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We discuss a simple symplectic formulation for tetrad gravity that leads to the real Ashtekar
variables in a direct and transparent way. It also sheds light on the role of the Immirzi parameter
and the time gauge.

I. INTRODUCTION

The purpose of this paper is to present a
new symplectic formulation for tetrad gravity.
Among its most salient features, we would like to
highlight the very simple polynomial form of the
constraints, its full SO(1,3) invariance and the
fact that the Immirzi parameter appears only in
the (pre)symplectic form.

The usual (real) Ashtekar formulation [1, 2]
can be derived from the results presented here in
a straightforward way that illuminates the role
of the time gauge. In our opinion, our formu-
lation (which shares some features with the one
presented in [3], despite the use of very differ-
ent methods) provides a viewpoint that neatly
complements the one obtained by using Dirac’s
algorithm (see, for instance, [4–7]). It also sheds
light on other issues such as the role of the Im-
mirzi parameter –both at the classical and quan-
tum levels– and the appearance of constraints
quadratic in momenta.

In general, the Hamiltonian dynamics of a
(singular) system is determined by Hamiltonian
vector fields Z satisfying

ιZΩ = dH , (1)

where Ω is a presymplectic form on a phase
space F and H the Hamiltonian of the system.
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We will denote by d and ∧∧ the exterior derivative
and the wedge product in F , respectively. By re-
quiring the Hamiltonian vector field to be con-
sistent (i.e. tangent to the manifold where the
dynamics takes place), the Gotay-Nester-Hinds
(GNH) algorithm [8] leads to a sequence of con-
straint submanifolds of F . When the algorithm
terminates, it provides a constructive and neat
method for finding a submanifold Υ of F where
equation (1) makes sense.

II. SYMPLECTIC FORMULATION FOR
THE HOLST ACTION

The Hamiltonian description of tetrad gravity
discussed here can be obtained from the Holst
action [9] by using the geometrically inspired
GNH method [8, 10–12]. Instead of following
this approach, which is interesting in itself and
will be presented in an upcoming publication
[13], we will justify the validity of our formu-
lation by deriving the real Ashtekar formulation
from it.

Let M be a four-dimensional manifold dif-
feomorphic to Σ × R where Σ is a closed (i.e.
compact without boundary), orientable, three-
dimensional manifold (this implies that Σ is par-
allelizable). General relativity in tetrad form
can be derived from the Holst action [9]

S(e,ω) = ∫
M
PIJKLe

I
∧ eJ ∧FKL , (2)

where eI ∈ Ω1(M) are 1-forms (non-degenerate

tetrads), FIJ ∶= dωIJ +ω
I
K ∧ ωKJ is the curva-

ture of an SO(1,3) connection ωIJ ∈ Ω1(M)

(we use boldface letters to represent four-
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dimensional objects),

PIJKL ∶=
1

2
(εIJKL +

ε

γ
ηIKηJL −

ε

γ
ηJKηIL) ,

εIJKL is the Levi-Civita symbol (ε0123 = +1)
and γ denotes the Immirzi parameter. Here the
latin capital indices I, J . . . range from 0 to 3
and are raised and lowered with the help of the
Minkowski metric η = (ε,+1,+1,+1) with ε = −1
(we introduce ε as a simple device to recover the
Riemannian case if so desired).

The field equations given by (2) are equivalent
to those obtained from the standard Hilbert-
Palatini action and can be written as [3, 9]

DeI = 0 , (3a)

εIJKLe
J
∧FKL = 0 , (3b)

where DeI ∶= deI +ωIJ ∧ e
J .

