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2. GLOBAL CLIMATE

R. J. H. Dunn, D. M. Stanitski, N. Gobron, and K. M. Willett, Eds.

a. Overview—R. J. H. Dunn, D. M. Stanitski, N. Gobron, and K. M. Willett

The assessments and analyses presented in this chapter focus predominantly on the measured
differences of climate and weather observables from previous conditions, years, and decades
to place 2019 in context. Many of these differences have direct impacts on people, for example,
their health and environment, as well as the wider biosphere, but are beyond the scope of these
analyses.

For the last few State of the Climate reports, an update on the number of warmer-than-average
years has held no surprises, and this year is again no different. The year 2019 was among the three
warmest years since records began in the mid-to-late 1800s. Only 2016, and for some datasets
2015, were warmer than 2019; all years after 2013 have been warmer than all others back to the
mid-1800s. Each decade since 1980 has been successively warmer than the preceding decade,
with the most recent (2010-19) being around 0.2°C warmer than the previous (2000-09).

This warming of the land and ocean surface is reflected across the globe. For example, lake
and permafrost temperatures have increased; glaciers have continued to lose mass, becoming
thinner for the 32nd consecutive year, with the majority also becoming shorter during 2019. The
period during which Northern Hemisphere (NH) lakes were covered in ice was seven days shorter
than the 1981-2010 long-term average, based on in situ phenological records. There were fewer
cool extremes and more warm extremes on land; regions including Europe, Japan, Pakistan, and
India all experienced heat waves. More strong than moderate marine heat waves were recorded
for the sixth consecutive year. And in Australia (discussed in more detail in section 7h4), moisture
deficits and prolonged high temperatures led to severe impacts during late austral spring and
summer, including devastating wildfires. Smoke from these wildfires was detected across large
parts of the Southern Hemisphere (SH).

The year 2019 was also one of the three warmest above Earth’s surface and within the tropo-
sphere, while middle and upper stratospheric temperatures were at their lowest recorded values
since 1979, as is expected because of the increasing concentration of greenhouse gases in the
atmosphere.

The continuing warm conditions also influenced water around the globe, with atmospheric
water vapor (specific humidity) being high over the ocean surface (one of the moistest years on
record) and also aloft, and well above average near the land surface. However, in terms of satura-
tion (relative humidity), the atmosphere was very dry near the land surface, setting a new record
low for the global average, and about average over the ocean surface and aloft. There were strong
hemispheric differences in soil moisture anomalies with, on average, negative anomalies in the
south and positive anomalies in the north. Globally, the second half of 2019 saw an increase in
the land area experiencing drought to higher, but not record, levels by the end of the year, but
annual precipitation amounts were around average, with regional peaks in intense rainfall from,
for example, Cyclones Idai and Kenneth in southeastern Africa.

Many climate events in Africa, Asia, and Australia were influenced by the strong positive
Indian Ocean dipole (IOD), while the weak-to-neutral prolonged El Nifio—Southern Oscillation
(ENSO) conditions during 2019 appeared to have only limited impacts.
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As a primary driver for our changing climate, the abundance of many long-lived greenhouse
gases continues to increase. Globally averaged CO, at Earth’s surface reached 409.8 + 0.1 ppm,
a 2.5+ 0.1 ppm increase from 2018; and CH, reached 1866.6 + 0.9 ppb in 2019, a 9.2 + 0.9 ppb increase
from 2018, which is among the three largest annual increases (with 2014 and 2015) since 2007,
when a rapid rise in methane concentration began. The mean global atmospheric N,0 abundance
in 2019 was 331.9 = 0.1 ppb, an increase of 1.0 = 0.2 ppb from 2018. However, the atmospheric
abundances of most ozone-depleting substances (ODS) are declining or leveling off, decreasing
the stratospheric halogen loading and radiative forcing associated with ODS.

Stratospheric water vapor variability is strongly affected by the absolute humidity of air enter-
ing the stratosphere in the tropics, which is in turn largely determined by the temperature of the
tropical cold point tropopause. Following 2018, a year in which lower stratospheric water vapor
in the tropics dropped to a very low value (~20% below the 2004-19 average in December), water
vapor abundance in the tropical lower stratosphere increased during 2019 to about 10% above
average in the latter half of the year.

Both hemispheric average and global average tropospheric ozone in 2019 indicate a continuing
increase from previous years based on satellite measurements (starting year 2004) and surface
measurements (starting in the mid-1970s). The largest trends in tropospheric ozone over the last
15 years occurred above India and East/Southeast Asia at a rate of ~ +3.3 DU decade™ (~ +1% yr);
these increases are consistent with expected increases of ozone precursor emissions across this
region.

The year saw exceptional fire events over Australia, Indonesia, and parts of Siberia, but was
also marked by lower amounts of dust over most of the Sahara. In the latter part of 2019, the
Raikoke (Russia) and Ulawun (Papua New Guinea) volcanic eruptions and the large Australian
wildfires loaded the stratosphere with aerosol levels unprecedented since the post-Mt. Pinatubo
era 25 years ago. Despite this, 2019 was near-record warm at the surface.

