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SUMMARY

The latitudinal gradient of increasing marine biodiversity from the poles to the tropics is one of the most con-
spicuous biological patterns in modern oceans.' Low-latitude regions of the global ocean are often hotspots
of animal biodiversity, yet they are set to be most critically affected by anthropogenic climate change.* As
ocean temperatures rise and deoxygenation proceeds in the coming centuries, the volume of aerobically viable
habitat is predicted to decrease in these zones.?® In contrast to the slightly asymmetrical modern latitudinal
biodiversity gradient,” compilations of fossil occurrences indicate peaks in biodiversity may have existed
much further away from the equator in the past, with transitions between climate states hypothesized to explain
this trend.®'® We combine a new compilation of fossil mollusc occurrences, paleotemperature proxies, and
biogeographic data to reveal a non-monotonic relationship between temperature and diversity in the paleon-
tological record over the last 145 million years. We derive a metabolic model that integrates the kinetic effects of
temperature on biodiversity ' with the recently described Metabolic Index that calculates aerobic habitat avail-
ability based on the effect of temperature on hypoxia sensitivity.>'56 Although factors such as coastal habitat
area and homeothermy are important,'”'® we find strong congruence between our metabolic model and our
fossil and paleotemperature meta-analysis. We therefore suggest that the effects of ocean temperature on
the aerobic scope of marine ectotherms is a primary driver of migrating biodiversity peaks through geologic

time and will likely play a role in the restructuring of biodiversity under projected future climate scenarios.

RESULTS

Estimating temperature and biodiversity through time

In our analyses of temperature and biodiversity across the last 145
million years, we divided the globe into 24 equal-area latitudinal
bins. We then calculated sea surface temperature and diversity
for each of these latitudinal bins across ten time intervals that
have been chosen based on the availability of temperature proxy
data in the published literature with high-enough temporal and
geographic resolution and broad-enough latitudinal spread: the
Early Cretaceous (Berriasian to Barremian, 145-125 Ma), Campa-
nian (83.6-72.1 Ma), Maastrichtian (72.1-66 Ma), Late Paleocene
(59.2-56 Ma), Early Eocene (56-47.8 Ma), Middle Eocene (47.8-
37.8 Ma), Early Oligocene (33.9-27.82 Ma), Late Miocene (Serra-
vallian to Messinian, 13.82-5.333 Ma), Late Pliocene (3.333-2.58
Ma), and Modern. Although there is abundant temperature proxy
data for earlier time periods, the data are often limited to very nar-
row latitudinal ranges. To determine the modern temperature
gradient, we used objectively analyzed decadally averaged
annual mean sea surface temperature data at one-degree grid
resolution spanning 1955 to 2012 from the World Ocean Atlas
2013 V2."° To estimate temperature for the nine geological time

periods, we obtained sea surface temperature estimates and
associated paleolatitude estimates from previous compilations
based on terrestrial and marine proxies.?°* For each time inter-
val, we fit a generalized additive spline model to the data using
generalized cross validation. The model was then used to estimate
the average sea surface temperature within each latitudinal bin.
For biodiversity estimates, we used genus-level mollusc occur-
rences. Molluscs are ideal ectotherms for such analyses due to
their widespread geographic extent, abundance across marine
ecosystems, and high preservation potential in the fossil record.
We chose to estimate genus diversity for both the modern and
our geologic time periods, as fossil specimens are very often not
attributed to species. Although there has been debate as to
whether genera should be used as proxies for species in the fossil
record,?* broad-scale geographic diversity patterns are often
similar at both taxonomic levels.??° To calculate modern genus di-
versity, we downloaded mollusc occurrences from marine shelf
environments (less than 200 m water depth) from the Global Biodi-
versity Information Facility (https://www.gbif.org/occurrence/
download/0135238-200613084148143; summarized in Figure 1).
To calculate genus diversity in the fossil record, we downloaded
fossil mollusc occurrence data from the Paleobiology Database
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Figure 1. Density of raw mollusc occurrences plotted by time interval

Occurrences are binned within 5-degree by 5-degree hexagons for visualization purposes. Paleogeographic reconstructions are taken from GPlates.”® See

