Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 91 (2020) 528-533

www.elsevier.com/locate/procedia

30th CIRP Design 2020 (CIRP Design 2020)

Measuring functional independence in design with deep-learning language
representation models

Haluk Akay, Sang-Gook Kim*

Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

* Corresponding author. Tel.:617-452-2472,. E-mail address: sangkim@mit.edu

Abstract

Measuring functional coupling in complex systems is an important task for good design practice, though historically it has been an art of subjective
judgement. With the recent advancements in Deep Learning and Natural Language Processing, functional requirements (FRs) and design
parameters (DPs), which are expressed as words and sentences, can be represented in a vector space. The sentence embedding model, BERT,
was used in this paper to vectorize FRs and DPs, to calculate functional independence and to study how metrics for functional coupling
measurement can be enhanced. It was found that semantic similarity among FRs and DPs, represented in vector space, could be used to compute
quantitative values for metrics of functional independence. It was also found that design cases where coupling was unambiguous yielded the best
results, while cases where laws of physics needed to define the FR-DP relationship did not transliterate well to the natural language used to
express the FR-DP highlighted the limitations of the model in its current state. This study, however, demonstrates a great opportunity to develop
a robust, fine-tuned design language representation model for accurately measuring functional independence as a part of our effort to enhance

design intelligence.
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1. Introduction

The task of large and complex systems design relies heavily
on expert’s heuristic knowledge and insight in delivering a
systems solution. Success at this scale results in elegant and
efficient engineering, social or service systems that can provide
users and the society with a better quality of life, while failure
can result in long-delayed, over-budgeted, and sometimes
unfinished projects and even catastrophic loss of life. A well-
established and widely-accepted metric for good design is the
concept of functional independence [1], where maintaining
functional independence is key for good design, and functional
coupling can lead to inefficiency and aforementioned
catastrophic failure. Axiomatic Design (AD) has provided a
way of design thinking that the heuristic-based system design
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could be better structured with the concept of domains and
securing functional independence (Axiom One). But many still
find it difficult to apply AD principles, such as functional
independence, to practical problems since assessing functional
coupling requires subjective judgement and substantial amount
of experience. While existing designs can be analyzed for
functional coupling retrospectively by an experienced systems
designer, it is difficult to measure coupling during the early
design process prospectively, especially when the design
parameters and functional requirements are difficult to quantify
and normalize. For this reason, most efforts to apply AD
principles to industrial practice have fallen short of becoming
widely applied tools for design success yet.

A framework of Al for design was developed by the authors
to facilitate the functional thinking of junior designers by
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representing designer’s intention in the syntax of functional
requirements, assisting human designers in making good design
decisions with AD principles [2]. Deep learning-based
algorithms have been applied to translate (encode) user needs
and specifications to a collection of functional requirements
(FRs) that can be vectorized and then understood by the
machine learning tools to create structure and hierarchy of
them. Once vectorized, FRs and design parameters (DPs) could
utilize the rich set of AD principles, theorems and corollaries to
assess the designer’s decision and provide adequate advices.
This paper reports on whether vectorized FRs and DPs could be
assessed algorithmically whether they are coupled or not.

Recent breakthroughs in the field of machine learning as a
result of relatively cheap graphic processing units (GPUs) that
can power deep neural networks, combined with large amounts
of readily available data have resulted in a resurgence in interest
in artificial intelligence (AI). In particular, the field of natural
language processing (NLP) has seen great advancements as
industry seeks to make use of massive amounts of text created
by queries on search engines, posts on social media, and even
published academic papers. While unprocessed words and
statements by themselves have no quantitative value for
computing similarity, sentiment, or other attributes of natural
language, powerful language models trained on large corpora
of text can represent words and sentences in multidimensional
vector space. Work in the field of applying neural networks to
statistical language modeling can be traced to Rumelhart,
Hinton et. al. [3], but with the aforementioned availability of
corpuses containing billions of words, recent word embedding
techniques, specifically the work of Mikolov et. al [4] has
resulted in models that can vectorize text such that simple linear
translations of word vectors yield intuitive responses. As
demonstrated in [5], the sum of vectors for Germany and
capital when added together is closest to the vector for
Berlin, showing how linguistic patterns can be accurately
captured by deep learning-based language representation
models. Further NLP breakthroughs in vectorizing phrases,
whole sentences, and even documents have followed. Most
recently, a new language representation model, “Bidirectional
Encoder Representations from Transformers” or BERT [6], has
released a pre-trained language model demonstrating record-
breaking performance on eleven benchmark NLP tasks. The
field of NLP is so fast-paced that during the work on this paper
itself, BERT was outperformed by a new autoregressive model
named “XLNet” [7], showing new state-of-the-art tools
emerging from the research area of natural language
representation.

