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ARTICLE INFO ABSTRACT

The atmospheric boundary layer mediates the exchange of energy, matter, and momentum between the land

Keywords: surface and the free troposphere, integrating a range of physical, chemical, and bioclogical processes and is
E‘ddy covariance defined as the lowest layer of the atmosphere (ranging from a few meters to 3 km). In this review, we investigate
© y layer how continuous, automated observations of the atmospheric boundary layer can enhance the scientific value of
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co-located eddy covariance measurements of land-atmosphere fluxes of carbon, water, and energy, as are being
made at FLUXNET sites worldwide. We highlight four key opportunities to integrate tower-based flux
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measurements with continuous, long-term atmospheric boundary layer measurements: (1) to interpret surface
flux and atmospheric boundary layer exchange dynamics and feedbacks at flux tower sites, (2) to support flux

footprint modelling, the interpretation of surface fluxes in heterogeneous and mountainous terrain, and quality
control of eddy covariance flux measurements, (3) to support regional-scale modeling and upscaling of surface
fluxes to continental scales, and (4) to quantify land-atmosphere coupling and validate its representation in Earth
system models. Adding a suite of atmospheric boundary layer measurements to eddy covariance flux tower sites,
and supporting the sharing of these data to tower networks, would allow the Earth science community to address
new emerging research questions, better interpret ongoing flux tower measurements, and would present novel
opportunities for collaborations between FLUXNET scientists and atmospheric and remote sensing scientists.

1. Introduction

The land-atmosphere exchange of energy, matter, and momentum
has been measured using the eddy covariance technique since the late
1960 s (e.g., Hicks and Martin, 1972; Kaimal and Wyngaard, 1990,
McKay and Thurtell, 1978; Leuning et al., 1982; Desjardins et al., 1984;
Baldocchi et al., 1988). Since then, the number of eddy covariance flux
tower sites has increased substantially, thus improving the spatial and
temporal coverage of land-atmosphere exchange observations across the
globe (e.g., Chuetal., 2017; Novick et al., 2018; Keenan et al., 2019). As
of 2019, eddy covariance-based flux measurements have been con-
ducted at more than 2000 sites located on all continents (Burba, 2019).
An international network of flux tower sites called FLUXNET has
emerged over the past few decades resulting in multi-site and multi-year
datasets (Baldocchi, 2020; Pastorello et al., 2020). Many of the sites in
FLUXNET are now providing open access data to users worldwide.
FLUXNET efforts have focused on measuring biospheric fluxes of carbon
dioxide (CO3), water vapor, latent and sensible heat, while more recent
efforts aim to produce similar datasets for methane fluxes (Knox et al.,
2019). The wealth of eddy covariance-based flux observations has
advanced our understanding of land-atmosphere interactions (e.g., role
of diffuse radiation on ecosystem carbon uptake (Niyogi et al, 2004;
Knohl and Baldocchi, 2008), effect of increasing atmospheric CO5 con-
centrations on water-use efficiency (Keenan et al., 2013), thermal
optimality of net ecosystem carbon exchange (Niu et al., 2012), and the
effect of increasing vapor pressure deficit on carbon and water fluxes
(Novick et al., 2016). FLUXNET data have also proven invaluable for
benchmarking and testing ecosystem models (e.g., Bonan et al., 2011;
Collier et al., 2018), and validating remotely sensed information about
land surface function (e.g., Zhao et al., 2005; Heinsch et al, 2006;
Schimel et al., 2015). However, most studies using eddy
covariance-based flux observations have focused on ecosystem re-
sponses to atmospheric (e.g., air temperature and humidity, CO, con-
centrations), environmental (e.g., soil moisture), ecological (e.g.,
wildfire and insect disturbances), or anthropogenic drivers (e.g.,
anthropogenic disturbances, land management), while fewer studies
have addressed complex interactions between land and atmospheric
processes (e.g., Juang et al., 2007a; Lee et al., 2011; Baldocchi and Ma,
2013; Sanchez-Mejia and Papuga, 2014; Burns et al., 2015; Rigden and
Li, 2017; Brugger et al, 2018; Gerken et al., 2019; Lansu et al., 2020;
Helbig et al., 2020a).

The interactions between the land surface and atmosphere are
mostly confined to the atmospheric boundary layer (ABL, e.g., Yi et al.,
2004), commonly defined as the lowest layer of the atmosphere (depth
varies from a few meters to 1-3 km), which is directly influenced by land
surface processes. The ABL links properties of soils, vegetation, and
urban landscapes to the free troposphere and is of critical importance for
weather, climate, and pollutant dispersion and chemistry. For example,
land-atmosphere feedback mechanisms (e.g., Raupach, 1998) exert
important controls on global carbon storage dynamics (e.g., Green et al.,
2019; Humphrey et al., 2021), soil moisture availability (e.g., Shi et al,
2013; Vogel et al., 2017), water balance (e.g., McNaughton and Spriggs,
1986; Salvucci and Gentine, 2013), surface energy balance (e.g., Lansu
et al., 2020), cloud formation and patterns (e.g., Siqueira et al., 2009;

Vila-Guerau de Arellano et al., 2012), atmospheric chemistry and air
pollution (e.g., Janssen et al., 2013), and future climate change trajec-
tories (e.g., Davy and Esau, 2016). Additionally, the state of the lower
atmosphere contains information that can constrain observations of land
surface processes and states (e.g., plant photosynthesis and respiration
(Denning et al., 1999; Lauvaux et al., 2012), soil water availability
(Salvucci and Gentine, 2013). However, continuous ABL observations
with sufficient vertical resolution are currently not available globally
from spaceborne remote sensing and are rarely collected across the
FLUXNET network even though the advantages of having co-located
surface flux, radiation, humidity, and other ABL measurements are
numerous.

In this review paper, we explore how extending co-located ABL ob-
servations (e.g., from radiosondes, ceilometers, and lidar or radar pro-
filers) across the FLUXNET network could improve our mechanistic
understanding of land-atmosphere interactions and feedbacks. First, we
discuss typical diurnal ABL dynamics, then we give a brief overview of
available ABL observation systems and of current ABL observation ef-
forts at flux towers. We conclude with a discussion of new research
opportunities that could emerge from an expansion of ABL observations
across the FLUXNET network.

2. Background
2.1. Typical diurnal atmospheric boundary layer evolution

During daytime, the ABL is frequently well-mixed (above the
roughness sublayer and the surface layer) and bounded by the land
surface at its lower boundary and by a capping thermal inversion at its
upper boundary (e.g., Wouters et al., 2019; Table 1). The capping
inversion can be detected as the maximum positive vertical gradient of
potential temperature and minimum negative gradient of specific hu-
midity, separating the ABL from the free troposphere (Fig. 1 and 2). The
lowest layer of the ABL is the roughness sublayer (Fig. 3), which has
traditionally been defined as the layer immediately above the surface
wherein surface roughness elements (i.e., trees, buildings) induce hori-
zontal variability of time-averaged flow (Mahrt, 2000). Above an
extended homogeneous surface, the top of the roughness sublayer can be
thought of as the (local) ‘blending height and indicates the height above
which the influence of surface roughness elements and surface hetero-
geneity decrease. The depth of the roughness sublayer depends on sur-
face properties, including roughness length, roughness element spacing,
height, and area shape of roughness elements, but is typically 2-5 times
the height of the roughness elements (Raupach et al., 1991; Fig. 3). The
roughness sublayer is overlain by the surface layer, which usually ex-
tends to about 10% of the ABL height. In the surface layer, wind and
temperature profiles are often well-described as logarithmic functions of
height (i.e., Monin-Obukhov Similarity Theory functions, Monin and
Obukhov, 1954) and turbulent fluxes are nearly constant with height
(also called the constant flux layer). In contrast, vertical profiles of wind
and temperature in the roughness sublayer usually deviate from profiles
predicted by Monin-Obukhov Theory (Fig. 3) since turbulence charac-
teristics depend on the influence of individual roughness elements
(Raupach and Thom, 1981). Over heterogeneous surfaces, the regional



M. Helbig et al.

Table 1
List of definitions.
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Term

Definition

Adiabatic process

Atmospheric boundary layer [ABL] (or planetary
boundary layer)

Atmospheric boundary layer height (or mixing height)
[ABLH]

Capping inversion

Convective boundary layer (or daytime boundary
layer, mixed layer) [CBL]

Entrainment

Free troposphere

Lifting condensation level
Potential temperature

Roughness sublayer
Specific humidity

Stable boundary layer [SBL]

Surface layer

No external heat is transferred to an air parcel (e.g., adiabatic cooling of a rising air parcel due to decreasing pressure).
Lower layer of the troposphere, which is directly influenced by the planetary surface. Roughly a few meters to 1-3 km.

Thickness of the atmospheric boundary layer often characterized by a temperature inversion at the top of the ABL. During
daytime, the ABLH typically responds to surface forcing within a time scale of an hour to a few hours. In some cases, ABL
growth may be capped by atmospheric subsidence. Mixing height refers to the height up to which heat, matter, and momentum
originating from the land surface are well mixed (above the roughness sublayer and the surface layer) through turbulent
vertical mixing.

Elevated inversion layer (i.e., reversal of temperature gradient) at the top of the ABL separating ABL from free troposphere
Type of ABL that is characterized by vigorous turbulence and mixing due to heating at the bottom of the ABL and entrainment at
the top of the ABL during the day.

Process by which the turbulent mixed layer incorporates less turbulent air from the free troposphere leading to deepening of the
mixed layer. Entrainment zone shear enhances entrainment and can contribute to rapid ABL growth. Typically, entrainment is
associated with warming and drying of the ABL.

Atmospheric layer above the ABL where the influence of the planetary surface (surface friction/drag) is minimal. Air in the free
troposphere is warmer (for potential air temperature) and drier than in the ABL

Level at which a parcel of moist air becomes saturated when lifted dry adiabatically

Temperature that a parcel of dry air would have if brought adiabatically to a standard pressure (i.e., remains constant with
pressure changes)

Lowest ABL layer adjacent to land surface and influenced by roughness elements (e.g., trees, buildings, vegetation). Layer depth
(or local blending height) is app. 2-5 times the height of roughness elements.

Mass of water vapor in a unit mass of moist air (i.e., remains constant with pressure changes). May be approximated by the
(water vapor) mixing ratio (i.e., mass of water vapor in a unit mass of dry air)

Cool stable layer adjacent to the ground characterized by a positive vertical potential temperature gradient developing due to
radiative cooling of the land surface during the night (i.e., nocturnal boundary layer [NBL]) or when warm air moves over a
cooler surface (e.g., snow or ice). Mixing in the SBL is mainly driven by shear (i.e., mechanical turbulence) and intermittent
turbulence events.

Atmospheric layer where mechanical generation of turbulence dominates extending from the top of the roughness sublayer to

about 10% of the ABL height

blending height defines the height above which the impact of individual
surface patches vanishes and where the ABL can be considered to be
homogeneous. Regional blending heights depend on regional (macro-
scale) roughness characteristics of the surface patches and are higher
than local blending heights, which mainly depend on (microscale)
roughness characteristics (e.g., Brutsaert, 1998).

The state of the ABL (e.g., air temperature and humidity, turbulence
characteristics) is controlled by the exchange of heat, momentum, and
scalars (e.g., water vapor, CO,, methane, aerosols) between the land
surface and the ABL and between the free troposphere and the ABL
(Fig. 4). Diurnal growth of the convective ABL (CBL or mixed layer)
causes warmer and typically drier air to be entrained into the ABL from
the free troposphere. The land-atmosphere exchange of heat, mo-
mentum, and scalars is mediated by the state of the ABL and by the state
of the land surface. For example, evapotranspiration and carbon uptake
are partly controlled by atmospheric humidity and precipitation and, at
the same time, by surface conditions such as vegetation type, vegetation
structure, phenology, and soil moisture.

