complete set
of standard combinational logic functions. The symmetric nature
of the FPGA cell, in regard to the number of transistors (eight
NMOS and eight PMOS), makes it ideal for a four row by four
column transistor grid with a nearly square, easily array-able
layout. It should be noted our THx2 cell is highly compact and
suitable for implementing a clockless, asynchronous FPGA.

Index Terms—asynchronous, security, assurance, trust, side-
channel attacks, FPGA, field programmable gate array

I. INTRODUCTION

Synchronous or clocked integrated circuit (IC) based sys-
tems are susceptible to side-channel attacks (SCAs), especially
if fabricated at an untrusted foundry where a malicious Trojan
circuit could be inserted. By leveraging Trojan circuits and
monitoring power consumption, electromagnetic radiation, or
other IC characteristics, a malicious, untrusted agent or entity
can compromise security and steal sensitive information like
credit card numbers and secret keys [1].

One approach to mitigate SCAs is clockless asynchronous
digital design [2]. Clockless asynchronous logic in the form of
a Field Programmable Gate Array (FPGA) technology offers
a synergistic set of defenses against SCA attacks to include
distributed, difficult to monitor internal switching and very
regular structures that make it difficult to add Trojans during
IC fabrication. To simplify asynchronous design and improve
capabilities, we propose a unique FPGA architecture based
on our THx2 cell shown in Fig. 1 [3]. In Fig. 1, the dotted
lines represent the connections that enable the TH12 and TH22
modes of the THx2 cell.

B

A

A

12

22

12

B

Z

reset NULL

set DATA

Fig. 1: TH12 and TH22 modes of the THx2 cell [3].

Z

V

Zb

Zb

V

GG
M
b

M

M

A

AB

B

reset NULL

set DATA

Fig. 2: Transistor diagram of the THx2 base cell.

In this paper, we leverage our THx2 cell architecture and
describe the development and operation of the compact multi-
mode programmable FPGA THx2 cell shown (Fig. 2). The
value stored in the programming memory cell (not shown)
sets the value of M and Mb. A value of M = ‘1’ (Mb =
‘0’) sets the mode of the THx2 cell to TH12, and a value
of M = ‘0’ sets the mode to TH22. It should be noted
that our programmable THx2 cell includes mode storage, is
highly compact and suitable for tight 2-D arraying required
for FPGAs.

II. BACKGROUND
In this section we provide a brief overview of SCAs and

asynchronous circuits.

A. Side-Channel Attacks
One way to describe a Trojan circuit is an extra circuit

added by the manufacturer during the IC fabrication process.
Trojan circuits can be used in a positive way to provide feed-
back to the manufacturer and designer on the manufacturing

978-1-7281-8058-8/20/$31.00 ©2020 IEEE 840

Authorized licensed use limited to: University of Cincinnati. Downloaded on July 27,2021 at 20:38:28 UTC from IEEE Xplore. Restrictions apply.

process, but they can also be used maliciously to leak private or
secret information during normal IC operation. Several types
of Trojans have been developed that require minimal area
overhead and are very difficult to detect either during regular
IC testing or IC reverse engineering [4].

SCAs don’t directly monitor signal values. Instead, they
use indirect measures to exploit existing or added (Trojan)
circuitry to steal secret or private information. SCAs can lever-
age electromagnetic radiation, temperature variations, power
use, or other characteristics to indirectly back out data during
normal IC operation. A common example used to steal secret
keys is a power based SCA that uses a Malicious Off-chip
Leakage Enabled Side-channel (MOLES) Trojan Circuit [5].