The responses of the terrestrial biosphere to climatic conditions were also visible. Phenological
land indicators show an average excess of eight days for the duration of the growing season in the
NH in 2019 relative to the 200010 baseline. A deficit of plant productivity in the SH resulted in a
lighter surface and hence higher albedo, whereas northern latitudes presented a darker surface
and lower albedo, largely due to below-average snow cover. However, the rate of photosynthesis
increased in eastern China with vegetation growth due to major human changes in land use.

New additions to this chapter in 2019 include lake water levels (last included in 2011) and side-
bars on lake ice cover and stratospheric aerosols. Marine temperature extremes are also included
this year alongside the land—surface indices, and we see the return of an update on the Mauna
Loa solar transmission record.

Time series and anomaly maps for many of the variables described in this chapter are shown
in Plates 1.1 and 2.1, respectively. A number of sections refer to supplemental figures that can be
found in Appendix 2.
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(a) Surface Temperature (b) Lake Temperatures
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(e) Lower Tropospheric Temperature (f) Lower Stratospheric Temperature
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(9) Surface Specific Humidity Plate 2.1. (a) NOAA NCEI Global land and ocean surface annual

temperature anomalies (°C); (b) Satellite-derived lake surface
water temperature anomalies (°C) in 2019. The anomalies are
calculated for the meteorological warm season (JJA in NH; DJF
in SH, and over Dec-Aug 2018/19 within 23.5° of the equator).
The longitude of some of the lakes has been shifted slightly
to enable them to be displayed clearly. The latitude has been
maintained; (¢) GHCNDEX warm day threshold exceedance
(TX90p); (d) GHCNDEX cool night threshold exceedance
(TN10p); (e) ERA5 annual temperature anomalies of LTT (°C).
Stippling indicates grid points in which the 2019 value was the

[ S — | | | | highest of the 41-year record; (f) ERA5 annual temperature
=2 15 -1 -05 0 05 1 15 2 anomalies of LST (°C); (g) HadISDH surface specific humidity
Anomalies from 1981-2010 (g kg™ anomalies (g kg™);
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(h) Surface Relative Humidity (i) Total Column Water Vapor
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(m) Lake Water Level
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(n) Cloudiness
Plate 2.1. (cont.) (h) HadISDH surface relative humidity

anomalies (% RH); (i) ERA5 reanalysis of TCWV anomalies
(mm). Data from GNSS stations are plotted as filled circles;
(j) “All sky” microwave-based UTH dataset annual average
UTH anomalies (% RH); (k) GPCP v2.3 annual mean precipita-
tion anomalies for 2019 (mm yr™"); (I) Anomalies for the 2019
GPCC-First Guess Daily R10mm index (days); (m) Lake water
level anomalies (meters) based on satellite altimeters for 198
large lakes; (n) Global cloudiness anomalies (%) generated
from the 30-year PATMOS-x/AVHRR cloud climatology;
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(o) River Discharge (p) Runoff
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Plate 2.1. (cont.) (o) Global distribution of river discharge anomalies (m* s™') from JRA-55; (p) Global
distribution of runoff anomalies (mm yr™") from JRA-55; (q) Changes in annual-mean terrestrial water
storage (the sum of groundwater, soil water, surface water, snow, and ice, as an equivalent height of
water in cm) between 2018 and 2019, based on output from a GRACE and GRACE-FO data-assimilating
land surface model. No data are shown over Greenland, Antarctica, the gulf coast of Alaska, parts of
Patagonia, and most polar islands; (r) ESA CCl Soil Moisture average surface soil moisture anomalies
(m?® m~). Data were masked as missing where retrievals are either not possible or of very low qual-
ity (dense forests, frozen soil, snow, ice, etc.); (s) GLEAM land evaporation anomalies (mm yr™); (t)
Mean scPDSI for 2019. Droughts are indicated by negative values (brown), wet episodes by positive
values (green). No calculation is made where a drought index is meaningless (gray areas: ice sheets
or deserts with approximately zero mean precipitation);
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(u) Sea Level Pressure (v) Surface Winds
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Plate 2.1. (cont.) (u) HadSLP2r surface pressure anomalies (hPa); (v) Surface wind speed anomalies
(m s7") from the observational HadISD3 dataset (land, circles), the MERRA-2 reanalysis output (land,
shaded areas), and RSS satellite observations (ocean, shaded areas); (w) ERA5 Aug-Dec average 850-hPa
eastward wind speed anomalies (m s™); (x) Total aerosol optical depth (AOD) anomalies at 550 nm; (y)
Number of days with extremely high AOD (extreme being defined as above the local 99.9th percentile
of the 2003-18 average; (z) Total column ozone anomalies (DU) in 2019 from Global Ozone Monitor-
ing Experiment-2 (GOME-2A) measurements with respect to the 1998-2008 mean determined from
the merged multi-sensor data combining GOME, SCIAMACHY, and GOME-2 (GSG, Weber et al. 2018);
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(aa) OMI/MLS Tropospheric Column Ozone (ab) Carbon Monoxide
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Plate 2.1. (cont.) (aa) Tropospheric ozone anomalies (DU) for 2019, relative to 2005-18 average, as de-
tected by the OMI/MLS satellite instruments; (ab) CAMS reanalysis total column CO anomalies (%); (ac)
Land surface visible albedo anomalies (%); (ad) Land surface near-infrared albedo anomalies (%); (ae)
FAPAR anomalies; (af) GFAS1.4 carbonaceous emission anomalies (g C m~ yr") from biomass burning.
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Fig. 2.1. Global average surface air temperature anomalies (°C;
1981-2010 base period). In situ estimates are shown from NOAA/
NCEI (H.-M. Zhang et al. 2019), NASA-GISS (Lenssen et al. 2019), Had-
CRUT4 (Morice et al. 2012), CRUTEM4 (Jones et al. 2012), HadSST3
(Kennedy et al. 2011a,b). Reanalyses estimates are shown from ERAS
(Hersbach et al. 2020), and JRA-55 (Kobayashi et al. 2015).
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b. Temperature
1) Global surface temperature—