The growth rate of the daytime ABL (or mixed layer) is mostly driven
by thermal eddies, and thus depends on available energy at the land
surface and how energy is partitioned between latent and sensible heat
fluxes, i.e. the Bowen ratio (Fig. 5). If a greater portion of available
energy is converted into sensible heat then this leads to a higher Bowen
ratio, and the ABL grows more rapidly (Yi et al, 2001), while the
opposite is true for a low Bowen ratio (i.e., ABL remains shallower when
more energy goes to latent heat). The rate of growth of the mixed layer is
also determined by the strength of the capping inversion and subsequent
entrainment (Driedonks and Tennekes, 1984; Wyngaard and Brost,
1984), the vertical rate of change of temperature and moisture, and the
shear-mixing by wind (Batchvarova and Gryning, 1991). In addition to
local drivers of ABL development, synoptic drivers (e.g., frontal circu-
lations of midlatitude cyclones, persistent anticyclones) often induce
strong vertical motions and temperature and moisture advection that
can substantially alter the state of the ABL (e.g., Schumacher et al.,
2019; Sinclair et al., 2010) and result in changes in the strength and

height of the capping inversion (e.g., Mechem et al., 2010). In some
cases, subsidence caused by large- or meso-scale circulation can sub-
stantially suppress ABL growth and needs to be accounted for when
assessing land-atmosphere interactions (e.g., Myrup et al., 1982; Pie-
teresen et al., 2015; Rey-Sanchez et al., 2021).

At sunset, when solar heating of the surface ceases, buoyancy-driven
turbulent mixing rapidly declines and the onset of the stable nocturnal
ABL (NBL) occurs at the surface, leaving a residual layer aloft (Fig. 1).
The residual layer can become detached and decoupled from the surface
and from the shallow NBL (30 m) during periods of very stable at-
mospheric conditions when vertical mixing is strongly suppressed (e.g.,
Banta et al., 2007). The decoupling of the surface and the NBL has
important implications for the accuracy, representativeness, and inter-
pretation of eddy covariance surface flux measurements, which require
sufficient intensity of turbulent mixing for valid measurements of sur-
face fluxes. The NBL is characterized by a strong, shallow temperature
inversion caused by surface radiative cooling. In contrast, potential
temperature and moisture in the residual layer is well-mixed but tur-
bulence is weak and intermittent. Stable boundary layers (SBL) can also
develop during daytime when warmer air moves over cooler land or
water surfaces or during the winter in mid to high latitudes, particularly
over snow and ice surfaces. Detecting the height of the SBL can be
ambiguous (Seibert et al., 2000) due to the multiple processes involved
in SBL development such as wind shear-induced turbulence, radiation
divergence within the SBL, and orographically induced gravity waves.
When turbulence is strongly suppressed in a very stable boundary layer,
turbulent energy fluxes may be negligible, and the net radiation at the
land surface is solely balanced by the ground heat flux. In contrast, in a
weakly stable boundary layer, turbulence can be well-developed. The
top of the layer of continuous turbulence is often taken as the height of
the SBL. However, due to the ambiguity of defining and detecting the
height of a SBL, ensemble approaches based on a range of ABLH defi-
nitions under stable conditions may be preferable (e.g., Stiperski et al.,
2020) [a more detailed discussion of the physical processes contributing
to SBL development is given by Mahrt (1999) and Steeneveld (2014)].
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A dynamic understanding of the tight coupling between surface
fluxes as measured by the eddy covariance technique (or other tech-
niques such as scintillometry and flux gradients) and growth and decline
of the ABL is thus essential to improve the current understanding of the
land-atmosphere system and to properly account for dynamic atmo-
spheric processes in studies of land-atmosphere interactions. This may
be especially true for the interpretation of nighttime fluxes or fluxes
collected under stable atmospheric conditions or in complex terrain (e.
g., Kutter et al., 2017; Menke et al., 2019).

2.2. Importance of atmospheric boundary layer height for land-
atmosphere interactions

The ABL mixing height (ABLH) can be defined as the thickness of the
turbulent atmospheric layer adjacent to the ground surface and is an
indicator of the volume of air throughout which heat, momentum, and
scalars may mix (see Seibert et al., 2000 for a more detailed discussion).
During daytime, surface emissions of aerosols, water vapor, and trace
gases are mixed throughout the ABL by convective and mechanical
turbulence on a time scale from typically 20-30 minutes to a few hours
(i.e., CBL), while mixing can be substantially reduced in the SBL (e.g.,
Culf et al., 1997; Seibert et al., 2000; Yi et al., 2000; Yi et al., 2001). The
CBL is capped by an entrainment layer where the sign of the heat flux
gradient reverses (i.e., sensible heat is entrained into the CBL), while the
SBL usually consists of a lower layer of continuous turbulence topped by
a layer of sporadic or intermittent turbulence.

The ABLH is a critical variable for understanding and constraining
ecosystem and climate dynamics. For example, air pollutants in deep
ABLs are well mixed, leading to lower pollutant concentrations, while
shallow SBL favor accumulation of pollutants to higher concentrations
(e.g., Yin et al., 2019). Carbon dioxide concentrations in the ABL are
governed by large diel variations in ABLH (Vi et al., 2001), changing
signs of CO» surface fluxes, and daily and seasonal variations in the
differences between free troposphere and ABL CO, concentrations
(Davis et al., 2003; Yi et al, 2004; Vila-Guerau de Arellano et al., 2004).
Given that ABLH controls the volume that is subject to mixing, differ-
ences in CO, concentrations between the ABL and free troposphere co-
vary with ABLH on diurnal and seasonal timescales - also known as the
rectifier effect (e.g., Denning et al., 1995). This effect (Denning et al.,
1999; Yi et al, 2004) and the simple relationship between ABLH and ABL
CO; concentrations (Diaz-Isaac et al, 2018) have direct implications for
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atmospheric CO, transport and its representation in atmospheric
transport models (Feng et al, 2020).

The ABLH also directly affects the heat capacity of the ABL and
therefore its potential to slow or enhance daily atmospheric warming
rates (e.g., Panwar et al., 2019). ABL heights also play a crucial role for
the onset of precipitation events and cloud dynamics (e.g., Juang et al.,
2007b; Siqueira et al., 2009; Konings et al., 2010; Yin et al., 2015).
Convective clouds and locally generated precipitation only develop once
the top of the ABL reaches the lifting condensation level (LCL, defined by
the height where a parcel of moist air - lifted dry adiabatically from the
surface - reaches saturation, see Fig. 6). However, the relationship be-
tween LCL and ABLH is only a first-order criterion (Yin et al., 2015) and
boundary layer cloud development is additionally governed by other
complex feedback mechanisms between temperature and humidity dy-
namics and cloud development (see Betts, 1973 and van Stratum et al.,
2014 for detailed discussions). The transition from clear to cloudy ABLs
has important implications for ABL dynamics. Cloud-ABL feedbacks lead
to a reduction in ABL growth rate and drying of the sub-cloud layer,
which is caused by enhanced entrainment and by moisture transport to
the cloud layer (van Stratum et al., 2014). Convective cloud and pre-
cipitation development and deep convection will lead to deviations from
the ABL behavior described above. For example, gust fronts associated
with convective downdrafts quickly alter ABL state and consequently
affect surface fluxes (e.g., Grant and van den Heever, 2016). Transitions
from daytime CBLs to nighttime SBLs (see Angevine et al., 2020) and
from clear sky to cloudy conditions also remain areas of current research
(see van Stratum et al., 2014).

2.3. Measurements of atmospheric boundary layer heights

Traditionally, ABLH has been derived from atmospheric profiles of
air temperature and humidity measured by radiosondes. Such profile
measurements are labor-intensive and are thus often made only a couple
of times per day or are limited to short-term intensive field campaigns (e.
g., Salcido et al., 2020). Operational soundings (e.g., national weather
service soundings) are synchronized to noon and midnight Coordinated
Universal Time (UTC), not local time, and sample different parts of daily
ABL development (Fig. 1) depending on latitude and longitude. Recent
progress in atmospheric observation techniques, specifically radar pro-
filers and lidar-based devices, now allow us to continuously measure
ABLH, automatically and at high temporal resolution. Instruments

¥ 3
Free
troposphere , -
E tra. m I1t e — - - - e - e - . - .
~1.5km e - . Capping inversion /
zone;, / _____PP_Q_______?
, &
/ 8 !
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§ Residual layer /
Convective
! (mixed) /
/ boundary layer
2 /
z Stable boundary layer

A 4

T

Fig. 1. Ideal diurnal development of the atmospheric boundary layer (ABL) during the day, from sunrise to sunset, and transformation to the stable (nocturnal)

boundary layer from sunset to sunrise (figure after Stull, 1988).
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capable of such measurements are commercially available, relatively
affordable, require minimal maintenance, and are suited to deployment
even at remote field sites such as those typical of the FLUXNET network.
However, at present, direct ABL measurements are only made at a small
fraction of sites (see Tab. 2 for a list of sites) and ABL data are typically
not submitted to FLUXNET or the regional flux networks.

3. Currently available technology for atmospheric boundary
layer observations

Various ground-based technologies are available for observations of
aerodynamic and thermodynamic (i.e., air temperature and humidity)
ABL properties (Table 2, e.g., Wilczak et al., 1996; Seibert et al., 2000;
Emeis et al., 2004). Here, we outline basic measurement principles of (1)
radiosonde observations, (2) ceilometers and aerosol backscatter lidars,
(3) Doppler sodar, and (4) wind profiling radars and lidars. Differences
in measurement techniques and their observed variables can lead to
discrepancies between ABLH estimates, which typically are in the order

early morning
(before sunrise)

late afternoon
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of 10% (for well defined capping inversion) to 25% (for weak capping
inversions or non-well mixed ABL) for CBLs while being much more
variable for SBLs. For a detailed discussion of technique-dependent
differences in ABLH estimates, the readers are referred to Seibert
et al. (2000).

3.1. Radiosonde observations

Radiosonde observations have been widely used for decades to
detect ABLH (e.g., Barr and Betts, 1997; Yi et al., 2001; Wang and Wang,
2014; Wouters et al., 2019, Salcido et al., 2020). Atmospheric profiles
from radiosonde observations provide detailed information on the ver-
tical variation of air temperature and humidity, air pressure, and wind
speed and direction. During the daytime, the upper boundary of the ABL
can be defined as the height where the maximum (i.e., positive) vertical
gradient in potential temperature is located, coinciding with a sharp
increase in potential temperature, or as the height where the minimum
(i.e., negative) vertical gradient of specific humidity is observed,

Fig. 2. Typical atmospheric boundary layer profiles of (a and b) po-
tential temperature and (c and d) specific humidity (a and c) in the

early morning just before sunrise and (b and d) in the late afternoon.
Examples typical for boreal forests are shown (see Barr and Betts
1997). Diurnal changes in atmospheric boundary layer structure are
shown to the left of the profiles (FA free atmosphere, RL  residual
layer, NBL  nocturnal boundary layer, CBL  convective boundary
layer). Figure adapted from Stull (1988).
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coinciding with a sharp drop in specific humidity (Wang and Wang,
2014, Fig. 2 and 7). However, defining ABLH during stable atmospheric
conditions using air temperature, humidity, and wind profiles is chal-
lenging since no universal relationships exist to determine NBL and SBL
heights (Seibert et al., 2000). With a 1 s temporal and ~5 m vertical
resolution, the resolution of radiosonde observations is usually similar to
the resolution of ceilometers and lidars (<30 m) but varies with atmo-
spheric conditions and ascent speed of the sonde. Balloons are often used
to launch radiosondes and travel horizontally with the mean wind.
Depending on wind conditions, the location of the derived ABLH may no
longer be representative of the conditions at the launch location.
Radiosonde observations represent the most labor-intensive way of
measuring ABLH requiring ongoing costs for manual labor and instru-
mentation. Global networks of synoptic observation sites provide daily
radiosonde data, which are archived in the Integrated Global Radio-
sonde Archive (Durre et al., 2006; available through the NOAA National
Centers for Environmental Information) and in the University of
Wyoming sounding data archive (http://weather.uwyo.edu/upperair/
sounding.html). However, the launch points for long-term observa-
tions are fixed and may not represent the air masses surrounding flux
tower sites. Relatively low-cost, lightweight ABL-focused radiosondes (i.
e., Windsond weather balloon systems; Bessardon et al., 2019) have
recently emerged that allow to increase temporal and spatial resolution
of sampling (see Table 2).

