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SUMMARY
The latitudinal gradient of increasing marine biodiversity from the poles to the tropics is one of the most con-
spicuous biological patterns inmodern oceans.1–3 Low-latitude regions of the global ocean are often hotspots
of animal biodiversity, yet they are set to be most critically affected by anthropogenic climate change.4 As
ocean temperatures rise anddeoxygenationproceeds in thecomingcenturies, the volumeof aerobically viable
habitat is predicted to decrease in these zones.5,6 In contrast to the slightly asymmetrical modern latitudinal
biodiversity gradient,7 compilations of fossil occurrences indicate peaks in biodiversity may have existed
much further away from theequator in thepast,with transitionsbetweenclimate stateshypothesized toexplain
this trend.8–13 We combine a new compilation of fossil mollusc occurrences, paleotemperature proxies, and
biogeographic data to reveal a non-monotonic relationship between temperature and diversity in the paleon-
tological recordover the last 145millionyears.Wederiveametabolicmodel that integrates thekineticeffectsof
temperature onbiodiversity14with the recently describedMetabolic Index that calculatesaerobic habitat avail-
ability based on the effect of temperature on hypoxia sensitivity.5,15,16 Although factors such as coastal habitat
area and homeothermy are important,17,18 we find strong congruence between our metabolic model and our
fossil and paleotemperature meta-analysis. We therefore suggest that the effects of ocean temperature on
the aerobic scope of marine ectotherms is a primary driver of migrating biodiversity peaks through geologic
time and will likely play a role in the restructuring of biodiversity under projected future climate scenarios.
RESULTS

Estimating temperature and biodiversity through time
In our analysesof temperature andbiodiversity across the last 145

million years, we divided the globe into 24 equal-area latitudinal

bins. We then calculated sea surface temperature and diversity

for each of these latitudinal bins across ten time intervals that

have been chosen based on the availability of temperature proxy

data in the published literature with high-enough temporal and

geographic resolution and broad-enough latitudinal spread: the

Early Cretaceous (Berriasian to Barremian, 145–125Ma), Campa-

nian (83.6–72.1 Ma), Maastrichtian (72.1–66 Ma), Late Paleocene

(59.2–56 Ma), Early Eocene (56–47.8 Ma), Middle Eocene (47.8–

37.8 Ma), Early Oligocene (33.9–27.82 Ma), Late Miocene (Serra-

vallian to Messinian, 13.82–5.333 Ma), Late Pliocene (3.333–2.58

Ma), and Modern. Although there is abundant temperature proxy

data for earlier time periods, the data are often limited to very nar-

row latitudinal ranges. To determine the modern temperature

gradient, we used objectively analyzed decadally averaged

annual mean sea surface temperature data at one-degree grid

resolution spanning 1955 to 2012 from the World Ocean Atlas

2013 V2.19 To estimate temperature for the nine geological time
periods, we obtained sea surface temperature estimates and

associated paleolatitude estimates from previous compilations

based on terrestrial and marine proxies.20–23 For each time inter-

val, we fit a generalized additive spline model to the data using

generalizedcrossvalidation. Themodelwas thenused toestimate

the average sea surface temperature within each latitudinal bin.

For biodiversity estimates, we used genus-level mollusc occur-

rences. Molluscs are ideal ectotherms for such analyses due to

their widespread geographic extent, abundance across marine

ecosystems, and high preservation potential in the fossil record.

We chose to estimate genus diversity for both the modern and

our geologic time periods, as fossil specimens are very often not

attributed to species. Although there has been debate as to

whether genera should be used as proxies for species in the fossil

record,24 broad-scale geographic diversity patterns are often

similar at both taxonomic levels.2,25 Tocalculatemoderngenus di-

versity, we downloaded mollusc occurrences from marine shelf

environments (less than 200mwater depth) from theGlobal Biodi-

versity Information Facility (https://www.gbif.org/occurrence/

download/0135238-200613084148143; summarized in Figure 1).

