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Abstract

In this paper, we develop a drift homotopy implicit particle filter method.
The methodology of our approach is to adopt the concept of drift homotopy in
the resampling procedure of the particle filter method for solving the nonlinear
filtering problem, and we introduce an implicit particle filter method to improve
the efficiency of the drift homotopy resampling procedure. Numerical experiments
are carried out to demonstrate the effectiveness and efficiency of our drift homotopy
implicit particle filter.
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1 Introduction

The goal of nonlinear filtering problems is to make the best estimation for the state
of some stochastic dynamical system based on its partial noisy observations. As a key
mathematical tool for data assimilation, nonlinear filtering methods have various appli-
cations in many scientific and engineering areas, such as weather forecasting, parameter
estimation, signal processing, target tracking, and machine learning [34].

There are two types of approaches to solve the nonlinear filtering problem. The first
type formulates the conditional distribution of the state of the target dynamical system
by stochastic partial (or ordinary) differential equations, and then computes approxi-
mated distributions through numerical solutions of the equations [5–13, 16, 21, 26, 35].
The other type of approach is called the “Bayesian filter”, in which Bayesian inference is
used to incorporate observational data into the dynamical model to estimate the state.
In this work, we focus on the Bayesian approach due to its wide acceptance by prac-
titioners. There are two categories of Bayesian filter: Kalman-type filters and particle
filters. The main idea of Kalman-type filers is to use the classic Kalman-Bucy filter,
which can solve the linear filtering problem analytically, to solve a linearized filtering
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problem. Well-known Kalman-type filters include the ensemble Kalman filter, the ex-
tended Kalman filter, and the unscented Kalman filter [19, 20, 23, 31, 32]. Although
Kalman filters are easy to implement and they are efficient in solving high dimensional
problems, the major drawback of the Kalman type filters is their poor performance
when the dynamical system and the observation function are highly nonlinear. The
linearized problem does not provide a good approximation to the original nonlinear fil-
tering problem, and the quality of the state estimate degrades significantly. The particle
filter method (also called the sequential Monte Carlo method), on the other hand, is
designed specifically to solve nonlinear filtering problems. In contrast to the Kalman
filter framework, which propagates and updates Gaussian distributions, the particle fil-
ter uses a set of weighted random samples (particles) to describe arbitrary conditional
distributions of the target state [3,4,15,17,22,25]. The weights on the particles are used
to incorporate observational information, and they are assigned by Bayesian inference.
Through flexible Monte Carlo sampling, a particle filter can effectively handle nonlinear
dynamics and nonlinear observations. The primary challenge of particle filter is that
the errors caused by Monte Carlo sampling can accumulate through the sequential sam-
pling procedures. Therefore, particle filters often suffer from the so-called “degeneracy”
problem. In other words, after several estimation steps, most particles tend to lie in
insignificant regions of the distribution, hence the effective ensemble size is dramatically
reduced [30].

One of the most effective approaches to address the degeneracy problem in the parti-
cle filter is “resampling”. The goal of resampling is to rejuvenate the particle cloud and
relocate particles from low density regions to high density regions. Usually, a resampling
step is implemented after (or combined with) Bayesian inference and it generates a set
of particles (or moves current particles) that follow the desired conditional distribu-
tion of the target state. Successful resampling methods include sequential importance
sampling with resampling (the benchmark method), the auxiliary particle filters, the
Markov Chain Monte Carlo particle filter, the drift homotopy particle filter, and the
implicit particle filter [1,2,14,22,27,29,33]. While all of these methods can mitigate the
degeneracy problem to some extent, they all have their disadvantages and drawbacks.

In this paper, we develop a drift homotopy implicit particle filter method that com-
bines the drift homotopy particle filter [24, 27] and the implicit particle filter [14]. The
central concept of the drift homotopy particle filter is to construct a sequence of interme-
diate systems called drift homotopy dynamics, and then transport particles by using the
Markov Chain Monte Carlo (MCMC) sampling method, which is driven by those inter-
mediate homotopy systems, to high density regions of the desired state distribution. The
drift homotopy dynamics are usually designed in a way so that the observational data
play a more important role in the first few particle transportation steps, and then the
original filtering dynamical model is incorporated into the state distribution gradually.
In this way, the drift homotopy particle filter is different from most traditional Bayesian
approaches, which simulate dynamical models first and then incorporate data through
Bayesian inference. As a result, the drift homotopy systems provide a mechanism to
“trust the observational data” first, which typically results more robust estimation per-
formance. The main drawback of the drift homotopy particle filter is that the MCMC
sampling procedure is time consuming – especially carried out repeatedly through the
sequence of drift homotopy dynamics , and thus the drift homotopy particle filter is
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not an efficient method. The primary effort of the implicit particle filter is to carry
out an implicit sampling procedure, which works by first picking target probabilities
and then looking for particles that assume them, so that the particles are guided to the
high probability region. In practical implementation, the implicit sampling procedure is
achieved by optimization, and the efficiency of implicit sampling is based on the shape
of state distribution, which is governed by the state dynamics and the observational
data. Therefore, when the state dynamical model and the observational data do not
align well, the optimization task in the implicit particle filter could be very challenging.

