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In T. L. Gill and W. W. Zachary, Functional Analysis and the Feynman Operator Calculus
(Springer, New York, 2016), the topology of R® was replaced with a new topology and
denoted by R$. This space was then used to construct Lebesgue measure on Ry in a manner
that is no more difficult than the same construction on R*. More important for us, a new class
of separable Banach spaces KS?[R"], 1 < p < co, for the HK-integrable functions, was intro-
duced. These spaces also contain the L? spaces and the Schwartz space as continuous dense
embeddings. This paper extends the work in T. L. Gill and W. W. Zachary, Functional
Analysis and the Feynman Operator Calculus (Springer, New York, 2016) from KS?[R"] to

KSP[RP].
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1. Introduction

The standard topology for R* defines open sets to
be the Cartesian product of an arbitrary finite
number of open sets in R, while the remaining infi-
nite number are copies of R (cylindrical sets). This
automatically makes any attempt to directly define

Lebesgue measure impossible. We take the opposite
approach, which defines a new topology on R>.
First, we define Lebesgue measure directly on the

Hilbert cube I = [— %,%]N’ by Ax(fy) =1 and set

L = [IZnul-1.3-
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Definition 1.1. If B[R"] is the Borel o-algebra and
A, B € R" are open, we define nth-order box sets in
R* by A, =Ax I, B,= B x I, satisfying:

(1) A, UB, = (AUB) x I,
(2) A,NB, =(ANB) x1I, and
(3) BS = B® x I,,.

Definition 1.2. We define R} =R" x I, c R=. If
T is a linear transformation on R” and A, = A x [,
we define TI" on R} by TIH[A,] = T[A] x I,,.

We define the topology on R} via the following
class of open sets:

2, ={U x I, :U open in R"}
and let B[R7| be the natural Borel o-algebra.

For any A, € B[R], we define A\ (A4,) on R} by
the product measure:

No(dn) = M) x T 2ll) = A(4).

i=n+1

Theorem 1.3. A\_(-) is a translationally and
rotationally invariant measure on B[RY|, which s
equivalent to n-dimensional Lebesgue measure
onR™.

Since R} € R?*! we have an increasing sequence
and define

RY = lim R} = | R}
Let X, = I@?ﬂ and let 77 be the topology induced by
the class of open sets Q C X;:

= U‘Q" = U{Ux I,:Uopenin R"}.
n=1 n=1

Let X, = R®\RY and let 7, be discrete topology on

X, induced by the discrete metric so that, for

T, YyEX;, x#y, dy(z,y)=1 and for z=y,

d?(:r': y) =0

Definition 1.4. We define (R7¥,7) to be the
coproduct (X,,71) & (X3,72), of (¥1,71) and
(%X9,73), so that every open set in (R¥,7) is the
disjoint union of two open sets G; | JG», with G; in
(%1,71) and G in (X3, 72). It follows that RP® = R
as sets. However, since every point in X, is open and
closed in R7® and no point is open and closed in R™,
they are not equal as topological spaces.
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In a similar manner, if B[R] is the Borel o-al-
gebra for R, then B[R7] C B[R}], so we can
define B[R7] by

BIRF] = lim BIR}] = | BRY,

Let B[R] be the smallest o-algebra containing
%m}’o] UPR>\ U2, RY), where P(-) is the power
set. It is obvious that the class B[R ] coincides with the
Borel g-algebra generated by the m-topology on R¥°.

Lemma 1.5. ‘B{]R?O] C B[R]

Proof. It suffices to prove that R} € B[R>] for all
n. Let n € N and define Oﬁ’“) by

T 11
O;=ﬂ0£ )=R IX[—E,E:IXHR

meHN k>i
Finally, we have

? = ﬂ Oi'
i>n
m}
We note that O, is a G set, which is not open in
R, so that R} is not open in R,

1.1. The extension of A () toR{°

‘We know that A\ () is a countably additive measure
on B(RY) for each n € N, but we cannot say the
same for B(R 7). We now indicate how to provide a
(constructive) extension of Ay (:) to a countably
additive measure on B(RR7°). All proofs can be found
in [1]. (This version is equivalent to the one first
found by Yamasaki [2] in 1980.) Let
K,=KxI,eR}, K, =KxI, R} be com-
pact sets, with n, n; € N. Define

Ay = {K, € B(R]) : A(Ky) < o0},

N
A= {PN=UK_m with)m(KmmKﬂ}.ho,i;éj}.