By using the GNH method we arrive at a
Hamiltonian formulation defined in a space of
fields F consisting of scalar functions et

I , ωt
IJ ∈

C∞(Σ) and 1-forms eI , ωIJ ∈ Ω1(Σ) (we use
non-bold fonts for the objects living on Σ to dis-
tinguish them from those defined on M). The
basic elements of the formulation are as follows:
● The field space F is endowed with the presym-
plectic form

ΩP = ∫
Σ

dωIJ ∧∧ d(PIJKLe
K
∧ eL) . (4)

● The dynamics is restricted to a submanifold Υ
of F defined by the constraints

DeI = 0 , (5a)

εIJKLe
J
∧ FKL = 0 , (5b)

where the curvature F IJ ∶= dωIJ + ω
I
K ∧ ω

K
J

satisfies the identity DF IJ = 0 with D given by
a suitable extension of DαI = dαI +ωIJ ∧α

J for
1-forms.
● Let Z be the Hamiltonian vector field tangent
to Υ that defines the evolution of the system,
then its components satisfy

ZIe =Det
I
− ω I

t Je
J , (6a)

εIJKL(e
J
∧ (ZKLω −Dωt

KL) − et
JFKL) = 0 ,

(6b)

ZIet , arbitrary , (6c)

ZIJωt , arbitrary . (6d)

On F , the vector field Z is Hamiltonian in the
sense that it satisfies ιZΩP = dH with

H = ∫
Σ
PIJKL(e

I
∧eJ∧Dωt

KL
−2 et

IeJ∧FKL) .

Notice that the arbitrariness of ZIet and ZIJωt im-
plies that eIt and ωIJt are themselves arbitrary.
This is to be expected as eIt play the role of the
lapse and the shift, while ωIJt parametrize local
Lorentz transformations.

Although the most efficient way to get the pre-
vious formulation is to use the GNH method, it
can also be obtained by employing the geometric
implementation of Dirac’s algorithm [14, 15].

One striking feature of the constraints (5a)
and (5b) is their structural resemblance with the
field equations (3a) and (3b). This suggests a
direct approach to obtain the Hamiltonian for-
mulation presented here that takes advantage of
the fact that the Holst action is first order, back-
ground independent and it is written in terms of
differential forms. Actually, there is a very quick
and neat way to get equations (5a) to (6d) as
necessary conditions. This is a consequence of
the fact that differential forms, pullbacks, and
the exterior derivative interact in a natural way.
Although in order to prove that they are suf-
ficient some additional work is necessary (tan-
gency requirements must be checked) it is very
useful to know that there is a simple way to write
the constraints (a fact that is not obvious at all
within Dirac’s approach).

The starting point is the field equations (3a)
and (3b) which are equivalent to those given by
the Holst action. Let us introduce on M a foli-
ation defined by the level surfaces Στ of a scalar
function τ , a vector field ∂τ ∈ X(M) transverse
to the foliation with dτ(∂τ) = 1, and the inclu-
sion τ ∶ Στ ↪M . Finally, let us introduce

eIt ∶= ι∂τ e
I
∈ C∞(M) ,

eI ∶= eI − dτ ∧ eIt ∈ Ω1
(M) ,

ωIJt ∶= ι∂τω
IJ
∈ C∞(M) ,

ωIJ ∶= ωIJ − dτ ∧ωIJt ∈ Ω1
(M) ,

(ι denotes the interior product) so that

eI = eI + dτ ∧ eIt ,

ωIJ = ωIJ + dτ ∧ωIJt .

Now, if we pullback (3a) and (3b) to Στ and
define et

I ∶= ∗τe
I
t , eI ∶= ∗τe

I , ωt
IJ ∶= ∗τω

IJ
t and

ωIJ ∶= ∗τω
IJ , we get (5a) and (5b). If we take

the interior product of (3a) and (3b) with ∂τ
and then pullback the result to Στ we obtain
(6a)-(6d).
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III. DERIVING THE REAL ASHTEKAR
FORMULATION

We derive now the real Ashtekar formulation
from the symplectic description given above.
This can be taken as an independent consistency
check of our formulation.