A. Sanchez-Lugo, C. Morice, J. P. Nicolas, and

A. Argliez

The 2019 global land and ocean
surface temperature was 0.44°-0.56°C
above the 1981-2010 average (Table
2.1) and was among the three high-
est yearly temperatures since global
records began in the mid-to-late 1800s
(Fig. 2.1), according to three independent
in situ analyses (NASA-GISS, Lenssen
et al. 2019; HadCRUT4, Morice et al.
2012; NOA AGlobalTemp, H.-M. Zhang
et al. 2019). The NOAAGlobalTemp and
NASA-GISS datasets ranked 2019 as the
second-warmest year on record, just
0.04°C behind 2016. The HadCRUT4 da-
taset ranked 2019 as the third-warmest
year, behind 2016 (+0.50°C) and 2015
(+0.47°C). A weak EI Nifio was present
across the tropical Pacific Ocean at the
start of the year (see section 4b). The
presence of an El Nifio (La Nifia) typi-
cally has a warming (cooling) influence
on global temperatures (e.g., Foster and
Rahmstorf 2011). The El Nifio transi-
tioned to El Nifio—Southern Oscillation
(ENSO) neutral by mid-2019.

The three in situ global surface tem-
perature analyses assessed here are
derived from air temperatures observed
at weather stations over land and sea
surface temperatures (SSTs) observed
from ships and buoys. Differences be-
tween analyses are mainly due to how
each methodology treats areas with
little to no data and how each analysis
accounts for changes in measurement
methods (for more details see Kennedy
et al. [2010]; Hansen et al. [2010]; and
Sanchez-Lugo et al. [2017]). Although
each analysis differs in methodology,
leading to minor differences in tempera-
ture anomalies and ranks, the three in
situ datasets are overall in close agree-
ment (Fig. 2.1), with an average rate
of increase of 0.07°C per decade since
1880 and a little over double that rate at
0.18°-0.19°C per decade since 1971. The
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last six years (2014-19) were the six warmest years since global records began in the mid-to-late
1800s, contributing to the warmest decade on record with a decadal temperature of 0.32°-0.39°C
above the 1981-2010 mean. Each decade since 1980 has been successively warmer than the pre-
ceding decade, with the 2010-19 decadal temperature departure from average surpassing the
previous record warm decade of 2000—09 by 0.15°-0.22°C.

While annual temperature rankings provide a simple measure of the state of global tempera-
tures, a recently introduced global annual temperature score (Argiiez et al. 2020) complements
the annual temperature ranking by providing a basic characterization of the impacts of natural
variability on global temperature relative to the sustained upward trend since the mid-1970s.
Scores range from 1 to 10, with a score of 1 (10) indicating the coldest (warmest) 10% of anomalies
relative to the trend line. In an era of seemingly perpetual near-record warm rankings, the an-
nual temperature scores can help characterize whether the annual temperature ranking attained
in a given year was due primarily to continuation of the trend, natural variability, or both. For
example, 2016 was not only the warmest year on record, but it also exhibited a temperature score
of 10, whereas 2014 previously attained a ranking of warmest yet exhibits a temperature score of 4
(on the colder half of the scale). This indicates that, on top of the long-term upward trend, natural
variability had a prominent contribution to the record temperature in 2016, whereas natural vari-
ahility did not have a prominent contribution to 2014’s previous record temperature. Using global
annual time series from 1975 through 2019, the year 2019 registers a global annual temperature
score of 9 (corresponding to the 80th to 90th percentile) in the NASA-GISS and NOA AGlobalTemp
datasets and a score of 7 (60th to 70th percentile) in the HadCRUT4 dataset. This indicates that
2019 was moderately-to-considerably warmer than we would expect due to continuation of the
upward trend alone, suggesting that its ranking as second or third warmest was attributable to
the combined effects of natural variability and progression of the upward temperature trend.