To calculate genus diversity in the fossil record, we downloaded

fossil mollusc occurrence data from the Paleobiology Database
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Figure 1. Density of raw mollusc occurrences plotted by time interval

Occurrences are binned within 5-degree by 5-degree hexagons for visualization purposes. Paleogeographic reconstructions are taken from GPlates.26 See

Figures S1A and S1B for a summary of occurrence distributions by latitude and temperature at the meta-analysis level.
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Figure 2. Examples of biodiversity and tem-

perature gradients during cold periods and

hot periods

Colored envelopes indicate 95% regression confi-

dence intervals (approximately zero for modern

temperature regression). During cold periods (e.g.,

Modern, maximum average annual temperature is

~28�C, purple solid line), biodiversity (green dashed

lines)peaksat low latitudes,but thebiodiversitypeak

migrates tomuch higher latitudes during hot periods

(e.g., Early Cretaceous, maximum average annual

temperature is~37�C). In the greenhouseperiod, the
diversity trough near the equator is further

depressed, particularly relative to the diversity peak.

See Figure S1C for more details and other time pe-

riods. Note that the regressions fit to the diversity

data are for illustrative purposes only; we did not

interpolate diversity data for any analyses.
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(https://paleobiodb.org; summarized inFigure 1). For each time in-

terval, we binned the occurrenceswithin our 24 latitudinal bins us-

ing modern latitude or paleolatitude estimates.26 Despite known

geographic sampling biases in the fossil record,27,28 there is high

specimen coverage across all temperatures and latitudes of inter-

est, regardless of binning resolution (Figures S1A and S1B). Then,

we used shareholder quorum subsampling (SQS)29with a quorum

of 0.25 and 100 trials to estimate the generic diversity within each

bin.Weuse thisdiversitymetric toaccount forunevenpreservation

and sampling of specimens.30,31 We show that this specific

quorum level (0.25) most effectively accounts for the possible cor-

relation of sampling and diversity, as high diversity can be esti-

mated even with small numbers of specimens (Figure S2A). For

each time interval, we also estimated the global generic diversity

usingSQSwith a quorumof 0.25 on the entire occurrencedataset.

We divided our latitudinal bin diversity estimates by their respec-

tive global diversity estimates to standardize them across time in-

tervals to proportional diversity.

To assess the relationship between temperature and propor-

tional generic diversity since the Cretaceous, we fit nine different

regression models to the data: linear; linear with one to four

breakpoints; quadratic; cubic; quartic; and a generalized addi-

tive spline (GAM). We then compared their fit to the data using

the corrected Akaike information criterion (DAICc and AICc

weights).32 To address potential concerns regarding SQS or

sampling biases, we repeated this model fitting approach using

alternative diversity estimation methods and several sampling

cutoffs (STAR Methods).

Climate and migration of biodiversity peaks
In total, we had occurrence data for 198 latitude bins across the

nine geologic time intervals (Late Pliocene, 20; Late Miocene, 21;

Early Oligocene, 17; Middle Eocene, 20; Early Eocene, 15; Late

Paleocene, 13;Maastrichtian, 22; Campanian, 22; Berriasian-Bar-

remian, 24) and for the Modern (24 bins). The temperature esti-

mates for these bins range from �2�C to 37�C (271 to 310 K),

and the proportional diversity estimates range from 1% to 84%.