=1
Definition 1.6. If Py € A, we define

A (Py) :Z_I:f\m(Kn.-)-
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Since Py € B(R7}) for some n and A (-) is a
measure on ‘B(R7), the next result follows:

Lemma 1.7. Let Py,, Py, € A then

(]‘) IfPNl & PN;: then ADc(‘PNl) & ADc(‘PE\rrg)‘
@) If Ao(Py,NPy)=0, then A (Py UPy,)
= Aoo(Pr,) + Ao (Py;)-

Definition 1.8. If G C R¥ is any open set, we
define

Ao(@) = I\}im sup{A(Py) : Py € A, Py C G}.
Theorem 1.9. If 9 is the class of open sets in
B(RT), we have

(1) A(RF?) = oo.
(2) IfGq,Gy € 0, G C Gy, thenAm(Gl) < Am(Gg).
(3) If {G} c O, then

A (Gck) <3 A,
k=1 k=1

(4) If the Gy are disjoint, then

ADO (GGL) = f: /\m(Gk)
k=1 k=1

If F is an arbitrary compact set in B(R7), we
define

Ao(F) =inf {A\(G): FC G,Gopen}. (1)
Remark 1.10. At this point, we see the power of
B(RF). Unlike B(R™), Eq. (1) is well defined for

B(RT") becaunse it has a sufficient number of open
sets of finite measure.

1.1.1. Bounded outer measure

Definition 1.11. Let A be an arbitrary set in R},

(1) The outer measure (on R}°) is defined by

A(A) =inf{)(G): A C G,G open}.

Welet £ be the class of all A with A}, (A4) < cc.

(2) If A € £, we define the inner measure of A by

Asos (%) (A) = sup{ A (F) : F C A, F compact}.
(3) We say that A is a bounded measurable set if

A%(A) = Aw, (¥)(4), and define the measure of
A, Ao(A), by Ao (4) = AL (4).

The following theorem characterizes the properties
of Lebesgue measure on R (see [1]).
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Theorem 1.12. The measure space (R7, B[RT],
Aso) has the following properties:

(1) Aso(X2) = 0.

(2) For every A € £[R¥] (Lebesgue sets) and e > 0,
there exist a compact set F' C A and an open set
G D A such that A, (G\ F) < g, so that A\(-) is
regular.

(3) There exists a family of compact sets
{4,} CB[RY], with A\,[A,] < oo and a set N
with Ao [N] =0, such that RP =Jpl:1 A, UN
(e, A(-) is o-finite).

(4) For A€ B[R], A(A—1x) =A(4) if and
only if x € £;.

1.2. Measurable functions

In this section, we discuss measurable functions on
RP. Let = (1, 29, 23,... ) € R¥. Fixing n with
I = HEC':HHI—%,%], we set h, () = XI“(:E), where
& = (2;) iZns1-

Definition 1.13. Let M™ represent the class of
Lebesgue measurable functions on R™. If z € RY
and f" e M™, let T =(x;)ic; and define an
essentially tame measurable function of order n (or
e,-tame) on RY by f(z) = f*(z) @ h,(z). We let

MT = {f(z) : f(z) = f"(Z) ® h,(2),z € R’}
be the class of all e, -tame functions.

Definition 1.14. A function f: RY® — R is said to
be measurable and we write f € M, if there is a
sequence { f,, € M7} of e,-tame functions, such that
lim,, . fu(7) = f(z) A-(a-€).

The existence of functions satisfying Defini-
tion 1.14 is not obvious, so we have [3].

Theorem 1.15. (Existence) Suppose that f:
R — (—o0,00) and f~1(A) € BRY] for all
A € B[R]. Then there exists a family of functions
{fu}s fn € M1, such that f.(z) — f(z), An-(a.€).

Remark 1.16. From Theorem 1.12(1), we see that
any set A, of nonzero measure is concentrated in X;
(i.e., Ao(A) = A (AN Xy)). It also follows that the
essential support of the limit function f(z) in
Definition 1.14 (i.e., {z|f(x) # 0}) is concentrated
in RY, for some N.