The 2019 annual surface temperatures were above average across much of the world’s land and
ocean surfaces (Plate 2.1a; Figs. A2.1, A2.2). The most notable positive anomalies (+1.0°C or higher)
were observed across Alaska, the Gulf of Alaska, northeastern Canada, Baffin Bay, Greenland,
Europe, the Middle East, Russia, eastern Asia, Australia, southern Africa, and parts of Brazil. In
contrast, near- to below-average conditions were present across a large swath of North America
and across parts of the southeastern and southwestern Pacific Ocean, the Atlantic Ocean, and
Indian Ocean.

The global temperature over land surfaces was 0.70°-0.83°C above average—the second high-
est on record, behind 2016. The global ocean temperature was 0.38°-0.40°C above average and
the second or third highest on record, depending on the dataset.

Globhally averaged surface air temperatures are also estimated using full-input reanalyses. A
full-input reanalysis uses an objective algorithm and a weather prediction model to combine in-
formation from a range of satellite, aircraft, and in situ observational data sources to reconstruct
historical weather and climate across the whole globe. A surface-input reanalysis is similar but
combines information from only surface-based observations. Both can suffer from regional model
biases and the effects of changes in the observation network during the analysis period. However,
surface temperatures from reanalyses should be consistent with in situ analyses in regions of
good observational coverage. Here, two full-input reanalyses are considered: ERA5 (Hersbhach et
al. 2020) and JRA-55 (Kobayashi et al. 2015). Currently, these reanalyses provide data from 1979
onward for ERA5 and from 1958 onward for JRA-55.

For both reanalyses, the globally averaged annual mean 2-m air temperature over land and
ocean for 2019 was the second highest since the start of their respective records, being 0.59°C
above average in ERA5 and 0.51°C above average in JRA-55 (Table 2.1). These estimates fall within
the range of those derived from the three observational datasets mentioned above. Comparatively,
the two reanalysis temperatures for 2016 (the warmest year on record) were 0.63°C and 0.56°C
above average, respectively.
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Table 2.1. Temperature anomalies (°C) and uncertainties (where available) for 2019 w.r.t. the 1981-2010 base
period. Where uncertainty ranges are provided, the temperature anomalies correspond to the central values
of a range of possible estimates. Uncertainty ranges represent a 95% confidence interval. Note that for the
HadCRUT4 column, land values were computed using the CRUTEM.4.6.0.0 dataset (Jones et al. 2012), ocean
values were computed using the HadSST.3.1.1.0 dataset (Kennedy et al. 2011a,b), and global land and ocean
values used the HadCRUT4.6.0.0 dataset (Morice et al. 2012).

Land +0.83 +0.70 £ 0.13 +0.78 £ 0.14 +0.87 +0.78

Ocean +0.38 +0.38 £ 0.07 +0.40 = 0.16 +0.48 +0.39
+0.56

Land and Ocean +0.44 £ 0.08 +0.51+ 0.15 +0.59 +0.51

+0.05

For 2019, the reanalyses also show warmer-than-average conditions over many regions of the
world (Figs. A2.3, A2.4), particularly over high northern latitudes. Over both global ocean and
global land, the two reanalyses agree that the 2019 2-m air temperature was the second highest
on record and that the last five years (2015-19) were the five warmest years on record over both

global ocean and global land (as well as globally).

2) Lake surface temperature—L. Carrea, R. 1. Woolway, C. J. Merchant, M. T. Dokulil, C. L. DeGasperi, E. de Eyto,
S.Kelly, R.S. La Fuente, W. Marszelewski, L. May, A. M. Paterson, M. Pulkkanen, J. A. Rusak, O. Rusanovskaya, S. G. Schladow,
M. Schmid, S. V. Shimaraeva, E. A. Silow, M. A. Timofeyev, P. Verburg, S. Watanabe, and G. A. Weyhenmeyer

In 2019, the worldwide averaged satellite-derived
lake surface water temperature (LSWT) warm-
season (June—August in the Northern Hemisphere
[NH]; December—February 2018/19 in the Southern
Hemisphere [SH]; and December—August 2018/19
for the tropical region of 23.5°N-23.5°S) anomaly
was +0.025 + 0.022°C compared with the 1996-2016
base period. The mean warming trend from 1995
to 2019 was 0.21 + 0.02°C decade™, broadly consis-
tent with previous analyses (Woolway et al. 2017,
2018; Carrea et al. 2019). On average, anomalies
(with respect to the 1996-2016 baseline) in 2019
were less positive than in 2018 and in 2017, 0.23°C
and 0.19°C less, respectively. The warm-season
anomalies for each lake are shown in Plate 2.1b.
Per lake, the LSWT anomaly was positive for 47%
of lakes, and negative for 53%. Some similarities
between the 2019 warm-season lake temperature
anomalies and the ice cover anomalies, in terms
of spatial distribution in the NH (Sidebar 2.1; Fig.
SB2.1), can be observed in regions where longer ice
duration is related to negative lake water tempera-
ture anomalies.