Our motivation for developing a drift homotopy implicit particle filter (DHIPF)
method is to exploit the advantages of the drift homotopy particle filter and the im-
plicit particle filter while alleviating their disadvantages. Specifically, we shall adopt
the general drift homotopy framework and utilize a sequence of drift homotopy dynam-
ics to transport particles. However, instead of using the MCMC sampling method to
move particles slowly, we treat the sampling procedure for intermediate drift homotopy
systems as a sequence of nonlinear filtering problems and then use the implicit particle
filter to solve those filtering problems. Since the implicit sampling in the implicit parti-
cle filter is achieved by optimization, the implicit particle filter sampler for intermediate
drift homotopy systems is much more efficient than the MCMC sampling method. In
this connection, the application of the implicit particle filter in DHIPF can significantly
improve efficiency of the conventional drift homotopy particle filter. On the other hand,
since the observational data play a more important role in the first few particle trans-
portation steps in the drift homotopy systems, our DHIPF method could endow the
implicit particle filter with the mechanism of “trust observational data first”, which can
make the DHIPF obtain more robust estimation results.

The rest of this paper is organized as follows. In Section 2, we introduce the general
mathematical formulation of the nonlinear filtering problem. In Section 3, we introduce
the state-of-the-art approach to solve the filtering problem, i.e. the particle filter, and
briefly discuss the drift homotopy particle filter and the implicit particle filter. Then, in
Section 4, we combine the drift homotopy particle filter and the implicit particle filter
to establish our drift homotopy implicit particle filter method. Numerical experiments
that illustrate the performance of our method are given in Section 5.

2 The nonlinear filtering problem

An optimal filtering problem is usually described by a system of stochastic differential
equations (SDEs)

dXt =f(Xt)dt+ σtdWt, (State)

dYt =g(Xt)dt+ dVt. (Observation)
(1)

The first equation in (1) is a state equation that models the state of a dynamical
system, where Wt is a standard Brownian motion, f(Xt)dt is the drift term and the
σtdWt integral is called the diffusion term. The second equation is the observational
equation that gives partial noisy observations of Xt. In practical applications, this
continuous version of the optimal filtering problem is often discretized and represented
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by the following discrete state-space model

Xn+1 =f(Xn) + σnwn, (State)

Yn+1 =g(Xn+1) + vn, (Observation)
(2)

where we have incorporated the temporal discretization steps ∆t into the model. In
this way, the sequence {Xn}n ∈ Rd describes the state of the stochastic dynamical
system, the function f : Rd → Rd now plays the role of the drift term in the continuous
state equation in (1), and the state of X is perturbed by a sequence of d-dimensional
standard Gaussian noises {wn}n with their coefficients {σn}n, and Yn+1 ∈ Rm is the
m-dimensional partial noisy measurement on Xn+1 through the observation function
g : Rd → Rm, which is also perturbed by a Gaussian noise vn independent from wn
with the standard deviation R. For the discretized optimal filtering problem (2), the first
stochastic process in (2) is called the “state process” and the second process is called
the “observation process”. When the functions f and g are nonlinear functions, the
filtering problem is called the “nonlinear filtering problem”. The goal of the nonlinear
filtering problem is to find the best estimate for Φ(Xn+1) given the observational data
Y1:n+1 := {Y1, Y2, · · · , Yn+1}, where Φ is a test function that represents the quantity of
interest in the nonlinear filtering problem. Mathematically, we aim to find the “optimal
filter” Φ̃(Xn+1) as a conditional expectation given Y1:n+1, i.e.

Φ̃(Xn+1) := E[Φ(Xn+1)|Y1:n+1].

The standard approach to solve the optimal filtering problem (2) is the “Bayesian
filter”, which aims to find the best estimate for the conditional probability density
function (pdf) p(Xn+1|Y1:n+1) of the state through recursive Bayesian inference. Then,
the conditional pdf p(Xn+1|Y1:n+1), which is also called the “filtering density”, can
be used to calculate the optimal filter Φ̃. Specifically, the Bayesian filter is composed
of two steps: a prediction step and an update step. For the given conditional pdf
p(Xn|Y1:n) at the time instant n, the prediction step is carried out by the following
Chapman-Kolmogorov formula,

p(Xn+1|Y1:n) =

∫
pf (Xn+1|Xn)p(Xn|Y1:n)dXn, (Prediction) (3)

where pf (Xn+1|Xn) is the transition probability associated with the state dynamical
function f , and p(Xn+1|Y1:n) is called the prior pdf, which predicts the state of Xn+1

before receiving the new observational data. In the update step, we apply the Bayes
formula to incorporate the observational data Yn+1 to update the prior pdf and get a
posterior distribution p(Xn+1|Y1:n+1) as following

p(Xn+1|Y1:n+1) =
p(Yn+1|Xn+1)p(Xn+1|Y1:n)

p(Yn+1|Y1:n)
, (Update) (4)

where p(Yn+1|Xn+1) is the likelihood function that measures the discrepancy between
the state and the observation, and the denominator in (4) is given by

p(Yn+1|Y1:n) =

∫
p(Yn+1|Xn+1)p(Xn+1|Y1:n)dXn+1,
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which normalizes the posterior p(Xn+1|Y1:n+1).
In this work, we aim to develop an efficient and effective particle filter method to

implement the Bayesian filter’s “Prediction-Update” framework.

3 The particle filter approach

3.1 The generic particle filter framework

The main strategy of the particle filter is to use a cloud of samples, which are called
particles, to represent conditional distributions, and use the recursive Bayesian filter
framework (3) - (4) to propagate and updates the particle cloud. In what follows, we
give a brief discussion to introduce the general framework of particle filters.

At the time instant n, assume that we have a set of Np particles that form an
empirical distribution p̃(Xn|Y1:n), which approximates the conditional pdf p(Xn|Y1:n).

