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Archaeologists are increasingly interested in networks constructed from site assemblage data, in which weighted
network ties reflect sites’ assemblage similarity. Equivalent networks would arise in other scientific fields where
actors’ similarity is assessed by comparing distributions of observed counts, so the assemblages studied here can

g;zi:;gn represent other kinds of distributions in other domains. One concern with such work is that sampling variability
Sampling variability in the assemblage network and, in turn, sampling variability in measures calculated from the network must be
Centrality recognized in any comprehensive analysis. In this study, we investigated the use of the bootstrap as a means of

estimating sampling variability in measures of assemblage networks. We evaluated the performance of the
bootstrap in simulated assemblage networks, using a probability structure based on the actual distribution of
sherds of ceramic wares in a region with 25 archaeological sites. Results indicated that the bootstrap was suc-
cessful in estimating the true sampling variability of eigenvector centrality for the 25 sites. This held both for
centrality scores and for centrality ranks, as well as the ratio of first to second eigenvalues of the network
(similarity) matrix. Findings encourage the use of the bootstrap as a tool in analyses of network data derived

from counts.

1. Introduction

Network analysis has become a prominent methodological tool in
contemporary archaeology (Brughmans and Peeples, 2017; Mills, 2017;
Peeples, 2019). Network analytic procedures both reflect archaeology’s
relational focus and complement the field’s traditional emphasis on time
and space (Brandes et al., 2013; Collar et al., 2015; Knappett, 2011). A
wide range of substantive questions in archaeology are now being
addressed with network data and analysis.

In substantive applications, analysis of archaeological networks has
yielded considerable insight (e.g., Birch and Hart, 2018; Borck et al.,
2015; Lulewicz, 2019; Mills et al., 2013b; Peeples and Haas, 2013). One
potential concern, however, is that many network analytic measures do
not easily lend themselves to an assessment of sampling variability. Note
that this issue is not very serious in some settings for archaeological
network analysis. For example, the idea of sampling variability may
have little relevance in a network analysis of observed footpaths be-
tween remains of houses at a site (e.g., Pailes, 2014), where something
reasonably close to the total original network can be recovered. But for
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networks based on sites’ artifact assemblage similarities, it is natural to
consider sampling variability in the assemblage counts underlying the
network analysis. One perspective is that the excavation or other pri-
mary data collection effort resulted in what is, in effect, a sample from a
larger “population” of artifacts existing at the site. Alternatively, even a
data collection effort that obtained literally every artifact present at any
depth at a site would still be a sample of materials that were historically
in use at the site or can be considered one realization of a historical
process from which the observed assemblage data emerged.

A further complication is that such research takes the network con-
structed from the assemblage data, not the assemblage data itself, as the
object of interest. A direct formal assessment of sampling variability—as
could be possible in, say, estimation of multinomial probabilities—is
therefore unlikely to be feasible in this setting. For this reason, re-
searchers have discussed the bootstrap as an approach to understanding
sampling variability in measures derived from networks of assemblage
similarity (Gjesfjeld, 2015; Mills et al., 2013b; Peeples et al., 2016).
Bootstrapped datasets can be resampled from observed assemblage
counts and then submitted to the same transformation into site-by-site
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network data as was applied to the original observed assemblage.
Interpretation of network measures can then be informed by variability
estimates obtained from the bootstrapped data.

Although our work is motivated by problems in archaeology, these
ideas have wider applicability. TheBorgatti et al. (2009) typology in-
cludes similarity of attributes as one of the fundamental bases of
network ties; one possible attribute is an observed categorical distribu-
tion for each actor from which actor-to-actor similarity can be measured.
In the present paper, then, “assemblage” can be taken to mean any such
categorical distribution of counts, with actual archaeological assem-
blage data just one example. These questions are also important for the
analysis of other social networks in which ties are defined by summa-
rizing count data. Examples include animal dominance networks in
which a directed tie indicates which of a pair won the majority of their
observed dominance contests (Roberts and Liedka, 1999) and animal
association networks based on counts of occasions in which two animals
were spatially proximate (Roberts et al., 2019).

Investigation of the bootstrap in this general data context is therefore
relevant beyond archaeology and can inform research in any domain in
which observed counts are the basis of network ties. We do not know of
any directly similar research to date, though with the caveat that the
literature involving network centrality is so extensive that we surely are
not aware of all potentially related work. Perhaps the most similar
research setting in which we are aware of the bootstrap being used to
assess variability in network tie weights and subsequent measures is that
of psychological networks of traits or other psychological elements (see
Epskamp et al., 2018; Heeren et al., 2018). In that domain, a tie weight
may reflect the association between two elements (variables) as
observed in sample data, so the bootstrap can be performed on the un-
derlying sample data.

For this approach to be useful, the analyst must have some confi-
dence that the bootstrap can successfully capture underlying sampling
variability in this situation. Theoretical justifications for the bootstrap
(e.g., Mammen, 1992) rely on asymptotic arguments that may not be
valid in finite data and are based on regularity conditions that are likely
not met in the series of transformations that take assemblage data into
network data and then network measures. Indeed, bootstrap approaches
can fail even in seemingly more straightforward circumstances than the
assemblage similarity networks of interest here. The present paper in-
vestigates this problem via simulation of assemblage networks and
bootstrapping of the simulated data. Because we are then examining
data generated by a known process, bootstrap assessments of sampling
variability can be compared to the true variability implied by the
data-generating process. This permits the evaluation of bootstrap
methods’ validity in the assemblage similarity context and, more
generally, speaks to the utility of the bootstrap in networks of actor
similarity derived from count distributions.

The paper begins with a brief review of some literature on variability
in centrality measures, the archaeological networks setting, and the
bootstrap as an analytic tool. We then discuss the core simulation,
rooted in empirical data for a 250-year period (AD 1200-1450) from a
valley in what is today southeastern Arizona. We report on various an-
alyses of the simulated data that address the effectiveness of the boot-
strap for assemblage network data. Finally, we comment on the
implications of the results for the viability of the bootstrap in analysis of
network data of this sort.

2. Variability in centrality measures

Analysts have long been interested in aspects of variability in
network actor centrality measures; here we briefly note some of that
work. Bolland (1988) conducted an early study of centrality in simulated
networks produced by randomly changing elements of the 0/1 adja-
cency matrix of an empirical network. Among other analyses, he
compared mean correlations between centrality scores in the simulated
and original empirical networks under different levels of randomness

99

Social Networks 65 (2021) 98-109

(up to 20 % of network elements being changed) for different centrality
measures. Mean correlations declined with increasing randomness,
though remaining quite high for some measures when the simulation
approach fixed network density at its observed level. For several selected
nodes representing different network positions, he also reported bias
and variability in centrality scores for these nodes under the various
measures. Results varied by measure and the nodes’ structural positions.