The presymplectic form (4) can be written as
(here, εijk is the three-dimensional Levi-Civita
tensor with ε123 = +1)

ΩP =∫
Σ

d (ωij + εγεijkω
0k) ∧∧ d (

ε

γ
ei ∧ ej)

+ ∫
Σ

d (
2

γ
ω0
i + ε

jk
i ωjk) ∧∧ d(e0

∧ ei) , (7)

by considering the different terms with I, J . . . =
0 and I, J . . . = i , j . . . (i, j = 1,2,3). The partic-
ular form of (7) hints at the possibility of finding
canonically conjugate variables. Notice, how-
ever, that something does not quite fit. On one
hand, the 2-forms ei ∧ ej have nine independent
components written in terms of the nine inde-
pendent components of ei. On the other hand,
a direct counting shows that ωij+εγεijkω

0k con-
sists of three 1-forms labeled by the antisym-
metrized pair ij (nine independent components)
but it is written in terms of eighteen indepen-
dent objects (the components of ω0k and ωij).
Similar considerations apply to the second inte-
gral in (7).

In order to find bona fide canonically conju-
gate variables and solve this apparent mismatch,
we consider a partial gauge fixing (time gauge),
e0 = 0, and pullback all geometric objects to the
submanifold F0 ∶= {e

0 = 0} ⊂ F given by this
gauge condition. In particular, this fixes some
of the arbitrary pieces of the components of the
Hamiltonian vector field. Specifically, we must
have

0 = Z0
e = det

0
+ ω0

iet
i
− ω 0

t i e
i . (8)

As et
0 and et

i will play in the following the role
of lapse and shift, the best course of action is
to solve (8) for ω 0

t i. By doing this, the three
components of ω 0

t i are fixed and the boost part
of the SO(1,3) symmetry of the Holst action is
broken.

The pull-back of the symplectic form ΩP to
F0 is obtained just by plugging e0 = 0 into (7)

Ω0 = ∫
Σ

d (ωij + εγεijkω
0k) ∧∧ d (

ε

γ
ei ∧ ej) .

(9)

We discuss now in detail the constraints in the
time gauge.

▸ DeI = 0 for I = i,

0 = dei + ωi0 ∧ e
0
+ ωij ∧ e

j

time gauge
Ð→ dei + ωij ∧ e

j
= 0 . (10)

▸ DeI = 0 for I = 0,

0 = de0
+ ω0

i ∧ e
i

time gauge
Ð→ ω0

i ∧ e
i
= 0 . (11)

The key insight to arrive at the Ashtekar for-
mulation for arbitrary values of the Immirzi pa-
rameter is to solve for ωij in (10). We do this

by writing ωij = −ε
i
jkΓk and solving

dei + εijkΓj ∧ ek = 0 . (12)

Plugging the expression for Γi in (9) leads to

Ω0 =∫
Σ
d (Γi− εγω0i) ∧∧ d (−

ε

γ
εijke

j
∧ ek) , (13)

so we can define the following pair of canonically
conjugate variables:

Ai ∶= Γi − εγω0i , (14a)

Ei ∶= −
ε

γ
εijke

j
∧ ek . (14b)

Notice that both of them depend on nine in-
dependent objects: the components of ω0i and
those of ei, respectively. In the following, we
will rewrite the constraints in terms of Ai and
Ei.

As we have already solved (10), the only re-
maining condition coming from DeI = 0 is (11).
This gives the usual Gauss law of the Ashtekar
formulation because

ω0
i ∧ e

i
= 0⇔ (Ai − Γi) ∧ e

i
= 0

⇔ dEi + εijkAj ∧Ek = 0 .

This can be written in terms of the vector den-
sity Ẽi associated with the 2-form Ei in the
usual way

divwẼi + εijkιẼkA
j
= 0 , (15)

where the volume form w ∈ Ω3(Σ) is given by
3!w = εijke

i ∧ ej ∧ ek.

▸ εIJKLe
J ∧ FKL = 0 for I = i,

0 = 2εijke
j
∧ F 0k

− εijke
0
∧ F jk

time gauge
Ð→ εijke

j
∧ (dω0k

+ ω0
l ∧ ω

lk) = 0 .