This work leverages deep language representation models
such as BERT to quantify FR-DP coupling relationships and to
facilitate the integration of Al and human intelligence in the
domain of design, building on the concept of hybrid intelligence
as introduced in Kim et. al [2].

2. Axiomatic Design & Deep Language Representation
Among a multitude of theories for how to best execute good

design, Axiomatic Design (AD) stands out as a principle-based
methodology to designing systems [8]. AD provides a

framework for mapping between the functional domain and
physical domain. While it is a powerful tool for facilitating
early-stage top-down systems design thinking in research and
academic settings, it has not been widely incorporated into
industrial practice. AD holds two key Axioms: that functional
independence must be maintained, and complexity must be
minimized. Functional independence relates to the relationships
between “what” and “how” of a design. Functional
requirements (FRs) represent the former, and are derived from
users’ needs: the problem the design addresses. Design
Parameters (DPs) are “how” a solution solves the problem. The
relationship between FRs and DPs can be mathematically
represented using equation 1, known as the “Design Equation”

[1]:
{FR} = [A]{DP} (D

{FR} represents the functional requirement vector (design
goals) and {DP} is the design parameter vector (how these
goals will be addressed). The remaining term [A] is the design
matrix, each element of which represents a relation between a
component of the FR vector to a component of the DP vector.
For example, a design with n FRs and m DPs could be

represented by equation 2:
DP,
{ : } 2
DP,,
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For the case of an uncoupled design, the design matrix [A]
would be diagonal, meaning Aij = 0 when i # j. In this case,
each DP satisfies a single FR in an ideal design. For the case of
coupled design, any change in an FR cannot be addressed by an
adjustment of any combination of DPs without also affecting
other FRs. The significance of functional coupling in design,
especially of complex systems, cannot be understated. Small
design updates to one portion of a system can have undesired
and even initially unnoticed effects on other aspects of the
overall design in the case of a coupled design. A classic
comparison of a coupled and uncoupled design in everyday life
is apparent in faucet design. Considering the FRs of a faucet to
allow the user to control temperature of water and control flow
rate of water, a commonly implemented but coupled instance of
faucet design has two valves (Figure 1a); one for cold and one
for hot water. Controlling temperature and flow rate is difficult
for the user because of functional coupling; adjusting each knob
affects both variables. The uncoupled instance of the design
(Figure 1b) allows the user to adjust flow rate with a vertical
lever, and temperature by moving the lever horizontally.
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Fig. 1. (a) right: coupled faucet; (b) left: uncoupled faucet design.
Photography by Rebecca Wiggins and Sasikan Ulevik on unsplash.com

While clear in some simple cases, functional coupling can
be difficult to measure in more complex designs with multiple
FRs and DPs, or where the relationship between the functional
and physical domains can be ambiguous. Efforts have been
made to determine metrics to measure degree of coupling in
such cases, based on the representation of FRs and DPs as
vectors without actually quantifying them [9-10]. FRs, by
definition, are independent, and so can be represented as
orthogonal vectors. DP isograms, when plotted in the functional
domain, may or may not be parallel to FR axes, depending on
how many FRs they affect. For a design with two FRs and DPs,
the design can be visualized with isograms as in Figure 2 below.

FR2 r'y
DP»

B DP;4

= » FR
Fig. 2. DP isograms plotted in the functional domain.

There are two metrics for coupling, Reangularity (R) and
Semiangularity (S). Reangularity R reflects the degree to which
different DPs have the same effect on the set of FRs [9],
essentially a measure of orthogonality between DPs,
corresponding to the angle o between DPs in Figure 2. R is
related to the cosine similarity of the elements of the design
matrix relating each DP component to the FR vector, and can
be generalize for an n-dimensional case as follows in equation

319].
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The second metric, Semiangularity S reflects the degree to
which each DP affects one and only one FR of the design [9].
DPs may be independent of each other yet may still affect
multiple FRs as can be visualized in the case of an orthogonal
pair of DPs oriented at a non-parallel angle to the functional
domain. S can be expressed as the product of the absolute

values of the diagonal elements of the design matrix [A],
normalized as in equation 4 [9].
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When Reangularity and Semiangularity of a design are close
to zero, this indicates the design is fully coupled (worst case);
when R and S values are close to 1, this is an indication of
functional independence, an ideal design case.