In time intervals with maximum temperatures below �27�C (300

K; e.g., Modern, Late Pliocene, and LateMiocene), diversity tends

to peak at low latitudes (Figures 2 and S1C; note that the regres-

sions fit to the diversity data are for illustrative purposes only; we

did not interpolate diversity data for any analyses). This matches
trends observed in many other Modern clades.2,3 However, time

intervals with maximum temperatures greater than �27�C (300

K) (e.g., Early Eocene, Late Paleocene, and Berriasian-Barremian)

tend toexhibitmoredramaticdecreases indiversity near theequa-

tor, with peaks in diversity at higher latitudes (Figures 2 and

S1C).8,10 Although, in general, these latitudinal diversity gradient

reconstructions vary between different climate regimes, they

also have variation that is likely caused by biases, such as limited

sampling. The true diversity patterns may also be impacted by bi-

otic or abiotic factors, such as lack of shallow shelf area, nutrient

availability, and biotic interactions. To address these potential

sources of variation between time intervals, here, we combine all

these latitudinal gradients within our meta-analysis framework to

investigate the direct effects of temperature on biodiversity, rather

than comparing relative temperature differences reflected by lati-

tude across different climate regimes (Figures 3, S1A, and S1B).

Low-diversityestimatesoccuracross theentire temperature range

of our meta-analysis but are most pronounced at the extremes.

However, high-diversity estimates (>50%) almost exclusively

occur in themiddle of the temperature range, a trend that is robust

to sampling intensity (STARMethods). Combined, this results in a

diversity-temperature relationship thatpeaksatmoderate temper-

atures (15�C–25�C) and decreases outside of this range.

Our model fitting approach resulted in essentially no support

for a simple linear regression to summarize the relationship be-

tween proportional diversity and temperature (Table S1), regard-

less of diversity metric or sampling cutoff (Figure S2B). For the

main analysis described above, the model with the best relative

fit is a linear regression with a single breakpoint at 18.3�C (291.4

K; ±3.2), with a slope of 0.12 for temperatures below this break-

point and a slope of �0.03 for temperatures above it (Figure 3).

The breakpoint temperature is robust to sampling, diversity

metric, and binning method (STAR Methods; Figure S3A).

Furthermore, the regression slope for lower temperatures is simi-

larly robust and indistinguishable from the empirical estimate of

Roy et al.1 based on marine prosobranch gastropods and the

theoretical range proposed by Gillooly and Allen33 using the

metabolic theory of ecology (STAR Methods; Figure S3B). Other

models with substantial support (<2 DAICc) include linear re-

gressions with two or three breakpoints and a generalized addi-

tive spline. These four models together account for more than

85% of the AICc weight (Table S1).
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Figure 3. Estimated percent generic diver-

sity and reconstructed temperature across

themodern and nine geologic time intervals

Each point represents percent generic diversity in

an equal-area latitudinal band from a given time

interval, with sea surface temperature for each

band determined from proxy data. The indepen-

dent variable of temperature is therefore explicitly

illustrated as a predictor of species diversity across

all geological intervals atonce. Thesolid vertical line

indicates the best-fitting linear regression break-

point, with the dotted vertical lines representing

±1.96s. The black curve represents the best-fitting

breakpoint regression, with the gray region repre-

senting the 95% confidence interval. See Figures

S2 and S3 for sensitivity analysis results.
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Temperature-driven metabolic tradeoffs
We developed a novel metabolic model that combines the ki-

netic relationship between temperature and biodiversity14,33

and the predicted impact of temperature-dependent hypoxia

on aerobic niche availability.5,15 Specifically, we propose that

the change in total taxonomic richness (Stot; Equation 1) per

unit temperature (T) is the sum of changes in richness predicted

by the temperature dependence of biochemical kinetics (Skinet)

and the temperature dependence of aerobic habitat viability

(Saerob):

d lnðStotÞ
d T

=
d lnðSkinetÞ

d T
+
d lnðSaerobÞ

d T
(Equation 1)

Our expression for Skinet is borrowed directly from Allen et al.14

(Equation 2), where E is the activation energy of metabolism,

kB is the Boltzmann constant, and C1 is a temperature-indepen-

dent constant:

lnðSkinetÞ =
� �E

1000 kB

��
1000

T

�
+C1 (Equation 2)