3.2. Ceilometers and lidars

Ceilometers and aerosol backscatter lidars emit a laser pulse at
wavelengths between 300 and 1500 nm, which is scattered in the

Fig. 4. Daytime interactions and feedbacks between
surface sensible (H) and latent heat (LE) fluxes,
entrainment fluxes (Hg, LEg), atmospheric boundary
layer growth rate (AABLH), land surface (e.g., soil
moisture) and vegetation conditions (e.g., stomatal
conductance [g]), and state of the atmospheric
boundary layer (i.e., vapor pressure deficit [VPD],
mixed-layer potential temperature [f4g.], and mixed-
layer specific humidity [gagc]). The ABL top separates
& é the convective ABL from the free troposphere. This
separation zone is defined as the atmospheric boundary
layer height (ABLH). Note that ABLH is not constant in
time, and that horizontal advection (not shown) will
also impact ABL quantities.

®
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Fig. 5. (a) Mean diurnal development of the atmospheric boundary layer height (ABLH) in July 2017 at the Kansas Field Station flux tower site (US-KFS) on days
with low Bowen ratio ( 0.75) and high Bowen ratio ( 0.75) and mean diurnal variation of (b) sensible and (c) latent heat fluxes on days with low and high Bowen
ratio. (d) Mean diurnal development of ABLH between July and September 2019 at the Walnut Gulch flux tower site (US-Wkg/Whs) on days with low Bowen ratio
( 2) and high Bowen ratio ( 2) and mean diurnal variation of (e) sensible and (f) latent heat fluxes on days with low and high Bowen ratio at the same site. Vertical
red dotted lines indicate the approximate timing of sunset. Atmospheric boundary layer heights were derived from aerosol backscatter profiles measured by ceil-
ometers. Note that the detected early morning ABLH might be the top of the residual layer.

atmosphere by aerosols. A portion of this scatter is directed back to the
receiver and recorded as backscatter. Ceilometer is a term more tradi-
tionally used to describe aerosol backscatter lidars that are used to
detect the height of the cloud base, while backscatter lidar is a more
general term. Aerosol backscatter lidars, including those called ceilom-
eters, produce aerosol profiles for each laser pulse, which can be used to
derive cloud base height and, if the signal to noise of the instrument is
sufficient, ABLH (Kotthaus and Grimmond, 2018a; Lotteraner and Pir-
inger, 2016). The ABLH in this case is typically defined as the height at
which aerosol concentration and thus the backscatter signal decreases
sharply (Fig. 8). Therefore, the ability of an aerosol backscatter lidar to
detect ABLH depends on the level of aerosol concentrations in the ABL
and on the sensitivity of the instrument to low aerosol concentrations (e.
g., Eresmaa et al., 2006). In clean air, retrievals of ABLH may therefore
be problematic with lower signal-to-noise backscatter lidars.

Strong vertical gradients of attenuated backscatter often coincide
with the location of the capping inversion, but considerable differences
can occur, such as during the evening transition when new gradients of
backscatter slowly form after the turbulence has decayed (Kotthaus
et al., 2018). Additionally, interpreting aerosol backscatter profiles can
be difficult if aerosol layers are the result of advection processes or if
vertical aerosol gradients are weak such as in some SBLs. In contrast to
the ABLH derivation from thermodynamic profiles using radiosondes,
aerosol backscatter lidars allow more direct observations of the depth of
the mixing layer. Differences in these ABLH estimates can be caused by
turbulence (and mixing) extending beyond the capping inversion (Sei-
bert et al., 2000).

The advantage of the aerosol backscatter lidar is that it allows
continuous observations of ABLH and that it can be a relatively inex-
pensive instrument (Table 2). Additionally, aerosol backscatter lidars

provide information on the height of cloud base above the ground (see
Fig. 6), and considerable effort has gone into the development of auto-
mated algorithms for determining ABLH (e.g., Davis et al., 2000;
Brooks, 2003). In contrast to radiosonde observations, aerosol back-
scatter lidars do not measure atmospheric profiles of temperature and
humidity and thus do not allow the derivation of potential temperature
and specific humidity gradients in the free troposphere. However, these
gradients are essential for the calculation of entrainment fluxes (van
Heerwaarden et al., 2009).

To add information on atmospheric humidity profiles, aerosol
backscatter lidars can be paired with radiosonde observations or with
water vapor lidar instruments (e.g., compact water vapor differential
absorption lidar [DIAL], Newsom et al., 2020; Raman lidar, Wulfmeyer
et al., 2018), which allow continuous measurements of water vapor
profiles up to a few kilometers above ground (Fig. 9). Alternatively,
passive detection of atmospheric emission and absorption lines in the
infrared and microwave bands can also provide information on tem-
perature and humidity gradients (e.g., Lohnert et al., 2009). Microwave
and infrared radiometers use variations in water vapor and oxygen
emissions with pressure at selected wavelengths to deduce profiles of
temperature, humidity, and cloud liquid water or to measure column
integrated water vapor and liquid water. The observed variations are
very subtle requiring careful calibration. Some studies report success at
resolving simple shallow ABLs of the order of 100 meters, although
caution should be exercised in interpreting measurements of deeper or
more complex ABLs since the vertical resolution can degrade signifi-
cantly (e.g., Blumberg et al., 2015). The Global Energy and Water Ex-
changes (GEWEX) Land-Atmosphere Feedback Observatory (GLAFO)
initiative aims to pair soil and ecosystem observations with lidars and
profiling systems across different climate regions to give new insights
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Fig. 6. Diurnal growth of the atmospheric boundary layer (ABL) at the Southern Great Plains atmospheric observatory in Oklahoma, U.S.A. (US-ARM) on (a) 16
September 2018 [day with ABL cloud development] and on (c) 6 September 2019 [clear-sky day] and concurrent changes in lifting condensation level (LCL, blue
dotted line) and, if present, in cloud base height (CBH, blue circles, if below 2,500 m above ground) as detected by Vaisala CL-31 ceilometer measurements. ABL
heights (ABLH, black dots) were defined as the top of the mixed layer as detected by ceilometer measurements. Solid blue, yellow, and green lines show radiosonde
observation of potential temperature profiles at 05:00, 11:30, and 17:00h, respectively. Diamonds show ABLH as derived from ceilometer measurements at the
radiosonde launch times. (b,d) Sensible (H) and latent heat (LE) fluxes for the same days measured using the eddy covariance technique at the same site.

into complex feedback mechanisms between land and atmosphere and
opens new opportunities for collaboration between FLUXNET scientists
and atmospheric scientists (Wulfmeyer et al., 2020).

New active ground-based remote-sensing technologies, such as
Doppler, Raman, and DIAL lidar are already or will soon become
commercially available (Wulfmeyer et al., 2018). They offer the possi-
bility for quasi-continuous thermodynamic profiles of the entire ABL at
unprecedented accuracy and spatio-temporal resolution (Wulfmeyer
et al., 2015) adding crucial information on the state of the ABL to
continuous ABLH measurements. These instruments even allow to
measure turbulent fluxes of sensible and latent heat between the surface
layer and the entrainment zone directly, via eddy-covariance from
remotely sensed data (Behrendt et al., 2020). Such measurements allow
ABLH detection as the height at which the sensible heat flux changes its
sign. The potential of such observations was explored at the Yatir forest
FLUXNET site (IL-Yat). As part of a study on land-atmosphere feedbacks,
two Doppler lidars and a ceilometer were deployed in order to investi-
gate the impact of heterogeneity-induced secondary circulations on the
surface flux measurements (Eder et al. 2015b) and the effect of this
distinct surface heterogeneity on the structure and dynamics of the ABL
(Brugger et al. 2018). To give new insights into complex feedback
mechanisms between land and atmosphere, the GEWEX
Land-Atmosphere Feedback Observatory (GLAFO) initiative aims to pair
soil and ecosystem observations with lidars and profiling systems across
a wide range of climate regions (Wulfmeyer et al., 2020). The intitiative
opens new opportunities for collaboration bringing together the exper-
tise of ecosystem and atmospheric scientists.

3.3. Doppler sodar

A Doppler sodar is an acoustic remote sensing instrument. Doppler
sodars derive atmospheric profiles of horizontal and vertical wind ve-
locities and temperature (when combined with a radio acoustic sound-
ing system [RASS]) from the scattering of sound pulses (wavelength
between 0.1 m and 0.2 m) by atmospheric turbulence (i.e., reflectivity).
Vertical reflectivity profiles can be used to derive ABLH since the
interface between ABL and free troposphere (i.e., the entrainment zone)
is characterized by intense thermodynamic fluctuations and thus by a
maximum in reflectivity (Beyrich, 1997). However, the vertical range of
sodar instruments is typically restricted to heights well below 1000 m.
Deep ABLs can therefore not be detected using sodar technology.
Additional constraints of sodar instruments are related to instrument
noise issues affecting the local community.

3.4. Wind profiling radars and lidars

Another technology widely used to observe the ABL are wind
profiling radars (e.g., Yi et al., 2001) and lidars (e.g., Tucker et al.,
2009). Wind profiling radars emit pulses of electromagnetic radiation
(wavelength of ~0.5 m) along one vertical beam and two to four oblique
beams, and receive backscatter signals, which can be used to derive
atmospheric profiles of wind speed and direction. Radar wind profilers
have a wider vertical range than Doppler sodar systems but typically
lack coverage at heights below 100 m in the case of the 915 MHz pro-
filer, and below 500 m when using the 449 MHz profiler (Table 2). ABLH
can be derived by identifying the maximum signal-to-noise ratio (SNR)
in the backscatter, which is proportional to the maximum in the
refractive-index structure parameter (Wesely, 1976; White et al., 1991).
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Available technologies for ground-based atmospheric boundary layer observations and specifications of different instrumentation. Specifications and basic information
on instruments have been sourced from manufacturer websites. For more details see Tab. S1.