This framework for quantifying coupling in design [9] was
interesting but has been difficult to apply to real-world design
cases because of the challenge presented by determining the
values of the elements in the design matrix [A] accurately, when
various FR-DP pairs may deal with quantities measured in
different units, or when the FR in question is simply qualitative
at the early stage of design. It is at this limitation of measuring
functional independence with AD principles that deep language
representation models become highly applicable.

3. Language and function embedding

Words and phrases, expressed as strings in digital texts, have
no quantifiable meaning in their raw form. Mathematically
there is no way to quantify the relationship between the word
“temperature” and “flow” simply based on their form as a
sequence of letters from a given alphabet. The simplest and
least efficient method of converting all the words in the
dictionary to multi-dimensional vector space (where
mathematic manipulation can occur) would be to create an n-
dimensional vector for each word where n is the number of total
words in the dictionary. Using the “one-hot encoding
procedure,” each word vector would be made up entirely of
zeros except for the position that the word in question occupies
alphabetically.

The goal of vectorizing words and sentences is to place them
in n-dimensional space such that language of similar context
occupies nearby positions. State of the art sentence embedding
models such as BERT [6] use deep neural networks to
accomplish this task. In the BERTLArRGE model configuration, a
neural network with 24 layers is pre-trained on unlabeled data
from the BooksCorpus and the English Wikipedia, amounting
to more than 3 billion words in the form of documents, because
continuous sequences of sentences are important for the model
to learn context. The same model architecture is then fine-tuned
by initializing the same neural network with parameters
obtained from pre-training and learning this time with labeled
data. The network architecture used by the developers of BERT
is a multi-layer bidirectional transformer.

Based on the transformer architecture proposed by Vaswani
et. al [11], BERT is capable of “reading” text bi-directionally,
where word tokens can consider context to both right and left
in a sentence. The model is trained on two tasks. Given an input
of a small number of sentences, a random selection of tokenized
words is masked, and the model trains by predicting correct
words by choosing from a probability distribution of
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appropriate words, a process known as a Masked Language
Model (MLM). The second task is simply predicting a
subsequent sentence, which helps the model gain a sense of
context. At the time of its release, BERT reached state-of-the-
art results in numerous benchmarks for language embedding
performance. For the experiments demonstrated in this paper,
the pretrained BERTBase model (12-layer architecture) was
used to demonstrate how powerful state-of-the-art word
embedding tools integrated with theories of functional
independence can be for measuring coupling in design.

Both semantic and sentiment understanding is a key goal of
language representation models such as word2vec and BERT
developed by social media companies (Facebook and Google
respectively). For example, a task of interest in this industry is
differentiating between sarcastic statements and text suggesting
the author wishes to seriously cause harm. This paper proposes
that the same tool can be used for design analysis in the
functional domain by representing functional requirements and
design parameters in vector space.

4. Measuring Functional Independence

Given the framework that Axiomatic Design provides for
translating FRs and DPs into linear algebra equations, and the
properties of the design matrix that relate to measures for
coupling in terms of Reangularity and Semiangularity,
language representation in the form of vectorized phrases
proves to be a valuable tool for assessing functional coupling
quantitatively. Rather than considering FRs and DPs as design
variables measured with units in disagreement such as the
faucet example where the units for flow rate [volume / time]
and temperature [degrees] are incongruous, we can instead
consider FRs and DPs as design statements positioned in the
same multidimensional vector space. In this space, contextual
relationships between phrases can lend an understanding of
coupling if manipulated correctly.

If we recall equation (2) which describes how multiple FR
and DP pairs are related via the design matrix [A], we can
consider a somewhat idealized case where the number of FRs
is equal to the number of DPs. This case is not necessarily
coupled or uncoupled. Leveraging any number of pre-trained
language representation models, each design statement (FR +
DP chosen) can be converted from a string of characters to an n
dimensional vector. Later, for demonstration purposes,
BERTsask will be used for this task. By inserting the statement
vectors into a design equation with m FR-DP pairs, we end up
with the following expression for equation 5.