The MOLES circuit consists of a pseudorandom number
generator (PRNG), some XOR gates, and some added capac-
itive loads. The low area overhead PRNG can be added using
a simple linear feedback shift register, or often the MOLES
circuit can take advantage of existing PRNG found on most
digital processors. The extra capacitive loads and XOR gates
are virtually unnoticeable, and their operation looks like noise
during normal system testing. A weakness often exploited
during a power based SCA is synchronized power spikes
caused by combinational switching during synchronized clock
cycles. An untrusted agent or entity can collect synchronized
sets of transient power readings over long periods of time,
and use common signal processing techniques to detect secret
keys, K = k1k2k3...kn, stored in the firmware [5]. The covertly
inserted Trojan circuit and the exploitation of the synchronized
power readings are one example of a power based SCA.

B. Asynchronous Logic
There are many types of asynchronous design techniques

ranging from locally clocked to completely clockless, and each
has its own advantages and disadvantages [6]. One type of
clockless logic circuit is Null Convention Logic (NCL) [7].
The NCL circuit works well for data flow designs because
data flows through NCL networks in waves. A data wave is
only processed when all input data is available, so it is self-
timed. Since processing only occurs when data is available,
there are no timing assumptions, and thus this guarantees
data sequencing and correct data arrival at the receiver under
varying gate, process and wire delays [7]. The NCL circuit
scheme uses multi-wire encoding. One wire represents a
logic ‘1’ and one wire a logic ’0.’ For example, a dual rail
connecting signal A has a logic ‘1’, A 1, rail and a logic ‘0’,
A 0, rail.

The backbone of NCL asynchronous circuits is the threshold
gate [7]. The threshold gate has the property of hysteresis, and
is denoted by THmn, where the output of the gate is asserted
(set) if the gate has a valid ‘DATA’ value on m (threshold)
of its n inputs. In other words when its threshold is met, its
output is asserted. The output stays asserted (hysteresis) until
all inputs go back to ‘NULL’ in its reset phase [7]. For prac-
tical implementation using only CMOS transistors, logic ‘1’
represents a ‘DATA’ value and logic ‘0’ represents a ‘NULL’
value. Our THx2 is capable of implementing both TH12 and

TH22 gates, thus forming a complete set of logic [3]. It should
be noted that NCL asynchronous circuits offer advantages to
SCA avoidance that include distributed (unsynchronized in
time) and low power consumption.

III. OPERATION
The core of our asynchronous FPGA architecture is our

programmable THx2 cell. In this section, we describe the
operation and design of the cell.

The block diagram of the asynchronous THx2 Field Pro-
grammable Gate Array (FPGA) cell is shown in Fig. 3. The V
and G are the positive and negative supply voltages, Vdd and
Vss, respectively. The input I is for the value to be stored in
the programming memory cell (MC), and the input Wb is the
active low write enable signal to program the MC. The inputs
A and B are the THx2 threshold function inputs, and the output
Z is the THx2 threshold function output. The internal signal
M and Mb (Mb is the logic inverse of M), control the mode of
the FPGA THx2 cell. The FPGA cell in Fig. 3 is composed
of two primary subcomponents: the eleven transistor THx2
base cell and the five transistor programming MC. The two
subcomponents form a programmable, asynchronous cell that
when arranged in a two-dimensional (2D) array can be used
to implement any digital system.

The transistor diagram in Fig. 2 shows the connectivity of
the THx2 base cell. The “reset NULL” subblock is standard
for a two-input threshold gate. When NULL values (‘0’s) are
applied to the A and B inputs, the two PMOS transistors turn
“ON,” and the Zb wire is pulled up to V (logic ‘1’), and the
output Z wire is reset to NULL (‘0’) by the standard CMOS
inverter.

In Fig. 2, the “set DATA” block is a key component of
the programmable FPGA cell. The mode, M, of this block is
controlled by the value stored in the programming MC (Fig. 4).
A value of ‘1’ on M (‘0’ on Mb) puts the cell in the TH12
mode. With M = ‘1,’ both NMOS transistors with M on the
gates will be turned “ON” and the diagonal NMOS transistor
with Mb on the gate will be turned “OFF,” and the NMOS
transistors with A and B on the gates will be in a parallel,
TH12 configuration (drain nodes connected to Zb and source
nodes connected to G or Vss).