1.3. Integration theory on R

In this section, we provide a constructive theory of
integration on R using the known properties of

0O -1 O b M
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integration on R}. This approach has the advantage
that all the standard theorems for Lebesgue measure
apply. (The proofs are the same as for integration on
R".) Let L1[R7}] be the class of integrable functions
Since L![R?]C LYR}™], we define
= U L'[R7].
Definition 1.17. We say that a measurable
function f € L'[RY], if there is a Cauchy-sequence
{£,} C LYRY], with f, € L'[R} and lim,
fn(m) = f(:r)a Am'(a'e)'
Theorem 1.18. L[R7] = L1[R¥].

Proof. We know that LIIR?O] D LY[RY] for all nso
it suffices to prove that L![R] is closed. Let f be a
limit point of L1[R] (f € L[R¥]). If f = 0, we are
done, so assume f # 0. From our remarks above, we
know that if A is the support of f, then A (Ay) =

Ao(Ay N Xq). Thus, AN Xy C RY for some N. This
means that there is a function f’ € L'[RY*] with
Ac({x: f(x) # f'(x)}) = 0. It follows that f(x) =
f'(x)-(a.e). Recalling that L![R}] is a set of
equivalence classes, we see that L[R}"] = L1R%]. O
Definition 1.19. If f<€ L[RY], we define the
integral of f by [4]

f(z)dAo(z) = lLim . Talm)dAss (),
Ry

oC T— 00
Ry

on RY.
LR, o0

where {f,} C L}[R{] is any Cauchy-sequence
converging to f(z)-(a.e).

Theorem 1.20. Let f € L'[RF], M >0, {f,}ol;
be a sequence of measurable functions with f, — f
(a.€) and let {g,}nei is a sequence of functions in
LYR$] converging to g € LY[R¥] (ae): then we
have the following:

(1) LR is linear and fROC |f(z)|dA (z) < o00.
(2) If |f.] < M, then

[ f@th@) = tim [ @iz
L4 B
(3) If |fal < 9(z) (ase), then
[ f@dh(e) = lim [ fu(@hir(a).
R By
(4) If | £l < gu(2) (ase), then
f _ f(@)drn(e) = lim / _ h@d(a).
Ry B
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(5) If the sequence {f,}nt1 is non-negative and in-
creasing then

Fla)dh(z) = lim f £.(@)dA ().

R
(6) If the sequence { f,} 21 is non-negative then

f _ J@)dAq(x) < liminf ] _ h@dr ()
RI Eﬁjr

2. The Kuelbs-Steadman Spaces KSP[R 7]

Since the work of Henstock [5] and Kurzweil [6], the
most important finitely additive measure on R" is
the one generated by the Henstock—Kurzweil inte-
gral (HK-integral). It generalizes the Lebesgue,
Bochner and Pettis integrals and it is equivalent to
the Denjoy and Perron integrals. Moreover, it is
much easier to learn and understand compared to
these and the Lebesgue integral. It also provides
useful variants of the same theorems that have made
the Lebesgue integral so important. The most im-
portant factor preventing the widespread use of the
HK-integral in mathematics, engineering and phys-
ics has been the lack of a Banach space structure
comparable to the LP spaces for the Lebesgue integral.

The possibility for change in this condition began
indirectly in 1965, when Gross [7] proved that every
separable Banach space contains a separable Hilbert
space as a continuous dense embedding. This work
was a generalization of Wiener’s theory, which used
the (densely embedded Hilbert) Sobolev space
H[0,1] € Cy[0,1]. Then, in 1970, Kuelbs [8],
generalized Gross’ theorem to include the Hilbert
space tigging H{}[0,1] € Cy[0,1] € L2[0,1]. A gen-
eral version of Gross—Kuelbs theorem can be stated
as follows.

Theorem 2.1. Let B be a separable Banach space.
Then, separable Hilbert spaces Hy, Hy and a positive
trace class operator T\, defined on H, exist such that
H,CBC ’Hg all as continuous dense embeddings, with
(Tmu Tu “0)1 = (u,v)y and (T_mu T_mv)g =
(u,v);-

This work in relationship to the HK-integral first
appeared in the dissertation of Steadman at Howard
University in 1988 (see [4]). To understand the
connection, we need to see the proof of the H, part
of the Gross—Kuelbs theorem.

E=Re s =i R
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Lemma 2.2, If B is a separable Banach space,
there exists a separable Hilbert space H D B as a
continuous dense embedding.