In the NH, distinctive warmer and cooler regions
can be identified: Alaska, Greenland, Europe (ex-
cept the northeast) show clearly positive anomalies,
while Tibet and parts of North America show clear
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Fig. 2.2. Satellite-derived annual LSWT anomalies
(°C; relative to 1996-2015) from 1995 to 2019 for
Europe, Africa, Tibet, and Canada. These values
were calculated for the meteorological warm season
(Jun-Aug in the NH; Dec-Feb in the SH; and over the
whole year in the tropics).
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negative anomalies. Four regions are shown in more detail: Europe (n = 127), Tibet (n = 106),
Africa (n = 68), and Canada (n = 244). The warm-season LSWT calculated from the satellite data
shows a warming tendency of +0.39 + 0.03°C decade™ in Europe and +0.22 + 0.04°C decade™ in
Canada. In Africa and Tibet the tendency is more neutral (Fig. 2.2.). The year 2018 was the warm-
est since records began in 1995 for European lakes over the June—August (JJA) period (similar to
the finding for July—September [JAS] in Carrea et al. 2019). The anomaly in Europe in 2019 was
more moderately positive than in 2018, due to the contribution of cooler lakes in northern Europe
and Ireland (see section 7f for details). In particular, the border between Scandinavia and Fin-
land delimits regions with contrasting behaviors, i.e., positive anomalies for Scandinavia and a
few negative anomalies for Finland and the Karelia region of Russia, respectively. Modeled lake
temperature anomalies in the ECMWF ERAS reanalysis (Hersbach et al. 2020) are available that
include lakes smaller than are observable in the satellite data (> ~1 km?, modeled as the fraction
of each land surface grid cell covered by inland water (so-called “lake tiles”). The reanalysis lake
tile temperatures are shown in Fig. 2.3. For the lakes in Ireland, the observed LSWT anomalies
are moderately negative in contrast to the moderately positive ERA5 modeled data, while LSWT
anomalies from satellite data are generally consistent with the ERA5 data in Canada, Tibet,
and Africa (Fig. 2.3). ERA5 data are driven by the reanalysis surface meteorological conditions
(Balsamo et al. 2012) and in general, the lake temperature anomalies broadly track observed air
temperature, although factors such as wind speed, humidity, insolation, and the thermal time
constants of lakes influence variations within this broad pattern.

LSWT time series were derived from satellite observations from the series of Along Track
Scanning Radiometers (ATSR) and the Advanced Very High Resolution Radiometers (AVHRR)
on MetOp A and B platforms. The retrieval method of MacCallum and Merchant (2012) was ap-
plied on image pixels filled
with water according to both

the inland water dataset of (a) Europe (b) Africa
Carrea et al. (2015) and a :
reflectance-based water de-
tection scheme. The satel-
lite-derived LSWT data are
spatial averages for each of a
total of 927 lakes, for which
high-quality temperature re-
cords were available through
August 2019. Lake-wide av-
erage surface temperatures

have been shown to give a
more representative picture

of LSWT responses to climate
change than single-point
measurements (Woolway and
Merchant 2018). In addition,

in situ LSWT observations [ i — T I I

have been analyzed (n = 32) -2 -15 -1 -05 0 05 1 15 2
for which long time-series are Anomaly (°C)

available.

Eighty-one percent (n = 26)
of lakes with in situ LSWT
measurements were found
to have positive anomalies in

Fig. 2.3. Satellite-derived LSWT anomalies in 2019 (colored points) together
with surface lake water temperature from the ECMWF ERAS5 modeled data
in Europe, Africa, Canada, and Tibet. The two sets of LSWT anomalies (°C;
relative to 1996-2015) are calculated for the meteorological warm season
(Jun-Aug in NH; Dec-Feb in SH; and over the whole year in the tropics).
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2019. Similar to the satellite data, positive anomalies were found for Europe in 2019. For example,
the second-largest lake in Sweden by surface area, Vattern, experienced an LSWT anomaly of
+0.98°C in 2019, while that of Mondsee, Austria, was +2.1°C. The average LSWT anomaly in lakes
with in situ data was +0.6 + 0.15 °C in 2019, which is substantially higher than the global average
anomaly calculated from the satellite-derived observations (+0.025°C). This difference can be
due to various factors, including the restricted global coverage of lakes with in situ data (these
lakes are primarily situated in Europe and North America), the difference in lake size among the
datasets (more lakes with in situ data tend to be small) and, unlike the in situ observations, which
are restricted to a single point within a lake, the satellite data capture the intra-lake heterogene-
ity of LSWT anomalies, thus capturing within-lake regions that are either warming rapidly or
experiencing relatively minimal change (Woolway and Merchant 2018).