Figures S1A and S1B for a summary of occurrence distributions by latitude and temperature at the meta-analysis level.
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Figure 2. Examples of biodiversity and tem-
perature gradients during cold periods and
hot periods
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migrates to much higher latitudes during hot periods
(e.g., Early Cretaceous, maximum average annual
temperature is ~37°C). In the greenhouse period, the
diversity trough near the equator is further
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(https://paleobiodb.org; summarized in Figure 1). For each time in-
terval, we binned the occurrences within our 24 latitudinal bins us-
ing modern latitude or paleolatitude estimates.”® Despite known
geographic sampling biases in the fossil record,?”?® there is high
specimen coverage across all temperatures and latitudes of inter-
est, regardless of binning resolution (Figures S1A and S1B). Then,
we used shareholder quorum subsampling (SQS)?° with a quorum
of 0.25 and 100 trials to estimate the generic diversity within each
bin. We use this diversity metric to account for uneven preservation
and sampling of specimens.®*®" We show that this specific
quorum level (0.25) most effectively accounts for the possible cor-
relation of sampling and diversity, as high diversity can be esti-
mated even with small numbers of specimens (Figure S2A). For
each time interval, we also estimated the global generic diversity
using SQS with a quorum of 0.25 on the entire occurrence dataset.
We divided our latitudinal bin diversity estimates by their respec-
tive global diversity estimates to standardize them across time in-
tervals to proportional diversity.

To assess the relationship between temperature and propor-
tional generic diversity since the Cretaceous, we fit nine different
regression models to the data: linear; linear with one to four
breakpoints; quadratic; cubic; quartic; and a generalized addi-
tive spline (GAM). We then compared their fit to the data using
the corrected Akaike information criterion (AAICc and AlCc
weights).>? To address potential concerns regarding SQS or
sampling biases, we repeated this model fitting approach using
alternative diversity estimation methods and several sampling
cutoffs (STAR Methods).

Climate and migration of biodiversity peaks

In total, we had occurrence data for 198 latitude bins across the
nine geologic time intervals (Late Pliocene, 20; Late Miocene, 21;
Early Oligocene, 17; Middle Eocene, 20; Early Eocene, 15; Late
Paleocene, 13; Maastrichtian, 22; Campanian, 22; Berriasian-Bar-
remian, 24) and for the Modern (24 bins). The temperature esti-
mates for these bins range from —2°C to 37°C (271 to 310 K),
and the proportional diversity estimates range from 1% to 84%.
In time intervals with maximum temperatures below ~27°C (300
K; e.g., Modern, Late Pliocene, and Late Miocene), diversity tends
to peak at low latitudes (Figures 2 and S1C; note that the regres-
sions fit to the diversity data are for illustrative purposes only; we
did not interpolate diversity data for any analyses). This matches

BIOUSS) SOS [B101 10 uoniodoid

depressed, particularly relative to the diversity peak.
See Figure S1C for more details and other time pe-
riods. Note that the regressions fit to the diversity
data are for illustrative purposes only; we did not
interpolate diversity data for any analyses.

trends observed in many other Modern clades.”® However, time
intervals with maximum temperatures greater than ~27°C (300
K) (e.g., Early Eocene, Late Paleocene, and Berriasian-Barremian)
tend to exhibit more dramatic decreases in diversity near the equa-
tor, with peaks in diversity at higher latitudes (Figures 2 and
S1C).2"9 Although, in general, these latitudinal diversity gradient
reconstructions vary between different climate regimes, they
also have variation that is likely caused by biases, such as limited
sampling. The true diversity patterns may also be impacted by bi-
otic or abiotic factors, such as lack of shallow shelf area, nutrient
availability, and biotic interactions. To address these potential
sources of variation between time intervals, here, we combine all
these latitudinal gradients within our meta-analysis framework to
investigate the direct effects of temperature on biodiversity, rather
than comparing relative temperature differences reflected by lati-
tude across different climate regimes (Figures 3, S1A, and S1B).
Low-diversity estimates occur across the entire temperature range
of our meta-analysis but are most pronounced at the extremes.
However, high-diversity estimates (>50%) almost exclusively
occur in the middle of the temperature range, a trend that is robust
to sampling intensity (STAR Methods). Combined, this results in a
diversity-temperature relationship that peaks at moderate temper-
atures (15°C-25°C) and decreases outside of this range.