Instruments Price range* Wavelength Power Vertical Vertical Weight Example instrumentation Basic information
Range Res.
Aerosol $$ 355-1550 20 W - 800 7-15 km 5-30 m 10 70 Campbell CS135, Lufft CHM Allows cloud base detection and
backscatter nm w kg 15k NIMBUS, PSI Compact aerosol concentration
LiDAR (incl. Ceilometer, Vaisala CL51 and measurements, vertical profiles
ceilometer) CL31 Ceilometers, Micro Pulse of aerosol backscatter are used
LiDAR to determine ABL height
Balloon $ (receiving - - 8 40 variable 10 Windsond, Vaisala RS41, Radiosondes report wind,
Sounding station $-$$$) km 300¢g Lockheed Martin LMS-06, temperature, and humidity
GRAW DFM-09, InterMet iMet- profiles; ABL height can be
1 derived from profile
measurements, measure vertical
gradients of temperature and
humidity in the free troposphere
Doppler Sodar
$$ - $$$ 0.1-0.2 m 60-250 W 10-1,000 5-50 m 50-100 Metek DSDPA.90-24 and Measures vertical wind profiles
m kg PCS2000, Remtek PA-XS and and (virtual) temperature
PA-0, Scintec MFAS profiles with RASS extension
Radar Wind $$$$-3588$ 033 0.7m 100 W 2-10 km Low:60 - Up to Scintec LAP3000 and Use electromagnetic radiation
Profiler (average) - 100High: 1,000 LAP8000, Radiometrics Raptor  pulses to measure wind and
2000 W 250-500m kg precipitation profiles
(max)
Lidar Wind Profiling lidar: 1,500 20 - 10,000 300 m - 1 150m 45 kg Profiling lidar: ZephIR300, Lidar wind profilers allow for
Profiler $$$; Scanning 2,000 nm w 15 km 1,630 Leosphere WindCube v2, tracking of moving objects (e.g.,
lidar: $$$$; kg Spidar, Metek Wind Scout, aerosols) and a depiction of
Raman lidar: $ Vaisala Differential Absorption wind fields along a narrow cone
$$$% Lidar [DIAL]; Scanning lidar: around zenith (profiling) or for

WindTracer (Lockheed
Martin), HALO Photonics
Streamline Wind Lidar,
Leosphere WindCube 100S and
200S Wind Lidar, NOAA High-

varying angles (scanning).
Raman Lidar and DIAL allow
continuous observations of
temperature and humidity
profiles.

Resolution Doppler Lidar,
Purple Pulse Raman Lidar,
Raymetrics Raman Lidar

" Price range is estimated based on current instrument pricing in the respective instrument classes ($

500k USD, $$$$$ 500k USD).

This maximum SNR typically coincides with lower humidity levels
(White et al., 1991; Grimsdell and Angevine, 1998), buoyancy fluctua-
tions (Angevine et al., 1994; Bianco et al., 2008), and the steepest
gradient in air temperature, humidity, and aerosol concentration at the
transition between ABL and free troposphere (Compton et al., 2013;
Molod et al., 2015). A continuous time series of ABLH can be obtained
after careful processing of the profiler data (e.g., Bianco et al., 2008;
Molod et al., 2015).

Wind profiling lidars have a more powerful and spectrally narrower
laser light source than ceilometers and are similar to radars except that
they use light (~0.5 -2 m) instead of radio waves (~0.5 m). Due to the
use of shorter wavelengths, wind profiling lidars can track the move-
ment of aerosols with air motions within the scanning cone to estimate
wind speed and direction (Grund et al., 2001). A combination of back-
scatter and atmospheric turbulence data can be used to derive ABLH
(Tucker et al, 2009). Wind profiling lidars can be designed with high
vertical resolution and some can be pointed at an angle to resolve
shallow nighttime ABLH as well as resolve daytime ABLs (e.g., Tucker
et al. 2009). The ability to measure atmospheric turbulence also yields
perhaps the most direct measure of the active mixing depth of the ABL
(Tucker et al., 2009). Further, wind profiling lidar can be co-located
with DIAL to measure eddy covariance flux profiles of water vapor
(Kiemle et al, 2007) and potentially of CO5 as instrumentation improves
(Gibert et al, 2011).

10k USD, $$ 10k-50k USD, $$$ 50k-100k USD, $$$$ 100k-

4. Atmospheric boundary layer observations co-located with
eddy covariance flux instrumentation

To date, there have been relatively few instances of continuous, high-
frequency atmospheric measurements of ABLH being conducted simul-
taneously with co-located eddy covariance flux measurements (Tab. 3)
and ABLH observations are not routinely shared through FLUXNET or
the regional observation networks. Until 2006, when a ceilometer was
installed at the Morgan Monroe State Forest site, it appears that previous
efforts had been limited to campaigns of only a few months to one year
in duration. For example, in 1998 a wind profiling radar and radiosonde
observation system was deployed for one year at the WLEF tall tower
(US-PFa; Vi et al, 2001; 2004) and for a second year, in 1999, at the
Walker Branch Watershed (US-WBW). The Park Falls flux tower
included a co-located ceilometer for several years, but it was removed
around 2005. The Morgan Monroe measurements were discontinued in
2013.

Currently, there are ongoing, long-term ABLH measurements at (or
near) a few sites in North America (see Tab. 3 for site information).
Measurements at the Southern Great Plains (US-ARM), the Oliktok Point
(US-A03), and the Utqgiagvik (US-A10) sites are collected as part of the
Department of Energy Atmospheric Radiation Measurement program
(www.arm.gov), while the Twitchell Island (US-Twtl and US-Tw3)
measurements are collected through the NOAA ESRL program. The
measurements at Howland Forest (US-Ho1) were initiated by the site PI,
while those at Walnut Gulch (US-Wkg) and Kansas Field Station (US-
KFS) were initiated by site collaborators. Campaigns on NBLs were
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Fig. 7. Atmospheric profiles of (a-e) potential temperature and (f-j) water vapor mixing ratio between 05:15h and 15:15h local time on 30 July 1996 at Candle Lake,
Saskatchewan, Canada (data from the BOREAS Southern Study Area: https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds id=238). Dashed lines show height of the at-
mospheric boundary layer/mixing layer as determined by the gradient method (see Seidel et al., 2010).
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Fig. 8. Example of the diurnal development of
a backscatter profile at the Southern Great
Plains atmospheric observatory in Oklahoma,
U.S.A.. Colors show a full day of the logarithm
of smoothed attenuated backscatter in arbitrary
units (red = high aerosol backscatter, blue =
low aerosol backscatter). Backscatter measure-
ments were conducted using a Vaisala CL-31
ceilometer. Lines indicate estimates of the
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layer, residual layer, and convective boundary
layer. Boundary layer cloud development starts
at around noon initiating convective mass flux.
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Fig. 9. (a) Cumulative (i.e., stacked) latent, sensible heat flux, and energy balance residual (LE, H, and Cgg) measured by Ameriflux tower US-PFa at 30 m AGL with
mean net radiation and ground flux (Ry and G) measurements from 17 nearby eddy-covariance towers installed during the CHEESEHEAD]19 field campaign; (b) and
(d) daytime radiosonde profiles on August 20 and 21, 2019; and (c) winds measured by a 449 MHz radar wind profiler overlaid with Vaisala CL51 ceilometer (black
circles) and radiosonde-derived (diamonds) ABL heights ((NCAR/EOL In-situ Sensing Facility 2020); (Butterworth et al., 2021).

conducted at the Tonzi (US-Ton) and Wind River (US-WRC) sites
(Wharton et al, 2017). At the 47 National Ecological Observatory
Network (NEON) terrestrial sites, neither ceilometers nor wind profilers
are included in the instrument package deployed.

In Europe, the Integrated Carbon Observation System (ICOS)
network is planning to deploy ceilometers at all Class 1 atmospheric
monitoring stations, which are co-located with Ecosystem stations (i.e.,
eddy covariance flux towers). At the ICOS Sweden Atmosphere sites at
Hyltemossa (SE-HTM), Norunda (SE-NOR), and Svartberget (SE-SVB)
ceilometers are already in operation and co-located with simultaneous
eddy covariance flux measurements. Three sites of the Terrestrial
Environmental Observatories (TERENO) pre-Alpine observatory in
Germany are equipped with ceilometers for ABLH detection since 2012
(sites DE-Fen, DE-RbW, and DE-Gwg; Eder et al., 2015a; Kiese et al.,
2018). The Indianapolis Flux Experiment (INFLUX; Davis et al, 2017),
which was running from 2013 through 2017, included eddy covariance
flux towers and a Doppler lidar. Co-located surface flux and ABL
observation datasets are publicly available only for a few sites. Making
more existing observation datasets available to the wider community
through public data repositories would enable studies addressing new
emerging research questions.

5. Research opportunities emerging from co-located ABL and
tower-based surface flux observations

Extending current ABL observations across the FLUXNET network
would open new opportunities to tackle pressing research questions and
add value and exposure to ongoing eddy covariance surface flux mea-
surements (see Table 4 for a summary of possible applications). In this
section, we outline how continuous and long-term ABL observations at
flux tower sites would provide crucial information to (1) interpret sur-
face flux dynamics at flux tower sites, (2) support flux footprint
modelling and quality control of flux measurements (including flux
correction algorithms), (3) support regional-scale modelling and
upscaling of surface fluxes, (4) and quantify land-atmosphere coupling
and validate its representation in Earth system models. Long-term
continuous ABL observations have the advantage that they can cap-
ture ABL responses to seasonal changes in surface fluxes (Bianco et al.,

2011) and to interannual variability of surface and boundary-layer dy-
namic conditions (e.g., drought, Miralles et al., 2014). However, cost
limitation or requirement of personnel often only allow long-term ob-
servations of a limited range of atmospheric variables (e.g., ABLH).
Shorter intense ABL observation campaigns (e.g., BOREAS, FIFE, LAFE)
typically feature a wider range of observed atmospheric variables but
are only feasible at a few selected sites (Barr and Betts, 1997; Betts,
1992; Wulfmeyer et al., 2018).

For site-specific applications in heterogeneous terrain, spatial
mismatch between surface flux footprints and ABL source areas should
be carefully assessed to ensure that observed fluxes are representative of
the observed ABL conditions (e.g., Sugita et al., 1997, Wang et al.,
2006). Horizontal scales of surface flux footprints from flux towers can
be substantially smaller than source areas of meteorological observa-
tions in the ABL, particularly for deep ABLs (Wilson and Swaters, 19971;
Schmid, 1994). Scintillometers allow measurements of area-averaged
surface sensible heat and momentum fluxes over a path length of up
to several kilometers and can be paired with eddy covariance flux
measurements (see Meijninger et al, 2002). Comparisons of
ecosystem-scale swrface fluxes from eddy covariance towers and
landscape-scale area-averaged surface fluxes from scintillometers can
help assess the representativeness of flux tower measurements for larger
scale ABL development.

5.1. Interpretation of surface fluwx measurements

To fully understand the feedback between surface fluxes and the
atmosphere, we require ABLH observations in addition to eddy
covariance flux measurements. Fluxes of mass and energy at the land
surface, as measured at eddy covariance tower sites, are not isolated
from the conditions of ABL and free troposphere. Mass and energy fluxes
at the land surface respond to changes in ABLH and to the heat, mois-
ture, and matter that is mixed into the growing ABL from the free
troposphere (i.e., entrainment). In turn, the depth of the ABL and the
concentration of scalars within it are a function of the surface fluxes and
the entrainment of dry air from above the growing ABL (Denmead et al.,
1996; Davis et al, 1997). Thus, observations of ABLH and of its growth
can support the interpretation of surface flux observations.
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Examples of previous and ongoing atmospheric boundary layer observations co-located with eddy covariance flux towers. Links to publications and additional in-
formation on the flux tower sites can be accessed through the footnotes. Ecosystem types include deciduous broadleaf forest (DBF), mixed forest (MF), evergreen
needleleaf forest (ENF), cropland (CRO), barren sparse vegetation (BSV), woody savanna (WSA), urban (URB), grassland (GRA), open shrubland (OSH), and evergreen

broadleaf forest (EBF).