We denote this set of particles by {x(i)n }Np

i=1, and the empirical distribution is defined as

p̃(Xn|Y1:n) :=
1

Np

Np∑
i=1

δ
x
(i)
n

(Xn), (5)

where δx is the Dirac delta function. In the prediction step, we propagate each sample

x
(i)
n in the particle cloud through the state dynamical model f to get a predicted sample

x̃
(i)
n+1. In this way, the ensemble of predicted particles {x̃(i)n+1}

Np

i=1 form an empirical
distribution π̃(Xn+1|Y1:n) defined as

π̃(Xn+1|Y1:n) :=
1

Np

Np∑
i=1

δ
x̃
(i)
n+1

(Xn+1), (6)

which is an approximation for the prior distribution p(Xn+1|Y1:n).
In the update step, after receiving the new measurement Yn+1, we carry out Bayesian

inference through the Bayes formula (4) to incorporate the new observational data to
get an approximation for the posterior distribution. Specifically, we use the empirical
distribution π̃(Xn+1|Y1:n) to replace the prior distribution p(Xn+1|Y1:n) in (4), and
obtain

π̃(Xn+1|Y1:n+1) =
p(Yn+1|Xn+1)π̃(Xn+1|Y1:n)∫

p(Yn+1|Xn+1
)π̃(Xn+1|Y1:n)dXn+1

, (7)

where the likelihood function p(Yn+1|Xn+1) of the Gaussian noise v with the standard

deviation R is given by p(Yn+1|Xn+1) = 1√
(2πR2)m

exp
(
− ‖g(Xn+1)−Yn+1‖2

2R2

)
. With the

empirical distribution π̃(Xn+1|Y1:n) defined in (6), the Bayesian inference formula (7)
can be implemented by the following update scheme

π̃(Xn+1|Y1:n+1) =

∑Np

i=1 p(Yn+1|x̃(i)n+1)δ
x̃
(i)
n+1

(Xn+1)∑Np

i=1 p(Yn+1|x̃(i)n+1)
. (8)
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We let α
(i)
n+1 ∝ p(Yn+1|x̃(i)n+1) be the importance weight corresponding to the particle

x̃
(i)
n+1 such that

Np∑
i=1

α
(i)
n+1 = 1. Then, the empirical distribution π̃(Xn+1|Y1:n+1) is an

approximation for the posterior distribution p(Xn+1|Y1:n+1), where we have

π̃(Xn+1|Y1:n+1) =

Np∑
i=1

α
(i)
n+1δx̃(i)

n+1

(Xn+1).

In practice, due to the extra uncertainties involved in the observational data and
the sequential sampling errors, the weights on many particles tend to be negligible after
several recursive steps, and only a few particles have very large weights, which signifi-
cantly reduces the effective ensemble size. This fact of losing the effectiveness of particle
sizes is often called the “degeneracy” of particles. To address the degeneracy problem,
a resampling step is introduced to re-generate the particle cloud with equally weighted
particles that describe the empirical distribution π̃(Xn+1|Y1:n+1). In the benchmark
bootstrap particle filter, which is also known as the sequential importance sampling
with resampling method, people use importance sampling to generate Np samples, de-

noted by {x(i)n+1}
Np

i=1, which include more copies of particles in the weighted particle

cloud {x̃(i)n+1}
Np

i=1 and discard the low weight ones. In this way, the resampled particles
give us the following empirical distribution

p̃(Xn+1|Y1:n+1) :=
1

Np

Np∑
i=1

δ
x
(i)
n+1

(Xn+1).

Although the importance sampling in the bootstrap particle filter is a successful
strategy to increase the effective particle size in recursion, simply reproducing more

particles in the original predicted particle set {x̃(i)n+1}
Np

i=1 still suffers from the degeneracy
problem since the prediction step is not informed by the observational information and
the predicted particles may not provide good candidate particles to be reproduced. To
conquer the degeneracy of particles, several data informed resampling methods have
been developed, such as the auxiliary transportation, the Markov Chain Monte Carlo
resampling, the drift homotopy particle filter, the implicit particle filter. In this work,
we combine the drift homotopy particle filter and the implicit particle filter to develop
an efficient drift homotopy implicit particle filter method that takes the advantages of
both methods. To proceed, we shall introduce the drift homotopy particle filter and the
implicit particle filter in the following.

3.2 The drift homotopy particle filter

Homotopy is a mathematical process that continuously transforms one function to an-
other. When adopting homotopy in the particle filter, we design a homotopy process
that transforms the drift term in the state dynamics gradually from an intermediate
drift homotopy system, so that the sampling of the desired filtering density can be
implemented effectively.

In this connection, the key of the drift homotopy particle filter is to construct a
sequence of stochastic dynamical systems with modified drift terms that interpolate
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between the original and modified drifts in the state model. To proceed, assume that
we have an empirical distribution that describes the conditional pdf p(Xn|Y1:n) at the

time instant n with equally weighted particles {x(i)n }Np

i=1. For a given particle x
(i)
n , the

“ideal” particle at the time instant n + 1 that could be used to describe the posterior

distribution p(Xn+1|Y1:n+1) should follow the distribution p(xn+1|x(i)n , Y1:n+1), which is
defined by

p(Xn+1|x(i)n , Y1:n+1) ∝ pf (Xn+1|x(i)n )p(Yn+1|xn+1), (9)

where pf (Xn+1|x(i)n ) is the transition probability that describes the conditional distri-

bution of Xn+1 with the given initial state at the time instant n as Xn = x
(i)
n , and

the likelihood p(Yn+1|Xn+1) incorporates the observational data Yn+1 into the con-

ditional distribution p(Xn+1|x(i)n , Y1:n+1). In order to generate a sample that follows
the posterior distribution, which considers the new observational data Y1:n+1, instead
of using the importance sampling method which only reproduces more copies of high
density propagation samples, one could use the Markov Chain Monte Carlo (MCMC)

sampling method to generate a sample x
(i)
n+1 that follows the conditional distribution

p(Xn+1|x(i)n , Y1:n+1). However, it is well known that the effectiveness and efficiency
of MCMC sampling depends on the complexity of the target distribution. When the
dynamics of the state process is complicated, it is difficult for the MCMC method to

generate the sample x
(i)
n+1. Moreover, in the case that the practical observational data

has large deviation from the prediction, the resulting posterior distribution might have
large covariance, which makes the MCMC procedure have even worse performance.