Costenbader and Valente (2003) assembled a collection of 59
empirical binary networks from a variety of substantive domains and
created simulated data by repeatedly sampling rows of each network’s
adjacency matrix. They carried out this exercise for each network at a
series of sampling proportions from 0.80 to 0.10, at each sampling
proportion assessing the average correlation between centrality scores
obtained from the simulated data and those obtained from the original
network. As expected, this correlation tended to decline as a smaller
proportion of a network was sampled, though at different rates for
different centrality measures and with various network characteristics
related to these correlations for some but not all centrality measures.
More recent studies of the impact of node removal in networks from
specific substantive domains include, for example, Silk et al. (2015) and
Peeples et al. (2016). Research continues in this area, such as the Smith
et al. (2017) examination of non-random (with respect to nodes’ cen-
trality) removal of nodes.

Borgatti et al. (2006) extended these investigations by considering
various kinds of random changes to binary network data in a single
analysis. Starting from randomly generated original networks, they
simulated error in the form of not just node removal but also node
addition, tie removal, and tie addition. As with random switching in
Bolland (1988) and node removal in Costenbader and Valente (2003),
the average correlations between centrality measures in the original and
altered networks declined with increasing errors of any kind. Results
also appeared roughly similar for all four centrality measures examined.
Other studies have investigated the impact of random and non-random
changes in nodes and ties on ranking of centrality scores, rather than on
the scores themselves (Basu et al., 2016; Kim and Jeong, 2007).

In the present paper, we focus on eigenvector centrality. Eigenvector
centrality embodies the intuition that an actor’s centrality is propor-
tional to the centralities of the alters with whom the actor is tied. That is,
one is central to the extent that one’s contacts are central. Writing c; for
node j’s centrality score, and Ay for the value of the tie between nodes j
and k, this implies that cjoc) Ajck, and suggests that centrality scores ¢;

k

be obtained from the eigenvector associated with the largest eigenvalue
of the network’s adjacency matrix A (Bonacich, 1972). This formulation
works with either binary network data or with the weighted ties that are
of interest here.

Because the centrality scores come from an eigenvector of the adja-
cency matrix, a possible perspective on variability in eigenvector cen-
trality scores draws on eigenvalue and eigenvector perturbation theory.
That theory addresses the question of how the eigenvalues and eigen-
vectors of a matrix A are affected when the matrix is perturbed (that is,
when A is replaced by A + E for some matrix E). Results such as the
classic Davis and Kahan (1970) Theorem provide bounds on the changes
in the elements of the eigenvectors of A; these bounds depend on
structural features of A and E, including differences between successive
eigenvalues and the size (in the sense of some matrix norm) of the
perturbation. Recent research has continued to refine these bounds in
such settings as statistical applications (Yu et al., 2015) and random
graphs (Eldridge et al., 2018). Segarra and Ribeiro (2015) considered
perturbation bounds in their investigation of the stability of classic
centrality measures, including eigenvector centrality, for weighted
networks. As this theory may not directly address applied researchers’
interest in assessing sampling variability in centrality scores from an
empirical assemblage network, we do not pursue it here. Still, if sam-
pling variability in the network is seen as producing a distribution of
perturbation matrices E around a true adjacency matrix A, then the
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results in this literature would imply bounds on variability in eigen-
vector centrality scores under this distribution.

3. Archaeological networks

Although the use of social network analysis (SNA) has grown quickly
in many academic disciplines, SNA was relatively slow to gain traction
in archaeology (see Brughmans and Peeples, 2017). However, this has
recently changed, with archaeologists increasingly using network data
and borrowing SNA methods and models to understand how people
interact with one another, material things, and the natural environment
(Collar et al., 2015: Fig. 5; Mills, 2017; Peeples, 2019). These applica-
tions view the structure of interactions as crucial for understanding
network actors’ behavior and resource distribution. SNA emphasizes an
actor’s (node’s) position and network constraints and opportunities in
explaining the node’s outcomes, and facilitates research on questions
such as the relationship between geographical and social distances
within a network of sites. In addition, many features of the archaeo-
logical context should interest the broader network science community.
For example, there are few other research settings in which it is possible
to examine network change over such long timespans. Archaeological
network analysis is an important arena for studying how social and
geographical positions within a network act to influence future
social-structural configurations.

As noted above, one important type of archaeological network is
based on the measured similarity between sites’ artifact assemblages
(Hart and Engelbrecht, 2012; Golitko et al., 2012; Golitko and Feinman,
2015; Habiba et al., 2018; Hart et al., 2017; Mills et al., 2013a, 2013b,
2015, 2018; Ostborn and Gerding, 2014; Weidele et al., 2016). In this
approach, the artifacts found at each site are classified in some way, and
the sites’ distributions of artifacts across these classification categories
can be compared. For instance, the assemblage of interest may consist of
ceramics, with each artifact classified into a ware category based on the
artifact’s physical characteristics, providing raw data that report each
site’s ware counts (see Mills et al., 2013a, 2016). A network of sites can
then be constructed by measuring the symmetric similarity of ware
distributions at pairs of sites. To date, most work has relied on archae-
ology’s Brainerd-Robinson statistic (Brainerd, 1951; Robinson, 1951),
BR; = 200 — Y_|Px — Px|, or the equivalent dissimilarity index from

k

\Pik —Pjk
sociology (Duncan and Duncan, 1955), Dj = M In these expres-
sions, i and j index sites, while k indexes wares.

The measured similarity can be considered a weight on the tie be-
tween two sites. Although this continuous information could be trans-
formed somehow into the presence or absence of a tie between the sites,
such transformation risks losing meaningful information (Peeples and
Roberts, 2013). Studies of ceramic networks have used such binarization
to create network displays, while still using the weighted ties in their
analyses (Mills et al., 2013a, 2013D).

4. The bootstrap

The bootstrap is a general method for assessing sampling variability
in statistics for which closed-form expressions for this variability are
infeasible (Efron and Tibshirani, 1993). The bootstrap is one of a family
of resampling methods that developed in tandem with fast computing.
The nonparametric bootstrap involves sampling with replacement from
the observed data: for data with N observations, a resampled dataset is
created by sampling N times with replacement from the observed data.
Many such samples are drawn, and the statistic of interest is calculated
for each resampled dataset. Variability in the calculated statistic across
the resampled (bootstrapped) datasets estimates sampling variability in
the statistic, and the resulting bootstrapped distribution of the statistic
can be used to construct confidence intervals for its population value.
This may be as simple as using the bootstrapped distribution’s standard
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deviation as the statistic’s standard error in an otherwise typical normal-
or t-based symmetric confidence interval formula. (In this paper, we
usually simply refer to the bootstrap distribution’s “standard deviation,”
but sometimes use “standard error” when convenient.) Or the resampled
distribution itself could be used to construct a confidence interval,
without appealing to asymptotic normality of the estimated statistic;
such a confidence interval could be asymmetric and involve bias
correction (Efron and Tibshirani, 1993; Manly, 1997). The parametric
bootstrap differs by sampling from a parametric model rather than
directly from the observed data, but again sampling variability is esti-
mated from variability in a statistic’s value in the bootstrapped datasets.
(See Rosvall and Bergstrom (2010) for an example of the parametric
bootstrap for weighted network data.)