Our model fitting approach resulted in essentially no support
for a simple linear regression to summarize the relationship be-
tween proportional diversity and temperature (Table S1), regard-
less of diversity metric or sampling cutoff (Figure S2B). For the
main analysis described above, the model with the best relative
fit is a linear regression with a single breakpoint at 18.3°C (291.4
K; £3.2), with a slope of 0.12 for temperatures below this break-
point and a slope of —0.03 for temperatures above it (Figure 3).
The breakpoint temperature is robust to sampling, diversity
metric, and binning method (STAR Methods; Figure S3A).
Furthermore, the regression slope for lower temperatures is simi-
larly robust and indistinguishable from the empirical estimate of
Roy et al." based on marine prosobranch gastropods and the
theoretical range proposed by Gillooly and Allen®® using the
metabolic theory of ecology (STAR Methods; Figure S3B). Other
models with substantial support (<2 AAICc) include linear re-
gressions with two or three breakpoints and a generalized addi-
tive spline. These four models together account for more than
85% of the AICc weight (Table S1).
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Figure 3. Estimated percent generic diver-
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o sity and reconstructed temperature across

the modern and nine geologic time intervals
Each point represents percent generic diversity in
an equal-area latitudinal band from a given time
interval, with sea surface temperature for each
band determined from proxy data. The indepen-
dent variable of temperature is therefore explicitly
illustrated as a predictor of species diversity across
all geologicalintervals at once. The solid vertical line
indicates the best-fitting linear regression break-
point, with the dotted vertical lines representing
+1.96a. The black curve represents the best-fitting
breakpoint regression, with the gray region repre-
senting the 95% confidence interval. See Figures
S2 and S8 for sensitivity analysis results.

Ao and E, are species-specific physio-
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Temperature-driven metabolic tradeoffs

We developed a novel metabolic model that combines the ki-
netic relationship between temperature and biodiversity'*>*
and the predicted impact of temperature-dependent hypoxia
on aerobic niche availability.>'> Specifically, we propose that
the change in total taxonomic richness (Siot; Equation 1) per
unit temperature (T) is the sum of changes in richness predicted
by the temperature dependence of biochemical kinetics (Skinet)
and the temperature dependence of aerobic habitat viability
(Saerob):

d IN(Siet) _ d IN(Skinet) | d IN(Saeron)
dT dT dT

Our expression for Syinet is borrowed directly from Allen et al.'*
(Equation 2), where E is the activation energy of metabolism,
kg is the Boltzmann constant, and C; is a temperature-indepen-
dent constant:

—-E 1000
|I"I(Skinet) = (m) (?) +C1

Saerob is defined based on the Metabolic Index, a method devel-
oped to quantify the extent of viable aerobic habitat for marine
ectotherms (Equation 3):

(Equation 1)

(Equation 2)

Saerob: ZAOW > Ot

ke \T ~ Ter

(Equation 3)
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Late Pliocene (3.333 - 2.58 Ma)
Early Oligocene (33.9 - 27.82 Ma)
Early Eocene (56 — 47.8 Ma)
Maastrichtian (72.1 - 66 Ma)
Berriasian—Barremian (145 - 125 Ma)

30 of the energy required to sustain key
ecological activities versus resting meta-
bolism. ¢ is estimated based on the
biogeographic distribution of taxa for
which A, and E, are known. T is a refer-
ence temperature of 15°C, and pO, is the
partial pressure of oxygen in seawater.

We use a Monte Carlo approach to
generate uncertainty-bounded predic-
tions of diversity-temperature relationships in marine ectotherms.
E (Equation 2), the slope of the linear relationship defining %
in Allen et al.,'* is parameterized by a uniform distribution
describing updated calculations and associated uncertainty for
the activation energy of metabolism.** A,, E,, and ¢ are all indi-
vidually parameterized using probability density functions that
describe the physiological responses of 61 different marine ecto-
therm species (described in Penn et al.’® and Table S2). pO, is
parameterized by a uniform distribution defined by the 5" and
95" percentiles of observed modern sea surface values.** Initial
In(Stot) values are defined based on our best fit model and associ-
ated uncertainty presented in Figure 3, calibrating the relative pre-
dicted changes in biodiversity with temperature from our model to
observed data. We specifically highlight how the temperature
sensitivity of hypoxic thresholds (E,; Equation 3) relates to pre-
dicted biodiversity-temperature relationships. We therefore solve
our model at E,, values corresponding to the mean, mean + 0.5¢,
and mean + 1o of the normal distribution (Table S2) to produce the
analyses presented in Figure 4. See STAR Methods for further de-
tails of Monte Carlo approach and methods for solving differential
equations. We additionally present distributions of modeled
annual mean equatorial sea surface temperature (summarizing
spatial variation) from the HadGEM2-ES Earth system model®®
for preindustrial climate (based upon the year 1860) and Repre-
sentative/Extended Concentration Pathways 4.5 and 8.5°%°" for
the years 2100 and 2299, to aid comparison between our results
and future projected sea surface temperatures (Figure 4).
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Figure 4. Combined metabolic model
describing predicted relationships between
biodiversity and temperature