The primary contribution of the drift homotopy particle filter is to improve the
performance of the MCMC procedure to effectively generate a sample that follows the
posterior distribution. Also, it could provide a mechanism that allows us to “trust the
data” first. In the drift homotopy particle filter, instead of generating a sample from

p(Xn+1|x(i)n , Y1:n+1) by using MCMC sampling directly, we introduce a sequence of drift
homotopy dynamical systems given as follows

X∗ = (1− βl)b(X) + βlf(X) + σnwn, l = 0, 1, 2, · · · , L (10)

where the function b is artificially defined intermediate drift term, which is different from
the original drift f , and {βl}Ll=0 is a constant sequence increasing from 0 to 1. Therefore,
when l = 0, we have β0 = 0, and the dynamical system (10) only contains the intermedi-
ate function b. On the other hand, when l = L, i.e. βL = 1, the intermediate drift term
b is gone and (10) coincides the original state dynamical model in the nonlinear filtering
problem (2). For a specific drift homotopy level l, 0 ≤ l ≤ L− 1, the dynamical system
(10) is driven by the combined model (1 − βl)b(X l) + βlf(X l). To generate a sample

that follows the desired conditional distribution p(Xn+1|x(i)n , Y1:n+1) (as described in
(9)), we incorporate the observational data Yn+1 through the likelihood function of the

dynamical system (10). Since the target distribution p(Xn+1|x(i)n , Y1:n+1) is conditioned

on x
(i)
n , we take the state X of the drift homotopy dynamics (10) to be the particle x

(i)
n ,

i.e. X = x
(i)
n , which is a sample in the previous conditional particle cloud {x(i)n }Np

i=1. As

a result, we obtain a sequence of drift homotopy distributions {pl(X∗|x(i)n , Y1:n+1)}Ll=1
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for each particle x
(i)
n through the following proportional relation

pl(X
∗|x(i)n , Y1:n+1) ∝ pl(X∗|x(i)n )p(Yn+1|X∗), (11)

where pl(X
∗|x(i)n ) is the transition probability of the system (10) determined by the

combined dynamics. In this way, the distribution of the L-th drift homotopy step is the

desired posterior distribution given that pL(X∗|x(i)n ) = pf (Xn+1|x(i)n ).

To carry out the drift homotopy particle filter, we first choose x
(i)
n as the initial

state of X and use the MCMC method to generate a sample, denoted by x∗,0n+1, from

the first homotopy distribution p0(X∗|x(i)n , Y1:n+1). For the l-th drift homotopy level,

l = 0, 1, 2, · · · , L− 1, assume that we have the sample x∗,ln+1, we let x∗,l+1
n+1 be the initial

state of the drift homotopy system (10) and use the MCMC method to generate a

sample, denoted by x∗,l+1
n+1 from the homotopy distribution pl+1(X∗|x(i)n , Y1:n+1). As a

result, the sample x∗,Ln+1 that we generate in the iterative drift homotopy procedures

gives a sample that follows the desired posterior distribution p(Xn+1|x(i)n , Y1:n+1), and

we let x
(i)
n+1 = x∗,Ln+1.

From the above discussion, we can see that the main theme of the drift homotopy

particle filter is to transport the particle x
(i)
n gradually to x

(i)
n+1, which is then used

to formulate the posterior distribution. In order to fully assimilate the observational
information into the posterior distribution, we choose the intermediate drift term b

so that the initial transition probability p0(X∗|x(i)n ) is well-aligned with the likelihood

function p(Yn+1|X∗). Then, as the drift homotopy distributions {pl(X∗|x(i)n , Y1:n+1)}l
morph gradually to the ultimate posterior distribution p(Xn+1|x(i)n , Y1:n+1), the original
state dynamics f is incorporated. In this way, the homotopy procedure builds a bridge

to connect the sample x
(i)
n in the previous particle cloud at the time instant n to the

particle x
(i)
n+1 for the desired posterior distribution. Moreover, note that the combined

dynamical system only contains the intermediate drift term b in the first drift homotopy
step, which is designed to be well-aligned with the observational data. Therefore, the
observational data would have more influence in the drift homotopy distribution. In
this way, the drift homotopy particle filter also creates a mechanism that allows us to
“trust the data first”.

3.3 The implicit particle filter

The central concept of the implicit particle filter is to update the particles by first deriv-
ing implicit transportation probabilities, which construct the conditional distribution
of the target, and then determine particle locations that assume them. As a result,
the implicit sampling procedure guides the particles one by one to the high probability
domain of the desired posterior distribution, and therefore it can effectively address the
degeneracy problem of the particle filter approach.

In the standard particle filter, assume that we have the particle x
(i)
n at the time step

n, then the predicted particle location x̃
(i)
n+1 is propagated from the particle x

(i)
n through

the state dynamics introduced in (2). According to the Bayesian update scheme (4),
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the weight on x̃
(i)
n+1 is given by

α
(i)
n+1 =

p(x̃
(i)
n+1|x

(i)
n )p(Yn+1|x̃(i)n+1)

C
,

where C is the normalization constant. The set of weights {α(i)
n+1}

Np

i=1, together with the

predicted particle locations {x̃(i)n+1}
Np

i=1, now describe the desired posterior density. In the
implicit particle filter method, instead of simply reproducing more copies of particles
in the predicted particle cloud with high weights, an implicit sampling procedure is

used to generate “optimal” particle locations, i.e. {x̂(i)n+1}
Np

i=1, that follow the posterior
distribution directly.