Network data may not appear to fit with the framework of the
nonparametric bootstrap. Of course, the growing popularity of statistical
approaches to network analysis (Lusher et al., 2012) has encouraged
analysts to consider observed network data in stochastic rather than
deterministic terms. Still, the nonparametric bootstrap strategy of
sampling with replacement does not feel very natural for the usual bi-
nary network data, at least if the problem is viewed as one of stochastic
ties among a set of given nodes. However, in the present context of
networks based on assemblage similarity, the underlying artifact counts
provide a straightforward route into the nonparametric bootstrap, as
resampling can proceed from the observed distribution of artifacts into
classification categories at each site. This approach can also be used in
other contexts in which similarities are derived from count distributions
associated with each actor.

Assemblage data that are drawn from many sites are unlikely to have
come from a single data collection effort. It is, therefore, most natural to
fix the observed number N; of artifacts at each site i in the bootstrap
resampling, rather than simply fixing the overall sample size N = £ Nj. At
each site, N; artifacts are sampled with replacement, and the resulting
resampled assemblage data is transformed into a site-by-site similarity
network. The network analysis of interest can then be conducted on this
similarity network; repeating this many times yields a bootstrapped
distribution for each network measure of interest.

4.1. Bootstrap failure

Although the bootstrap has been applied in many analytic contexts,
the procedure is not guaranteed to “work” in the sense of providing a
reasonable approximation to a given statistic’s actual sampling distri-
bution. Formal justifications for the bootstrap distribution’s conver-
gence to a statistic’s asymptotic sampling distribution (e.g., Bickel and
Freedman, 1981; Mammen, 1992) involve regularity conditions that
may not always be met beyond the particular situations in which they
were proposed. Also, it is possible that asymptotic results require un-
realistically large sample sizes to be realized in practice. It follows that
standard errors estimated from the bootstrap could differ systematically
and substantially from the statistic’s actual standard error. If so, confi-
dence intervals or other summaries constructed from the bootstrap
distribution may have poor coverage or otherwise be misleading. This is
a serious concern because the bootstrap can fail in this sense even in
seemingly straightforward situations.

A fundamental type of bootstrap failure was described by Agresti

(2007) in the setting of the logit L = log(ﬁ) for probabilities & of bi-

nary outcomes. Agresti noted that for the natural estimate of & as the
number of successes divided by the number of trials, there is a non-zero
probability that a sample will yield an estimated = of zero or one, as
there is a non-zero probability that the sample will consist of all suc-
cesses or all failures. Given this non-zero probability of the sample logit
taking the value infinity (if the estimated © equals one) or negative in-
finity (if the estimated & equals zero), the sample logit’s variance does
not exist. The bootstrap estimate of the variance of the logit’s sampling
distribution is, therefore, in effect attempting to target something that
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does not exist. Agresti contrasted this true sampling distribution with the
asymptotic distribution of the sample logit; that distribution converges
to normality (with finite variance) as the sample size increases.

Is an analogous situation possible when considering centrality scores
from a network analysis of assemblage data? With finite assemblage
data, underlying ware (category) probabilities at the various sites could
be such that there is a non-zero probability of each site having an
identical assemblage, but this would cause no difficulties if it simply
implied that all sites have identical centrality scores. A more realistic
concern in this vein is the possibility that an assemblage network be
disconnected; for instance, if a site’s observed assemblage consists
entirely of objects that are not found anywhere else, it will have no
overlap with any other site’s assemblage. Then its measured similarity
with all other sites will be zero, and that site will be an isolate in the
network. Likewise, the assemblages of a set of sites might show no
overlap with any sites outside that set, disconnecting the network even if
there are no isolates. Some centrality measures are defined for both
connected and disconnected networks, so disconnectedness would not
introduce any difficulties. But some measures are not defined for a
disconnected network, and, in turn, the sampling distribution for the
scores would not be defined.

Even in light of this theoretical possibility for certain network cen-
trality scores, we believe that bootstrap assessment of sampling vari-
ability in measures derived from assemblage networks is appropriate. In
many realistic cases, a reasonable set of assemblage probabilities would,
when combined with the typical numbers of artifacts in each assem-
blage, make a disconnected network extremely unlikely, even if this
probability were not literally zero. If so, a measure’s sampling variance
conditional on the network being connected will still be a substantively
meaningful quantity.

In practice, we assume that analysts are studying sites in particular
geographic regions and time periods that have been the objects of pre-
vious theory and research, so that a pattern of complete non-overlap
leading to a disconnected network would be understood to be incom-
patible with substantive knowledge even before looking at data. (A
disconnected network may be more plausible in domains other than
archaeology.) We also expect that researchers would refrain from
network analysis that relied on assemblage data with very small cell
counts. Note that assemblage data might record only the presence or
absence of object types, rather than counts of objects, as in some burial
data (Sosna et al., 2013). A similar situation would hold for animal
dominance in which the data available to the analyst only indicated
which animal in a pair won more contests, instead of the number of
contests won by each. In that case, the similarity between sites could still
be measured and used to create a network, but the approach to bootstrap
assessment of sampling variability undertaken here would not be
available. Further, if the substantive setting were such that a discon-
nected network would be possible and scientifically meaningful rather
than simply a reflection of insufficient data, researchers could choose
centrality measures that permit, or can be modified to permit, discon-
nected network input. Given all of this, the prospect suggested by the
Agresti (2007) example does not seem to be an overwhelming concern in
the present context.

A classic example of a more typical sort of bootstrap failure was
introduced by Bickel and Freedman (1981) and discussed by many
others since. The example concerns the estimation of 0 in data drawn
from a [0, 6] uniform distribution. The greatest observed value estimates
theta, but the bootstrap distribution of the maximum value in a finite
sample will quite poorly approximate the maximum’s true distribution
for a known theta. In addition, results that in other situations demon-
strate the convergence of the bootstrap distribution to the desired
asymptotic distribution do not hold in this case.

Various conditions can make the bootstrap more prone to failure
(Chernick, 2007). For instance, a very small observed sample provides
little information on the underlying distribution of values from which it
came, and so resampling from it will be unlikely to usefully approximate
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the distribution of some statistic. Other conditions involve much deeper
statistical theory, but the overall message is still that one cannot assume
that the bootstrap is an effective tool in all settings. Given these possible
pitfalls, it is important for network analysis in archaeology or other
settings with analogous data that the effectiveness of the bootstrap be
evaluated in the specific context of centrality scores derived from
assemblage similarity networks. Because this network analysis involves
complicated transformations of the assemblages’ ware distributions,
direct investigation of the bootstrap’s viability in assessing variability in
site centrality scores is needed.

5. Current study

In the present paper, we use simulation to explore the bootstrap for
network analysis of archaeological assemblage data. By simulating
assemblage datasets under a realistic probability structure for the wares
at the sites, we can determine the “true” distribution of network statis-
tics implied by the probability structure. Applying the bootstrap to each
of many simulated datasets allows a comparison of estimated sampling
variability from the bootstrap against the true variability in a statistic.
This permits assessment of the accuracy of bootstrap estimates of sam-
pling variability in a meaningful substantive context.