The dark purple envelope describes 2 SD esti-
mates of diversity for mean E, (temperature
sensitivity of hypoxic threshold). Lighter purple
envelopes illustrate the increased uncertainty of
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predicted diversity with 0.5 and 1 SD from mean
temperature sensitivity. Green line shows the
observed relationship between percent generic
diversity and temperature as summarized in Fig-
ure 3. Above the model, we illustrate the distri-
butions of monthly equatorial sea-surface tem-
peratures predicted for the years 2100 and 2299
under Representative and Extended Concentra-
tion Pathways (RCP/ECP) 4.5 and 8.5, relative to
historical model temperatures for 1860 from the
HadGEM2-ES model. Vertical white lines repre-
sent median values across the global surface
ocean, darker bars represent interquartile ranges
of spatial temperature variation, and lighter bars
represent 5™ and 95™ percentiles. See Figure S4
for results of sensitivity analysis using tempera-
ture sensitivity of individual mollusc species.

DISCUSSION

Although this study evaluates marine
biodiversity from the late Mesozoic
through Cenozoic, the principles laid
T l  out here may also serve as a framework

0 10 20

Sea Surface Temperature (°C)

Our combined metabolic model predicts the first-order rela-
tionship between temperature and marine biodiversity that we
observe in our analyses of primary data (Figure 4). The model
supports an approximately exponential increase in proportional
biodiversity below 20°C-25°C, in agreement with the metabolic
theory of ecology.'® At higher temperatures, aerobic limitation
becomes a dominant control and predicted biodiversity begins
to decline with increasing temperature, matching well with our
observations from the fossil record (Figure 4). At extreme tem-
perature sensitivities, our model can accommodate both a
continuous monotonic increase in diversity, as predicted by
the metabolic theory of ecology,’* and a precipitous drop, as
predicted by the Metabolic Index,*"*"® but both of these sce-
narios are unlikely, given the modern distributions of temperature
sensitivities.'®'® Of the 61 marine ectotherms used to construct
the probability density functions defining the E,, Ao, and ¢; dis-
tributions used in the Monte Carlo model, 7 are molluscs. How-
ever, we propose (as previous authors have)'® that the improved
sampling density of modern physiological responses that we
gain from including non-molluscan taxa improves the accuracy
of our model relative to using molluscan data alone. We further
demonstrate that we can capture the full range of temperature-
diversity relationships shown in Figure 3 using the individual
mollusc E, values from the Penn et al.'® dataset (Figure S4).

30 for interpreting the role of climate change
and physiology in driving biodiversity
trends deeper into the Phanerozoic.
For example, combined Earth system
and ecophysiological modeling of the
Permian-Triassic extinction suggests temperature-dependent
hypoxia tolerance predicts the latitudinal loss of biodiversity
observed across the boundary.'® Furthermore, the flattened
overall biodiversity gradient in the early Triassic®® can be linked
to persistently higher sea surface temperatures (>30°C-40°C)
than those in the modern equatorial ocean,**™*" as well as the
potentially compounding effects of widespread ocean deoxy-
genation.'®“*? Expanding studies like these to wider intervals of
the geologic record has exciting potential but in many cases
would require the generation of considerably more geochemical
data (and potentially more paleontological data).

