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Calculating the initial energy density in heavy ion collisions by including the finite nuclear thickness
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The initial energy density produced in heavy ion collisions can be estimated with the Bjorken energy
density formula after choosing a proper formation time . However, the Bjorken formula breaks down at low
energies because it neglects the finite nuclear thickness. Here we include both the finite time duration and finite
longitudinal extension of the initial energy production. When tg is not too much smaller than the crossing
time of the two nuclei, our results are similar to those from a previous study that only considers the finite time
duration. In particular, we find that at low energies the initial energy density has a much lower maximum value
but evolves much longer than the Bjorken formula, while at large-enough 7y and/or high-enough energies our
result approaches the Bjorken formula. We also find a qualitative difference in that our maximum energy density
€™ at Tg = 0 is finite, while the Bjorken formula diverges as 1/t and the previous result diverges as In(1/7¢)
at low energies but as 1/t at high energies. Furthermore, our solution of the energy density approximately
satisfies a scaling relation. As a result, the Tr dependence of €™** determines the A dependence, and the weaker

Tr dependence of €™
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I. INTRODUCTION

The quark-gluon plasma (QGP) has been created in rel-
ativistic heavy ion collisions [1-5]. In the study of QGP
properties, a key variable is the energy density produced in
such collisions. The maximum value and time evolution of
the produced energy density affect the trajectory of an event
on the temperature-baryon chemical potential plane. For lower
collision energies such as those in the Beam Energy Scan
program at the BNL Realtivistic Heavy Ion Collider (RHIC)
[6-9], the event trajectories relative to the location of the
possible QCD critical point [10,11] could significantly affect
the experimental observables and their sensitivities to the
critical point [10,12]. For hydrodynamic models, the initial
energy density including its spatial and temporal dependences
[13—15] is an essential input for the subsequent hydrodynam-
ical evolution of the dense matter.

The Bjorken energy density formula [16] is a convenient
way to estimate the initial energy density averaged over the
transverse area of a relativistic heavy ion collision:

1 dEr
tAr dy '
In the above, At is the transverse overlap area of the two
nuclei, and dEt/dy is the transverse energy rapidity density
at midrapidity (for estimating the initial energy density in
the central region), which is often taken as the experimental
dEt/dy value in the final state. Because this formula diverges
as t — 0, one must choose a nonzero initial time, usually by

ey

€p;(t) =

“mendenhallt] 6@students.ecu.edu
flinz@ecu.edu

2469-9985/2021/103(2)/024907(10)

024907-1

in our results at low energies means a slower increase of €™ with A.

assuming a finite formation time 7 for the produced particles.
Note that the Bjorken energy density formula assumes that all
initial particles are produced at r = 0 and z = 0 before they
start to propagate and later become on shell. Therefore it is
valid at high energies where the Lorentz-contracted nuclear
thickness is negligible compared to the formation time, while
it is expected to break down at low energies when the finite
nuclear thickness becomes comparable to or larger than the
formation time [5]. For central nucleus-nucleus collisions, it
takes the following finite time in the hard sphere model of
the nucleus for two identical nuclei of mass number A to
completely cross each other in the center-of-mass frame:

2R
dy= —2— )

sinh yem

where y.,, is the rapidity of the projectile nucleus. For cen-
tral Au+Au collisions at ./syv = 50 GeV, for example, d; ~
0.5 fm/c is comparable to the usual value of the parton for-
mation time when we take Ry = 1.124'/3 fm as the nuclear
radius. Therefore we may expect the Bjorken formula to break
down for central Au+Au collisions at \/syy S 50 GeV [17].

A previous study by one of us [17] extended the Bjorken
energy density formula by considering that the initial energy
is produced over a finite duration time [0, d;]. Its analytical
result approaches the Bjorken formula at high energies. At low
energies, however, it finds that the maximum energy density
€™ reached is much lower but the time evolution of the
energy density (e.g., as measured by the time duration when
the energy density stays above €™ /2) is much longer in com-
parison with the Bjorken formula. In addition, the maximum
energy density in the low-energy limit depends on In(1/7p),
therefore at low energies it is much less sensitive to the

©2021 American Physical Society
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FIG. 1. Schematic diagram for the crossing of two identical nu-
clei, where partons can be produced anywhere inside the rhombus,
for (a) the first and (b) the second piecewise solution in Table I.
The solid diagonal lines represent the light cone boundaries for
partons that can reach z ~ 0 at time ¢, while the hyperbola represents
the boundary of these partons after considering the formation time
tr = Tpcoshy.

uncertainty of the formation time than the Bjorken formula,
which energy density depends on 1/7p.