5.1. Simulation

We simulated artifact assemblages under a probability structure
derived from actual ceramic assemblage data from the San Pedro Valley
in Arizona, in the North American Southwest (Clark and Lyons, 2012;
Mills et al., 2013a, 2013b). At each of 25 archaeological sites in this
region, ceramic fragments obtained in excavations have been classified
into 35 ware categories. Ceramics can also be categorized more finely
into types (see Clark and Lyons, 2012), but analysis of ceramic similarity
networks to date has focused on the higher-level classification into
wares, due to the likely greater reliability of this classification (Mills
et al., 2013a, 2016). Note that the simulation does not reflect all
archaeologically relevant features of the San Pedro data. For instance,
not all 25 sites were occupied simultaneously, and substantive analyses
have distinguished between ceramic similarity networks at different
periods of the region’s occupation (Mills et al., 2013a, 2013b; Roberts

Table 1b
Ceramic sherd data for simulations; undecorated wares.
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et al., 2012). Nonetheless, the data provide a realistic basis for simula-
tion of ceramic similarity networks, with sample sizes ranging from 220
to 73,496 across the 25 sites. For comparison, mean sample size for the
larger Southwest database covering Arizona and parts of New Mexico is
1,731 with a standard deviation of 16,431, so the sample sizes here are
fairly typical.

Tables 1a and 1b gives observed ware counts at each of the 25 sites.
Below we discuss the distinction between decorated and undecorated
wares; for the moment, simply note that Table 1a reports on decorated
ware categories, and Table 1b on undecorated wares. We have relabeled
site names and ware categories to emphasize that these data are being
used here to provide a realistic basis for the simulation, rather than to
draw substantive conclusions about the actual archaeological case-
study. (The actual San Pedro site and ware names are given in
Tables S1, S2A, and S2B in the Supplementary Material.) For simulation,
these counts were converted into probabilities at each site by dividing by
the site total, with data simulated independently at each site. The
observed site totals Nj are preserved in all simulated datasets (and all
bootstrap resampling from the simulated data). Differences in observed
site totals likely reflect both the amount of deposited material at the site
and the extent of the data collection effort. We view, therefore, the
combination of different sites’ data as akin to product multinomial data
composed of a set of distinct multinomials (Bishop et al., 1975).

5.2. Network data and measures

We measured the similarity between sites i and j via the dissimilarity
index Dy between their assemblages; because the network should reflect
similarity rather than dissimilarity—that is, there should be a greater
weight on ties between sites with more similar assemblages—we used (1
— Dy) as the weight on tie (i, j). Although simulations and bootstrap
resampling involved all wares present in an assemblage, in constructing
the network data we assessed similarity between sites using only a
subset of wares. Wares can be described as decorated or undecorated,
with decoration involving the addition of colored coatings, called slips,
or paint of various colors made from organic and mineral materials. This
designation can be complicated in practice, as sometimes a given ware
contains both decorated and undecorated types. Because decorated
wares are thought to have symbolic rather than purely utilitarian

Sites Undecorated Wares

4 7 14 16 17 24 28 29 30 31 32 33 34 35 Undecorated

1 16 0 0 775 0 0 0 0 0 0 50 0 0 0 841

2 1 0 1 152 0 0 0 0 1 0 35 0 0 0 190

3 54 0 0 685 0 0 0 0 0 0 17 1 0 0 757

4 16 0 0 1514 0 0 0 0 5 0 3 2 0 0 1540

5 125 0 3 4724 0 0 0 0 5 0 76 14 13 0 4960

6 23 0 0 812 0 0 0 0 0 0 50 0 0 0 885

7 65 0 0 642 0 0 0 0 1 0 10 2 0 0 720

8 65 0 0 242 0 0 0 0 0 0 15 0 1 2 325

9 125 0 1 1660 0 0 0 0 7 0 50 34 0 0 1877
10 13 0 0 1099 0 0 0 0 1 0 42 0 7 0 1162
11 74 0 0 1333 0 0 0 0 1 0 37 2 0 0 1447
12 333 0 0 1605 0 0 0 0 0 0 56 30 1 0 2025
13 10 0 2 1537 0 0 1 0 0 0 70 2 0 0 1622
14 484 0 0 363 0 0 1 0 1 0 14 2 0 0 865

15 858 0 0 1085 0 0 0 0 3 0 40 2 0 0 1988
16 308 2 1 29,024 1 4 8 0 0 4 549 0 139 0 30,040
17 23 14 0 1839 0 0 0 0 3 0 98 18 35 0 2030
18 1180 (] 1 9344 0 0 1 0 15 0 109 2 0 0 10,652
19 3 0 0 149 0 0 0 0 0 0 3 0 0 0 155

20 3 0 0 323 0 0 0 0 1 0 22 10 3 0 362

21 42 0 0 1599 0 0 0 1 2 0 65 60 7 0 1776
22 0 0 0 277 0 0 0 0 0 0 5 0 0 0 282

23 27 0 0 1154 0 0 0 0 0 0 32 2 0 0 1215
24 3118 0 0 54,158 0 0 8 388 0 0 0 0 0 0 57,672
25 148 0 0 118 0 0 0 0 2 0 8 0 0 0 276
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importance, and are more consistently used categories in archaeological
research, assessing site similarity based on only the subset of decorated
wares more closely represents how researchers have used ceramic as-
semblages to construct networks (Mills, 2016; Mills et al., 2013b). In
other domains, it may likewise be appropriate to assess actors’ similarity
using only a subset of the observed assemblage categories. Decorated
wares are indicated in Table 1a, along with the total number of deco-
rated artifacts at each site.

In principle, any network measure that is appropriate for valued,
symmetric data can be investigated in an analysis of assemblage simi-
larity networks. To date, much attention has focused on the interpre-
tation of sites’ eigenvector centrality (Mills et al., 2013a, 2013b, 2015,
2018), as defined in Section 2. (Note that bootstrap methods have been
used in the eigenvector setting, as in Efron and Tibshirani’s (1993)
example of principal components.) Eigenvector centrality has been
popular in archaeological applications in part due to Borgatti’s (2005)
typology of the nature of network “flow” and the logics of different
centrality measures. In that typology, eigenvector centrality is discussed
as appropriate when the network flow process involves the potential for
simultaneous rather than the sequential influence of all of a node’s
contacts, in which, as Borgatti (2005: 62) notes, walks rather than trails,
paths, or shortest paths are relevant. Archaeologists consider assem-
blages to be the cumulative result of consumption activities, which are
systematically sampled through excavation and/or surface surveys
(Mills et al., 2016; Peeples et al., 2016). The presence of different sets of
vessels at a site is affected by the flows of imported ceramics to the site,
the degree of on-site production, and the socially constrained choices
that the residents make in what to use for specific purposes such as
cooking, serving, and storage. The activities in which ceramic vessels are
used, and their frequencies of use, directly affect container breakage
resulting in different proportions of ceramics at each site.