Location SiteCode  Contact Ecosystem  Measurements Period Instrument(s)
Walker Branch, TN; US-WBW K. Davis and D. DBF boundary layer height, wind profiles, 1999 NCAR Integrated Sounding System
Baldocchi radar reflectivity, thermodynamics
Park Falls, WI; US-PFa K. Davis MF boundary layer height, wind profiles, 1998, NCAR Integrated Sounding System
radar reflectivity cloud base and fraction, 1999
thermodynamics
Old Jack Pine, SK (BOREAS),  CA-Ojp J. Wilczak ENF boundary layer height 1994 NOAA/ETL 915 MHz radar wind/RASS
profiler
Morgan Monroe State Forest, US-MMS K. Novick DBF boundary layer height, cloud base and 2006- Vaisala CL31 lidar ceilometer
IN3 amount; backscatter profile 2009,
2011-
2013
Southern Great Plains ARM, US-ARM S. Biraud CRO boundary layer height, cloud base and 2011- CEIL lidar ceilometer; radar wind
OK4 amount; backscatter profile; wind profiler; micropulse lidar
profiles
Utqiagvik, AKs US-A10 R. Sullivan BSV boundary layer height, cloud base and 2011- Ceilometer, micropulse lidar, balloon
amount, water vapor, temperature, and sonde, G-band radiometer profiler,
turbulence profiles microwave radiometer
Tonzi, CAg US-Ton S. Wharton and WSA wind profile from ground to 150m, 2012, WindCube v2, ZephIR 300, radiosondes
D. Baldocchi thermodynamic and wind profiles from 2013
ground to top of troposphere, ABL height
Wind River, WA6, US-Wrc S. Wharton ENF Wind profile from ground to 150m, 2012 WindCube v2, radiosondes
thermodynamic and wind profiles from
ground to top of troposphere, ABL height
Howland Forest, MEg US-Hol D. Hollinger ENF boundary layer height, cloud base and 2013- Vaisala CL31 lidar ceilometer
amount; backscatter profile
INFLUX (Indianapolis Flux - K. Davis and A. URB boundary layer height, wind profiles, 2013- HALO Photonics scanning doppler lidar
Experiment)y Brewer turbulence profiles, cloud base and 2017
fraction
Oliktok Point, AKs US-A03 R. Sullivan BSV boundary layer height, cloud base and 2014- Ceilometer, micropulse lidar, balloon
amount, water vapor, temperature, and sonde, radar wind profiler, Doppler lidar
turbulence profiles
Walnut Gulch, AZ;g 11 US-Wkg/ J. Perkins and P. GRA/OSH boundary layer height, cloud base and 2017- Lufft CHM15k lidar ceilometer
Whs Hazenberg amount; backscatter profile
Walnut Gulch, AZ 1911 US-Wkg/  A. Richardson GRA/OSH  boundary layer height, cloud base and 2019- Campbell CS135 lidar ceilometer
Whs amount; backscatter profile
CHEESEHEAD19, WI;, US-PFa A. Desai various boundary layer height, cloud base, June-Oct  NCAR Integrated Sounding System, UW
aerosol backscatter and polarization, PBL 2019 SSEC SPARC (AERI AND HSRL), KIT IFU
temperature, wind and moisture profiles, H20 and wind LiDAR, NOAA CLAMPS
radar reflectivity, precipitation imaging and SURFRAD, UW MRR and PIP
Twitchell Island, CAg;3 US-Twt D. Baldocchi CRO boundary layer sounding 2017- 915 MHz wind profiler
and NOAA
Kansas Field Station, KS14 US-KFS N. Brunsell GRA boundary layer height, cloud base and 2016- Vaisala CL51 lidar ceilometer
amount; backscatter profile
Graswang, Germanys DE-Gwg M. Mauder GRA boundary layer height, cloud base and 2012- Vaisala CL51 lidar ceilometer
(TERENO) amount; backscatter profile
Rottenbuch, Germany;s DE-RbW M. Mauder GRA boundary layer height, cloud base and 2012- Vaisala CL51 lidar ceilometer
(TERENO) amount; backscatter profile
Fendt, Germany;s DE-Fen M. Mauder GRA boundary layer height, cloud base and 2012- Vaisala CL51 lidar ceilometer
(TERENO) amount; backscatter profile
NY State Mesonet (17 sites, - C. Thorncroft various atmospheric profiles: winds up to 7km 2018- Leosphere WindCube WLS-100 series
co-located atmos. and eddy above the surface; temperature and liquid Doppler LiDAR; Radiometrics MP-3000A
covariance up to 10km above the surface Microwave Radiometer
measurements); g
Ruisdael Obs., Netherlands;, multiple H. various various in dev. multiple instruments for in situ
Russchenberg characterization of physical and
chemical properties of the atmosphere
Selhausen Juelich ecosystem DE-RuS M. Schmidt CRO boundary layer height, cloud base and 2007- LufftCHM15k and Vaisala CT25k lidar
site;g amount; backscatter profile, wind ceilometer, HALO Doppler wind lidar,
profiles, air temperature and humidity radiosondes, microwave radiometer
profiles
Renonjg IT-Ren S. Minerbi ENF vertical profiles of wind velocity, 2000 Doppler Sodar Remtech PA1
backscatter profile
Guadianayg ES-Gdn P. Serrano Ortiz ~ EBF vertical and temporal evolution of 2016, HALO Doppler lidar, scanning Raman
atmospheric water vapor and aerosols, 2019 lidar, radiosondes
wind profiles, air temperature and
humidity profiles
Tharandt,, DE-Tha C. Bernhofer ENF vertical profiles of wind and turbulence, 2016 tethered Vaisala balloon sonde, Metek
air temperature and humidity profiles Doppler-SODAR PCS2000-64/MF
Grillenburg,, DE-Gri C. Bernhofer GRA line- and area-averaged wind 2016 acoustic travel-time tomography, Bruker

components and acoustic virtual
temperature [100 100 m?], path-
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EM27 Open Path Spectrometer (OP-
FTIR)

(continued on next page)
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Table 3 (continued)

Location SiteCode  Contact Ecosystem  Measurements Period Instrument(s)

averaged concentrations of greenhouse
gases [100 100 m?]

Yatir Forestys IL-YAT D. Yakir ENF boundary layer height, cloud base and 2015- Vaisala CL51 ceilometer
amount; backscatter profile

Lannemezany, - S. Derrien mixed vertical wind profiles, air temperature 2010- Wind profiler radar, radiosondes,
and humidity profiles, boundary layer ceilometer

height, cloud base and amount;
backscatter profile

Hyltemossags SE-Htm M. Heliasz ENF boundary layer height, cloud base and 2017- Vaisala CL51 ceilometer
amount; backscatter profile

Svartbergetse SE-Svb P. Smith ENF boundary layer height, cloud base and 2018- Vaisala CL51 ceilometer
amount; backscatter profile

Norunday; SE-Nor M. Molder ENF boundary layer height, cloud base and 2018- Vaisala CL51 ceilometer
amount; backscatter profile

Tapajos National Forest, BR-SA1 S.SaleskaandS.  EBF cloud base, backscatter profile 2001- Vaisala CT-25K ceilometer

Brazil Wofsy 2003

Ihttps://www.osti.gov/biblio/808114-regional-forest-abl-coupling-influence-co-sub-climate-progress-date; 2https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id 240;
Shttps://www.sciencedirect.com/science/article/pii/S0168192311000244; *https://www.arm.gov/capabilities/observatories/sgp; *https://www.arm.gov/capabilit
ies/observatories/nsa; https://www.sciencedirect.com/science/article/pii/S0168192317300308; ”https://ameriflux.lbl.gov/sites/siteinfo/US-Wrc; Shttps://ameri
flux.1bl.gov/sites/siteinfo/US-Hol; °https://sites.psu.edu/influx/; °https://ameriflux.lbl.gov/sites/siteinfo/US-Wkg; ! https://ameriflux.lbl.gov/sites/siteinfo/
US-Whs; 1https://www.eol.ucar.edu/field_projects/cheesehead; 2https://www.esrl.noaa.gov/psd/data/obs/sites/view site_details.php?siteID tci; 1*https://ameri
flux.Ibl.gov/sites/siteinfo/US-KFS; ®https://www.tereno.net; 'Shttp://nysmesonet.org/about/welcome; 7http://ruisdael-observatory.nl/; 8https://www.fz-jueli
ch.de/ibg/ibg-3/EN/Research/Terrestrial_observation_platforms/ICOS/Selhausen_agricultural_station/_node.html; 19https://deims.org/5d32cbf8-ab7c—4acb-b29f
-600fec830ald; 2°https://www.ugr.es/~andyk/pubs/066.pdf; 2*http://www.icos-infrastruktur.de/en/icos-d/komponenten/oekosysteme,/beobachtungsstandorte
/tharandt-c1/; 22http://sites.fluxdata.org/DE-Gri/; 23https://www.weizmann.ac.il/EPS/Yakir/biosphere-atmosphere-fluxes; 2*http://p20a.aero.obs-mip.fr/spip.
php?rubriquel25andlang fr; Z°https://www.icos-sweden.se/hyltemossa; 2https://www.icos-sweden.se/svartberget; 2”https://www.icos-sweden.se/norunda; 2’h
ttps://daac.ornl.gov/LBA/guides/CD03_Ceilometer Km67.html

Table 4
Summary of research directions that would substantially benefit from co-located eddy covariance surface flux and atmospheric boundary layer (ABL) observations. The
most useful atmospheric variables and the recommended site setup are given for each research direction.

Most useful variables Site setup
Atmospheric boundary Air temperature and Wind Cloud base height ~ Single Tower network or
layer height humidity profiles profiles and cover tower paired towers
Interpretation of surface flux measurements
Understanding feedbacks between surface fluxes — x X
and atmosphere
Linking atmospheric profiles and stability X X X X
conditions to surface flux observations
Interpreting spatial patterns of evaporation rates ~ x X
Validating techniques to estimate regional X X X
evaporation rates
Impacts of land cover and land surface X X X X
heterogeneity on near-surface climates
Understanding turbulence transport in X X X

mountainous terrain

Improving quality of eddy covariance flux measurements

Improving quality control of eddy covariance flux measurements X X
Interpreting nighttime eddy covariance flux measurements X X X
Reducing uncertainties in flux footprint estimates X X

Regional-scale modeling

Inferring regional- scale fluxes X X
Bridging gap between inverse flux modeling and surface flux observations X X X X