Saerob is defined based on the Metabolic Index, a method devel-

oped to quantify the extent of viable aerobic habitat for marine

ectotherms (Equation 3):

Saerob =
X

Ao

pO2

exp �Eo

kB

1
T
� 1

Tref

� �h i > fcrit (Equation 3)
4 Current Biology 31, 1–8, July 12, 2021
Ao and Eo are species-specific physio-

logical traits. Ao is the inverse of a spe-

cies’ hypoxic threshold (i.e., the mini-

mum pO2 at which resting metabolism

can be sustained), and Eo is the temper-

ature dependency of Ao. fcrit is the ratio

of the energy required to sustain key

ecological activities versus resting meta-

bolism. fcrit is estimated based on the

biogeographic distribution of taxa for

whichAo and Eo are known. Tref is a refer-

ence temperature of 15�C, and pO2 is the

partial pressure of oxygen in seawater.

We use a Monte Carlo approach to

generate uncertainty-bounded predic-
tions of diversity-temperature relationships inmarine ectotherms.

E (Equation 2), the slope of the linear relationship defining d lnðSKinetÞ
d ð1000=TÞ

in Allen et al.,14 is parameterized by a uniform distribution

describing updated calculations and associated uncertainty for

the activation energy ofmetabolism.33Ao,Eo, andfcrit are all indi-

vidually parameterized using probability density functions that

describe the physiological responses of 61 different marine ecto-

therm species (described in Penn et al.15 and Table S2). pO2 is

parameterized by a uniform distribution defined by the 5th and

95th percentiles of observed modern sea surface values.34 Initial

ln(Stot) values are defined based on our best fit model and associ-

ated uncertainty presented in Figure 3, calibrating the relative pre-

dicted changes in biodiversitywith temperature fromourmodel to

observed data. We specifically highlight how the temperature

sensitivity of hypoxic thresholds (Eo; Equation 3) relates to pre-

dicted biodiversity-temperature relationships. We therefore solve

our model at Eo values corresponding to the mean, mean ± 0.5s,

andmean±1sof thenormal distribution (TableS2) to produce the

analyses presented in Figure 4. See STARMethods for further de-

tails ofMonte Carlo approach andmethods for solving differential

equations. We additionally present distributions of modeled

annual mean equatorial sea surface temperature (summarizing

spatial variation) from the HadGEM2-ES Earth system model35

for preindustrial climate (based upon the year 1860) and Repre-

sentative/Extended Concentration Pathways 4.5 and 8.536,37 for

the years 2100 and 2299, to aid comparison between our results

and future projected sea surface temperatures (Figure 4).
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Figure 4. Combined metabolic model

describing predicted relationships between

biodiversity and temperature

The dark purple envelope describes 2 SD esti-

mates of diversity for mean Eo (temperature

sensitivity of hypoxic threshold). Lighter purple

envelopes illustrate the increased uncertainty of

predicted diversity with 0.5 and 1 SD from mean

temperature sensitivity. Green line shows the

observed relationship between percent generic

diversity and temperature as summarized in Fig-

ure 3. Above the model, we illustrate the distri-

butions of monthly equatorial sea-surface tem-

peratures predicted for the years 2100 and 2299

under Representative and Extended Concentra-

tion Pathways (RCP/ECP) 4.5 and 8.5, relative to

historical model temperatures for 1860 from the

HadGEM2-ES model. Vertical white lines repre-

sent median values across the global surface

ocean, darker bars represent interquartile ranges

of spatial temperature variation, and lighter bars

represent 5th and 95th percentiles. See Figure S4

for results of sensitivity analysis using tempera-

ture sensitivity of individual mollusc species.
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Our combined metabolic model predicts the first-order rela-