However, the analytical method of the previous study [17]
did not take into account the finite longitudinal width (in z) of
the initial energy production. In this work we include both the
finite duration time and the finite z width of the initial energy
production. We then study the time evolution of the produced
initial energy density in the central spacetime-rapidity region
(i.e., ngy &~ 0) in the center-of-mass frame of central collisions
of two identical nuclei. Note that as in the previous study we
neglect subsequent interactions among the produced particles,
which can be modeled by transport models [18,19] or hydro-
dynamic models [13,14]; we only study the energy produced
from primary collisions between nucleons from the projectile
and target nuclei.

II. METHOD

We begin by examining in Fig. 1 the crossing of two iden-
tical relativistic nuclei traveling along the £z directions with
speed B = tanhy,,. As the nuclei cross each other, the full z
width of the overlap region first increases from 0 at ¢t = 0 to
Bd; att = d,/2 and then decreases back to 0 at r = d;. We
refer to this rhombus (the area surrounded by the four dashed
lines) as the production area because it covers the area of
primary collisions in the z-¢ plane [20,21]. For simplicity, in

this study we neglect the transverse expansion of the overlap
volume as well as the slowing down of participant nucleons
during the primary collisions, as done in the Bjorken energy
density formula [16] and the previous extension study [17].
We are interested in the initial energy in the narrow region
7 € [—d, d] within the transverse overlap area At at time 7.
An initial parton can be produced at z coordinate zp and time
x, i.e., at point (zg, x), within the production area, and it is
then assumed to propagate with its velocity until it is formed
after a formation time fx. For a parton produced at time x to
be within the narrow range z € [—d, d] at time ¢, its rapidity y
must satisfy the following condition:
—d — 29 d—z

Ltanhy < .
t—x r—x

3

Therefore, in the limit d — O the rapidity and its allowed
range become

2d cosh’y

y—>yo=tanh_1(_zo>, Ay="—""- @&
f—x f—x

So the initial energy density averaged over the transverse area
———  Aycoshy

at time ¢ is
2dAT // dx dz dy

dxd d3
// =T cosh? yo. )
¢ t—x dxdzodyo

In the above, mt is the transverse mass that is the same as
the transverse energy Et at y = 0. We use the notation mr in
this study to differentiate our dmr/dy from the experimentally
measured d Et/dy from the PHENIX Collaboration [22].

The limits of integration in Eq. (5) that determine the
integration area S depend on time ¢. First, any (zg, x) point
needs to be within the production area, shown in Fig. 1 as the
diamond-shaped area formed by the four dashed lines in each
panel. Second, the light cone limits the production points of
allowed partons below the two diagonal solid lines in each
panel of Fig. 1. Finally, a parton needs to be formed by time
t due to its finite formation time. Now we take the formation
time of a parton in the center-of-mass frame as

€(t) =

tr = trcoshy, (6)

i.e., a proper formation time tr multiplied by a time-dilation
factor. For a parton produced at point (zg, x) that would reach
point (=0, ) and contribute to Eq. (5), its formation time is
T cosh yg. Therefore any allowed production point needs to
be below a formation time hyperbola, which is given by

x=t—+22+ 15 (7

Note that for finite T this formation time requirement is al-
ways stricter than the light cone requirement, while for tg = 0
the hyperbola reduces to the light cone boundaries.

Since the integration limits of (zg, x) in Eq. (5) depend on
time, our solution of the energy density €(¢) is a piecewise
function in time. We now consider a more general case than
Fig. 1 in that the crossing of two nuclei starts at time #; and
ends at time #, and thus the thombus production area is bound
by the z =+f(x —#) and z = £8(x — t) lines. Then we
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TABLEI. Piecewise solution of e(¢) for different ranges of time ¢
together with the corresponding integration limits for the production
time x and production z coordinate z.

Piece t range X range 7o range
€(1) [ty + TE, 12) [t1, x1) [—B(x—11), B(x —11)]
[x1,t —TF) [—zr(x), zr (x)]
€(1) [tas 12 + TF) [#1, tmia) [B(x—1), B(x —11)]
[tmia» x2) [=B(t2 — x), B(ta — x)]
[x2, 7 — TF) [—zr (%), Zr (x)]
€3 (1) [2 + T, 00) [#1, tmia) [-B(x —1), B(x —11)]
[#mia, 22] [—B(t2 — x), B(t2 — x)]

summarize the integration limits in Table I, noting that € (t) =
0 for t € [0,#; + Tg). In the table, ¢, is the observation time
when the formation time hyperbola intersects the two middle
vertices of the production area at (29, x) = (£Bt21/2, tmid):

1
e = tmia + | T +<ﬁ221) , ®)

where we define
tmia = (11 +12)/2. 9

The first piecewise solution is for time ¢ € [t; + T, #,), Wwhere
the formation time hyperbola intersects the lower boundaries
of the production area, i.e., the z = £8(x — t;) lines, at time
x1 that is given by