We focused on sites’ eigenvector centrality here. Throughout the
analyses, eigenvectors were normalized to have sum of squares equal to
the number of sites (here 25), so that 1 represents a typical centrality
score. We also considered ratios of first to second eigenvalues as as-
sessments of the network structure’s unidimensionality and centrality
scores’ adequacy as descriptions of that structure. Note that eigenvector
centrality analysis of a disconnected network will yield a set of centrality
scores for each component, so that scores from different components
cannot be legitimately compared. In the present case, however, a
disconnected network would require that all of the assemblages at some
component’s sites have no overlap with those at all sites in other com-
ponents. Even when restricting assessment of similarity to the subset of
decorated wares, this situation did not occur in any of the simulations
(or bootstrap resamples) analyzed here.

There may be greater substantive interest in sites’ ranking by cen-
trality than in sites’ literal centrality scores. Perhaps differences in rank
will simply seem more interpretable than differences in some sort of
normalized centrality score, especially in conveying the results to au-
diences that have limited familiarity with network methods. But with
respect to the theme of the current paper, the discrete nature of ranks
may make analysts less confident in the bootstrap’s validity, as well as
introducing the possibility of edge effects at the maximum and minimum
ranks. Ranks have also been examined in the larger bootstrap literature
(for instance, Hall and Miller, 2009). Therefore, we considered site
centrality rank along with centrality scores in our analyses.

5.3. Data and analysis

To identify the true sampling distribution of centrality scores under
the San Pedro-based probability structure above, we simulated 500,000
assemblage datasets. Each simulated dataset was converted into a
weighted site-by-site network, as described above. We examined dyad-
level variability in the resulting networks, with assessment of this
variability setting the stage for our next step in which we obtained a
sampling distribution of eigenvector centrality for each of the 25 sites
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over 500,000 simulations. (This information could also be used to
consider joint distributions of site centrality for pairs or larger subsets of
sites, but we do not pursue that here.) Although technically these will
only approximate the true sampling distributions of site centrality
implied by the probability structure, an approximation resulting from
500,000 simulations will be very accurate. These distributions can be
characterized by descriptive statistics and histograms, and variability in
the centrality scores can be considered in light of dyad-level variability
in the networks.

To assess the performance of the bootstrap, we simulated 5000
additional assemblage datasets, and for each created 10,000 bootstrap
replicate datasets. We chose 10,000 as a typical number of bootstrap
replicates that a practicing researcher might use, though of course
increasing computing power means that ever-larger numbers of boot-
strap replicates are feasible in practice. We transformed each bootstrap
replicate into a weighted network, and calculated eigenvector centrality
for the sites.

We then investigated the bootstrap data in order to understand how
well bootstrap estimates of sampling variability in site centrality track
the true variability in these measures. We first examined pooled boot-
strapped centrality scores from all 5000 simulated datasets and
compared these distributions to the true distributions from the 500,000
simulations above via descriptive statistics and histograms. This is
informative, but it does not directly correspond to an analysis that a
researcher would perform in practice. As discussed above, the standard
deviation of a site’s eigenvector centrality across the 10,000 boot-
strapped datasets is an estimate of the sampling variability (standard
error) in that measure. We therefore especially focused on the distri-
butions of these bootstrap estimates of sampling variability in site cen-
trality across the 5000 simulated datasets. We examined the means and
standard deviations of these distributions of bootstrap variability esti-
mates and compared the estimates to the centrality measures’ true
sampling variability (as obtained from 500,000 simulated datasets). This
helps show how well a single bootstrap analysis can be expected to
capture the true sampling variability in site centrality.

An alternative that we did not pursue here would be to compare, for
each site and each of the 5000 simulated datasets, the distribution of
10,000 bootstrapped centrality scores to the true sampling distribution
(from 500,000 simulations). This could involve a direct measure, such as
Kolmogorov-Smirnov, of the difference between the two distributions.
Such an analysis is potentially interesting given that bootstrap confi-
dence intervals for a parameter may directly rely on the bootstrap dis-
tribution’s tails, rather than simply using the bootstrap standard
deviation as the standard error in a confidence interval formula (Efron
and Tibshirani, 1993). However, the standard deviation (standard error)
is an appealing and straightforward summary, even if it does not capture
all aspects of the relevant distribution. We took the bootstrap estimate of
the sampling standard deviation (standard error) as the main quantity of
interest.

We also examined distributions of first to second eigenvalue ratios of
the network (similarity) matrix, comparing bootstrap estimates of
variability in this ratio to its true sampling variability. This ratio is one
traditional means of assessing the dimensionality of a matrix. In factor
analysis, whether this ratio (for eigenvalues of an adjusted correlation
matrix) exceeds three is a long-standing informal test of unidimensional
structure; Slocum-Gori and Zumbo (2011) and others have investigated
such tests. In the eigenvector centrality context, this ratio might be taken
to indicate the adequacy of the (unidimensional) centrality scores as a
description of network structure. A low ratio would not invalidate the
scores, as the original motivation for eigenvector centrality does not
require a unidimensional structure. But it would point to the presence of
additional meaningful structure that is not represented in the unidi-
mensional centrality scores. This ratio is, therefore, another structural
measure for which the bootstrap can assess sampling variability.
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6. Results

In the following subsections, we discuss (i) the dyad-level variability
in the networks constructed from 500,000 simulated assemblages. Next,
we examine (ii) the true sampling distribution of the sites’ eigenvector
centralities under the San Pedro probability structure, based on 500,000
simulated assemblages. We briefly note (iii) the combined distributions
of 50,000,000 centrality scores for each site (from 5000 simulations and
10,000 bootstrap replications), but mainly focus on (iv) the bootstrap
estimates of sampling variability obtained in the 5000 simulated data-
sets. We describe these distributions and discuss their implications for
the quality of the bootstrap’s performance in a single dataset. In addi-
tion, we consider similar comparisons of bootstrap estimates and true
variability for network dimensionality (as expressed via ratios of ei-
genvalues of the simulated network data).

6.1. Dyad-level variability in networks from simulated assemblage data

We examined descriptive information on variability in tie
weights—that is, the measured site-to-site assemblage similarities— for
the 300 pairs of sites across 500,000 simulated datasets. These similar-
ities are not, in their own right, our main direct interest, but their
descriptive statistics help in understanding the setting in which the
centrality scores were generated. For the most part, there was not great
variability in the weights, although in individual simulations they could
depart from their means to a substantial extent. The average standard
deviation over the 300 pairs was only 0.016, but in many dyads the
range of minimum and maximum weights exceeded 0.25. Also, the
difference between 5th and 95th percentile values was greater than 0.08
for many pairs. Descriptive information for all dyads is given in the
Supplementary Material (Table S3). In many pairs, raw histograms
suggested roughly normally distributed similarities, although for some
pairs these histograms appeared rather unsmooth when using small bins.
Fig. S1-S15 in the Supplementary Material give examples of these his-
tograms from several pairs of sites among those with the most and least
variability in their tie weights. Note that variability in the weights across
simulations seemed to reflect assemblage size, with greater variability
associated with smaller assemblages.
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6.2. Distributions of centrality scores from simulated data

We next discuss the distributions of site centrality in 500,000 data-
sets simulated from the San Pedro probability structure. Table 2 displays
summary information on the distribution of eigenvector centrality
scores for each site across 500,000 simulations. These distributions
represent the true variability in each site’s centrality under the proba-
bility structure and site assemblage totals used for the simulations.
Table 2 also shows each site’s true centrality, calculated via the simi-
larities derived from the sites’ ware probabilities.