In the “set DATA” block of Fig. 2, a value of ‘0’ on M (‘1’
on Mb) puts the cell in the TH22 mode. With M = ‘0,’ both
NMOS transistors with M on the gates will be turned “OFF”
and the diagonal NMOS transistor with Mb on the gate will
be turned “ON,” and the NMOS transistors with A and B on
the gates will be in a series, TH22 configuration (drain node
on the A transistor connected to Zb through the diagonal Mb
NMOS transistor).

The rest of the Fig. 2, the part not in the dotted lined
borders, forms the output inverter and “HOLD” network for
the THx2 base cell. This minimal transistor circuit uses a
unique modification from a standard implementation to i)
keep the overall number of transistors for the programmable
FPGA cell to a minimum (sixteen) and ii) keep the number of
NMOS and PMOS transistors even (eight). Fig. 5 shows the

841

Authorized licensed use limited to: University of Cincinnati. Downloaded on July 27,2021 at 20:38:28 UTC from IEEE Xplore. Restrictions apply.

standard and modified output inverter and “HOLD” networks.
Fig. 5a shows the standard implementation that uses two
cross-coupled inverter circuits (two NMOS transistors and two
PMOS transistors) to output and “HOLD” the value of the
TH12 and TH22 cells. This would not work for the minimum
area FPGA cell because it would result in an imbalanced num-
ber of NMOS (nine) and PMOS (seven) transistors. Fig. 5b
shows the modified output inverter and “HOLD” circuit that
uses one NMOS and three PMOS transistors. The transistors
in Fig. 5b when combined with the transistors in the “reset
NULL (Fig. 2),” “set DATA (Fig. 2),” and “Memory Cell
(Fig. 4)” blocks make a total of sixteen transistors, eight
NMOS and eight PMOS. The even number of NMOS and
PMOS transistors makes this implementation ideal for forming
a nearly square, easily array-able layout.

Some additional explanation of Fig. 5a and Fig. 5b may be
necessary to understand and compare the two networks. The
standard output inverter and “HOLD” transistors in Fig. 5a
form two cross-coupled inverters. The larger, output inverter
offers a strong signal for the Z output. The “HOLD” transistors
drive the Zb signal and enable the hysteresis effect that holds
the output value at DATA during transition of the A and B
inputs from DATA back to NULL values. The widths of the
transistors in the “HOLD” inverter are minimally sized so the
“reset NULL” and “set DATA” networks can overwrite the
value held by the “HOLD” inverter. In Fig. 5b, the NMOS
transistor of the standard “HOLD” inverter is replaced by a
PMOS transistor. Details of how this works can be understood
by considering the four states of the FPGA cell in the TH12
(M = ‘1’) and TH22 (M = ‘0’) modes: reset NULL active, set
DATA active, HOLD Z = DATA (‘1’) active, and HOLD Z =
NULL (‘0’) active.

1) In the reset NULL active state: Regardless of the value
on M, both A and B inputs are NULL (‘0’). The two
PMOS transistors in the reset NULL network are turned
“ON,” so the value on Zb is driven hard to a ‘1.’ In
Fig. 5b, with Zb = ‘1’ and Z driven to ‘0,’ the HOLD
PMOS transistor with Z on the gate is “ON,” and it
reinforces the Zb node to ‘1.’ The PMOS transistor with
Zb on the gate is “OFF” with Zb = ‘1,’ and its source
and drain nodes are in an open circuit configuration, not
affecting Zb or Z. This gives the same logical results as
the circuit in Fig. 5a.

