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Abstract

We give a new identity involving Bernoulli polynomials and combinatorial
numbers. This provides, in particular, a Faulhaber-like formula for sums of
the form 1™ (n —1)" +2"(n —2)™ +--- 4 (n —1)"1™ for positive integers
m and n.

1 Introduction
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Bernoulli numbers By, are given by the exponential generating function z/(e* —1),
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By, = kl[2"]

where [2"]f(2) is the n-th coefficient of the Taylor expansion of f around z = 0.

In the course of studying the distribution of the eigenvalues of the so-called area
operator in loop quantum gravity [1] we were led to believe that the following
identity held
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for m € N U {0}. The purpose of this short note is to prove this formula by
proving a generalization of it. Particular cases of this general formula involve
what we called a two-sided Faulhaber-like formula. A Faulhaber formula (also
called Bernoulli’s formula as Jacob Bernoulli was the first to write it) is given by
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Notice that in

n—1
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k=1
there is an increasing sequence of addends given by powers of the integers. A
particular and interesting case of the aforementioned generalized formula will
involve instead a “two-sided” version of it:

n—1
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Likewise, the Bernoulli numbers are generalized by considering the Bernoulli poly-

nomials: .
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By(x) = kI[2¥]

2 Main theorem
The main result of the paper is the following

Theorem 2.1 Given N € Z, m € N and w € C, we have
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Before proceeding with the proof let us discuss some consequences of this formula

Remark 2.2 [t is possible to get a number of Faulhaber-like formulas from (2.1).
The simplest one can be obtained by taking both w and N to be equal to a natural



number n > 2.
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where we have used the well known relation between the zeta Riemann function
and the Bernoulli numbers
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Equation (2.2) appears often in the literature obtained through different methods
(see for instance [2, page 10]).

Remark 2.3 For N = 1, Equation (2.1) gives the beautiful expression (equivalent
to equation (1.17) of [3]) valid for any w € C,
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Remark 2.4 Sums involving

Bﬁm+k+1
————— = —((—k — Bm
pm+k+1 < pm)
with integer B > 2 can also be studied although a more complicated approach is
needed involving complex analysis and combinatorial identities. Nonetheless, the
results are not as neat as (2.1) and each case has to be studied separately.

Remark 2.5 [t is also possible to generalize (2.1) for fractional values of N but,
again, no systematic approach has been found. One such expression is when w =
N=1/2
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where the E, are the Euler numbers [4, entry A122045].



Proof of Theorem 2.1
The result is a consequence, on one hand, of the following easy-to-prove formula
for the Bernoulli polynomials
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valid for r € Z and x € C, which is a direct consequence of
Bu(z +1) — By(z) = na" ™,

and, on the other hand, of the remarkable identity obtained by Sun (equation

(1.14) of [3])
k = (k k— Bé+g+1 ) . jBk+j+1(Z)
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where k,/ e Nand x +y+ z = 1.

Taking now = w, y = (N —w)/2, z=1— (N+w)/2and k = ¢ =m € Nin
(2.5) we obtain
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Using now equation (2.4) to rewrite the last term in terms of By,ij11 (85%), we
finally obtain (2.1). n




Acknowledgments

This work has been supported by the Spanish Ministerio de Ciencia Innovacién
y Universidades-Agencia Estatal de Investigacion/FIS2017-84440-C2-2-P grant.
Juan Margalef-Bentabol is supported by 2017SGR932 AGAUR/Generalitat de
Catalunya, MTM2015-69135-P/FEDER, MTM2015-65715-P, and the ERC Start-
ing Grant with number 335079. He is also supported in part by the Eberly Re-
search Funds of Penn State, by the NSF grant PHY-1806356, and by the Urania
Stott fund of Pittsburgh foundation UN2017-92945.

References

[1] J.F. Barbero G., J. Margalef-Bentabol and E. J. S. Villasenor, On the distribution
of the eigenvalues of the area operator in loop quantum gravity, Class. Quantum
Grav. 35 (2018) 065008 [arxiv: 1712.06918]

[2] P. Kolosov, On the relation between binomial theorem and discrete convolution of
piecewise defined power function [arxiv: 1603.02468]

[3] Z.-W. Sun, Combinatorial identities in dual sequences, Furopean J. Combin. 24
(6) (2003) 709-718.

[4] The OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences.
http://oeis.org


https://arxiv.org/abs/1712.06918
https://arxiv.org/abs/1603.02468
http://oeis.org

	1 Introduction
	2 Main theorem