[FRy,, FRy, - FRy ] [pP,,,DP,, - DP, |
S S A e

[FRuy FRy -+ FRy, | [DPy,, DPy, -+ DPy,, |
Now both the {FR} and {DP} matrices have dimensions m
by n where m represents the number of FR-DP pairs, and n
represents the dimensionality of the statement vectors. The
design matrix [A] still has dimensions m by m, and remains the

most interesting component of the expression. If we recall the
expressions for Reangularity R and Semiangularity S from

Apn o A
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equations 3 and 4, we see that using the values of elements from
[A], measures of functional coupling can be determined from
the vectorized design statements of equation 5. The matrix A
can be solved for using regression, and the value of R and S,
each on a scale of 0 to 1 can be computed. R values close to
zero indicate great similarity between DPs, while values closer
to 1 indicate orthogonality between DPs. However, even
orthogonal DPs can be coupled if not aligned with FRs in the
functional domain. S values close to 1 indicate perfect
alignment of FR-DP pairs, such that a design with perfect
functional independence would have an R and S value both of
1. The opportunities and limitations of directly inserting
statement vectors into the design equation are demonstrated in
the subsequent section.

5. Experiments

In this section, four designs of two separate products are
considered. For each product, an example of a coupled design
followed by a design where functional independence is
maintained are compared, and metrics for coupling are
computed using equation 5 to evaluate the design matrix, and
equations 3 and 4 to evaluate Reangularity R and
Semiangularity S. Each design is described by two FR-DP pairs
for simplicity. The design statements are converted to n-
dimensional vectors where n = 768 using a BERTBase pre-
trained model. The Hugging Face implementation [12] of
Devlin et. al's BERT model was used to produce sentence
embeddings for the following examples

5.1. Water Faucet

Consider the two common designs for a faucet, illustrated
previously in figure 1. The first design featuring separate valves
for hot and cold water flow is clearly coupled because adjusting
either knob affects both flow rate and temperature, making it
difficult for the user to control both at once. The FRs and DPs
for a fully coupled case can be expressed with matrices in
equation 6, and in natural language below.

=15 X10or) ®

Faucet (coupled):

FR1: Allow control of water temperature

FR2: Allow control of water flow rate

DP1: One valve to control flow rate of cold water
DP2: One valve to control flow rate of hot water

For the coupled case, R is 0.369, and S is 0.056. These
metrics suggest functional coupling in this design. Next, we
consider the second design illustrated in figure 1b, which
features a lever that when moved horizontally controls water
temperature, and when adjusted vertically increases flow rate.
This is a functionally independent case, described by equation
7, as the user can independently control temperature and flow
rate. The natural language description of the design is below.

st =15 o) g
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Faucet (uncoupled):

FR1: Allow control of water temperature

FR2: Allow control of water flow rate

DP1: One lever to control temperature of water
DP2: One lever to control flow rate of water

For this uncoupled case, R is 0.991 and S is 0.911. These
metrics reflect a nearly perfectly functionally independent
design. The isograms for each faucet design case can be used to
illustrate, in Figure 3, how the computed values of R and S
reflect functional coupling.

FR: 4 R=0369 |24 oP, R = 0.991
DP1  s-0.056 S =0.911
DP:
DP2
> FRy » FR;4

Fig. 3. Functional Domain Isograms for Coupled (left) and Uncoupled (right)
faucet design cases

5.2. Steam Engine

Next, we consider steam engine design from the 18th

century. For more than halfa century, the “Atmospheric” steam
engine designed by Thomas Newcomen in 1712 was the point
of reference for industry at the time, used extensively for a
number of applications for decades [13]. The engine cycle
operated by pulling a piston head upwards in a cylinder using
some application-related weight fixed to a pulley. During this
upstroke, a boiler injects steam into the piston-cylinder
assembly. To pull the piston head down again and raise the
weight at the end of the pulley, the cylinder is cooled to below
atmospheric pressure (hence the name) by spraying cold water
into the cylinder. This creates a partial vacuum which pulls the
piston back down to the bottom of the cylinder.
This is a case of coupled design because cooling and reheating
occurs in the same cylinder, increasing the cycle time needed to
create a partial vacuum before the next stroke. The design can
be described in natural language, decomposing the DP into two
DPs to address each FR.

Newcomen Steam Engine (coupled):

FR1: Lower pressure to a partial vacuum in the cylinder

FR2: Raise pressure back to atmosphere in the cylinder

DP1: Condense steam by cooling the cylinder with cold
water

DP2: Draw high temperature steam from the boiler into the
cylinder

For the coupled case, R is 0.004, and S is 0.596. The
especially low value for Reangularity suggests that the two DPs
are very similar and not orthogonal. Such a design where two
FRs are satisfied by one DP is inherently coupled and can be
described by equation 8.