Land-atmosphere coupling and model validation

Validating land-atmosphere modeling efforts X X X X
Quantifying land-atmosphere coupling across biomes X X X
Understanding vegetation-cloud interactions X X X X
Development of test-bed sites/networks X X X X X
Validating spaceborne ABL missions X X X
The growth of the ABL is directly coupled to land surface conditions sensible heat flux. Under well-watered conditions (i.e., with sufficiently
and is influenced by feedback mechanisms between the surface energy high soil moisture), surface latent heat flux continues to increase, which
balance and the entrainment of dry and warm air from above the ABL. in turn moistens the ABL, lowers soil moisture (van Heerwaarden et al.,
Enhanced entrainment of drier free tropospheric air increases atmo- 2009; Seneviratne et al., 2010; Santanello et al., 2018), and reduces ABL
spheric water demand from vegetation and soils and can lead to an in- growth (e.g., McNaughton and Spriggs, 1986; van Heerwaarden et al.,
crease in surface latent heat flux and a concurrent reduction in surface 2009; Salvucci and Gentine, 2013). However, stomata closing in
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https://www.arm.gov/capabilities/observatories/nsa
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http://www.icos-infrastruktur.de/en/icos-d/komponenten/oekosysteme/beobachtungsstandorte/tharandt-c1/
http://sites.fluxdata.org/DE-Gri/
https://www.weizmann.ac.il/EPS/Yakir/biosphere-atmosphere-fluxes
http://p2oa.aero.obs-mip.fr/spip.php?rubrique125andlang=fr
http://p2oa.aero.obs-mip.fr/spip.php?rubrique125andlang=fr
https://www.icos-sweden.se/hyltemossa
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Fig. 10. Daytime feedbacks between cloud cover, radiative fluxes (net
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response to increasing vapor pressure deficit or to decreasing soil
moisture reduces surface conductance and can reduce latent heat flux
leading to a concurrent increase in sensible heat flux (i.e., increasing
Bowen ratio; Helbig et al., 2020b; Lansu et al., 2020). In addition, cloud
formation and precipitation occwrrence are tightly coupled to ABL
growth dynamics (Konings et al., 2010). If the ABLH reaches the LCL,
condensation occurs, and convective clouds may form (Fig. 6). While the
associated increase in diffuse radiation can positively affect photosyn-
thetic uptake (Niyogi et al, 2004; Knohl and Baldocchi, 2008), cloud
formation also reduces the amount of solar radiation that reaches the
Earth’s surface (Juang et al., 2007a; Vila-Guerau de Arellano et al.,
2014, see Fig. 10). This reduction in available energy at the land surface
can exert a negative feedback on surface energy fluxes. For example, the
impact of cloud cover on surface energy fluxes and ABL growth dy-
namics was seen during the CHEESEHEAD19 field campaign in Wis-
consin (Butterworth et al., 2021) on two consecutive days with different
degrees of cloud cover (Fig. 9). The cloudy day showed a delayed onset
of ABL development and large reductions in sensible and latent heat
fluxes, while the sunny day showed a more typical diurnal cycle with
surface energy fluxes peaking midday and a rapidly growing ABL.

Surface fluxes and atmospheric stability are strongly coupled via
turbulent mixing and, thus, atmospheric profile measurements of
temperature and specific humidity (needed to derive atmospheric sta-
bility) and wind may improve our understanding of the dynamic
interaction between surface fluxes and atmospheric conditions. For
example, aerodynamic coupling between the land surface and the ABL
affects the surface energy balance and is primarily controlled by atmo-
spheric stability. During unstable conditions, a negative feedback oc-
curs: an increase in surface temperature increases convective instability,
turbulent mixing, and aerodynamic conductance, resulting in an in-
crease in sensible heat flux. This increase in sensible heat flux acts to
reduce surface temperature. During stable atmospheric conditions,
temperature profiles are inverted, and turbulence is dampened. Over
well-watered surfaces (e.g., lakes, wetlands, or flooded/irrigated sites),
the downward transport of sensible heat can feed evaporation and
evaporative cooling of the surface reinforecing the temperature inversion
and promoting further stable stratification (Brakke et al., 1973; Lang
et al., 1974; Lang et al., 1983).

The ABLH represents the vertical extent of the atmosphere that is
directly influenced by the Earth’s surface (Fig. 1). Therefore, the ABLH

radiation [Bpe:], incoming shoriwave [SWpy] and longwave radiation
[LWm], outgoing shortwave [SWgyr] and longwave radiation
[LWgyrl), surface energy fluxes (i.e., sensible heat flux [H], latent
heat flux [LE]), land surface properties (albedo [a], land surface
temperature [L5T], and Bowen ratio [§]), and state of the atmospheric
boundary layer (atmospheric boundary layer height [ABLH] and its
growth rate [AABLH], and lifting condensation level [LCL]). While
cloud cover and patterns can change on short timescales (< 30 mins,
dynamic heterogeneity), land cover patterns are relatively static on
shorter timescales (< 1 month, static heterogeneity).

has been used as a scaling parameter under a range of atmospheric
stability conditions (Zilitinkevich et al., 2012; Banerjee and Katul, 201 3;
Banerjee et al., 2015; Banerjee et al., 2016) to characterize the exchange
between the land surface and the atmosphere. The measurement of
ABLH alongside land-atmosphere exchange can therefore help constrain
surface fluxes. On the other hand, the ABLH itself is a function of the
sensible heat flux gradient across the ABL. Thus, over flat and homo-
geneous surfaces, the ABLH can be computed by a thermodynamic
encroachment model:

dk_ﬁ— wo, D
dt yh

where h is the ABLH, W is the kinematic sensible heat flux at the

surface, W_G‘;,J is the entrainment flux at the ABL top, and y denotes the
potential temperature gradient of the free atmosphere above the ABL (e.
g., Tennekes, 1973; Zilitinkevich et al., 2012; Brugger et al., 2018). The
entrainment heat flux is often modeled as a fixed proportion of the
surface heat flux. Equation 1 approximates the ABL as a single slab
without any internal source and sink terms. Integrating equation |
(Brugger et al., 2018) or more complex ABL growth formulations (e.g.,
Driedonks and Tennekes, 1934) offers a technique to couple eddy
covariance flux measurements and ABLH observations at a particular
site (Batchvarova and Gryning, 1991; Brugger et al., 2018).
Additionally, profiles of wind and air temperature in the lowest
levels of the ABL (i.e., the roughness sublayer, the surface layer, and into
the lower mixed layer, see Fig. 3) can provide critical information for
extrapolating the influence of vegetation structure and function at the
surface into the ABL. The parameters of the Monin-Obukhov Similarity
Theory functions for the diabatic profiles of wind and temperature
(Monin and Obukhov, 1954) depend on measured fluxes (e.g., mo-
mentum and sensible heat), as well as scaling parameters like the
zero-plane displacement and roughness lengths for momentum and heat
(which themselves are strongly affected by canopy structure, Brutsaert
19582). Properly constraining the parameters of these profile equations is
made substantially easier if at least one, and ideally multiple, observa-
tions of the key scalars (air temperature, wind speed) are made within
the surface layer, which is often assumed to extend from a height of 2-5
times the height of the canopy (i.e., local blending height) to about 10%
of the ABL height (Raupach and Thom, 1981). For ecosystems with short
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canopy heights (i.e., grasslands, croplands), many existing flux tower
heights extend into the surface layer (Fig. 3), substantially facilitating
the application of similarity theory. However, for forests and woodlands,
most flux tower heights are constrained to within the roughness sub-
layer, where diabatic profile functions do not apply due to local,
near-surface canopy drag effects (Harman and Finnigan, 2007; Harman
and Finnigan, 2008). At these sites, additional information about the
profiles of temperature and wind in the surface layer (for example, from
radiosonde observations or sodar) could better constrain estimates of the
zero-plane displacement and roughness lengths, and better facilitate the
transfer of information about measured fluxes to their impacts on at-
mospheric state variables throughout the ABL (e.g., Novick and Katul,
2020).

ABL growth observations can help interpret differences in measured
evaporation rates over a spectrum of sites from well-watered and
productive to dry, sparse and unproductive. Evaporation of an extended
wet surface exceeds the equilibrium rate of evaporation (IEq) through
the coupling mechanisms between land surface and ABL. This effect can
be best demonstrated by applying a coupled ABL model (McNaughton
and Spriggs, 1986) that links the Penman-Monteith equation to a simple
one-dimensional slab ABL model. Evaporation rates depend on the vapor
pressure deficit within the ABL, whose growth and entrainment depend
on sensible heat flux at the surface (e.g., Raupach, 2000; Raupach,
2001). Under conditions of low surface resistance (i.e., well-watered
conditions), the ratio of actual evaporation to 1Eq approaches 1.26
because of this coupling (i.e., Priestley-Taylor coefficient; Priestley and
Taylor, 1972). If well-watered surfaces are isolated within a drier
landscape (e.g., irrigated land), large regional sensible heat flux and
enhanced vapor pressure deficit can accelerate water losses to the at-
mosphere and lead to ratios of actual evaporation to IEeq well above 1.26
(Shuttleworth et al., 2009; Baldocchi et al., 2016). In such cases, direct
measurements of ABLH and of temperature and humidity profiles are
crucial to interpret the large observed evaporation rates.

Observations of atmospheric temperature and humidity profiles
and ABL growth across flux tower sites can provide unique datasets to
validate techniques to estimate regional evaporation rates (e.g., Rig-
den and Salvucci, 2015). One of the outstanding challenges to
computing land atmosphere fluxes is assessing the down regulation of
stomatal (and surface) conductance as soil moisture deficits increase
(Fig. 4). The lack of consistent and large-scale soil moisture observations
poses another challenge to this task. Recent work, demonstrating how
plants can act as a sensor for soil moisture, has highlighted their in-
fluence on the humidification of the ABL (e.g., Pedruzo-Bagazgoitia
et al., 2017; Vila-Guerau de Arellano et al., 2014; Combe et al., 2016;
Denissen et al., 2021). The vertical variance of the relative humidity
profile within the ABL can be used to infer the large-scale surface
conductance from weather station data only (Gentine et al., 2016; Sal-
vucci and Gentine, 2013). Due to the tight coupling of latent heat ex-
change at the land surface and atmospheric humidity and temperature,
this approach can serve as an inferential measure of land surface con-
ditions (e.g., soil moisture) at large spatial scales (McColl and Rigden,
2020) and has been shown to produce estimates of evapotranspiration
rates across North America comparable to a range of other evapotrans-
piration data products (Rigden and Salvucci, 2015). Co-located contin-
uous measurements of ABLH, temperature and humidity profiles, and
surface fluxes can provide an important tool to test the validity of these
new approaches.

Analyses of land use and cover impacts on near-surface climates
can be expanded across the FLUXNET network but require both direct
ABL measurements and models to interpret observations. Recent work
has assessed how land use and cover affects local air temperatures
through land surface-atmosphere interactions (Lee et al., 2011; Bal-
docchi and Ma, 2013; Helbig et al., 2016; Hemes et al., 2018; Helbig
et al., 2020a; Novick and Katul, 2020). To quantify such effects on local
near-surface and regional climate, the coupling between land surface,
ABL, and free troposphere needs to be accounted for (van Heerwaarden
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et al., 2009). Similarly, co-location of flux towers and ABL observations
in urban environments can help better understand the effect of urban
planning on near-surface climate and air pollution and thus on human
health and comfort (e.g., Kotthaus and Grimmond, 2018b; Wood et al.,
2013).

Apart from surface heating and cooling, the ABL height is also highly
sensitive to land surface cover, topography, and synoptic conditions.
While a number of studies have investigated the changes in ABLH with
atmospheric stratification, studies on the impact of surface heteroge-
neity and land-cover transitions on ABLH are scarce. Brugger et al.
(2018) investigated the influence of surface heterogeneity on ABLH in
the context of a semi-arid forest surrounded by a shrubland (i.e., Yatir
forest in the Negev desert, Israel). The presence of a large-scale surface
heterogeneity violated the assumption of planar homogeneous condi-
tions; however, an internal boundary layer model originally conceptu-
alized by Venkatram (1977) and modified by Brugger et al. (2018) was
used to compute the change of ABLH due to the surface roughness
transition. This spatially explicit model accounts for turbulent fluxes
measured by eddy covariance towers over the different surfaces and the
geometric configuration of the transition and couples these measure-
ments with the mixed layer and ABL measurements over the land sur-
faces. For example, a transition from a shrubland to forest results in the
growth of an internal boundary layer, which assumes a vertical transport
of the forest s effects at the convective velocity scale to the ABL top
while being advected horizontally at the same time by the background
flow. (Kroniger et al., 2018) conducted large eddy simulation over the
same site and was able to validate this model and the eddy covariance
measurements along with ABL models were useful to interpret the re-
sults, especially to investigate the role of secondary circulations that
could further modulate land-atmosphere exchange (Banerjee et al.,
2018). Similar modeling exercises reinforced with co-located eddy
covariance surface flux and ABL measurements could be beneficial for
other applications such as models for regional climate, pollutant trans-
port, and urban heat islands.