3) Land and marine temperature extremes—R. J. H. Dunn, S. Perkins-Kirkpatrick, R. W. Schlegel, and

M. G. Donat
Over land, 2019 recorded the most number of warm days (TX90p, see Table 2.2 for definition)
in the record dating to 1950, with over 60 days compared to the average of 36.5 (Fig. 2.4). The
number of cool nights (TN10p)

(a)'rxg'op""' was low compared the last 70

20 - 80 years, but above average for the
60 most recent decade. As the spatial

50 60 coverage of the in situ GHCNDEX
B B o= SR .o AN SN A AR . (Donat et al. 2013) dataset is not
(L complete due to delayed or lack-

% 30 20 § ing report of up-to-date station
..D_ 20k < data in many regions, the time
O HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH 0 series from the ERAbS reanaly-
= (b) TN10p B sis (Hersbach et al. 2020; Fig.
§ A0 an ;_; 2.5; Fig. A2.5) is also shown. A
40 60 similar picture emerges, but the
number of warm days does not

c]0] SRR A R T 40 exceed the record maximum set

in 2016. Similarly, the number of

20 20 cool nights is also close behind
IR A . AR the record minimum of 2016. Dif-

1950 1960 1970 1980 1990 2000 2010 2020 ferences with GHCNDEX may be

Fig. 2.4. Time series of (a) TX90p (warm days) and (b) TN10p (cool nights). the result of the more complete
The red dashed line shows a binomial smoothed variation, and the shaded coverage of ERAS.

band the uncertainties arising because of incomplete spatio-temporal The number of warm days is
coverage estimated using ERAS5 following Brohan et al. (2006). The dot-  hijgh over Europe and Austra-
ted black line shows the percentage of land grid boxes with valid data in lia from GHCNDEX (Plate 2.1¢),
each year. (Source: GHCNDEX.)

Table 2.2. WMO Expert Team on Climate Change Detection and Indices (ETCCDI; Zhang et al. 2011)
temperature indices used in this section and their definitions.

X90 Warm davs Count of days where the maximum temperature was above the
P y climatological 90th percentile (defined over 1961-90, days)

Count of days where the minimum temperature was below the

TN10p SR TIIE climatological 10th percentile (defined over 1961-90, days)

Maximum “night-time”

TNx
temperature

Warmest minimum temperature (TN, °C)
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(42.6°C), the Netherlands (40.7°C), Fig. 2.5. Time series of (a) TX90p (warm days) and (b) TN10p (cool
Belgium (41.8°C), and Luxembourg nights). The red dashed line shows a binomial smoothed variation.
(40.8°C). The World Meteorological (Source: ERAS.)

Organization (WMO) declared the
month of July 2019 tied as the hot-
test on record for the globe (WMO
2019), based on ERAS (Hersbach et al. 2020).

Australia experienced heat waves both early and late in the year. A prolonged and extensive
heat wave affected much of the country from late December 2018 through January 2019. Records
set include Adelaide’s hottest day on record at 46.6°C on 24 January (with new records also set at
neighboring stations) and Canberra’s longest run of days above 40°C on four consecutive days
(14-17 January 2019). The all-time national average maximum temperature record was set on 17
December 2019 at 41.9°C, 1.59°C above the 2013 record, and 2.09°C above average (1961-90). Janu-
ary, March, and December 2019 were nationally the warmest on record for the respective months,
with February, April, July, October, and November each among their respective 10 warmest. The
most recent Australian heat wave in summer 2019/20 is presented in detail in Sidebar 7.6.

Heat waves also occurred in May and June in Japan, with a maximum temperature of 39.5°C
(Saroma, Hokkaido) on 26 May (monthly record for this site), and also Pakistan (51.1°C Jacobabad
on 1June) and India with (50.8°C Churu, 2 June). In February, the United Kingdom experienced
above-average temperatures with maxima of 21.2°C recorded in London on the 26th (monthly
record), around 14°C above average. Extreme temperatures also occurred over South America in
2019. Overall, the continent observed its second-warmest year on record, with heat waves dur-
ing January in Chile and southeastern Brazil contributing to the warmth. Santiago, Chile, set a
new maximum temperature record of 38.3°C on 27 January. In North America, the state of Alaska
experienced its warmest year on record. Please refer to the relevant sections in Chapter 7 for more
regional temperature details.

GHCNDEX (Donat et al. 2013), a gridded dataset of ETCCDI (Expert Team on Climate Change
Detection and Indices) extremes indices, was used to characterize the extreme temperatures over
land. Indices are calculated from daily temperature values from the GHCND (Menne et al. 2012)
and have been interpolated onto a 2.5° x 2.5° grid. As can be seen in Plates 2.1c,d, the spatial cov-
erage is sparse, with available data for 2019 restricted to North America and parts of Eurasia and
Australia. This lack of coverage arises both from gaps in the historical coverage (e.g., sub-Saharan

AUGUST 2020 | state of the Climate in 2019 BAMS Unauthenticat%ﬁ %&%&G&&IMQA'% 12:145%-?'._1(3



(a) (b) (c)