_R24. _ 2 2 2 2
= 1P VBt — 1) — T2l +tF with = 1.2,
1— g2
(10)

As shown in Fig. 1(a) and Table I, the first piece €;(¢) has two
integration areas: a triangular area below time x; and another
area under the hyperbola. For the latter area, the zy range is
[—zr(x), zr(x)], where £zp(x) are the z coordinates of the
formation time hyperbola at a given time x:

2r(x) =4/ (t = x)* — T Y

The second piecewise solution is for time ¢ € [t,, &, + TF),
where the formation time hyperbola intersects the upper
boundaries of the production area, i.e., the z = +8(x — 1)
lines, at time x; as given by Eq. (10). As shown in Fig. 1(b),
the second piece €,(¢) has three integration areas: the lower
half of the thombus (a triangle), the upper half of the rhom-
bus below time x; (a trapezoid), and the rhombus above
time x, but under the hyperbola curve. Note that in each
panel of Fig. 1 the different integration areas are separated
by the dashed line(s) inside the shaded full integration area.
Finally, the third piece €3(¢) gives the solution for time ¢ €
[t + TF, 00), where the integration is over (2o, x) in the full
rhombus.

If we neglect the finite time duration and longitudinal
width of the initial energy production and thus make the
replacement d>mr/(dx dzody) — 8(z0)8(x)dmr/dy, we re-
cover the Bjorken energy density formula of Eq. (1). On
the other hand, if we consider the finite time duration but

hy=h—1,

neglect the finite longitudinal width and thus make the re-
placement d3mT/(dx dzody) — B(ZO)dzmT/(dx dy), Eq. (5)
then reduces to the previously known solution: Eq. (5) of
Ref. [17]. Note that €(¢) is higher for a smaller 7 (at given
J/Snvn, A, and t) because the integration area gets bigger,
except that the late-time €(¢) at r > t, 4+ g does not depend
on 7g.

To proceed further, we now consider central Au+Au colli-
sions and specify the function d*mr/(dx dzody) in Eq. (5). We
first assume that the initial transverse mass rapidity density
of produced partons per production area can be written in a
factorized form:

d3mT me
— = g(z0,x) —. 12
dxdz dy 8(z0, x) dy (12)
The area density function g(zo, x) is normalized as
// dxdzg g(zp,x) = 1 (13)
So

so that dmy/dy represents the initial rapidity density of the
transverse mass of all produced partons. We further make the
simplest assumption that partons are produced uniformly over
the full production area Sy, i.e.,

2
8(z0, x) = (14)
ﬂtZI
We parametrize the initial dmt/dy of produced partons as
a Gaussian function in rapidity:

——=——0e ", 15)
y

where we use the notation F (0) to represent the value of F (y)
at y = 0. We then take the peak value of dmt/dy at different
collision energies from a parametrization of the results from
the string melting version of the AMPT model [17]:

d 0.348
?(0) = 168( VG%N —_ o.930> GeV. (16)
y (¢}

To determine the Gaussian width o, we take advantage of the
conservation of energy by assuming that for central collisions
all incoming nucleons are participant nucleons:

d
/ % coshydy = A/snn. 17
y

We then obtain
A/
= Wor?) with r = dSNN
V2 gt )’

where Wy(x) is the k = 0 branch of the Lambert W function
(or the omega function) Wy (x). Finally, we can write the initial
energy density averaged over the transverse area as

2
2 d dxdzy -3
o )// 10 g cosh®yp.  (19)
ATﬁtzl dy S

Figure 2 shows the dmry/dy of produced partons as given
by Eq. (15) in central Au+Au collisions at several energies
(solid curves), where we see a monotonous increase of the

(18)

e(t) =
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FIG. 2. Parametrized initial rapidity density of transverse mass
of produced partons (solid curves) for central Au+Au collisions at
/Svv =2, 3,5, 50, and 200 GeV. Symbols represent the results of
initial partons from the AMPT model, while dashed curves represent
the parametrized hadron dmr/dy at these energies.

peak value and the Gaussian width with the collision energy.
Symbols represent the results of initially produced partons
from the string melting version of the AMPT model [17], which
show the same qualitative features. Note that in more realistic
calculations such as those from the HIJING model [23,24] or
the AMPT model [25] a small fraction of the incoming nucle-
ons are spectators in central collisions.