We note several features of these distributions. First, the distribu-
tions’ mean or median values were generally close to the sites’ true
centrality scores. The greatest absolute difference between a mean of
these distributions and the corresponding true score was 0.014, for Site
25, and on average across the sites the absolute difference was only
about 0.004. Second, standard deviations or variances of these distri-
butions of site centrality were relatively small compared to the means or
medians. It was rare for a site’s centrality score in a particular simulation
to depart dramatically from its true value; recall from the previous
section that there was also relatively little dyad-level variability in
network tie weights. Third, variability in centrality scores (represented
by the standard deviations reported in the table) was somewhat more
associated with the sites’ true centralities than with the amount of data
at each site. Across the 25 sites, this standard deviation correlated —0.70
with the true centrality score, and —0.41 with the logged total number of
artifacts. In general, the true variability in a site’s centrality scores was
greater for sites with fewer artifacts and with lower centrality.

6.3. Sampling variability as assessed by the bootstrap

We next turn to the bootstrap assessment of sampling variability. For
each of 5000 simulated datasets, we executed the bootstrap using
10,000 resampled datasets. We can first consider, for each site, the
resulting 50,000,000 (from 5000 x 10,000) bootstrapped eigenvector
centrality scores. As mentioned above, this is a somewhat artificial
construction, because an actual analysis would involve bootstrapping
from a single dataset, not from 5000. Still, examining this set of
50,000,000 scores for each site helps give a sense of how variability in
bootstrapped centrality scores compares to the true variability implied

Table 2
Descriptive statistics for eigenvector centrality scores from 500,000 simulated datasets.
Site 11;1:;:15 Mean Std. Dev. Min Max Percentlle
. 5th 25th 50th 75th 95th

1 1.203 1.205 0.018 1.108 1.271 1.173 1.193 1.206 1.218 1.233
2 1.220 1.223 0.009 1.125 1.260 1.207 1.217 1.223 1.229 1.237
3 0.801 0.794 0.035 0.634 0.960 0.736 0.770 0.794 0.818 0.852
4 0.830 0.829 0.024 0.718 0.942 0.789 0.813 0.829 0.845 0.869
5 0.754 0.753 0.018 0.674 0.838 0.724 0.741 0.753 0.765 0.783
6 1.177 1.182 0.021 1.055 1.261 1.146 1.168 1.182 1.196 1.214
7 1.140 1.141 0.021 1.036 1.227 1.106 1.127 1.141 1.155 1.174
8 0.760 0.754 0.037 0.588 0.929 0.695 0.729 0.754 0.779 0.815
9 1.044 1.045 0.022 0.935 1.141 1.008 1.030 1.045 1.060 1.080
10 1.193 1.194 0.015 1.113 1.258 1.168 1.184 1.195 1.205 1.219
11 0.636 0.630 0.023 0.514 0.740 0.592 0.615 0.631 0.646 0.668
12 1.024 1.025 0.023 0.911 1.122 0.987 1.010 1.026 1.041 1.063
13 0.988 0.987 0.022 0.878 1.083 0.951 0.972 0.987 1.001 1.022
14 0.924 0.918 0.035 0.747 1.075 0.860 0.895 0.918 0.941 0.974
15 0.770 0.765 0.022 0.666 0.878 0.729 0.750 0.765 0.780 0.801
16 1.187 1.190 0.010 1.135 1.234 1.174 1.184 1.190 1.197 1.206
17 1.100 1.106 0.014 1.034 1.164 1.083 1.097 1.106 1.115 1.128
18 0.452 0.449 0.038 0.278 0.625 0.386 0.423 0.449 0.475 0.512
19 1.112 1.116 0.023 0.996 1.186 1.074 1.101 1.118 1.133 1.150
20 1.146 1.142 0.019 0.992 1.215 1.109 1.131 1.144 1.156 1.171
21 1.043 1.046 0.025 0.908 1.146 1.003 1.030 1.047 1.063 1.084
22 1.192 1.185 0.027 1.039 1.265 1.134 1.168 1.188 1.205 1.224
23 1.208 1.212 0.011 1.153 1.260 1.193 1.205 1.213 1.220 1.231
24 0.961 0.961 0.009 0.923 1.001 0.947 0.955 0.961 0.966 0.975
25 0.502 0.488 0.066 0.129 0.708 0.375 0.445 0.491 0.534 0.590
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by the underlying probability structure. The Supplementary Material
includes a table (S4) of descriptive information for each site’s
50,000,000 scores in this combined bootstrap distribution.

Fig. 1 compares histograms of the combined bootstrap distribution of
centrality scores and the true distribution for Site 12, which is a rather
typical site in terms of its artifact abundance and true centrality. The
distributions are similar, but variability in the site’s centrality implied
by the bootstrap replicates is greater than the true variability (as indi-
cated by the flatter and wider histogram). The Supplementary Material
provides a table (S5) comparing variability in the sites’ combined
bootstrap distributions with that in the true distributions from 500,000
simulations, as well as graphs like Fig. 1 for each site (Fig. S16-S40).
However, note again that these comparisons do not speak to the results
that a researcher would be likely to obtain from an analysis of a single
dataset.

We therefore examined the distributions, across 5000 simulated
datasets, of bootstrap estimates of variability in the site centrality scores.
For each simulated dataset, we estimated the sampling variability in
each site’s centrality score via its standard deviation over 10,000
bootstrapped datasets. We then examined the resulting distribution of
5000 bootstrap variability estimates for each site. To graphically display
these distributions of 5000 estimated standard deviations of site cen-
trality, we constructed the boxplots shown in Fig. 2. The “box” displays
the 25th percentile, the median, and the 75th percentile of the distri-
bution of standard deviation (standard error) estimates for each site. The
25th to 75th percentile inter-quartile range (IQR) is used to create the
“whiskers”. The upper whisker shows the highest observed value that is
within 1.5 IQR of the 75th percentile, while the lower whisker shows the
lowest observed value that is within 1.5 IQR of the 25th percentile. The
boxplots are positioned higher for sites in which there is more inherent
variability in centrality scores, with these differences closely tracking
the true differences in variability of the sites’ centrality scores. Over the
25 sites, mean bootstrap standard deviations correlated almost perfectly
(r = 0.998) with the true sampling variability in site centrality, and the
true standard deviation was on average just 1.003 times greater than the
mean bootstrap standard deviation. Table 3 compares each site’s true
standard deviation of site centrality to its mean bootstrap standard
deviation.