(e )= [Jor) ®)

We can visualize these as isograms in the functional domain,
where they reflect the fact that the Newcomen engine uses one
DP to address two FRs, resulting in a coupled design, shown in
Figure 4. It was more than fifty years before James Watt, while
repairing a Newcomen engine, identified the inefficiencies of
its design and decoupled functionality by introducing a new
component: a condensation chamber which could be cooled
separately to create a vacuum to pull the piston down to the
bottom of the cylinder [13]. The James Watt steam engine
design can be described below in natural language, and is also
represented by equation 7.

Steam Engine (uncoupled):

FR1: Lower pressure to a partial vacuum in the cylinder

FR2: Raise pressure back to atmosphere in the cylinder

DP1: Draw steam into a separate low temperature
condensation chamber connected to the cylinder by a valve

DP2: Draw high temperature steam from the boiler into the
cylinder

For this uncoupled case, R is 0.437 and S is 0.892. The
addition of an independent design parameter (the condensation
chamber) is reflected in the increase in value of Reangularity.

FRz 4 op R=0004 FRe R = 0.437
" S = 0.596 DP; S =0.892
DPi.2
DP2
al > FR; » FRy

Fig. 4. Functional Domain Isograms for Single DP (coupled) (left) and
Uncoupled (right) steam engine design cases

The results of these demonstrations are summarized in Table 1.

Table 1. Results for Reangularity R and Semiangularity S.

Design Case Reangularity (R) Semiangularity (S)
Faucet (coupled) 0.369 0.056
Faucet (uncoupled) 0.991 0.911
Steam engine (coupled) 0.004 0.596
Steam engine (uncoupled) 0.437 0.892

6. Discussion

Two unique design areas were used to demonstrate the
applicability of language representation models such as BERT
in measuring functional independence. The faucet design case
yielded the most difference between metrics for coupled and
uncoupled designs. When statements are converted to vectors,
similar sentences and phrases occupy a closer location in vector
space than unrelated phrases. For the faucet design, it was very
simply stated in a succinct phrase in the uncoupled case that
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one DP clearly addressed temperature, and the other addressed
waterflow. The control of these two exact variables being the
top-level FRs meant high vector similarity, reflected in the
computed values for Reangularity and Semiangularity.

The single-DP coupled case of the Newcomen steam engine
showed how such designs can also be identified in vector space.
The solution to address each FR both resulted in
raising/lowering pressure in the same cylinder, leading to high
sentence similarity between DPs, reflected in the functional
domain where indeed one DP was being tasked to both FRs.
Reangularity of near zero reflects a design where the DPs are
nearly identical.

Design cases with no more than two FR — DP pairs were
demonstrated, with very precisely and concisely stated
descriptions. When integrated into a user-facing system, more
“noisy” descriptions can be expected from novice designers
attempting to make better design choices with this
computational aid. In the model’s current form, if the level of
“noise” in these descriptions is increased to the point where
they have inconsistencies, or convey only partially complete
information, then the feature representation model will less
consistently produce a vector indicating the key semantic
context of the sentence, depending on how poorly stated is the
input. For these cases, a pre-processing step would be needed
before the representation model could produce meaningful
vectors that accurately represent the semantics of each design
statement. Longer descriptions, possibly including multiple
sentences, with verbose descriptions, can be abstracted to key
FRs and DPs to provide concise and precise inputs to the
feature representation model.

7. Conclusion

The concept of functional independence in the case of
system design was introduced, and two metrics for quantifying
coupling were referenced as ways to compare alternative
design solutions for similar problems. Powerful tools in the
field of Natural Language processing, specifically deep
language representation models were also identified as being
relevant to the area of engineering design. At the intersection
of Axiomatic Design theory and these deep neural networks, an
area of applicability was discovered where design statements
in the form of Functional Requirements and Design Parameters
could be mapped to multidimensional vector space, and then
manipulated to evaluate certain designs and compare functional
coupling between various solutions.

For simple cases where the semantic similarity between
respective FR-DP pairs was unambiguous, the computed
metrics for functional coupling aligned with expectations for
these design cases. While the results of these experiments were
sometimes in agreement with AD theory, in the case where

coupling was not explicitly apparent to the language model
used, the wuncoupled design was evaluated as being
insignificantly different from the coupled case. For design
cases where functional independence is a result of isolating a
design parameter based on a law of nature with which the
sentence representation model is not familiar, the coupling
metrics prove not to be as meaningful. This limitation
highlights the need for further fine-tuning of the models to
ensure that laws of science are passed to the model during
training. This work provides a starting point for further
research leveraging the power of deep learning tools in the field
of systems design.
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