tionship between temperature and marine biodiversity that we

observe in our analyses of primary data (Figure 4). The model

supports an approximately exponential increase in proportional

biodiversity below 20�C–25�C, in agreement with the metabolic

theory of ecology.14 At higher temperatures, aerobic limitation

becomes a dominant control and predicted biodiversity begins

to decline with increasing temperature, matching well with our

observations from the fossil record (Figure 4). At extreme tem-

perature sensitivities, our model can accommodate both a

continuous monotonic increase in diversity, as predicted by

the metabolic theory of ecology,14 and a precipitous drop, as

predicted by the Metabolic Index,5,15,16 but both of these sce-

narios are unlikely, given themodern distributions of temperature

sensitivities.15,16 Of the 61 marine ectotherms used to construct

the probability density functions defining the Eo, Ao, andfcrit dis-

tributions used in the Monte Carlo model, 7 are molluscs. How-

ever, we propose (as previous authors have)15 that the improved

sampling density of modern physiological responses that we

gain from including non-molluscan taxa improves the accuracy

of our model relative to using molluscan data alone. We further

demonstrate that we can capture the full range of temperature-

diversity relationships shown in Figure 3 using the individual

mollusc Eo values from the Penn et al.15 dataset (Figure S4).
DISCUSSION

Although this study evaluates marine

biodiversity from the late Mesozoic

through Cenozoic, the principles laid

out here may also serve as a framework

for interpreting the role of climate change

and physiology in driving biodiversity

trends deeper into the Phanerozoic.

For example, combined Earth system

and ecophysiological modeling of the
Permian-Triassic extinction suggests temperature-dependent

hypoxia tolerance predicts the latitudinal loss of biodiversity

observed across the boundary.15 Furthermore, the flattened

overall biodiversity gradient in the early Triassic38 can be linked

to persistently higher sea surface temperatures (>30�C–40�C)
than those in the modern equatorial ocean,39–41 as well as the

potentially compounding effects of widespread ocean deoxy-

genation.15,42 Expanding studies like these to wider intervals of

the geologic record has exciting potential but in many cases

would require the generation of considerably more geochemical

data (and potentially more paleontological data).

In deep time, peaks in latitudinal biodiversity broadly corre-

spond with climate state;10 however, these patterns may also

be impacted by other factors, such as continental shelf area43

and continental configuration.44,45 Also, there are inherent biases

associated with reconstructing these patterns of biodiversity

from the fossil record, including anthropogenic search intensity

and geographic sampling,46 taxonomic classification,47 animals

with hard parts preserving better than soft-bodied groups,48

and time averaging of assemblages as they enter the fossil re-

cord.49 Furthermore, when reconstructing paleotemperatures,

marine and terrestrial environments may record slightly different

temperature histories, proxy data are unlikely to have sufficient

resolution to examine the impact of seasonality, and individual
Current Biology 31, 1–8, July 12, 2021 5
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paleotemperature proxies have system-specific uncertainties

(e.g., the d18O proxymay be impacted by assumptions regarding

seawater isotope values and diagenetic alteration).50,51 Despite

these possible sources of uncertainty, our use of comprehensive

paleontological data and spatially extensive paleotemperature

proxy data within a meta-analysis framework has revealed a

strong connection between temperature and diversity through

Earth history.