To achieve this goal, we first choose a reference random variable ξ with a pre-
determined pdf that is easy to sample. Then, we treat the desired optimal sample

variable x̂
(i)
n+1 := ψn+1,i(ξ) as a function of ξ, which is indexed by both the time instant

and the specific choice of particle. The purpose of the function ψ is to connect highly

probable values of ξ to highly probable values of x̂
(i)
n+1, which follow the posterior dis-

tribution. To obtain the mapping ψ, we define a function Fn+1,i corresponding to each
time instant n+ 1 and each particle i, such that

exp
(
− Fn+1,i(x̂

(i)
n+1)

)
:= p(x̂

(i)
n+1|x(i)n )p(Yn+1|x̂(i)n+1), (12)

and solve the equation

Fn+1,i
(
ψn+1,i(ξ)

)
− γn+1,i =

ξT ξ

2
(13)

to get the function ψn+1,i. The random variable γn+1,i in the above equation is an
additive factor introduced to make the above equation solvable, and it is typical choose
γn+1,i = minFn+1,i + λ, where λ represents a small perturbation. When implementing
the implicit particle filter numerically, optimization type numerical solvers are needed
to calculate ψn+1,i through (13).

Once the function ψn+1,i is determined, we can obtain the particle set {x̂(i)n+1}
Np

i=1

since the position of the particle x̂
(i)
n+1 appears with the (unnormalized) probability

exp
(
− ξT ξ

2

)
J−1ψn+1,i , where Jψn+1,i denotes the Jacobian of ψn+1,i, and the weight on

x̂
(i)
n+1 equals exp

(
− ξT ξ

2

)
exp(−γn+1,i) [28], i.e.

α̂
(i)
n+1 := exp

(
− ξT ξ

2

)
exp(−γn+1,i). (14)

To generate equally weighted particles, we apply the importance sampling method to

resample particles {x̂(i)n+1}
Np

i=1. Specifically, we normalize the weights {α̂(i)
n+1}

Np

i=1 obtained

in (14) so that
∑Np

i=1 α̂
(i)
n+1 = 1. For each of Np random numbers ζk, k = 1, 2, · · · , Np,

drawn from the uniform distribution on [0, 1], we choose a point x
(k)
n+1 randomly from

the particle set {x̂(i)n+1}
Np

i=1 such that

k−1∑
j=1

α̂
(j)
n+1 < ζk <

k∑
j=1

α̂
(j)
n+1.
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Then the particle set {x(i)n+1}
Np

i=1 follows the importance distribution described by the

weighted sample pairs {(x̂(i)n+1, α̂
(i)
n+1)}Np

i=1, and each particle x
(i)
n+1 has an equal weight.

Note that the particle set {x(i)n+1}
Np

i=1 resampled from {x̂(i)n+1}
Np

i=1 describes the conditional

distribution of the target better than the particles resampled from {x̃(i)n+1}
Np

i=1 since

{x̂(i)n+1}
Np

i=1 are already in the high density region through the implicit sampling.
Theoretically, the implicit particle filter method can generate equally weighted par-

ticles that follow the desired posterior distribution if the (nonlinear) equation (13) can
be effectively solved, and the performance of the implicit particle filter is based on
the performance of the optimization procedure that solves the equation. However, the
complexity of the equation (13) depends on the function F , which relies on both the
transition probability and the likelihood function (as indicated in (12)). In this way,
the implicit particle filter could be computationally expensive and challenging when the
dynamical model is not well-aligned with the observational data.

4 Drift homotopy implicit particle filter

The main effort of this work is to combine advantages of the drift homotopy particle
filter and the implicit particle filter to construct a drift homotopy implicit particle filter
(DHIPF) method, which can effectively use observational data and efficiently generate
particles that follow the filtering density of the target. The general framework of our
approach adopts the drift homotopy procedure in the drift homotopy particle filter.
Instead of using MCMC as a sampling method in the drift homotopy particle filter, we
carry out the “implicit sampling” procedure introduced the implicit particle filter to
generate the desired particles efficiently.

To proceed, we recall that in the drift homotopy particle filter, the drift homotopy
sequence (10) builds a bridge that connects the intermedia dynamics b to the original
state dynamics f . With the observational data incorporated through likelihood (as

described in (11)), the drift homotopy distribution pl(X
∗|x(i)n , Y1:n+1) in each drift ho-

motopy step is proportional to pl(X
∗|x(i)n )p(Yn+1|X∗). In the DHIPF, instead of simply

using the drift homotopy dynamics as a bridge to transport samples, we consider the
random variable X in the drift homotopy dynamics (10) as the state of a nonlinear
filtering problem at the time instant n and consider X∗ as the state at the time instant

n+1. Therefore, the drift homotopy distribution pl(X
∗|x(i)n , Y1:n+1) is equivalent to the

filtering density of the following nonlinear filtering problem

X̃n+1 =(1− βl)b(X̃n) + βlf(X̃n) + σnwn, (State)

Ỹn+1 =g(X̃n+1) + vn, (Observation)
(15)

given that the state X̃n is chosen as a particle x
(i)
n in the previous particle cloud {x(i)n }Np

i=1

of the original nonlinear filtering problem (2) and the observation Ỹn+1 is taken as the
observational data Yn+1. In other words, we have

pl(X
∗|x(i)n , Y1:n+1) = pl(X̃n+1|X̃n, Ỹn+1)

∣∣
X̃n=x

(i)
n ,Ỹn+1=Y1:n+1

.
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Then, the implicit particle filter method can be applied to solve the nonlinear filter-
ing problem (15) and produce a particle that follows the drift homotopy distribution

pl(X
∗|x(i)n , Y1:n+1).