2) In the set DATA active state: Some combination (depend-
ing on the mode M of THx2) of the A and B inputs are
set to DATA (‘1’) in order to pull Zb down to ‘0’ and set
the output Z to DATA (‘1’). A combination of NMOS
transistors in the set DATA network, are turned “ON,”
so the value on Zb is driven hard to a ‘0’. In Fig. 5b,
with Zb = ‘0’ and Z driven to ‘1,’ the HOLD PMOS
transistor with Z on the gate is “OFF,” and its source
and drain nodes are in an open circuit configuration, not
affecting Zb or Z. However, the PMOS transistor with
Zb = ‘0’ on the gate is “ON,” reinforcing the Zb node
to ‘0.’ This gives the same logical results as the circuit

Memory Cell

FPGA THx2 Cell

THx2 Base Cell

I

Wb

V

Z

G

A

B

MbM

Fig. 3: Block diagram of the FPGA THx2 cell.

I

Wb

VV

GG

M Mb

Memory Cell

Fig. 4: Transistor diagram of the memory cell for the FPGA
THx2 base cell.

in Fig. 5a.
3) In the HOLD Z = DATA (‘1’) active state: Neither the

reset NULL or set DATA networks are active regardless
of the value on M. With a ‘1’ on Z, the HOLD PMOS
transistor with Z on its gate is “OFF.” Its source and
drain nodes are in an open circuit configuration, and
also have no logical effect on Zb. The HOLD PMOS
transistor with Zb = ‘0’ on its gate will be “ON,” and
provide a weak ‘0’ to Zb which is enough to HOLD the
output to ‘1’ since there is nothing else driving Zb. In
addition, since all other paths to a source are open, there
is minimal dynamic current draw.

4) In the HOLD Z = NULL (‘0’) active state: Neither the
reset NULL or set DATA networks are active regardless
of the value on M. With a ‘0’ on Z, the HOLD PMOS
transistor with Z on its gate is “ON.” Its source and
drain nodes provide a path from Zb to Vdd, and HOLD
Zb at ‘1.’ The HOLD PMOS transistor with Zb = ‘1,’
will be “OFF,” and not affect the logical output Z.

The last element of the FPGA THx2 cell is the MC shown
in Fig. 4. This is a standard five transistor MC built on a set of
minimum sized cross-coupled inverters except that the WRITE
transistor is a PMOS instead of an NMOS transistor. Again,
this is so there are the same number of NMOS and PMOS
transistors. Since the WRITE transistor is a PMOS transistor,
the actual WRITE signal is active low, Wb.

IV. TEST DATA AND ANALYSIS
For the FPGA THx2 cell to work properly, the size of

the output inverter and HOLD network transistors need to
be carefully determined. Then, the widths of the devices in
the set to DATA and reset to NULL sub-circuits (Fig. 2) need
to be sized large enough to overpower the HOLD network

842

Authorized licensed use limited to: University of Cincinnati. Downloaded on July 27,2021 at 20:38:28 UTC from IEEE Xplore. Restrictions apply.

G

Z

V

Zb

(a)
G

V

Z

Zb

Zb

(b)

Fig. 5: (a) Traditional and (b) modified output and “HOLD”
networks for the THx2 base cell.

Fig. 6: FPGA THx2 cell simulation in TH12 mode (M = ‘1’).

transistors. Otherwise, the size can be varied to provide more
delay (less area) or vice versa. To test the FPGA THx2 cell, it
was implemented and then a spice model was extracted from
the cell layout. It was tested in both the TH12 and TH22
modes by first writing a logic ‘1’ to the MC and simulating
the TH12 mode, and then writing a logic ‘0’ to the MC to
simulate the TH22 mode. The spice simulations in Fig. 6 and
Fig. 7 show the output waveforms for the TH12 (M = ‘1’) and
TH22 (M = ‘0’) modes respectively.