Looking toward future climate projections, increases in green-

house gas concentrations leading to a global mean warming

of �0.75�C to 2.75�C by the end of the 21st century (Represen-

tative Concentration Pathways 2.6–8.5; Figure 4)36 will likely

result in continued dissolved oxygen loss and up to 6�Cwarming

of the upper tropical ocean by 2300 (Extended Concentration

Pathway 8.5; Figure 4).37 These changes will place many tropical

species with already limited acclimation potential52 at tempera-

ture and oxygen conditions that are beyond their aerobic thresh-

olds.53 At an ecosystem scale, this loss of aerobic scope will

likely affect biodiversity through disruption of complete life cy-

cles, including predator-prey dynamics, ontogeny, and repro-

duction, in addition to fragmentation of suitable physiological

habitats via poleward migration to extratropical latitudes

(>35�).5,54–56 Other factors, such as declines in primary produc-

tion, ocean acidification, overfishing, and dead zone expansion,

are also expected to exacerbate the effects of warming and

deoxygenation.57–60 Given the expected impacts of these

stressors, it remains a critical unanswered question whether

the loss of tropical marine biodiversity will be recovered in the

coming centuries by long-term acclimation and physiological

adaptation.60,61

Our paleotemperature data compilation reveals that models

of upper ocean temperatures for 2300 predict similar thermal

maxima as those measured during hyperthermal events in the

geological record, such as the Paleocene-Eocene Thermal

Maximum and Early and Latest Cretaceous (Figures 4 and

S1C). Furthermore, fossil latitudinal biodiversity gradients of

molluscs from the past 145 million years show that, over

geological timescales, warmer-than-modern ocean climates

with sea surface temperatures above 24�C–27�C result in the

permanent extirpation of species richness from tropical lati-

tudes proportional to absolute seawater temperature. Our

model results demonstrate that temperature-driven loss of

aerobic scope explains this pattern (Figure 4). Of course,

many other factors are also expected to negatively impact

habitat viability during hyperthermal events, such as physical

changes to coral reef habitats (e.g., the impacts of reef

accumulation rates and structural complexity on total habitat

area and volume);62,63 however, our results demonstrate

that metabolism alone can account for a significant portion

of the observed trends. Given the geological timescale

of these patterns (millions of years), this suggests that

physiological adaptation of marine ectothermic animals is

insufficient to allow the repopulation of tropical latitudes

during hyperthermal intervals.56 These findings suggest that

contemporary emissions-driven warming will likely result in

a comparable loss of biodiversity in the tropical ocean as eco-

systems increasingly suffer from the chronic impacts of warm-

ing in the coming centuries, a trend that may have already

begun.12
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study used fossil occurrence data from the Paleobiology Database (https://paleobiodb.org) and modern biogeographic occur-

rence data from the Global Biodiversity Information Facility (https://www.gbif.org). No new occurrence data was collected for this

study and no physical experiments were conducted.

METHOD DETAILS

Sampling Coverage
To visually assess the sampling coverage of our fossil mollusc occurrence dataset, we plotted the density of occurrences within each

time interval (Figure 1). The paleolatitude and paleolongitude coordinates of each occurrence were estimated using the GPlates rota-

tion model.26 Points were binned within 5-degree by 5-degree hexagons. Some intervals have notable sampling geographic biases,

such as a lack of sampling in the Indopacific before the Miocene and limited Southern Hemisphere sampling in several intervals.

To visually assess whether this was a concern at the meta-analysis level, we used the combined modern and fossil mollusc occur-

rence dataset to calculate the number of occurrences within equal-area latitude bins (12, 24, 45, 90, or 180 bins). We then plotted

these occurrence sums (which represent fossil preservation and sampling intensity) against both the bins’ mean latitude/paleolati-

tude (Figure S1A) and mean estimated temperature/paleotemperature (Figure S1B). Despite sampling biases within individual inter-

vals (see above), at the meta-analysis level there is high specimen coverage across all temperatures and paleolatitudes.

Diversity Sensitivity Analyses
Alternative Methodologies

To demonstrate that the observed diversity pattern throughout the geologic record is robust to the methodology used to estimate

diversity, we performed additional analyses that cover a wide spectrum of alternative methodologies. We split the occurrence

data into a varying number of latitudinal bins (12, 24, 45, 90, and 180 bins), either based on equal areas (each bin has an identical

surface area) or equal width (each bin has an equal latitudinal width).We then used these binned occurrences to estimate genus

diversity in one of three ways: 1) rangethrough, in which taxa are assumed to occur at all points between their northernmost and

southernmost occurrences, then diversity is estimated as in the raw occurrences method; 2) raw occurrences, in which diversity

is estimated purely based on the raw number of unique genera that occur in a latitudinal bin; 3) shareholder quorum subsampling