Combining surface flux and continuous ABL observations can be an
effective approach to disentangle complex transport mechanisms in
mountainous terrain and to resolve the non-prototypical multi-layered
structure of mountainous boundary layers. Eddy covariance flux
measurements in complex mountainous terrain have been successfully
conducted despite the typical diurnal development of regional wind
systems (e.g., Hammerle et al., 2007; Hiller et al., 2008). Surface energy
flux observations from flux towers can contribute to a better under-
standing of turbulence over complex terrain and thus of ABL develop-
ment in mountainous terrain, which results from diverse transport
processes (e.g., orographic gravity waves, thermally driven circulation;
see Kutter et al., 2017 and Serafin et al., 2018). The complexity of
mountainous ABL development is also reflected in the mismatch be-
tween CBL heights and mixing heights (i.e., aerosol layer). Aerosol layer
heights can be substantially higher due to mountain venting processes
caused by slope flows in mountainous terrain (e.g., De Wekker et al.,
2004). For a more detailed discussion of mountainous boundary layers,
the reader is directed to the work by Lehner and Rotach (2018) and
Serafin et al. (2018).

5.2. Improving quality of eddy covariance flux measurements

Atmospheric boundary layer observations can provide important
information on the state of the atmosphere and can thus improve
quality control of eddy covariance fluxes. The quality of eddy covari-
ance flux measurements varies with atmospheric conditions and de-
pends on the fulfilment of fundamental micrometeorological
assumptions (e.g., negligible advective fluxes). The influence of regional
or mesoscale (i.e., non-local) motions on turbulent exchange between
the land and atmosphere have often been studied using short-term,
campaign-style observations (e.g., Shen and Leclerc, 1995, Aubinet
et al., 2010). Such studies revealed the effect of certain ABL processes on
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uncertainties in eddy covariance flux measurements emphasizing the
need for continuous ABL measurements at flux tower sites. These ob-
servations could for example detect large vertical exchanges of air
within the canopy, which can originate from the ABL and be important
particularly in tall (e.g., forest) canopies (e.g., Thomas and Foken, 2007;
Wharton et al., 2017). Non-local motions can occur at larger timescales
than those typically associated with canopy transport and eddy covari-
ance averaging intervals. (Patton et al., 2016) argue that single point (e.
g., tower) observations should be averaged over time scales of the ABL
motions rather than of canopy-scale transport processes. There is evi-
dence that inability to resolve large eddies that entrain warm-dry air in
traditional eddy covariance flux calculation methodology may
contribute to the lack of surface energy balance closure, which leads to
systematic underestimation of energy and possibly of carbon fluxes at
most flux tower sites (Stoy et al., 2013; Eder et al., 2015b; Mauder et al.,
2020). Continuous ABL observations of wind speed and direction could
be used to identify periods when these eddies are present and be used to
correct or flag biased flux measurements (de Roo et al., 2018).

Interpretation of nighttime fluxes is a major focus for the integra-
tion of ABL and eddy covariance flux measurements. Friction velocity
(u*) thresholds are commonly applied as a proxy for inadequate tur-
bulent mixing whereby periods below the u* thresholds are removed
from the estimate of the nighttime CO (respiration) flux and subse-
quently gap-filled. While the appropriateness of u* thresholds remain
highly debated (Acevedo et al., 2009), others have focused on under-
standing the mechanisms for when nocturnal turbulence can be
enhanced, particularly by non-local flows (e.g., low-level jets, Karipot
et al., 2006; El-Madany et al., 2014; Wharton et al., 2017). Wharton
et al. (2017) used wind-profiling lidar to identify two different non-local
motions (downslope flow and intermittent turbulence) and applied
different turbulent parameters for estimating canopy mixing during
those periods at two flux tower sites. They found that nocturnal canopy
turbulence was the result of a complex interaction of non-local flows and
atmospheric stability, which could not be assessed solely by u*. For the
case of nocturnal low-level jets, Prabha et al. (2008) invoked a
shear-sheltering hypothesis, requiring vertical wind profiles, to identify
cases when the low-level jet enhanced turbulent mixing. Without more
(and continuous) ABL observations at eddy covariance flux towers,
nighttime fluxes may become biased through over-filtering (e.g., appli-
cation of u* thresholds). However, relying on overstory u* can also lead
to overestimation of periods of adequate turbulence mixing in the can-
opy at some sites. For example, at the Tonzi AmeriFlux site, nighttime
katabatic flows produced shear at heights near the top of the flux tower
(Wharton et al, 2017) resulting in elevated turbulence seen in the
relatively high overstory u* values. At the same time, u* at the bottom of
the open canopy was low and indicating low canopy mixing. In this
case, a finer resolution temperature and wind profile is needed to
adequately quantify canopy mixing strength.

Continuous measurements of ABLH dynamics co-located with eddy
covariance flux measurements could reduce uncertainties in current
flux footprint estimates and thereby help identifying source and sink
hotspots. Flux footprint models provide an important tool to determine
the location and extent of the source area of impact to eddy covariance
flux measurements, to identify greenhouse gas sources and sinks within
the source area, and to improve interpretation of the measured fluxes
(Vesala et al., 2008; Barcza et al., 2009; Griebel et al., 2016; Xu et al.,
2017). Footprint estimates either directly (via input parameter) or
indirectly (via mixing volume) depend on the ABLH (Kljun et al., 2015).
This dependence is critical especially for the case of stable atmospheric
conditions due to a shallow ABL that can actas a lid for sources-sinks,
and because nighttime stable footprints typically extend much longer
than the typical convective daytime footprints, thus opening opportu-
nities to interpret greenhouse gas and energy fluxes originating from
more distant sources (Kljun et al., 2002; Baldocchi et al., 2012). In the
absence of direct measurements, ABLH is usually estimated using
various modeling approaches (see Vi et al., 2001; Kljun et al., 2015). The
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ABLH is also essential for footprint modeling when measurement height
is greater than 10% of ABLH, which occurs during early mornings or
with very tall towers (Kljun et al., 2015; Wang et al., 2006).

5.3. Regional scale modeling

Atmospheric boundary layer height measurements can be used with
additional concentration measurements to infer budgets of conserved
scalars such as CO; or methane beyond the flux tower footprint scale
(Wofsy et al., 1988; Styles et al., 2002; Bakwin et al, 2004; Betts et al.,
2004; Helliker et al, 2004; Yi et al., 2004; Wang et al., 2007; Pino et al.,
2012). Raupach et al. (1992) describe the CBL budget approach that
assumes the bulk of the ABL is well mixed, the surface layer (affected by
surface fluxes) is thin, and that the ABLH growth is rapid in comparison
to subsidence from the atmosphere above (see also Betts, 1992). These
conditions may occur during the middle of sunny clear days when high
pressure systems are dominant. Under these circumstances,

C Cy
(=)
Where C, is the average concentration of the scalar C throughout the
well-mixed CBL, h is the CBL height, C is the concentration of the scalar
in the free atmosphere just above the CBL, and F is the surface flux of
the scalar. For example, Denmead et al. (1996) used this equation 2 in
both differential and integral form to estimate regional water vapor and
CO, flux over agricultural land. Furthermore, the convective budgeting
approach was used in other regional budget studies such as FIFE (Betts
and Ball, 1994), BOREAS (Barr and Betts, 1997), and at tall tower sites
(Desai et al., 2010; Helliker et al., 2004). Cleugh and Grimmond (2001)
tested and refined this approach over a mixed (rural to urban) land-
scape, while Baldocchi et al. (2012) used atmospheric budgeting to
better understand anomalies in methane fluxes. However, this approach
fails if advection contributes to changes in scalar concentrations. For
example, the passage of frontal systems is accompanied by substantial
changes in CO; concentrations in the ABL (Pal et al., 2020).

Denmead et al. (1996) also discussed the potentially simpler issue of
NBL budgeting. During nights with strong temperature inversions, the
ABL collapses to heights of only tens of meters, trapping surface emis-

sions in a shallow layer. Monitoring the time rate of change of a scalar
(C) through the inversion to height h yields a flux (F¢),

h
dc
F, —dh
/ dt

Note that it is during strongly stable, nocturnal periods characterized
by an absence of turbulence, when the eddy covariance method fails.
The NBL budget method (equation 3) was first used with tethered bal-
loons carrying sampling tubes leading to a ground-based analyzer (e.g.,
Choularton et al., 1995). The rapid advance of small unmanned aerial
vehicles and their use in carrying CO5 and other equipment for atmo-
spheric measurement (e.g., Brady et al., 2016) suggest many new op-
portunities for the NBL budget method.

Continuous ABL measurements would help to bridge the gap
between flux towers and atmospheric inverse flux estimates. In
contrast to the CBL budget approach, atmospheric inverse analyses (e.g.
Ciais et al, 2010) integrate atmospheric greenhouse gas concentration
measurements from tower networks (Andrews et al, 2014; Miles et al,
2012), satellites (Kuze et al, 2016; Crisp et al, 2017) and aircraft
(Sweeney et al, 2015) with atmospheric transport models to estimate
regional (Lauvaux et al, 2012; Lauvaux et al., 2016; Barkley et al., 2019;
Hartery et al., 2018) to global (Crowell et al, 2019; Peylin et al, 2013)
surface fluxes. These methods simulate atmospheric advection, ABL
winds, and ABL mixing, and in most cases should supersede the simple
ABL budget methods (see above). Inverse analyses, however, are often
limited in their temporal and spatial resolution, and in their regional

dc, F.

dt h

dh
dt

(2

3
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accuracy and precision, and are sensitive to transport model errors
including ABL winds and ABLH (Basu et al., 2018; Lauvaux and Davis,
2014; McGrath-Spangler et al., 2015; Diaz-Isaac et al, 2018; Feng et al,
2019; Feng et al., 2020). ABL measurements at FLUXNET tower sites can
enhance atmospheric inversion techniques in at least two ways.

First, atmospheric inverse flux estimates can in principle be
compared to tower flux estimates. The different spatial and temporal
resolutions of these methods make this challenging. Remote sensing,
ecosystem models, and biomass data can be used to upscale flux mea-
surements to bridge this gap (Davis, 2008; Xiao et al, 2014a; 2014b;
Hilton et al, 2014; Jung et al, 2011). Flux towers are now being used to
calibrate ecosystem model ensembles (Zhou et al, 2020), which can
serve as probabilistic prior flux estimates for atmospheric inversion
systems (Wesloh et al, 2020). Higher-resolution atmospheric inverse
analyses (Lauvaux et al, 2012; Hu et al, 2019) also provide more op-
portunities for cross-evaluation of our understanding of the carbon cycle
with the flux tower network.