III. RESULTS FOR CENTRAL Au+Au COLLISIONS

Our results for €(¢) depend on choosing specific values for
the time parameters Ty, #;, and f,. As in the previous study
[17], we take

t =0.24d,, t =0.84d, (20)

instead of the naive choice of t; = 0 and t, = d,; this is un-
derstandable because a boosted nucleus has the shape of an
ellipsoid instead of a uniform disk. These particular values

J

0 = —2 me(O)_ t+t 4T+ —r)n (20
€it) = ——— — T —1)In
11 Athzl dy i 1 F 1
4 me [ t 51
= —O0)|t —1 — t—1)l1
Art3, dy ( )_ SRLR v n( — Imid
dodmr ol —im (22 1 — o
= — —1)In —1)n
Arty dy | l ! — Imid ’ 4

Note that dmt/dy(0) appears in the above solution because
only partons at y & 0 can enter the central spacetime-rapidity
region of ny &~ 0 when the finite z width of the initial energy
production is neglected.

From each €(¢) curve we extract the maximum energy
density €™, whose values are shown in Fig. 4(a) as func-

F
— >+(t2—z)ln<
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FIG. 3. Energy density of produced partons in central Au+Au
collisions at \/syy = 3, 7.7, 19.6, and 39 GeV for 7 = 0.1, 0.3 and
0.9 fm/c; the triangular solution for g = 0.3 fm/c is also shown for
comparison.

are chosen [17] so that the width of the production time
distribution is similar to the results from the string melting
version of the AMPT model.

Figure 3 shows our results of the initial energy density
versus time for central Au+Au collisions at /syy = 3, 7.7,
19.6, and 39 GeV in four panels for several different 7 values.
We see that the energy density first increases smoothly with
time and that the late-time decrease is essentially the same
for different 7 values. In addition, the peak energy density
increases with the decrease of tg, but the relative increase
is smaller at lower energies. These features are the same as
those from the previous study that only includes the finite
time duration [17]. Also, our results for g = 0.3 fm/c are
quite close to those from the previous triangular time profile
that took the same #; and #, values [17]. This may be expected
because the assumption in Eq. (14) of a uniform distribution in
(zo, x) leads to a triangular time profile in x (after integrating
over zp). Note that the triangular solution is also a piecewise
solution [17]:

)} fort € [t; + TF, tmia + TF),

! — Imid

>i| for t € [tmia + TF, 2 + TF),
TF

' — Imid

)} fort € [t + T, 00). 1)

(

tions of the collision energy for several different vy values.
For our method (solid), the triangular time profile (dot-
dashed), or the Bjorken formula (dotted), the three curves
from top to bottom represent the results for g = 0.1, 0.3,
and 0.9 fm/c, respectively. At high energies and a finite
Tr Where T > d;, one finds that both our solution and the
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FIG. 4. Maximum energy density for central Au+Au collisions
(a) as a function of collision energy at g = 0.1, 0.3, and 0.9 fm/c
and (b) as a function of proper formation time at ,/syy = 3, 10,
200 GeV from our method, the triangular time profile, and the
Bjorken formula. Circles represent results for tp = 0.

triangular solution reduce to the Bjorken formula, which
can be seen in Fig. 4(a). Numerically we observe that the
Bjorken €™ value starts to be significantly different (by
20% or more) from our finite-thickness result when tg/d;, <
1 (as we naively expect), which may be considered as the
condition when the Bjorken energy density formula breaks
down.

At low energies, our €™ value is much smaller than that
from the Bjorken formula and its dependence on 7 is also
much weaker. These qualitative features are the same as those
found in the earlier study [17]. Furthermore, we find that
numerically r/d; < 0.2 when our €™ value is significantly
different (by 20% or more) from the previous triangular so-
lution, and usually our €™ is smaller than the triangular
solution at very low energies but is bigger at intermediate
energies. Note that for the triangular time profile of the ini-
tial energy production the maximum energy density is given

y [17]

PHYSICAL REVIEW C 103, 024907 (2021)
max __ 2 d mr ( ) |:

TF TF
€ 1-—L4 Xy X
" Aty dy i I I

<1 + 1 +2l21/‘[1:>:|
) .

+2In (22)

We know that the energy density from the Bjorken formula
diverges as 1/tg, while the triangular solution diverges as
1/7p at high energies but as In (1/7g) at low energies [17].
Figure 4(b) shows how the maximum energy density depends
on the formation time tg, where solid curves show our results
for central Au+Au collisions at ./syy = 3, 10, and 200 GeV
as functions of . We see a flattening of €™** as T decreases
towards zero, which is more obvious at lower energies. Also,
our results are close to results from the previous triangular so-
lution (dot-dashed) when the formation time is not too small.
On the other hand, energy densities from the Bjorken formula
(dotted lines) go as 1/t and are much higher than our results
at low energies and/or small g values.

IV. FINITENESS OF €™ AT 75 = 0

We further find that the maximum initial energy density
at g = 0, €™ (rg = 0), is finite, and the values are shown
as circles in Fig. 4(b) for those three energies. Note that
€™ (rg = 0) is finite at any energy, and its energy depen-
dence is shown in Fig. 4(a) as the curve with circles. We see
that the €™ (tr = 0) value is quite close to (within 20% of)
the €™ value at g = 0.1 fm/c for central Au+Au collisions
at \/syy S 7 GeV.