In deep time, peaks in latitudinal biodiversity broadly corre-
spond with climate state;'® however, these patterns may also
be impacted by other factors, such as continental shelf area®®
and continental configuration.***° Also, there are inherent biases
associated with reconstructing these patterns of biodiversity
from the fossil record, including anthropogenic search intensity
and geographic sampling,“® taxonomic classification,*” animals
with hard parts preserving better than soft-bodied groups,*®
and time averaging of assemblages as they enter the fossil re-
cord.*® Furthermore, when reconstructing paleotemperatures,
marine and terrestrial environments may record slightly different
temperature histories, proxy data are unlikely to have sufficient
resolution to examine the impact of seasonality, and individual
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paleotemperature proxies have system-specific uncertainties
(e.g., the 580 proxy may be impacted by assumptions regarding
seawater isotope values and diagenetic alteration).°®>" Despite
these possible sources of uncertainty, our use of comprehensive
paleontological data and spatially extensive paleotemperature
proxy data within a meta-analysis framework has revealed a
strong connection between temperature and diversity through
Earth history.

Looking toward future climate projections, increases in green-
house gas concentrations leading to a global mean warming
of ~0.75°C to 2.75°C by the end of the 21%! century (Represen-
tative Concentration Pathways 2.6-8.5; Figure 4)*° will likely
result in continued dissolved oxygen loss and up to 6°C warming
of the upper tropical ocean by 2300 (Extended Concentration
Pathway 8.5; Figure 4).°” These changes will place many tropical
species with already limited acclimation potential®® at tempera-
ture and oxygen conditions that are beyond their aerobic thresh-
olds.®® At an ecosystem scale, this loss of aerobic scope will
likely affect biodiversity through disruption of complete life cy-
cles, including predator-prey dynamics, ontogeny, and repro-
duction, in addition to fragmentation of suitable physiological
habitats via poleward migration to extratropical latitudes
(>35°).°47°¢ Other factors, such as declines in primary produc-
tion, ocean acidification, overfishing, and dead zone expansion,
are also expected to exacerbate the effects of warming and
deoxygenation.””®° Given the expected impacts of these
stressors, it remains a critical unanswered question whether
the loss of tropical marine biodiversity will be recovered in the
coming centuries by long-term acclimation and physiological
adaptation.®%"

Our paleotemperature data compilation reveals that models
of upper ocean temperatures for 2300 predict similar thermal
maxima as those measured during hyperthermal events in the
geological record, such as the Paleocene-Eocene Thermal
Maximum and Early and Latest Cretaceous (Figures 4 and
S1C). Furthermore, fossil latitudinal biodiversity gradients of
molluscs from the past 145 million years show that, over
geological timescales, warmer-than-modern ocean climates
with sea surface temperatures above 24°C-27°C result in the
permanent extirpation of species richness from tropical lati-
tudes proportional to absolute seawater temperature. Our
model results demonstrate that temperature-driven loss of
aerobic scope explains this pattern (Figure 4). Of course,
many other factors are also expected to negatively impact
habitat viability during hyperthermal events, such as physical
changes to coral reef habitats (e.g., the impacts of reef
accumulation rates and structural complexity on total habitat
area and volume);®*®® however, our results demonstrate
that metabolism alone can account for a significant portion
of the observed trends. Given the geological timescale
of these patterns (millions of years), this suggests that
physiological adaptation of marine ectothermic animals is
insufficient to allow the repopulation of tropical latitudes
during hyperthermal intervals.®® These findings suggest that
contemporary emissions-driven warming will likely result in
a comparable loss of biodiversity in the tropical ocean as eco-
systems increasingly suffer from the chronic impacts of warm-
ing in the coming centuries, a trend that may have already
begun.'?
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study used fossil occurrence data from the Paleobiology Database (https://paleobiodb.org) and modern biogeographic occur-
rence data from the Global Biodiversity Information Facility (https://www.gbif.org). No new occurrence data was collected for this
study and no physical experiments were conducted.

METHOD DETAILS

Sampling Coverage
To visually assess the sampling coverage of our fossil mollusc occurrence dataset, we plotted the density of occurrences within each
time interval (Figure 1). The paleolatitude and paleolongitude coordinates of each occurrence were estimated using the GPlates rota-
tion model.® Points were binned within 5-degree by 5-degree hexagons. Some intervals have notable sampling geographic biases,
such as a lack of sampling in the Indopacific before the Miocene and limited Southern Hemisphere sampling in several intervals.
To visually assess whether this was a concern at the meta-analysis level, we used the combined modern and fossil mollusc occur-
rence dataset to calculate the number of occurrences within equal-area latitude bins (12, 24, 45, 90, or 180 bins). We then plotted
these occurrence sums (which represent fossil preservation and sampling intensity) against both the bins’ mean latitude/paleolati-
tude (Figure S1A) and mean estimated temperature/paleotemperature (Figure S1B). Despite sampling biases within individual inter-
vals (see above), at the meta-analysis level there is high specimen coverage across all temperatures and paleolatitudes.