[«}] (h) i

2 80%- S 80%- -

= _

5 £

-

3 60%- 8 60% 53 i
o o = |

= s g 4 = |

T 40%- T 40%

= = % | ‘ " l‘

i ™ E I- - -. . -'- ‘

s o, -— O, - | L

SZOKo [ -...‘ £20}3 15- = oam MaTm -

$5 I I = -_'___'__-q___ e
1982 1987 1992 1997 2002 2007 2012 2017 1982 1987 1992 1997 2002 2007 2012 2017 1982 1987 1992 1997 2002 2007 2012 2017

Category = | Moderate [ Il Strong Il Il Severe [l IV Extreme

Fig. 2.6. Annual MHW occurrence using a climatology base period of 1982-2011. (a) Daily average percent of the ocean
that experienced a MHW. (b) Total percent of the ocean that experienced a MHW at some point during the year. The
values shown are for the highest category of MHW experienced. (c) Total average of daily MHW occurrence throughout
the entire ocean. (Source: NOAA OISST.)

Africa) and also from delays in data transmission. ERA5 reanalysis (Hersbach et al. 2020) can be
used to fill in some of these gaps, but because this dataset has a shorter temporal coverage, the
reference period is necessarily different (1981-2010 compared to 1961-90 in GHCNDEX), which
can lead to apparently different temporal behavior (Dunn et al. 2020).

Extreme heat, known as marine heat waves (MHWS), may enter the oceans through surface
heat flux or advection. Satellite observations of SST can be used to monitor and categorize MHWS,
as defined in Hobday et al. (2016, 2018). A category “I Moderate” MHW is defined as a period of
time in which SST is above the 90th-percentile threshold of temperatures at a given location and
day-of-year for five days or longer (Hobday et al. 2018). The MHW is categorized as “II Strong” if
the largest temperature anomaly during the event is more than twice as large as the difference
between the seasonally varying climatology and the 90th-percentile threshold. The MHW is
“III Severe” if the largest anomaly is more than triple the difference, and “IV Extreme” if four
times the difference or greater. Using NOAA OISST v2.1 (Banzon et al. 2020), the MHW category
recorded most often in the ocean for 2019 was “II Strong” (41% of ocean surface), exceeding the
lower category “I Moderate” (30%) for the sixth consecutive year (Fig. 2.6). Category “III Strong”
MHWs (2%) were exceeded by “IV Extreme” MHWs (3%) for the fourth consecutive year. In total,
849% of the surface of the ocean experienced an MHW in 2019. There was an average of 74 MHW
days per ocean pixel, an increase from 61 in 2018, but below the 2016 record of 83. The average
daily MHW occurrence throughout the ocean was 20%, an increase over the 2018 average of 17%,
and less than the 2016 record of 23%.

4) Tropospheric temperature—I.R. Christy, C. A. Mears, S. Po-Chedley, and L. Haimberger

The 2019 global lower tropospheric temperature (LTT), which encompasses the atmosphere
from the surface to ~10 km, ranked second warmest in seven datasets and first or third in the
remaining two (Fig. 2.7). These records extend back to 1958 using radiosonde (balloon-borne
instrumentation) data and one reanalysis dataset (JRA55), which demonstrate reasonable agree-
ment with the 40+ year satellite record (since late 1978) and two other reanalysis datasets (since
1979 and 1980, ERA5 and MERRA 2, respectively). A weak El Nifio contributed to increased global
temperatures as 2019 values were +0.44° to +0.68°C higher than the 1981-2010 average (depend-
ing on the dataset), being just slightly cooler (~0.07°C on average) than the record warm year
of 2016. At least four of the five globally complete datasets (ERA5, MERRA2, JRA55, RSS, UAH)
recorded each of the four months—June, September, November, and December—as experiencing
their warmest monthly global LTT.
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Fig. 2.7. Time series of global annual temperature anomalies (°C) for
the lower troposphere from (a) radiosondes, (b) satellite microwave
emissions, and (c) reanalyses.

The warming rate of the global tro-
posphere since 1958, as the median
of available datasets, is +0.18 (range
+0.16 to +0.20) °C decade™. The median
warming rate since 1979 is also +0.18
(range +0.13 to +0.21) °C decade ™, which
includes records derived from micro-
wave satellite measurements (Table 2.3).
Taking into consideration the temporary
cooling due to volcanic aerosols caused
by eruptions in 1982 and 1991, as well as
the El Nifio/La Nifia cycle, there remains
a global warming trend since 1979 of
+0.12 + 0.04°C decade™ unexplained by
these ephemeral, natural phenomena
(Christy and McNider 2017, updated and
calculated using ERA5, RSS, and UAH
datasets).