As an analytical proof of the finiteness of €™ (tg = 0),
next we derive its upper bound. Equation (4) allows us to write

zo = —rgsinhyy, t—x = rycoshyy 23)

for partons that contribute to the energy density €(¢) at n; ~ 0.
For brevity we write the variable yy as y in the rest of this
section, we can then write Eq. (19) as

d
€)= / ﬂcosh ydrody

ATﬂtm

T cosh?y Arg(y) dy, (24)
ATﬂt21 /

where Ary(y) = g™ (y) — rg““(y). By analyzing the general
crossing diagram (i.e., the one using #; and #,) similar to Fig. 1,
we first find that for ¢ < #, we always have

0" ) =0, ) < ) (25)

for a given parton rapidity y when 7 = 0. In the above, r{(y)
is the ry value when a parton passing through the observation
point (0, 7) with rapidity y intersects one of the z = +8(x —
t1) lines in the general crossing diagram:

(t—n)
no) = —bE=m (26)
Bcoshy + [sinh y|
Thus for ¢t < t, we have
15
Ar(y) € P2 @7)

Bcoshy + [sinh y|
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FIG. 5. Maximum energy density for central Au+Au collisions
as a function of collision energy at g =0, 0.1, 0.3, and 0.9 fm/c
in comparison with the upper bound of €™ of Eq. (29), where
the analytical low- and high-energy bounds are also shown. Dashed
curves represent the €™ results when using a constant formation
time tg = 0.1, 0.3, and 0.9 fm/c.

Second, for ¢t > t, we can obtain
B coshyt; — 2|sinhy|(t — tmiq)
Bcosh?y — sinh?y/B

which also satisfies the inequality of Eq. (27). Equation (24)
then gives

Arg(y) =

. (28

2

T 202

dmr e cosh’ydy
Atty) dy Bcoshy + [sinh y|

This upper bound of the energy density is shown (thick
dashed curve) for central Au+Au collisions as a function
of the collision energy in Fig. 5. We observe that it ap-
proaches the €™ (tr = 0) value (the top solid curve) at high
energies. Note that as § — 1 the light cone boundaries over-
lap with the upper boundaries of the rhombus production
area, thus the inequality of Eq. (27) becomes an equality for
t < tp but not for ¢ > t,. Therefore the observation €pgung —
€™ (tg = 0) at high energies suggests that the maximum
energy density for tg = 0 is reached at ¢ < #,. This is the
case for the triangular time profile [17], where €3 = €(t =
tmid + TE/2 + \/TF+/2 t1 + TE/2) occurs at a time within
[fmia + TF. 12 + TE).

For an explicit analytical expression of the upper bound,
we take advantage of

€(t) <

= €pound- (29)

1 el
< —. 30
Bcoshy 4 |sinh y]| B (30)

Using Eq. (18), we then reduce Eq. (29) to

A/Snn o 402 30
< () (3] o

where erfc(x) is the complementary error function. The right-
hand side of Eq. (31) can be considered as the high energy
expression of the upper bound, and as shown in Fig. 5 (dotted

curve) it agrees well with €pouna Oof Eq. (29) for /syy >
4 GeV. For very low energies, however, the relaxation of
Eqg. (30) is too loose and thus the high energy bound of
Eq. (31) fails to approach zero at the threshold energy.

At very low energies where 8 < 1, we find from Eq. (18)
that o < 0.707 for ./syy <1.96 GeV. Using the fact

exp(—y?/2/a?)cosh’y < 1 for o < 1/+/2, Eq. (29) gives
d d
e <70 | -
Atty; dy Bcoshy + [sinh y|

- S M Gy (22 a2
_ATl‘gh/l—,Bz dy 1+:3 .

This low energy expression of the upper bound is shown
in Fig. 5 (dot-dashed curve), where we see that it captures
the decrease of the energy density €™ (tp = 0) towards the
threshold energy. Note that €pqung X 81n(2/8) at very low
energies according to Eq. (32), therefore the peak energy den-
sity goes towards zero as the collision energy approaches the
threshold although the initial transverse mass rapidity density
of Eq. (16) is always finite.

V. SCALING AND A DEPENDENCE OF €(t)

Our solution of Eq. (19) has an approximate scaling prop-
erty. We first note that, in the hard sphere model of the
nucleus, both the time duration d; and the z width of the
production area are proportional to A!/3. Second, we can
expect dmr/dy(0) to be approximately proportional to the
number of participant nucleons and thus proportional to A for
central collisions; this is the case for the parametrization of the
final hadron dEt/dy by the PHENIX Collaboration [22]. If
dmt/dy(0) o A for central collisions, Eq. (18) means that the
Gaussian width o of the dmr/dy distribution is independent
of A.