Proof. Let {e;} be a countable dense sequence
on the unit ball of B, and let {e;} be any fixed set
of corresponding duality mappings (i.e., for each
k, e; € B* and ej(ex) = (ex,ef) = [lexl|5 = [lek]3-
=1). For each k, let t, =3¢, and define (u,v) as
follows:

S * . — l * . 3

(u,v) = Ztkek(u)ek(v) = Zﬁek(u)ek(v)'
k=1 k=1

Tt is clear that (u,v) is an inner product on B. Let H

be the completion of B with respect to this inner

product. It is clear that B is dense in #H, and

lell? = tilei(w)|” < sup lei(w)|® = [lull &,
k=1

so the embedding is continuous. u]
Now, note that, if B is L1[R"],

il = | [ chouan Lo

where ej(x) € L®[R"]. It is clear that the Hilbert
space H, will contain some non-absolutely integra-
ble functions, but we cannot say which ones will or
will not be in there. This gave Steadman the needed
hint for her Hilbert space design. Fix n and let Q7 be
the set {x € R7} such that the first n coordinates
(w1, 79, ...,x,) are rational. Since this is a countable
dense set in R}, we can arrange it as QF =
{xy,X3,X3,...}. For each [ and i, let B)(x;) be the
closed cube centered at x;, with sides parallel to the
coordinate axes and edge ¢, = 21_}—\/;1,! € N. Now,

choose the natural order which maps N x N bijec-
tively to N, and let {B;, k € N} be the resulting set
of (all) closed cubes {B,(x;)|(l,7) € N x N} centered
at a point in Q7. Let £.(x) be the characteristic
function of By, so that £(x) is in LP[RT] N L=[RT]
for 1 < p < co. Define Fy(-) on L[R}] by

B = [, 60000 @)
By

Since By, is a cube with sides parallel to the coordi-
nate axes and &(x) is the characteristic function of
By, Fp() is well defined for all HK-integrable func-
tions. It is also a bounded linear functional on L?
[R7] for each k, with || F ||, < 1 and,if Fi(f) =0 for
all k, f=0, so that {F}} is fundamental on L?[R7]

ISSN: 2591-7226

Page Proof

A Family of Banach Spaces Over R* 5

for 1 <p<oo. Fix ¢ >0 such that } 2,4 =1
and define an inner product (-) on L![R7] by

(F.9) =3 tFu)Fulo). @)

The completion of L![R7] in this inner product is the
Kuelbs—Steadman space, KS2[R7]. To see directly
that KS2[R7] contains the HK-integrable functions,
let f be HK-integrable, then

If s> = D tel Bl I

k=1
< sup |F(5)?

2

—sup| [ Ex30x)dM(x)
k RY

< 00,
so f € KS2[RY].
Theorem 2.3. For eachp,1 <p < oo, KS2[RY}]| D
LP[RY] as a continuous dense subspace.
Proof. By construction, KS?[R7}] contains L![R7}]
densely, so we need to only show that KS?[R%] D
La[R}] for ¢ # 1. If f € L1[R}] and g < oo, we have
r 7 1/2

s = | 38| [, €000

r 27172

>t ( / . Ek(X)Jf(X)I"df\m(x))

k=1

IA

o X .4 g X '
< sup ( ] , St ))

< (1 Mlg-
Hence, f € KS?[R7]. For ¢ = co, first note that
vol(B)? < [ﬁ] n < 1, so we have
2] 1/2

[flrs: = [itk
700 1/2
< HZtkIvol(Bk)}Z [esssup | f|] "}

< 1A lloo-

[, £ 60t

Thus, f € KS?[R7], and L*[R?] c KS%R}]. O
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Before proceeding to additional discussion, we
construct the KSP[R7] spaces. Define

1/p

e = [fjtm(f)r’

| fllks= = Slzp | F5 ().

It is easy to see that || - ||ks, defines a norm on LP.
If KS? is the completion of L? with respect to this
norm, we have the following theorem.

Theorem 2.4. For each ¢, 1 < ¢ < oo, KSP[R}] D
L9RY] as a dense continuous embedding.