Specifically, for an appropriately chosen reference random variable ξ, we solve for
the function ψn+1,i

l (ξ) that connects highly probable values of ξ to highly probable

values of x̂
(i)
n+1,l, i.e. x̂

(i)
n+1,l = ψn+1,i

l (ξ), where x̂
(i)
n+1,l is a particle that follows the

distribution pl(X̃n+1|X̃n, Ỹn+1)
∣∣
X̃n=x

(i)
n ,Ỹn+1=Y1:n+1

. To this end, we define a function

Fn+1,i
l (corresponding to the particle x

(i)
n ) by

exp
(
− Fn+1,i

l (x̂
(i)
n+1,l)

)
:= pl(x̂

(i)
n+1,l|x

(i)
n )p(Yn+1|x̂(i)n+1,l), (16)

where pl is the transition probability of the l-th drift homotopy dynamics. Then, we
solve the following equation

Fn+1,i
l

(
ψn+1,i
l (ξ)

)
− γn+1,i

l =
ξT ξ

2
(17)

to obtain the function ψn+1,i
l , where γn+1,i

l := minFn+1,i
l + λ is the factor that makes

(17) solvable as we introduced in the equation (13). Then, with the connection function
ψn+1,i
l solved through the equation (17), we can generate the position of the particle

x̂
(i)
n+1,l through the expression exp

(
− ξT ξ

2

)
J−1
ψn+1,i

l

for a pre-chosen sample that follows

ξ.
Similar to the procedure that solves the equation (13) in the implicit particle filter,

we use an optimization-based approach to determine ψn+1,i
l (for a given sample drawn

from ξ). Note that the drift homotopy dynamics morph gradually from the intermediate
drift b to the original dynamical model f . Therefore, the transition probabilities {pl}Ll=1

between two successive drift homotopy levels have similar distributions. Hence the
values of implicit functions {ψn+1,i

l }Ll=1 should be close for two successive drift homotopy
levels. To take the advantage of those bridging drift homotopy dynamics, we use the

sample x̂
(i)
n+1,l−1 obtained in the l−1-th drift homotopy level as the initial condition for

the optimization procedure when solving for ψn+1,i
l . As a result, the optimization for

solving ψn+1,i
l convergences quickly due to the “good” initial condition and the implicit

particle filter can be carried out efficiently.
In the last homotopy level L, the drift homotopy dynamics become the original

state dynamics f . Therefore, once we obtain the function ψn+1,i
L through the implicit

sampling procedure (16) - (17), we obtain the sample x̂
(i)
n+1,L that follows the desired

filtering density p(Xn+1|x(i)n , Y1:n+1) given the particle
(i)
n and the fact pL(X∗|x(i)n ) =

pf (Xn+1|x(i)n ).

Our DHIPF algorithm is summarized in Table 1. Based on the above discussions
for DHIPF, we can see that the optimization based implicit sampling procedure can

generate the drift homotopy sample x̂
(i)
l much more efficiently – compared with the

standard MCMC sampling method. On the other hand, the drift homotopy procedure
creates a bridge that connects an intermediate dynamical function and the original state

11



Table 1:

Algorithm: Drift homotopy implicit particle filter (DHIPF)

Initialize the particle cloud {x(i)0 }
Np

i=1, the number of drift homotopy levels L

with the intermediate drift function b and the constant sequence {βl}Ll=0,

and the reference random variable ξ for the implicit particle filter procedure.

while n = 0, 1, 2, · · · , do
for particles i = 1, 2, · · · , Np,

for drift homotopy levels l = 0, 1, 2, · · · , L− 1,

- Construct the drift homotopy dynamics (10);

- Solve for ψn+1,i
l in the equation (17) with the initial guess

x̂
(i)
n+1,l;

- Generate the sample x̂
(i)
n+1,l+1 through exp

(
− ξT ξ

2

)
J−1
ψn+1,i

l

;

end for

end for

The particles {x(i)n+1}
Np

i=1 := {x̂(i)n+1,L}
Np

i=1 provide an empirical distribution

for the filtering density p(Xn+1|Y1:n+1)

end while

dynamics. Since two successive drift homotopy dynamics are similar, solutions of drift
homotopy filtering problems (15) change gradually to the filtering density of the original
nonlinear filtering problem. Therefore, it is easy to achieve the optimality condition in
the implicit particle filter , and hence the implicit particle filter can be implemented
efficiently under our DHIPF framework. Moreover, the intermediate dynamics b in the
DHIPF is designed in a way so that the likelihood function would dominate the first
few drift homotopy steps. Then, the drift homotopy procedure incorporates the original
filtering dynamics and let the dynamical model combine with the observational data.
In other words, the drift homotopy procedure aims to construct the desired filtering
density starting from the likelihood instead of starting from the predicated model, which
is typically implemented by most optimal filtering methods. In this way, the DHIPF
could endow the implicit particle filter the mechanism that trusts the observational data
first.