Diversity Sensitivity Analyses

Alternative Methodologies

To demonstrate that the observed diversity pattern throughout the geologic record is robust to the methodology used to estimate
diversity, we performed additional analyses that cover a wide spectrum of alternative methodologies. We split the occurrence
data into a varying number of latitudinal bins (12, 24, 45, 90, and 180 bins), either based on equal areas (each bin has an identical
surface area) or equal width (each bin has an equal latitudinal width).We then used these binned occurrences to estimate genus
diversity in one of three ways: 1) rangethrough, in which taxa are assumed to occur at all points between their northernmost and
southernmost occurrences, then diversity is estimated as in the raw occurrences method; 2) raw occurrences, in which diversity
is estimated purely based on the raw number of unique genera that occur in a latitudinal bin; 3) shareholder quorum subsampling
(SQS; Locarnini et al.'), in which genera are drawn from the occurrences in a given bin until a given “quorum” of the population
is achieved based on the frequencies of the genera. We tested quorum values of 0.25, 0.5, and 0.75. For all quorum levels we per-
formed 100 trials. We also tested the inclusion and exclusion of modern data and the use of raw diversity estimates versus propor-
tional diversity estimates (each value is divided by the total generic diversity estimated using the same methodology). Altogether, this
resulted in 200 different combined occurrence binning and diversity estimation methodologies. The results of these alternative meth-
odologies were used for several of the following sensitivity analyses.

Sampling Effect on Diversity Estimation

To visually assess whether sampling intensity influenced diversity estimation, we plotted our latitudinal bin diversity estimates from all
of the alternative sensitivity methodologies (see above) against the number of specimens/occurrences within the latitudinal bins (Fig-
ure S2A). The raw and rangethrough methods suffer from high correlation between diversity estimates and sampling intensity. SQS
remedies this to varying degrees at different quorum levels. The 0.25 quorum level allows for high and low diversity estimates across
nearly the entire sampling intensity spectrum (30+ specimens). While there are some modern biodiversity hotspots that are notably
under-sampled in the fossil record (e.g., the Coral Triangle in the western Pacific Ocean, Figure 1, which was a tectonically active
region for most of the time interval studied and has been historically under-sampled by paleontologists), these analyses demonstrate
that we have good sampling across sea-surface temperatures. Geographic sampling biases therefore do not appear to have biased
our sampling of the relationship we are principally interested in, i.e., that between marine biodiversity and environmental temperature.
HadGEM2-ES Model Results

Past and projected future climate model results are illustrated in Figure 4 to contextualize the relevance of our analyses for future
climate change scenarios. We downloaded HadGEM2-ES results from the Centre for Environmental Data Analysis (https://data.
ceda.ac.uk/badc/cmip5/data/cmip5/output1/MOHC/HadGEM2-ES). For the equatorial temperature distributions presented in Fig-
ure 4, we downloaded monthly sea water potential temperature data spanning the years 1860 (Historical model), 2100 (Represen-
tative Concentration Pathway, RCP 4.5 and 8.5°%) and 2299 (Extended Concentration Pathway, ECP 4.5 and 8.5%"). For each model
scenario in each model year targeted, we computed 5, 25", 50™, 75" and 95" percentiles of monthly mean seawater potential tem-
perature for 0-10 m water depth across the central equatorial cells (0.34 to —0.34 degrees latitude).

QUANTIFICATION AND STATISTICAL ANALYSIS

Diversity Sensitivity Analyses

Breakpoint Bootstrap

To assess the robustness of the breakpoint estimation to data outliers, we performed a bootstrap analysis. Each bootstrap consisted
of sampling a new set of 198 latitudinal bins from the original compilation with replacement. We made 1000 of these bootstrap
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datasets and performed a single breakpoint linear regression on each one. We then calculated a weighted mean and standard de-
viation for the 1000 breakpoint estimates using 1/62 as the weights for the breakpoint estimates. This mean (17.6°C, 290.7K + 3.4) is
not significantly different from the breakpoint of the original analysis (18.3°C, 291.5K =+ 3.3).