Proof. Asin the previous theorem, by construction
KS?[R7] contains L?[R7] densely, so we need to only
show that KS?[R}] D L9[RY| for g # p. First, suppose
that p < oco. If f € L4RY] and g < oo, we have

s z71/p
vy 2 ’ Ep(x)f(x)dA, (x
s = |3 / , SO NA )\ }

z] /p

g;tk (/m’} £l (%A (x))

IA

< sup (/;an Ek(X)if(X)iqum(X))

< 17llg-
Hence, f € KSP[R}]. For ¢ = oo, we have

o0 pll/p
[l £llxsr = Ztk /n Ex(x) f(x)dAs (x) ]
k=1 Ry
o0 i/p
< [Ztk[vol(Bk)]p [esssup | 1]
k=1
< M| fllo-
Thus f € KSP[R?], and L*[R}] C KS?[RF]. The
case p = oo is obvious. O

Theorem 2.5. For KS?, 1 < p < 00, we have

(1) I 1,9 € KS?, then | + glixse < /s + lglss
(Minkowskt inequality).

(2) If K is a weakly compact subset of LP, it is a
compact subset of KS?P.

(3) If1 < p < oo, then KS? is uniformly conver.

(4) If1l<p<oo andp~ ' +q~! =1, then the dual
space of KS? is KS4.

(5) KS* c K87, for 1 <p < oc.
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Proof. The proof of (1) follows from the classical
case for sums. The proof of (2) follows from the fact
that if {f,,} is any weakly convergent sequence in K
with limit f, then

[, E61fnx) — £ A0 = 0
By

for each k. It follows that { f,, } converges strongly to
fin KS?.

The proof of (3) follows from a modification of the
proof of the Clarkson inequalities for [? norms.

To prove (4), let

2 R
£3(g) = llgll sy

/ | Ex)g0)dA (%)
Ry

and observe that, for p # 2, 1 < p < oo, the linear
functional

L() = Y-t P Fi(f)

is a duality map on KS? for each g € KS? and that
KS? is reflexive from (3). To prove (5), note that
f€KS™ implies that |[3n&r(x)f(x)dAc(x)| is
I
uniformly bounded for all k. It follows that | [, £(x)
I
f(x)dAx(x)|? is uniformly bounded for each p,

1 < p < oo. It is now clear from the definition of KS>
that

1/p
< |Iflhes= < oo

Il fllse = [Z:tklf’rc(f)lp
k=1
O

Theorem 2.6. For each p, 1 < p < oo, the test
functions D C KSP(R7}) as a continuous embedding.

Proof. Since KS*(R?) is continuously embedded
in KS?(R%), 1< g < oo, it suffices to prove the
result for KS*(R7). Suppose that ¢; — ¢ in D[RY],
so that there exists a compact set K C R7, contain-
ing the support of ¢; — ¢ and D"¢; converges to
D®¢ uniformly on K for every multi-index . Let
L = {l € N : the support of £ C K}, then

JIH{.]O [D%¢ — D®¢;]|xs=
- JIE& sup |F (D¢ — D*¢;)|

< vol(B,) lim sup [D"(x) ~ D,(x)|
I xeK

< lim sup | D%p(x) — D%¢;(x)| = 0.

I7®xeK
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It follows that D[R7] C KSP[R}] as a continuous
embedding, for 1<p<oo. Thus, by the
Hahn—Banach theorem, we see that the Schwartz
distributions, D'[R}] C [KSP(R7)]’, for 1 < p < oo.

m}

2.1. The family KSP[R{®]
We can now construct the spaces KSP[RF], 1 <
p < 00, using the same approach that led to L [R{].
Since KSP[RY] ¢ KSP[R}*!], we define KSP[RT] =
Unz KSP[R7].
Definition 2.7. We say that a measurable function
f € KSP[RP], if there is a Cauchy-sequence {f,}
c KSP[RY), with f, € KSP[R}] and lim,,_, f,(z) =
flz), Ao-(a.e).

The same proof as Theorem 1.18 shows that

functions in KSP[RY] differ from functions in its
closure KS?[R°] by sets of measure zero.

Theorem 2.8. KS?[R}] = KSP[RF].
Definition 2.9. If fe€ KSP[RY], we define the
integral of f by

[ fetate) = im [ g
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where f, € KSP[R?| is any Cauchy sequence con-
verging to f(zx).

Theorem 2.10. If f € KSP[RY], then the above
integral exists and all theorems that are true for f €
KS?[RY| also hold for f € KSP[RF].
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