5 Numerical experiments

In this section, we present two benchmark numerical examples to demonstrate the per-
formance of our DHIPF method. In the first example, we track the state of a stochastic
dynamical system driven by the double well potential. To demonstrate the advanta-
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geous performance of DHIPF, we compare our method with the implicit particle filter
and the standard drift homotopy particle filter (with MCMC sampling ) – along with
other “state-of-the-art” methods. In the second example, we solve a Lorenz attractor
problem. The target state that we estimate is driven by the Lorenz 63 model, which
is a well-known chaotic dynamical system. We show that our method can capture the
unpredicted chaotic behavior of the model by effective processing of observational data.
All the numerical experiments are carried out on an Intel Core i7-670HQ 2.6GHz CPU.

5.1 Double well potential

The double well potential is an important quartic model in quantum mechanics and
quantum field theory, and models derived from the double well potential have been
widely used in nano-phase materials [18]. The potential U , described by

U(x) =
α

4
(x4 − 2x2),

has two stable positions at x = 1 and x = −1, where α is the model parameter that
determines the “depth” of potential wells. While a particle is at positions other than 1
and −1, it will be pushed by a force with the magnitude of U ′(x) towards one of the
stable positions. In this example, we aim to estimate the state of a stochastic dynamical
system driven by the double well potential, i.e.

dXt = −α(X3
t −Xt)dt+ σdWt, 0 ≤ t ≤ T

and the data that we use to track the target state are direct observations on X, which
are perturbed by Gaussian noises with standard deviation R.

We consider the following discretized nonlinear filtering problem

Xn+1 =Xn − α(X3
n −Xn)∆t+ σwn,

Yn+1 =Xn+1 +Rvn,
(18)

where wn and vn are two independent Gaussian random variables, and we track the
state of X for 300 time steps with stepsize ∆t = 0.01. In this example, we compare
our DHIPF with four most successful nonlinear filtering methods: the auxiliary particle
filter (APF), the ensemble Kalman filter (EnKF), the implicit particle filter and the
drift homotopy particle filter (DHPF), where IPF and DHPF (implemented by MCMC
sampling) are fundamental components that we use to construct our DHIPF. For all
the particle filters, we use 20 particles to describe the one-dimensional state distribution
and we use an ensemble of 200 Kalman filter samples in the EnKF. Also, we choose
the total number of drift homotopy steps to be L = 2, i.e. we use three intermediate
dynamical systems to transport particles.

To provide a comprehensive demonstration of the performance of all the nonlinear
filtering methods, we solve the double well potential tracking problem for three different
cases.

Case 1.

In this case, we choose the parameters for the double well potential tracking problem as
α = 1, σ = 1.5, and R = 1.5, and the initial state X is set to be X0 = 0.6. In Figure 1

13



(a) Tracking performance.

(b) Estimation errors.

Figure 1: Double well potential case 1: α = 1, σ = 1.5, R = 1.5

(a), we present the state estimation for the target state obtained by different nonlinear
filtering methods, where the black curve is the true simulated state and the colored
curves are estimates. From this subplot, we can see that all the methods captured
the main trend of the state while the EnKF failed to capture detailed behaviors of the
target. To show more details of estimation accuracy, in Figure 1 (b) we plot errors of
each method in estimating the state X. From this subplot, we can see that the IPF,
the DHPF and the DHIPF can give very accurate estimates for the state, the APF
occasionally suffers large errors, and the EnKF has the worst performance.

Table 2: Example 1. Performance comparison for Case 1

APF EnKF IPF DHPF DHIPF

CPU Time 9.703 0.365625 0.0938 48.563 0.312

MSE 2.03E − 3 5.22E − 3 1.10E − 3 5.92E − 4 4.60E− 4
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In order to further demonstrate the performance of all the methods, we present the
accumulated mean square error (MSE) of each method along with its CPU time in
solving this double well potential tracking problem in Table 2. From the comparison
table, we can see that the DHPF (with MCMC sampling) and the DHIPF have the
lowest estimation errors. However, the DHIPF spends much less CPU time compared
with DHPF due to the efficient implicit sampling procedure.

Case 2.

In this case, we let α = 1, σ = 1, and R = 1, and the initial state X is set to be
X0 = 0.6. Different from the first case, we observe that the real state switched from the
stable position X = 1 to the stable position X = −1 after approximately 150 tracking
steps. In physics, this kind of switch may be caused by some unexpected external force
or some extreme diffusion activities. We use this experiment to demonstrate the “data
first” advantage of drift homotopy procedure, and we present the tracking performance
and the estimation error of each method in Figure 2 (a) and (b), respectively. From this

(a) Tracking performance.

(b) Estimation errors.

Figure 2: Double well potential case 2: α = 1, σ = 1, R = 1 with state switch
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figure, we can see that the EnKF and APF could not follow effectively the rapid change
in the target state. On the other hand, the IPF, the DHPF and the DHIPF captured
the switch of the real state effectively while the IPF has slightly higher error at the
time of switch. In Table 3, we present the CPU time and the MSE of each method. We

Table 3: Example 1. Performance comparison for Case 2

APF EnKF IPF DHPF DHIPF

CPU Time 9.391 0.578 0.109 43.344 0.297

MSE 6.29E − 1 1.36 5.28E − 3 1.78E − 3 1.08E− 3

can see from this table that due to the unexpected switch of the target state, both the
APF and the EnKF have high estimation errors. The DHPF and the DHIPF have very
low MSEs in tracking the state, and the DHIPF has much lower computational cost
compared with DHPF.

Case 3.