Second, a network of co-located, continuous measurements of ABLH,
mean wind profiles, and atmospheric turbulence profiles, all of which
can be obtained with stationary profiling instruments such as Doppler
lidars (Tucker et al, 2009), could be used to evaluate, improve, and
calibrate these atmospheric inversion systems. Assimilation of Doppler
lidar wind measurements has been demonstrated to improve atmo-
spheric inverse flux estimates for an urban landscape (Deng et al, 2017).
For example, ABLH and wind profiles from radiosondes have been used
to evaluate (Diaz-Isaac et al, 2018) and calibrate (Diaz-Isaac et al, 2019;
Feng et al, 2020) the mesoscale models that are used for regional flux
inversion systems, but radiosonde observations have limited temporal
resolution, and do not measure atmospheric turbulence, a key element
of ABL mixing. Additionally, the numerical weather models used in at-
mospheric inversion systems are highly sensitive to land surface energy
fluxes (Diaz-Isaac et al, 2018). Surface flux observation sites are thus an
obvious choice for joint evaluation and improvement of ABL parame-
terizations in these numerical weather models and of the underlying
land surface models.

5.4. Land-atmosphere coupling and model validation

Combining continuous and distributed observations of ABLH
with turbulent fluxes would help to better validate local- to
continental-scale land-atmosphere modeling efforts. Models of
various complexity and scales (including slab, single-column, large-eddy
simulation (LES), regional, and Earth system models) have been used to
increase our understanding of land-atmosphere coupling and feedback.
While ABL observations at individual flux tower sites can be used to
validate single-column models, distributed networks of ABL observa-
tions are needed to validate spatially explicit atmospheric models (such
as mesoscale models used for atmospheric flux inversion techniques or
coupled Earth system models). Validation of both types of models will
increase capabilities to better understand the role of land cover, use, and
management in ABL dynamics (e.g., Luyssaert et al., 2014; Helbig et al.,
2016; Vick et al., 2016; Chen et al., 2017).

Slab-type column models, which only require estimates of the
diurnal cycle of sensible and latent heat fluxes as well as atmospheric
temperature and moisture lapse rates, have been commonly used to
understand timing and onset conditions of ABL clouds or local convec-
tive precipitation (e.g., Juang et al., 2007a; Juang et al., 2007b; Gentine
et al., 2013a; Gentine et al., 2013b; Manoli et al., 2016; Gerken et al.,
2018a; Gerken et al., 2018Db), to quantify the impact of land cover
change on near-surface climates (e.g., Baldocchi and Ma, 2013; Luys-
saert et al., 2014; Helbig et al., 2016; Helbig et al., 2020a), and have also
been extended to include carbon and other atmospheric trace gas pro-
cesses (e.g., Vila-Guerau de Arellano et al., 2015). In the absence of
direct ABL observations, numerical models, diagnostic equations, and
empirical ABLH estimates can be useful for practical applications (e.g.,
Yi et al., 2001; Zilitinkevich and Baklanov, 2002) and can provide
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insights into land-atmosphere interactions (e.g., van Heerwaarden and
Teuling, 2013). However, CBL models and diagnostic equations for SBL
are not universally applicable (e.g., Vickers and Mahrt, 2004), often
require calibration of parameters, may introduce biases to ABLH esti-
mates (e.g., Denning et al., 2008; Hu et al., 2010; Banks et al., 2015), and
some ABL models require atmospheric profile measurements for initi-
alisation (Seibert et al., 2000). Direct ABL observations at flux tower
sites are crucial to design and constrain numerical experiments for
large-eddy simulations that can be used to improve or propose new
parameterizations for existing CBL/SBL models and to validate the
performance of surface exchange and turbulence parameterizations in
weather, air quality, and climate models across a range of land cover
types (Edwards et al., 2020). Single-site surface flux, ABLH, and atmo-
spheric profiling measurements in relatively homogeneous regions
would therefore provide a powerful tool for validating and improving
ABL models and for evaluating local-scale land-atmosphere coupling.

Heterogeneous landscapes, and regional to continental scale simu-
lations, however, require explicit consideration of the four-dimensional
nature of the atmosphere and its interaction with the Earth s surface.
Observations of surface fluxes and ABLH and winds have played an in-
tegral role in studies of mesoscale flows, in improving our understanding
of ABL development over heterogeneous surfaces, and in the evaluation
of numerical weather models. Many of the studies of mesoscale flows
have relied upon airborne flux and ABL observations (e.g., Sun et al,
1997; Kang et al, 2007), or airborne ABL observations paired with
regional flux tower networks (Desai et al, 2005; Reen et al, 2006; Reen
et al, 2014). Evaluations of numerical weather models have not typically
made extensive use of flux tower networks. The inclusion of ABL
profiling measurements at FLUXNET sites would provide invaluable
long-term grounding points for studies of mesoscale to continental-scale
land-atmosphere interactions. No comparable data source currently
exists.

The combination of ground-based observations of surface fluxes
and of ABLH allow for closure of ABL energy, water, and gas bud-
gets and can help to quantify land-atmosphere coupling across
biomes. Land-atmosphere coupling mediates important feedback pro-
cesses in weather and climate (e.g., Santanello et al., 2018). For
example, lower soil moisture during compound drought and heatwaves
is associated with higher sensible and lower latent heat fluxes and thus
enhanced ABL growth and further warming (e.g., Sanchez-Mejia and
Papuga, 2014; Sanchez-Mejia and Papuga, 2017). Such feedbacks -
highly variable in space and time - are difficult to observe without
extensive, continuous ABL and surface flux observations (Gerken et al.,
2019; Koster et al., 2009) thus limiting our understanding of atmo-
spheric processes (e.g., Betts, 2009; Ek and Holtslag, 2004; Santanello
et al., 2018).

To facilitate validation of land-atmosphere coupling in models, the
local land-atmosphere coupling (LoCo; Santanello et al. 2018) initiative
under the GEWEX project has developed quantitative metrics to better
understand land-atmosphere coupling in models and observations over
the last decade. A key limitation to the application of these
metrics is the lack of consistent and continuous (in time or space)
measurements of ABL thermodynamics and ABLH. The ‘process chain
connecting soil moisture-surface fluxes-ABL evolution-entrainment
-clouds-precipitation relies on consistent, co-located observations of
these variables, and to date most soil moisture or surface flux networks
lack the corresponding ABL observations that are necessary to validate
numerical weather models.

The short and long-term responses of vegetation to the dy-
namics of boundary layer cloud development are still an open
issue. Tackling this land-atmosphere interaction with continuous,
long-term ABL observations could help to reduce uncertainties
related to the coupling of terrestrial uptake of CO, and ABL clouds,
including their transitions. At sub-diurnal and sub-kilometer scales, it is
necessary to further quantify how vegetation controls the partitioning
between sensible and latent heat flux (Vila-Guerau de Arellano et al.,
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2012) and the impact on the cloud cycle (Sikma and Vila-Guerau de
Arellano, 2019). Flux tower clusters with multiple surface flux and ABL
observation systems are uniquely poised to provide important infor-
mation on the effect of spatio-temporal variability of surface fluxes,
cloud cover, and ABLHs on regional land-atmosphere interactions (e.g.,
Beyrich et al., 2006; Xu et al., 2020). These observational studies will
require dedicated observations of ABL growth dynamics, of stable iso-
topologues (Griffis et al., 2007), of the partitioning of direct and diffuse
radiation (Pedruzo-Bagazgoitia et al., 2017), and of leaf-level stomatal
conductance (Vila-Guerau de Arellano et al., 2020) to identify complex
coupling between photosynthesis, evapotranspiration, and cloud cover
dynamics.

Flux tower sites with continuous ABL observations could
expand on the idea of test-bed sites such as the U.S. Department of
Energy (DOE) Atmospheric Radiation Measurement (ARM) user facility
sites with the LASSO (Large-Eddy Simulation ARM Symbiotic Simula-
tion and Observation) project (Gustafson et al., 2020) or the Royal
Netherlands Meteorological Institute Parameterization Testbed (Neg-
gers et al., 2012) that integrate observations with LES, slab models, and
operational weather forecasting models. In this context, ABL observa-
tions could be used to diagnose entrainment fluxes of water, energy, and
atmospheric trace gases at the ABL top (Santanello et al., 2009; Santa-
nello et al., 2011) or to elucidate the surface and atmospheric controls
on convective precipitation over wet and dry soils (e.g., Findell and
Eltahir, 2003a; Findell and Eltahir, 2003b; Ford et al., 2015; Yin et al.,
2015). Recently, the role of land-atmosphere feedbacks in expansion
and intensification of droughts and heatwaves has been highlighted
(Miralles et al., 2014; 2019). Given the importance of droughts and
heatwaves for the carbon cycle (Wolf et al., 2016), water resource and
wildfire management, agriculture, and human health, the combined
surface flux and ABLH observations across the FLUXNET network have
the potential to contribute to better quantification of these feedback
processes, arising from cumulative drying of soils, increased surface flux
partitioning toward sensible heat flux, and subsequent heat accumula-
tion in the ABL (Miralles et al., 2014).

Future spaceborne missions have the potential to provide
improved spatial coverage of ABL observations and to connect local
(i.e., flux tower) to regional scales, but require ground-based ob-
servations for validation. An improved spatial and temporal coverage
of ABL observations at flux tower sites would enable enhanced cali-
bration and validation efforts, process understanding, and retrieval
constraints for such spaceborne ABL missions. The 2017 ESAS Decadal
Survey (National Academies of Sciences, Engineering, and Medicine
2018) has recommended ABL thermodynamic profiles and ABLH as
most critical measurements from space for a range of scientific appli-
cations, such as those discussed above. NASA is devoting the next decade
to ‘incubate new approaches and technologies that can lead to future
ABL missions and provide globally continuous measurements of ABL
properties. This incubation will rely heavily on knowledge and tech-
nology developments demonstrated by ground-based networks. The
improved coverage and co-location of ground-based ABL observations at
FLUXNET sites would provide crucial information for developing a
strategy for ABL observations from space, in addition to ongoing
ground-validation of remote measurements.

6. Conclusions

Atmospheric boundary layer measurements provide important ob-
servations to address pressing research questions. Many land-
atmosphere studies at eddy covariance flux tower sites have relied on
modeling approaches due to the lack of direct ABL observations (e.g.,
Baldocchi and Ma, 2013; Helbig et al., 2016; Lansu et al., 2020) or have
made use of radiosonde observations that are restricted by limited
temporal resolution or by proximity to the site (e.g., Juang et al.,
2007b). New measurement technologies have become available recently
enabling continuous, high-frequency ABL observations across the
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FLUXNET network, opening new perspectives on the complex feedbacks
between the land surface and the atmosphere.

Our review demonstrates that efforts to expand the availability of
ABL observations across the FLUXNET network, either through new
instrument deployments or campaigns to make previously collected data
available, would allow the Earth science community to address new
emerging research questions. Joint ABL and surface flux observations
would also increase the usability of flux tower observations by the
broader research communities (e.g., remote sensing, Earth system
modelling, atmospheric science). Adding ABL measurements to more
sites within the FLUXNET network, spanning a range of ecosystem types,
climate zones and terrain, and systematic efforts to make new and
existing ABL measurements available from network platforms, would

(1) lead to better understanding of complex feedbacks between sur-
face flux and ABL dynamics,

(2) support flux footprint modelling, the interpretation of surface
fluxes in heterogeneous and mountainous terrain, and quality
control of eddy covariance flux measurements

(3) support efforts to upscale surface fluxes from local to regional
scales, and

(4) provide essential data for the validation of land-atmosphere
coupling in Earth system models and of spaceborne ABL missions,

There is an urgent need to develop the observational infrastructure,
to share best practices among flux tower site teams, and to develop
protocols and standardized data formats to enable efficient sharing of
ABL data (i.e., ABLH, air temperature, humidity, wind, and flux profiles,
cloud cover and cloud base height). Combining ABL observations with
eddy covariance-based surface flux measurements would produce
unique observational datasets for studies of land-atmosphere in-
teractions and would thus add substantial value to ongoing flux tower
measurements.
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