(SQS; Locarnini et al.19), in which genera are drawn from the occurrences in a given bin until a given ‘‘quorum’’ of the population

is achieved based on the frequencies of the genera. We tested quorum values of 0.25, 0.5, and 0.75. For all quorum levels we per-

formed 100 trials. We also tested the inclusion and exclusion of modern data and the use of raw diversity estimates versus propor-

tional diversity estimates (each value is divided by the total generic diversity estimated using the samemethodology). Altogether, this

resulted in 200 different combined occurrence binning and diversity estimation methodologies. The results of these alternative meth-

odologies were used for several of the following sensitivity analyses.

Sampling Effect on Diversity Estimation

To visually assesswhether sampling intensity influenced diversity estimation, we plotted our latitudinal bin diversity estimates from all

of the alternative sensitivity methodologies (see above) against the number of specimens/occurrences within the latitudinal bins (Fig-

ure S2A). The raw and rangethrough methods suffer from high correlation between diversity estimates and sampling intensity. SQS

remedies this to varying degrees at different quorum levels. The 0.25 quorum level allows for high and low diversity estimates across

nearly the entire sampling intensity spectrum (30+ specimens). While there are some modern biodiversity hotspots that are notably

under-sampled in the fossil record (e.g., the Coral Triangle in the western Pacific Ocean, Figure 1, which was a tectonically active

region for most of the time interval studied and has been historically under-sampled by paleontologists), these analyses demonstrate

that we have good sampling across sea-surface temperatures. Geographic sampling biases therefore do not appear to have biased

our sampling of the relationship we are principally interested in, i.e., that betweenmarine biodiversity and environmental temperature.

HadGEM2-ES Model Results

Past and projected future climate model results are illustrated in Figure 4 to contextualize the relevance of our analyses for future

climate change scenarios. We downloaded HadGEM2-ES results from the Centre for Environmental Data Analysis (https://data.

ceda.ac.uk/badc/cmip5/data/cmip5/output1/MOHC/HadGEM2-ES). For the equatorial temperature distributions presented in Fig-

ure 4, we downloaded monthly sea water potential temperature data spanning the years 1860 (Historical model), 2100 (Represen-

tative Concentration Pathway, RCP 4.5 and 8.536) and 2299 (Extended Concentration Pathway, ECP 4.5 and 8.537). For each model

scenario in eachmodel year targeted, we computed 5th, 25th, 50th, 75th and 95th percentiles of monthly mean seawater potential tem-

perature for 0-10 m water depth across the central equatorial cells (0.34 to �0.34 degrees latitude).

QUANTIFICATION AND STATISTICAL ANALYSIS

Diversity Sensitivity Analyses
Breakpoint Bootstrap

To assess the robustness of the breakpoint estimation to data outliers, we performed a bootstrap analysis. Each bootstrap consisted

of sampling a new set of 198 latitudinal bins from the original compilation with replacement. We made 1000 of these bootstrap
e2 Current Biology 31, 1–8.e1–e3, July 12, 2021
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datasets and performed a single breakpoint linear regression on each one. We then calculated a weighted mean and standard de-

viation for the 1000 breakpoint estimates using 1/s2 as the weights for the breakpoint estimates. This mean (17.6�C, 290.7K ± 3.4) is

not significantly different from the breakpoint of the original analysis (18.3�C, 291.5K ± 3.3).

Model Fitting

To assess the relationship between temperature and proportional generic diversity since the Cretaceous, we fit nine different regres-

sion models to the data: linear, linear with one to four breakpoints, quadratic, cubic, quartic, and a generalized additive spline (GAM).