The boxplots are, in general, shorter for sites in which the bootstrap
standard deviation estimates vary less across the 5000 simulated data-
sets. There was only a moderate relationship between the IQR of a site’s
bootstrap standard deviations and its logged true centrality (r = -0.30),
but a stronger relationship with its logged abundance (r = -0.62), sug-
gesting a pattern of less variability in bootstrap standard deviations for
sites with greater abundance. These relationships are illustrated in
Fig. 2, in which sites are ordered left to right in the figure by highest to
lowest abundance and colored according to their centrality (with the
ordering red, orange, yellow, green, and blue representing highest to
lowest centrality in groups of five).
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Fig. 1. True sampling distribution of centrality scores and combined bootstrap
distribution for Site 12.
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To understand the magnitude of this variability in the bootstrap as-
sessments, we compared the IQR of each site’s bootstrap standard de-
viations to its true sampling variability (its true standard deviation).
Across the 25 sites, the IQR of the bootstrap standard deviations was, on
average, only one-ninth of the true standard deviation, and in no
instance did this ratio exceed 0.30; see Table 3. This suggests that the
bootstrap standard deviation obtained from analysis of a single dataset is
very likely to be a reasonable estimate of the true sampling variability.

6.4. Dimensionality

For the similarity matrix (with diagonal zeros) implied by the artifact
probabilities used in our simulations, the ratio of first to second eigen-
values was 2.45. This suggests that the underlying network structure is
not strictly unidimensional, at least under the aforementioned classic
factor-analytic cutoff, but with the departure from unidimensionality
not too dramatic in light of this traditional criterion. Fig. 3 shows that
the sampling distribution of eigenvalue ratios was concentrated at
roughly the ratio obtained from the similarity matrix implied by the
artifact probabilities. The mean ratio in the true sampling distribution
was 2.44, with standard deviation 0.074. We compared the true sam-
pling variability in this ratio with the corresponding bootstrap estimates,
and, on average, the bootstrap was quite successful at recovering this
sampling variability. Across the 5000 simulated datasets, the mean
bootstrap standard deviation was 0.073. Also, as the standard deviation
over the 5000 simulations of this bootstrap assessment of variability was
only 0.005, large departures from this average were rare. Fig. 4 displays
the distribution of 5000 bootstrap standard deviation estimates of
sampling variability in the eigenvalue ratio.

7. Ranked centrality scores

As noted earlier, substantive researchers may be more focused on
rankings of site centrality than on the centrality scores themselves.
Ranks are, of course, inherently discrete, raising suspicions that the
bootstrap may be less effective in estimating ranks’ sampling variability
than it is for variability in the numerical centrality scores. Our discussion
of results for centrality rank parallels the discussion for numerical cen-
trality scores in the previous section.

Table 4 reports on the true sampling distribution of centrality ranks
(based on 500,000 simulated datasets). For many sites, there was rela-
tively little sampling variability in their ranked centrality, with the
middle 90 % of the distribution spanning only a few values. In the sites
with the greatest sampling variability in centrality rank, the distribu-
tion’s standard deviation equaled about two places in the 25-site
ranking.

Turning to the bootstrap assessments of this variability, Fig. 5 com-
pares the combined (50,000,000 observations, from 5000 simulations x
10,000 bootstrap replications) bootstrap distribution of centrality rank
to the true sampling distribution for Site 9. Site 9 was typical in its
difference in these two distributions’ standard deviations; other sites’
figures are shown in the Supplementary Material (Fig. S41-S65), which
also includes descriptive tables (S6 and S7). The bootstrap distribution
was more variable than the true distribution, but otherwise quite
similar, as in the comparison above using centrality scores rather than
ranks. As before, however, this examination of the combined bootstrap
distribution does not represent the situation of a researcher working
with a single bootstrap distribution obtained from an analysis of one
dataset.

For the 5000 simulated datasets, Fig. 6 shows boxplots of bootstrap
standard deviations estimating sampling variability in site centrality
rank; it is analogous to Fig. 2, but for ranks rather than centrality scores.
As in Fig. 2, sites are ordered from highest to lowest abundance, and
centrality quintiles are indicated by color (with highest to lowest cen-
trality ordered as red, orange, yellow, green, and blue). The vertical axis
is in the centrality rank scale, so variability can be interpreted in terms of
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Bootstrapped Site Centrality Standard Deviations
Distributions Across 5,000 Simulated Datasets
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Fig. 2. Boxplots of bootstrapped estimates of standard deviations of site centrality.

Comparison of true standard deviation of centrality score to bootstrap estimates.

Sites True SD Mean IQR True to Mean SD Ratio
1 0.0184 0.0178 0.0025 0.9637
2 0.0093 0.0109 0.0027 1.1746
3 0.0352 0.0356 0.0027 1.0105
4 0.0243 0.0245 0.0008 1.0075
5 0.0179 0.0182 0.0010 1.0140
6 0.0206 0.0197 0.0021 0.9582
7 0.0207 0.0210 0.0019 1.0125
8 0.0367 0.0367 0.0047 0.9990
9 0.0218 0.0219 0.0013 1.0027
10 0.0153 0.0152 0.0018 0.9920
11 0.0232 0.0234 0.0019 1.0072
12 0.0229 0.0229 0.0014 0.9994
13 0.0217 0.0220 0.0010 1.0141
14 0.0346 0.0351 0.0021 1.0134
15 0.0222 0.0224 0.0011 1.0120
16 0.0099 0.0098 0.0011 0.9940
17 0.0138 0.0137 0.0010 0.9948
18 0.0384 0.0383 0.0023 0.9954
19 0.0231 0.0219 0.0045 0.9447
20 0.0192 0.0204 0.0049 1.0654
21 0.0245 0.0243 0.0039 0.9903
22 0.0275 0.0257 0.0058 0.9365
23 0.0115 0.0114 0.0011 0.9911
24 0.0086 0.0087 0.0005 1.0133
25 0.0660 0.0645 0.0110 0.9781
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Fig. 3. True sampling distribution of ratio of first to second eigenvalues.
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Fig. 4. Distribution of bootstrapped estimates of the standard deviation of ratio
of first to second eigenvalues.

deviations in ranks.

On average, bootstrap standard deviations successfully recovered the
true sampling variability in centrality rank; see Table 5. The ratio of the
true standard deviation to the mean bootstrap estimate averaged 1.002
across sites, and these two quantities were correlated 0.975. Also, the
IQRs for distributions of bootstrap estimates were typically small
compared to the corresponding mean bootstrap estimate. Site 11 was an
outlier in that comparison because its mean bootstrap standard devia-
tion was so small, but for the remaining sites, the IQR of the bootstrap
estimate distribution was, on average, roughly one-third of the true
standard deviation.

While there were exceptions, the general pattern was one of greater
inherent variability in the centrality rank estimates (the boxplots posi-
tioned higher) for the more central sites: the mean bootstrap standard
deviation correlated —0.72 with the true centrality rank. Further, the
bootstrap estimates of variability tended to be most similar across the
5000 simulated datasets (shorter boxplots) for sites ranked lower in true
centrality; r = -0.57 between the IQR and the true centrality rank. There
was also a general decrease in variability of bootstrap standard deviation
estimates as site abundance increased (r = —0.54 between the IQR and
the logged abundance). This was similar to the pattern in Fig. 2.



J.M. Roberts Jr. et al.