Model Fitting

To assess the relationship between temperature and proportional generic diversity since the Cretaceous, we fit nine different regres-
sion models to the data: linear, linear with one to four breakpoints, quadratic, cubic, quartic, and a generalized additive spline (GAM).
We repeated this process 100 times to account for the randomness associated with the bootstrap algorithm used in the breakpoint
regression. We then compared the model fits using the corrected Akaike Information Criterion (AAICc and AICc weights).>* To
address potential concerns regarding SQS or sampling biases, we repeated this entire model fitting approach using a subset of
the alternative methods described above (all analyses used 24 equal-area bins) across three levels of sampling cutoffs (30, 50,
and 200 specimens within each bin) (Figure S2B). This approach resulted in essentially no support for a simple linear regression
to summarize the relationship between proportional diversity and temperature, regardless of diversity metric or sampling cutoff.
Diversity-Temperature Relationship Sensitivity

Once we had estimated genus diversity for each of alternative methodologies described above, we performed a breakpoint linear
regression on the diversity~temperature data. The estimated breakpoint is robust to binning and diversity estimation methodologies
(Figure S3A). We then extracted the slope of the diversity~temperature relationship for temperatures below the estimated break-
point, which is also robust to the sensitivity analyses, especially when modern data is included (Figure S3B). Additionally, most slope
estimates overlap with the estimate from Roy et al.” and the theoretical value from Gillooly and Allen®® (Figure S3B).

Combined Metabolic Model

We employ a Monte Carlo approach to model diversity-temperature relationships as described in Equations 1, 2, and 3. The distri-
butions used to parameterize the variables in our combined metabolic model are defined in Table S2. g "1‘0%’3"/9.}) is defined by a linear
relationship, as in AIIen et al.'* We sample a uniform distribution of £ values 100 times to incorporate uncertainty in the precise slope
of this relationship®® (Table S2). Changes in In (Sherob) With temperature are defined by the interaction of multiple parameters that are
individually described by probability density functions'® (Table S2). In this study, we focus on how the temperature-sensitivity of hyp-
oxic thresholds (E,, Equation 3) relates to predicted biodiversity-temperature relationships, defined by a normal distribution as in
Penn et al.'® (Table S2). We solve our model at £, values corresponding to the mean, mean + 0.5¢ and mean + 1o of this normal
distribution to produce the analyses presented in Figure 4. A, and ¢, are defined by log-normal distributions as in Penn et al.’®
(Table S2), each sampled 10,000 times. pO, is parameterized using a uniform distribution based on modern observations,'®** again
sampled 10,000 times. The same 10,000 Ao, ¢it, and pOy values are used in each E, iteration of our Monte Carlo analyses for
consistency. These 10,000 samples are combined to represent a total possible genus pool in our model space, the temperature-
sensitivity of which changes with each E, percentile. %‘gﬁ)) is computed separately for each E, percentile using discretization
to maximize accuracy, despite the complex non-linear relationships, in the same dimensional space as Allen et al. 4 The distribution
of initial values for the differential model is defined based on the best fit model of generic diversity and temperature presented in Fig-
ure 3 at the lowest modeled temperature (—1.71°C, 271.44 K), and the 95% confidence intervals of the entire general additive model.
Specifically, the mean 95% confidence interval of the segmented linear regression model is used to define the standard deviation of a
normal distribution intended to represent approximately the same level of uncertainty illustrated in Figure 3. The intercept of the
plotted metabolic model analyses was adjusted to minimize the residual sum of squares between the median metabolic model values
(median of distribution at median E,) and the best fit model presented in Figure 3. 100 initial values were randomly subsampled from
this normal distribution and are applied in each E, iteration of our Monte Carlo analysis. We note that the E,, Ao, and ¢,;; distributions
from Penn et al.'® are derived from a range of animal phyla, whereas our biodiversity data compilation (Figure 3) is based on molluscs
only. We propose (as previous authors have'®) that the improved sampling density of modern physiological responses that we gain
from including non-molluscan taxa improves the accuracy of our model relative to using mollusc data alone. We also show that we
can capture the full range of temperature-diversity relationships shown in Figure 3 using the individual mollusc E, values from the
Penn et al.’® dataset (Figure S4).
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