We repeated this process 100 times to account for the randomness associated with the bootstrap algorithm used in the breakpoint

regression. We then compared the model fits using the corrected Akaike Information Criterion (DAICc and AICc weights).32 To

address potential concerns regarding SQS or sampling biases, we repeated this entire model fitting approach using a subset of

the alternative methods described above (all analyses used 24 equal-area bins) across three levels of sampling cutoffs (30, 50,

and 200 specimens within each bin) (Figure S2B). This approach resulted in essentially no support for a simple linear regression

to summarize the relationship between proportional diversity and temperature, regardless of diversity metric or sampling cutoff.

Diversity-Temperature Relationship Sensitivity

Once we had estimated genus diversity for each of alternative methodologies described above, we performed a breakpoint linear

regression on the diversity�temperature data. The estimated breakpoint is robust to binning and diversity estimation methodologies

(Figure S3A). We then extracted the slope of the diversity�temperature relationship for temperatures below the estimated break-

point, which is also robust to the sensitivity analyses, especially when modern data is included (Figure S3B). Additionally, most slope

estimates overlap with the estimate from Roy et al.1 and the theoretical value from Gillooly and Allen33 (Figure S3B).

Combined Metabolic Model

We employ a Monte Carlo approach to model diversity-temperature relationships as described in Equations 1, 2, and 3. The distri-

butions used to parameterize the variables in our combined metabolic model are defined in Table S2. d lnðSKinetÞ
d ð1000=TÞ is defined by a linear

relationship, as in Allen et al.14 We sample a uniform distribution of E values 100 times to incorporate uncertainty in the precise slope

of this relationship33 (Table S2). Changes in ln ðSAerobÞwith temperature are defined by the interaction of multiple parameters that are

individually described by probability density functions15 (Table S2). In this study, we focus on how the temperature-sensitivity of hyp-

oxic thresholds (Eo, Equation 3) relates to predicted biodiversity-temperature relationships, defined by a normal distribution as in

Penn et al.15 (Table S2). We solve our model at Eo values corresponding to the mean, mean ± 0.5s and mean ± 1s of this normal

distribution to produce the analyses presented in Figure 4. Ao and fcrit are defined by log-normal distributions as in Penn et al.15

(Table S2), each sampled 10,000 times. pO2 is parameterized using a uniform distribution based on modern observations,19,34 again

sampled 10,000 times. The same 10,000 Ao, fcrit, and pO2 values are used in each Eo iteration of our Monte Carlo analyses for

consistency. These 10,000 samples are combined to represent a total possible genus pool in our model space, the temperature-

sensitivity of which changes with each Eo percentile. d lnðSAerobÞ
dð1000=TÞ is computed separately for each Eo percentile using discretization

to maximize accuracy, despite the complex non-linear relationships, in the same dimensional space as Allen et al.14 The distribution

of initial values for the differential model is defined based on the best fit model of generic diversity and temperature presented in Fig-

ure 3 at the lowest modeled temperature (�1.71�C, 271.44 K), and the 95% confidence intervals of the entire general additive model.

Specifically, themean 95%confidence interval of the segmented linear regressionmodel is used to define the standard deviation of a

normal distribution intended to represent approximately the same level of uncertainty illustrated in Figure 3. The intercept of the

plottedmetabolic model analyses was adjusted tominimize the residual sumof squares between themedianmetabolic model values

(median of distribution at median Eo) and the best fit model presented in Figure 3. 100 initial values were randomly subsampled from

this normal distribution and are applied in each Eo iteration of our Monte Carlo analysis. We note that the Eo, Ao, andfcrit distributions

from Penn et al.15 are derived from a range of animal phyla, whereas our biodiversity data compilation (Figure 3) is based onmolluscs

only. We propose (as previous authors have15) that the improved sampling density of modern physiological responses that we gain

from including non-molluscan taxa improves the accuracy of our model relative to using mollusc data alone. We also show that we

can capture the full range of temperature-diversity relationships shown in Figure 3 using the individual mollusc Eo values from the

Penn et al.15 dataset (Figure S4).
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