Social Networks 65 (2021) 98-109

Table 4
Descriptive statistics for ranked eigenvector centralities from 500,000 simulated datasets.
Percentile
Site From Probs. Mean Std. Dev. Min Max
5th 25th 50th 75th 95th
1 3 3.400 1.688 1 10 1 2 3 4 7
2 1 1.445 0.774 1 10 1 1 1 2 3
3 19 19.316 1.022 17 22 18 19 19 20 22
4 18 18.184 0.443 17 22 18 18 18 18 19
5 22 21.166 0.770 18 22 20 21 21 22 22
6 7 5.857 1.618 1 12 3 5 6 7 8
7 9 8.603 1.283 1 14 7 8 9 9 11
8 21 20.906 1.163 17 23 19 20 21 22 22
9 12 12.774 0.891 8 17 12 12 13 13 14
10 4 4.570 1.357 1 10 2 4 4 6 7
11 23 23.004 0.063 22 24 23 23 23 23 23
12 14 13.605 0.880 10 17 12 13 14 14 15
13 15 14.941 0.706 10 17 14 15 15 15 16
14 17 16.859 0.492 12 20 16 17 17 17 17
15 20 20.414 0.873 18 22 19 20 20 21 22
16 6 5.280 0.913 2 8 4 5 5 6 7
17 11 10.586 0.597 7 13 10 10 11 1 1
18 25 24.702 0.457 23 25 24 24 25 25 25
19 10 9.919 1.000 6 15 8 9 10 11 11
20 8 8.492 0.891 4 15 7 8 8 9 10
21 13 12.799 0.901 9 17 12 12 13 13 14
22 5 5.339 2.247 1 14 2 3 6 7 9
23 2 2.569 1.182 1 8 1 2 2 3 5
24 16 15.975 0.477 13 17 15 16 16 16 17
25 24 24.294 0.464 22 25 24 24 24 25 25
smaller assemblage sizes than those examined here. Our intuition is that
47 the San Pedro assemblage sizes are reasonably representative of typical
ceramic assemblage data, so that these data provide an informative
al foundation for our simulation study. But larger or smaller assemblages
3 can certainly occur as well, and, moving beyond ceramics, typical
3 assemblage sizes may be quite different for other kinds of artifacts or for
£ 2- similar data from other scientific fields. In particular, smaller assem-
2 blage sizes may lead to a good deal more variability in tie weights and
= 8 y b3 g
e centrality scores than was the case here, and this may affect bootstrap
1 performance. As sample size is one of the factors determining the
bootstrap’s effectiveness in general, simulations focusing on contexts in
" N | \ which relatively small assemblages are the norm will be of special
b 5 m P % interest. . N . .
Site 9 Further research can examine additional site centrality measures.
|_ True Bootstrap | Eigenvector centrality has been prominent in archaeological network

Fig. 5. True sampling distribution of ranked centrality and combined bootstrap
distribution for Site 9.

8. Conclusion

Taken as a whole, the simulations reported here support the use of
the bootstrap in assessing sampling variability in measures resulting
from analysis of assemblage networks. Estimates of sampling variability
in site centrality measures obtained from the bootstrap were typically
quite similar to the measures’ true variability. Further, variability in
these bootstrap estimates was usually rather modest in comparison to
true sampling variability for either centrality scores or ranked centrality.
While simulation work like this cannot explore the full gamut of possible
conditions that archaeological network researchers may encounter in
practice, the simulations are strongly rooted in real data and likely
provide appropriate guidance for a wide range of empirical situations.
These findings therefore bolster the use of bootstrap estimates of sam-
pling variability in analyses of networks derived from assemblage data
and similar data in other settings.

Additional investigation can expand the range of simulation condi-
tions under which the bootstrap’s effectiveness is evaluated, including
the use of probability matrices derived from empirical examples in other
data contexts. One path for such research would be to consider larger or
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research to date, but other measures may be more informative in other
settings. A more fundamental issue is whether the analyst will use the
measured similarity between sites as the tie weights or instead binarize
the similarities in some way, creating an unweighted network in which
ties are either present or absent. Peeples and Roberts (2013) suggested
that even if such binarization helped in producing a legible graphical
display of an assemblage network, it would be best to conduct analyses
on the original weighted network data, not the binarized network. If
analysis instead also included such a binarization step, it could affect the
bootstrap’s ability to assess sampling variability in network measures.
Along with the generic impact on the bootstrap of the discretized data,
binarized assemblage networks also will be much more prone to
disconnectedness. If the network measures being employed cannot be
calculated for disconnected networks, the analyst will need to decide
whether it is appropriate to simply discard those bootstrap replications
that resulted in a disconnected network.

Finally, note that the approach used here is that of the simple
nonparametric bootstrap, based on direct resampling from the observed
artifact assemblage. In the ceramic setting here, one consequence is that
if a site had no sherds of a particular ware, it cannot have any in the
resampled datasets either. This may suggest use of some parametric
bootstrap approach instead; in the archaeological setting, this would
allow all wares at least some probability of appearing at a given site in
the bootstrap replicates, subject to logical constraints imposed by known
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Bootstrapped Site Centrality Rank Standard Deviations
Distributions Across 5,000 Simulated Datasets
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Fig. 6. Boxplots of bootstrapped estimates of standard deviations of site centrality rank.

Table 5
Comparison of true standard deviation of ranked centralities to bootstrap
estimates.

Sites True SD Mean IQR True to Mean SD Ratio
1 1.6876 1.4564 0.3988 1.1587
2 0.7745 0.8933 0.4707 0.8670
3 1.0221 0.9784 0.3123 1.0447
4 0.4433 0.4996 0.2396 0.8872
5 0.7697 0.6892 0.1735 1.1167
6 1.6176 1.4852 0.3645 1.0892
7 1.2826 1.3914 0.2936 0.9218
8 1.1630 0.9717 0.3962 1.1969
9 0.8910 0.9129 0.2412 0.9760
10 1.3571 1.2138 0.2413 1.1181
11 0.0625 0.1210 0.1243 0.5165
12 0.8799 0.8634 0.2154 1.0192
13 0.7062 0.7952 0.2654 0.8880
14 0.4925 0.6639 0.3733 0.7417
15 0.8731 0.7702 0.1889 1.1335
16 0.9132 0.8417 0.1365 1.0849
17 0.5972 0.6579 0.1758 0.9077
18 0.4574 0.3760 0.1836 1.2163
19 0.9997 1.0498 0.2487 0.9523
20 0.8906 1.0039 0.3303 0.8872
21 0.9009 0.8857 0.2743 1.0172
22 2.2467 1.9154 0.3623 1.1730
23 1.1821 1.1154 0.4426 1.0598
24 0.4775 0.5066 0.1894 0.9426
25 0.4639 0.4123 0.1385 1.1250

dates for wares’ production or use and sites’ occupation. The empirical
ware proportions for each site could be replaced by some smoothing that
drew on theoretical ware distributions or information from ware dis-
tributions at other sites. While we do not pursue such an approach here,
this may be especially appealing when sites’ assemblage sizes are rela-
tively modest. Such an extension may also be particularly useful for
domains in which there is no analogue to the ware and site dates here,
and therefore no logical reason why some category would necessarily
have zero probability for a given actor. This sort of parametric bootstrap
could be evaluated in a similar manner to our investigation of the
nonparametric bootstrap.
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