In this case, we also consider state switch during the tracking period. This time, we
choose parameters α = 10, σ = 1, and R = 2 for the nonlinear filtering problem, where
the large parameter α indicates that the potential wells are very “deep”. In Figure 3, we
present the tracking performance and the estimation error of each method. We can see
from this figure that both the EnKF and the APF completely failed to capture the state
switch. On the other hand, IPF, DHPF and DHIPF captured the state switch well. In

Table 4: Example 1. Performance comparison for Case 3

APF EnKF IPF DHPF DHIPF

CPU Time 9.563 0.453 0.156 50.188 0.422

MSE 1.80 1.99 5.02E − 3 1.35E − 2 1.59E− 3

Table 4, we present the CPU time and the MSE of each method. We can see that
DHIPF has the lowest accumulative error, and its computational cost is comparable to
IPF.

From the above numerical experiments, we can see that our DHIPF method outper-
forms EnKF in accuracy, and it steadily outperforms APF and DHPF in both efficiency
and accuracy. In comparison with IPF, DHIPF typically has higher accuracy. On the
other hand, the computational cost for DHIPF is slightly higher than IPF since DHIPF
requires several implicit sampling procedures. To give more details of advantageous
performance of DHIPF compared with IPF, in the next numerical example we focus on
the comparison between DHIPF and IPF.
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(a) Tracking performance.

(b) Estimation errors.

Figure 3: Double well potential case 3: α = 10, σ = 1, R = 2 with state switch

5.2 Lorenz attractor

In this example, we solve a Lorenz attractor problem, which has wide applications in
weather forecasting and climate prediction. The Lorenz dynamics that we consider is
the Lorenz 63 model, which is described by

Lz(x) =

 a1(y − x)
a2x− y − xz
xy − a3z

 , (19)

where x = (x, y, z) is a three-dimensional vector, a1 is the Prandtl number, a2 is a
normalized Rayleigh number and a3 is a non-dimensional wavenumber. The nonlinear
filtering problem corresponding to the Lorenz 63 model (19) is given by

dXt =dLz(t)dt+ σdWt,

dYt =Xtdt+RdVt,
(20)
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where W and V are two standard Brownian motions, σ is the diffusion coefficient,
which decides the size of noises that perturb the state process, and R is the coefficient
for observational noises. In our numerical experiments, we choose a1 = 10, a2 = 28 and
a3 = 8/3, which will result chaotic behavior of the state process, and we let σ = I3×3,
R = I3×3.

Figure 4: Tracking performance for 4000 steps.

In the first numerical experiment, we estimate the state X over the time interval
[0, 40] with step-size 0.01, i.e. 4000 steps, and we use 10 particles to implement both
DHIPF and IPF. In Figure 4, we present the tracking performance of DHIPF and IPF
with respect to each dimension. The black curve is the true target state, the blue dotted
curve is the estimate obtained by IPF, and the red dotted curve is the estimate obtained
by DHIPF. From this figure, we can see that generally DHIPF and IPF provide good
estimates for the target state. Specifically, they both give accurate estimates in x and
y directions, and DHIPF is consistently more accurate than IPF in the z direction. To
take a closer look at the accuracy between DHIPF and IPF, we plot squared errors
combining all three directions in Figure 5. From this figure, wes see that DHIPF is
more accurate than IPF over the entire tracking period.

In our second numerical experiment in this Lorenz attractor example, we present the
tracking performance of DHIPF and IPF when the true state of the Lorenz dynamics
moves rapidly between time steps 300 and 400. Such rapid motion are typically caused
by the chaotic nature of the Lorenz model, which is often observed when predicting
weather in real time. To implement DHIPF and IPF, we use 30 particles to adjust the
possible fast state change and we estimate the target state for 600 time steps.

In Figure 6, we show the estimation performance of DHIPF and IPF in each dimen-
sion. We can see from the figure that DHIPF accurately captured the true state of the
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Figure 5: Tracking errors for 4000 steps.

Figure 6: Tracking performance with rapid change in the state.

Lorenz dynamics even during the rapid motion period. On the other hand, IPF could
only follow the trend of the target motions and it took IPF over 100 steps to recover
good estimates. In Figure 7, we plot the squared errors combining three dimensions over
the tracking time, and we can see clearly that IPF suffers large errors from time step
300 to approximately time step 450 while DHIPF only has a small spike in estimation
errors to adjust the chaotic behavior of the model.

To further demonstrate the advantageous performance of DHIPF over IPF, we as-
sume that there are gaps between model simulations and observations. This could
reflect the situation that the data are collected occasionally, and such a situation occurs
frequently in practice. In this experiment, we use 50 particles for both DHIPF and
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Figure 7: Tracking errors with rapid change in the state.

IPF, and we track the target state with 1000 simulation steps. In Figure 8, we solve

Figure 8: Mean square errors with respect to observation gaps.

the Lorenz attractor problem repeatedly over 20 times and plot the MSEs among all 20
repeated tests of each method with respect to observation gaps, where the blue markers
are MSEs of IPF, the red markers are MSEs of DHIPF with 2 drift homotopy levels,
i.e. L = 2, and the green markers are MSEs of DHIPF with 3 drift homotopy levels,
i.e. L = 3. From this figure, we see that the errors of IPF increase as observations
become sparser. On the other hand, although DHIPF has larger errors when observa-
tions are sparser, it is not as sensitive as IPF with respect to observation gaps, and
DHIPF always has accurate estimates for the state.The reason why DHIPF has better
performance in this “observation gap experiment” is that the drift homotopy procedure
allows us to process the observational data first before we incorporate the dynamical
model. As a result, in the case that data are hard to collect, which means each set of
observational data is “more valuable”, DHIPF can utilize the observational data more
effectively and therefore obtain better results. Moreover, we see from this figure that
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for smaller observation gaps, DHIPF with 2 homotopy levels has similar performance to
3 homotopy levels. When the observation gap is getting larger, more homotopy levels
bring more accurate results. This also supports the utility of the homotopy procedure.
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