Next we define the scaled time and scaled proper formation
time respectively as

t s TF

Tp = Im (33)
Under these approximations [i.e., d; and the z width of the
production area are proportional to A'/3 and dmr/dy(0) o A],
we see from Eq. (19) that at a given collision energy €(¢) is
only a function of #* and t§;, while €™ is only a function of
7. This also gives the following scaling relation:

€M (for Tp) = e (for T = (197/4)Ptr)  (34)

N

VES

at the same energy (. /syn). For example, it means
ebo (for Tg = 0.30 fm/c) = e}, (for Tg = 0.69 fm/c) for
central collisions at the same energy. In addition, it means that
ex(tp = 0) only depends on ,/syy but not on A. If one were
willing to apply these approximations down to A = 1 (for the
proton), Eq. (34) would give 3" (tg =0) = elr;;f"(tp =0)
for central AA collisions at the same energy.

Furthermore, the scaling means that the T dependence of
€™ at a given energy, such as the curves shown in Fig. 4(b),
also gives the A dependence of €™ for central collisions. We
see that the Bjorken formula Eq. (1) and the triangular solution
Eq. (21) also satisfy the scaling relation. However, different
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FIG. 6. Maximum energy density using the parton dmr/dy, the
hadron dmr/dy, or modified parton dmy/dy (see text for details)
for g = 0.3 fm/c as functions of energy. The inset shows ratios of
€™ from various dmr/dy profiles to €™* from the default parton
dmy/dy, while the solid straight line shows the energy density if two
boosted nuclei simply overlap.

tr dependences correspond to different A dependences of the
maximum energy density. For example, at low energies our re-
sult has a very flat tr dependence as shown in Fig. 4(b), which
translates to a very slow increase of €™ with A. At finite 7p
and high-enough energies, however, our result reduces to the
Bjorken energy density formula, where €™ o A!/3 (at fixed
7r). Also note that under the same approximations the upper
bound of the energy density €poung in Eq. (29) is independent
of A, just like e{3* (g = 0).

VI. DISCUSSIONS

In the calculations of energy density with Eq. (19) so far,
we have taken dmr/dy as the transverse mass rapidity density
of initial partons, which peak value as a function of energy
is parametrized according to results from the AMPT model
[17,25]. To investigate the uncertainty of the energy density
due to dmr/dy, we could also take dmr/dy as the transverse
mass rapidity density of final hadrons. The hadron dmrt/dy is
derived in the Appendix and shown in Fig. 2 (dashed curves)
for central Au+4Au collisions at several energies. We see that
the hadron dmr/dy and parton dmrt/dy are similar at energies
between ~3 and 50 GeV. At 2 GeV near the threshold energy,
however, the hadron dmr/dy has a higher peak but is narrower
than the parton dmry/dy because of the slow baryons, while
the hadron dmr/dy has a lower peak at the top RHIC energy
consistent with the effect of strong secondary interactions.
Note that both the hadron and parton dmry/dy satisfy the
energy conservation of Eq. (17).

Figure 6 shows the ¢™** values in central Au+Au colli-
sions as functions of energy when the hadron dmr/dy is used
(dashed curve) for Tg = 0.3 fm/c. We see that it is rather
close to our result for the parton dmr/dy (solid curve) within
3 < /syy < 100 GeV. At high energies the production area
is relatively small compared to the finite tf, so partons with

rapidities near zero dominate the energy at n; = 0. Therefore
€™ at high collision energies is expected to depend mostly
on dmr/dy(0); as a result, the €™ value using the hadron
dmr/dy is lower than that using the parton dmr/dy (see
Fig. 2). At low energies particles at finite rapidities can also
contribute significantly to the energy at n, &~ 0, thus ™
depends on not only dm/dy(0) but also the Gaussian width
o. To further demonstrate this, we have changed the parton
dmrt/dy(0) value by a factor of 2 and then determined the
Gaussian width with the energy conservation of Eq.(17); the
corresponding €™ values are shown in Fig. 6 with the ratio
over our default result (solid curve) shown in the inset. We see
that the change of €™®* is the same factor of 2 at high energies
but is smaller than two at low energies.