For the TH12 mode (Fig. 6), we set the inputs, A and B,
to NULL (‘0’) to reset the output, Z, to NULL (‘0’). Then we
cycle through all combinations of the inputs, A and B, set to
DATA and NULL. The output verifies that with any input value
set to DATA, the output is also DATA. Also, when both inputs
are reset to NULL, the output is also reset to NULL. Thus, the
TH12 mode A + B = Z of the FPGA THx2 cell is functioning
as expected. Similarly, for the TH22 mode (Fig. 7), we set the
inputs, A and B, to NULL to reset the output, Z, to NULL.
Then we cycle through all combinations of the inputs set to
DATA and NULL. The output verifies that both input values
must be set to DATA for the output to be set to DATA. For
the TH22 mode, we also see that once the output is set to
DATA, it stays DATA until all inputs go back to NULL. This is
the hysteresis effect required for proper operation of the TH22
function and the A • B = Z form of the TH22 mode of the
FPGA THx2 cell.

V. SUMMARY AND CONCLUSIONS

There are several advantages to clockless asynchronous
digital design [7]. Examples include: 1) the asynchronous
nature of logic switching minimizes opportunities for power,
electromagnetic radiation, temperature and other SCAs, and
digital noise reduction for sensitive, mixed-signal ICs; 2)

Fig. 7: FPGA THx2 cell simulation in TH22 mode (M = ‘0’).

data is processed at average speed versus worst case for
synchronous sequential circuits; and 3) the difficult clock-
routing step is eliminated from the IC design flow. Some
common drawbacks include logic area increase, dual rail wires
for all signal nets, and lack of CAD tools for optimizing
asynchronous circuits. To make asynchronous design more
acceptable and common place, the drawbacks need to be
improved, and it needs to be easier to implement asynchronous
logic technologies like NCL.

One easy-to-use digital implementation technology is the
FPGA. When compared to other digital circuit implementation
technologies, the FPGA can quickly support and satisfy most
needs. When you combine FPGA technology with the pro-
tection provided by asynchronous circuits against malicious
attacks and low power advantages, the asynchronous FPGA
becomes a good choice for many applications.

In this paper we presented an asynchronous FPGA tech-
nology that can mitigate SCAs and is suitable for NCL asyn-
chronous digital designs. We showed how the asynchronous
FPGA cell is based on a minimum sized, multi-mode THx2
threshold gate, and we showed how it can be implemented
using a symmetric number of NMOS and PMOS transistors,
making it a good candidate for 2-D array structures. It is also
compact and includes local storage for the mode select. Lastly,
the programmable THx2 cell forms a complete set of logic
that can be used to implement any asynchronous digital circuit.

REFERENCES

[1] P. Kocher, J. Jaffe, B. Jun, “Differential power analysis,” in Annual
International Cryptology Conference, Springer, 1999, pp. 388–397.

[2] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor,
“Improving smart card security using self-time circuits,” in Proceed-
ings of the Eighth International Symposium on Asynchronous Circuits
and Systems, IEEE Computer Society, Silver Spring, MD, 2002, pp.
211–218.

[3] J. Emmert and A. Perumalla, “An Asynchronous MPGA THx2 Cell and
Architecture for Mitigating Side-Channel Attacks,” in IEEE National
Aerospace & Electronics Conference, 2019.

[4] M. Tehranipoor and F. Koushanfar, “A survey of HW Trojan taxonomy
and detection.” IEEE Des. Test Comput. Vol. 27, 2010, pp. 10–25.

[5] L. Lin and W. Burleson, and C. Parr, “MOLES: malicious off-chip leak-
age enabled by side-channels,” in IEEE/ACM International Conference
on CAD(ICCAD), November, 2009, pp. 117–122.

[6] R. Sridhar, “Asynchronous design techniques,” in Proceedings of Fifth
Annual IEEE International ASIC Conference, September 1992, pp. 296-
300.

[7] K. Fant and S. Brandt, “NULL convention logic: a complete and consis-
tent logic for asynchronous digital circuit sythesis,” in Proceedings of the
International Conference on Application Specific Systems, Architectures
and Processors, August 1996, pp. 261-273.

843

Authorized licensed use limited to: University of Cincinnati. Downloaded on July 27,2021 at 20:38:28 UTC from IEEE Xplore. Restrictions apply.