(16)
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Taking into account that εγω0k = Γk − Ak and
ωij = −ε

i
jkΓk, the previous condition becomes

εijk(e
j
∧ d(Ak − Γk)

− εlkme
j
∧ (Al − Γl) ∧ Γm) = 0 ,

which can be rewritten in the form

εijke
j
∧ (F k −Rk)

+ ej ∧ (Aj − Γj) ∧ (Ai − Γi) = 0 ,

where

F i ∶= dAi +
1

2
εijkA

j
∧Ak ,

Ri ∶= dΓi +
1

2
εijkΓj ∧ Γk.

Now, using the Gauss law and the identity
εijke

j ∧Rk = 0, we finally get

εijke
j
∧ F k = 0 . (17)

In terms of the density Ẽi this expression takes
the usual form of the vector constraint

ιẼiF
i
= 0 . (18)

▸ εIJKLe
J ∧ FKL = 0 for I = 0,

εijke
i
∧ (dωjk + ωj0 ∧ ω

0k
+ ωjl ∧ ω

lk
) = 0 .

Using again εγω0k = Γk −Ak and ωij = −ε
i
jkΓk,

we can rewrite the previous expression as

2ei ∧Ri +
ε

γ2
εijke

i
∧ (Aj − Γj) ∧ (Ak − Γk) = 0 .

(19)

By computing the exterior derivative of (11) and
using (12), we can write

2ei∧(F
i
−Ri)−εijke

i
∧(Aj − Γj)∧(Ak − Γk) = 0 .

Plugging this into (19), we obtain

2ei ∧ F
i (20)

− (1 −
ε

γ2
) εijke

i
∧ (Aj − Γj) ∧ (Ak − Γk) = 0 ,

or equivalently,

ei ∧ (F
i
+ (εγ2

− 1)Ri) = 0 ,

which, in terms of Ẽi becomes the familiar scalar
constraint of the real Ashtekar formulation

εijkıẼi ıẼj (F
k
+ (εγ2

− 1)Rk) = 0 . (21)

IV. CONCLUSIONS

We end the paper with several comments.

i) The fact that we have been able to obtain
the real Ashtekar formulation for general
relativity provides a proof a posteriori of
the soundness of our approach (which, we
emphasize again, can be obtained from the
Holst action).

ii) It is important to point out that (6c) and
(6d) tell us that at every instant of time
et

0 and et
i can be taken to be arbitrary.

This allows us to remove them from the
list of configuration variables of the sys-
tem and just think of them as given func-
tions of time. These objects are the lapse
N ∶= et

0, the shift N i ∶= et
i, and ωIJt are

the parameters of the local Lorentz trans-
formations.

iii) At variance with the situation with the
presymplectic form (4) on F , the final
symplectic form (13) is independent of the
Immirzi parameter γ because the term in-
volving Γi is actually zero (remember that
Σ is closed). There is nothing strange
here because we know that (14a) defines a
canonical transformation. The symplectic
form is also independent of γ when written
in terms of the new variables Ai and Ei
but then the Hamiltonian constraint be-
comes γ-dependent.

iv) By removing the Γi term from (13), it is
straightforward to get the SO(1,3)-ADM
formulation by using the canonical vari-
ables Ki ∶= ω0i and Ei ∶= εijke

j ∧ ek.

v) The role of the usual quadratic constraints
in momenta [16] is also clarified in our ap-
proach. As it can be seen, by using the
time gauge e0 = 0 and pulling back to the
submanifold F0 ∶= {e

0 = 0} ⊂ F , we end up
with a well defined symplectic structure
–in canonical form– on the phase space
defined by the Ashtekar variables. The
counting issues that lead to the introduc-
tion of quadratic constraints involving mo-
menta simply disappear.

vi) The formulation presented here is fully
SO(1,3) invariant. If we stick to it, the
presymplectic form (4) depends on γ, so
the Immirzi parameter should play a role
at the quantum level. This may also be
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the case –both at the classical and quan-
tum levels– if surface terms are added to
the Holst action.

vii) The Hilbert-Palatini action, as well as the
corresponding field equations, can be for-
mally recovered by taking the γ →∞ limit.
Notice, however, that the canonically con-
jugate variables (14a) and (14b) are not
defined in this limit. This explains why
the Ashtekar formulation cannot be de-
rived from the Hilbert-Palatini action.
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