We also show in Fig. 6 the simplest estimate for the energy
density (straight line), where one imagines the two boosted
nuclei to simply overlap in volume with all interactions ne-
glected. In the hard sphere model of the nucleus, this energy
density would be

3/
eoverlap — 1 SI];3N’ (35)
TR

which grows linearly with ,/syy but is independent of A.
Naively we expect the actual maximum energy density in the
central spacetime-rapidity region to be higher than €°¥*"% due
to the compression from the primary nucleus-nucleus colli-
sion. This is indeed the case in Fig. 6 except for very low
or very high energies. Near the threshold energy the energy
density using the hadron dm /dy is higher than €Y%, but the
energy density using the parton dmr/dy is lower. However,
parton matter is unlikely to be formed near the threshold
energy due to the low estimated energy density, therefore the
hadron dmr/dy should be more applicable there. At very high
energies, we expect the parton dmr/dy to be applicable but
the maximum energy density is lower than €°'%, This is
because of the finite formation time tp; for example we see
from Fig. 4(a) that the peak energy density at tg = 0 at high
energies is always bigger than e°Verlp,

We have also considered a scenario where all initial partons
have the same formation time #r instead of the same proper
formation time tg. The energy density is still given by Egs. (5)
and (19), but the formation time requirement restricts the
integration area S to x < ¢ — tg instead of restricting S below
the proper time hyperbola of Eq. (7). Figure 5 shows the e™**
results (thin dashed curves) for t = 0.1, 0.3, and 0.9 fm/c
as functions of energy, where the result above a certain energy
(which corresponds to Bf,1 /2 & tg) is the same as our standard
result that takes the same value for tr. However, just below
this energy scale we see a strange decrease of €™ with \/syy.
We find that this is a consequence of a double-peak structure
of €(t) below this energy scale in the constant-fz case, where
partons at very large rapidities could also contribute to the
energy density.

VII. CONCLUSION

We present a method to calculate the initial energy den-
sity produced in heavy ion collisions that takes into account
the finite nuclear thickness. Our method includes both the
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finite longitudinal (z) width and the finite time duration d;
of the initial energy production. This is a continuation of
a previous study that considers the finite duration time (but
not the finite z width) in an extension of the Bjorken energy
density formula. We find the same qualitative conclusions:
the initial energy density after considering the finite nuclear
thickness approaches the Bjorken formula at large formation
time tg and/or high energies; at low energies, however, the
initial energy density has a much lower maximum, evolves
much longer, and is much less sensitive to tg than the
Bjorken formula. Numerically we find that the Bjorken energy
density formula breaks down (i.e., is different by 20% or
more from our results that include the finite nuclear thick-
ness) when tg/d, < 1, as one may expect. When the proper
formation time 7 is not too much smaller than the cross-
ing time of the two nuclei, our results are similar to the
previous extension results that only include the finite time
duration. Numerically we find t/d, < 0.2 when our result
is significantly different (by 20% or more) from the previous
result.

A qualitative difference from previous studies is that we
find the energy density €(¢) including its maximum €™ to
be finite at Tz = 0 at any energy. In contrast, the Bjorken
energy density formula is divergent where €™ o« 1/t¢ as
g — 0, while the previous study that neglects the finite z
width gives a In(1/tg) divergence at low energies but the same
1/7p divergence at high energies.

In addition, we find that our €(¢) results (as well as the
Bjorken energy density formula and the previous extension
results) for central heavy ion collisions satisfy a scaling re-
lation under two reasonable assumptions. They include the
assumption that the initial rapidity density of the transverse
energy is proportional to the number of participant nucleons
and that the z width and time duration d; are both propor-
tional to A'/3. As a result of the scaling, the tr dependence
of €™ for a given A also determines the A dependence of
€™ (at the same collision energy), therefore the weaker 7p
dependence of our results at low energies means a slower
increase of the energy density with the mass number A. In
particular, the scaling means that the €™ value at 7p =
0 is independent of A and only depends on the collision
energy.
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APPENDIX: dmrt/dy OF FINAL STATE HADRONS

In the PHENIX Collaboration’s data-based parametriza-
tion [22] of the transverse energy pseudorapidity density
around 1 = 0, the “transverse energy” Er is defined as Er =
ZiE,- sin 0;, where 6; is the polar angle of particle i. E; is
defined as E/** — my for baryons, E/** + my for antibaryons,
and E!** for all other particles, where E[* is the total energy
of the particle and my is the nucleon mass. As a result of the
Er definition, the total transverse energy of hadrons at y = 0

is given by
dmr  dEr dNyes
—— = t+tmn——,
dy dy dy
where Ny represents the net-baryon number.
To determine the hadron dmry/dy function for calculating
the energy density via Eq. (19), we assume that dEt/dy is

a single Gaussian while dN,ep/dy can be described with a
double Gaussian [26,27]:

(AD)

dEr dE — 2
—L=—"TOe ",
dy dy
dN,e _o+p? _ op)?
y tB — C(e 203 +e 207 ) (AZ)
y

First, regarding d Et/dy(0) the PHENIX Collaboration has
parametrized the mid-pseudorapidity data as [22]

dN,
=R 0) = 0.37N, In |
dn 1.48 GeV

dE o
CT0) = 0.365N, In [ =YY ) Gev,
dn 235 GeV

(A3)
where N, is the number of participants (taken as 2A for
central collisions in this study). However, the dEt/dn(0)
parametrization underestimates the dEt/dn/(dN./dn) ratio
at energies below ,/syy & 10 GeV [22], as shown in Fig. 7(a).
Since the effect of finite nuclear thickness is more impor-
tant at lower energies and the PHENIX parametrization of
dNg/dn(0) is accurate down to lower energies than that
of dEt/dn(0), we improve the dEt/dn(0) parametrization.
Specifically, we take the same dN.,/dn(0) parametrization
[22] but refit the dEr/dn/(dNe/dn) data at \/syy < 20 GeV
to obtain

dﬂ(O) = 0.308N, In""® (ﬁ) GeV (A4)
dn Ey

for /syy < 20.7 GeV, where Ey = 2my is the threshold
energy. As shown in Fig. 7(a), our improved low en-
ergy parametrization intersects the PHENIX parametrization
at /syy ~ 20.7 GeV, above which we use the PHENIX
dEr/dn(0) parametrization. We then take dEr/dy(0) =
1.25dEr/dn(0) [22], which are shown in Fig. 7(b) for our
improved parametrization (thin solid curve) and the PHENIX
parametrization (dashed curve).

Next, to specify dNpes/dy in Eq. (A2) we first parametrize
yp and o, using the net-proton rapidity density data in central
Au+Au collisions (with the exception that central Pb+Pb data
are used at 17.3 GeV). For collision energies below 5 GeV,
there is little anti-baryon production and thus we use the
proton dN/dy for net protons at ,/syy = 2.4, 3.1, 3.6, and
4.1 GeV [28]. We also use the net-proton dN/dy data at
Jsvv =5 GeV [29,30], 17.3 GeV [31], and 200 GeV [32].
From these data we obtain the following parametrization:

0.196
v = 0.541 (—” N E°> 1n0392 <—V SNN)
' GeV E() ’
_ g\ 02
oy = 0.601( YNV T Z0) 0241 (VINN ) p s
GeV E()
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FIG. 7. (a) (dEtr/dn)/(dNe/dn) data at n ~ 0 compared with
our improved parametrization below 20.7 GeV and the PHENIX
parametrization. (b) Midrapidity dmr/dy of initial partons and final
hadrons for central Au+Au collisions as functions of energy; the net-
baryon contribution to the hadron dmr/dy (0) as well as the PHENIX
parametrization and our improved parametrization of d Et/dy (0) are
also shown.

We further assume that the net-baryon and net-proton dN/dy
distributions have the same shape. We then impose the con-
servation of the net-baryon number, f (dNhe /dy)dy = 2A to
determine the parameter C in Eq. (A2) at each collision en-

100 T T T T T
dNnets/dy / 3.9 VSnn = 2.4 GeV,
80 -= dNpets/dy / 2.3 5.0 GeV,
- dNnetB/dy /2.5 %(7)03GGee\>/,
) dNnetB/dy / 3.7
> 60r gﬁ ?‘.\I
) o
= &
a0 o
°'Fet.g L2
oo 9"8‘9;5“7 e \ O\o\
/o’ /e o Q
207 o® ,’Io. oM o‘l{
ot /® Oy i
L Ly ©0-.00....q8....00.-00N OO‘\ N
i S 1 2 3

FIG. 8. Net-proton dN/dy data (circles) for central Au+Au
(Pb+Pb) at /syy = 2.4, 5, (17.3), and 200 GeV in comparison
with the scaled net-baryon parametrization (curves). Filled circles
represent actual data and open circles are reflected data across
y=0.

ergy. Figure 8 shows the net-proton data at several energies in
comparison with our d N, /dy parametrization (scaled down
by various factors for better comparison of the shapes). Note
that the 5 GeV data shown in Fig. 8 include those from the
E802 Collaboration (squares) [29] and the E877 Collaboration
(circles) [30]. Last, we calculate the last parameter o} in
Eq. (A2) by using the conservation of total energy of Eq. (17).

Figure 7(b) shows the energy dependence of our hadron
dmt/dy(0) parametrization (dotted curve) in comparison
with that of the dmr/dy(0) for initial partons (thick solid
curve). We see that they are rather close within 3 <
J/Svv < 100 GeV, which includes the energy range of
the Beam Energy Scan program at RHIC [6-9]. Note
the fast increase of hadron dmr/dy(0) when ./syy de-
creases towards the threshold energy; this is a combined
effect of the vanishing beam rapidity near the threshold
energy and the finite conserved net-baryon number. It is
also clear that at very low energies the net-baryon contribu-
tion (dot-dashed curve), coming mostly from the incoming
nucleons, dominates the total transverse energy of final
hadrons.
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