The spatial details of the departures
of LTT from the 1981-2010 mean are
depicted in Plate 2.1e as provided by
the European Centre for Medium-Range
Forecasts Reanalysis version 5 (ERA5).
Above-average anomalies dominate
the 2019 ERA5 map with negative
regions occupying only 8.1% of the
global surface area, including much of
North America, a portion
of South Asia, and midlati-

Table 2.3. Estimates of lower tropospheric temperature (LTT) and tropical
tropospheric temperature (TTT) decadal trends (°C decade ') beginning in 1958
and 1979 from the available datasets.

Layer LTT LTT 1T
Start Year 1958 1979 1958
Radiosonde =~ NOAA/RATPACVA2 +0.18 +0.21 +0.16
RAOBCOREv1.7 +0.18 +0.19 +0.15
RICHv1.7 +0.20 +0.21 +0.19

Satellite RSSv4.0 — +0.21 —

UAHv6.0 — +0.13' —

NOAA/STARv4.1 = = =

UWv1.0 — — —

Reanalyses ERAS — +0.17 —
JRA-55 +0.16 +0.16 +0.16

NASA/MERRA-2? = +0.17 =
Median +0.18 +0.18 +0.16

'The UAH LTT weighting function is slightly different in order to reduce the impact of surface
emissions and enhance the tropospheric signal, resulting in a global trend value typically cooler
by 0.01°C decade™ relative to the standard LTT weighting function.

*NASA/MERRA-2 begins in 1980.

tude regions of the south-
ern oceans. These below-
average LTTs comprise the
third-smallest such area

T after 2016 and 2017.
e Much higher-than-aver-
+0.16 age temperatures included
+0.15 several regions that expe-
+0.22 rienced record high tem-
+0.18 peratures relative to this
+0.13 41-year period of observa-
+0.23 tions. Alaska, Greenland,
+017 central Europe, and south-
e ern Africa were especially
015 warm. The broad warmth
. of the tropical belt is a
016 typical signature of an El

+0.16 Nifio year.

The warming trend may
be depicted in a geographi-
cal context by determining
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the year in which the extreme high (and low) annual values at each grid point occurred, then
summing those areally-weighted grids by year. If all regions of Earth experienced a monotoni-
cally increasing temperature, then each new year would see 100% of the global area achieving a
record high temperature; however, if the global trend were zero over the 41-year period of record
but characterized by random inter-annual variability, each year would experience, on average,
an area of 2.4% of record high (or low) temperatures. With our climate system characterized by
both an increasing trend and inter-annual variations since 1979, the area in 2019 of record high
temperatures was 15.6% (calculated as the average of ERA5, RSS, and UAH). The stippling in
Plate 2.1e identifies these grids (see also Fig. A2.6). Two years with major El Nifio events, 1998
and 2016, recorded areal extents for the highest temperatures of 16.9% and 20.1%, respectively
(no repeated records). Since 1979, the year with the largest coverage of record low annual-average
temperatures was 1985 with 19.8% due in part to a concurrent La Nifia event.

Global and tropical trends are listed in Table 2.3. When examining the time series of these
three methods (radiosondes, satellites, reanalyses), the radiosondes display an increasing trend
over the past 10 years relative to the other methods (see trend values in column Global LTT 1979
and Fig. A2.7) This may be related to a change in software installed after 2009 in many stations
to improve the tropospheric humidity and temperature values (Christy et al. 2018).

The tropical (20°N-20°S) tropospheric temperature (TTT, surface to ~15 km) variations and
trends are similar to those of the global values. The median TTT trends from the available da-
tasets since 1958 and 1979 are both +0.16°C decade™ with ranges of +0.15 to +0.19 and +0.13 to
+0.23°C decade™, respectively (Table A2.1). This layer in the tropics is a key area of interest due
to its expected significant response to forcing, including that of increasing greenhouse gas con-
centrations (McKitrick and Christy 2018; see Fig. A2.8).

Radiosondes provide coverage wherever the stations exist. Considerable areas of the globe are
thus not sampled, and this can lead to a misrepresentation of the global average. Satellites es-
sentially observe the entire Earth each day, providing excellent geographic coverage, but whose
radiances provide bulk-layer atmospheric measurements only. There are some key adjustments
that are required too, and the methods adopted by different teams lead to the range in the results
(Haimberger et al. 2012; Po-Chedley et al. 2015; Mears and Wentz 2016; see also Figs. A2.7 and
A2.9). Full input reanalyses use essentially all available data, including radiosonde and satellite,
ingested into a continuously updated global circulation model, thus providing full geographic
and vertical coverage. Given the many differences in how the reanalyses are constructed from
center to center, the consistency among their 41-year trends is encouraging.

5) Stratospheric temperature—W. J. Randel, C. Covey, and L. Polvani

Temperatures in the middle and upper stratosphere continued to decline to their lowest recorded
values since 1979, i.e., the beginning of the satellite era. Lower stratosphere temperatures have
been relatively constant since ~1998, with small interannual changes. The polar stratospheric
regions were influenced by sudden stratospheric warming (SSW; Charlton and Polvani 2007)
events in both hemispheres, in the Arctic in January 2019 and in the Antarctic in September 2019.
The Antarctic event was highly unusual, being only the second SSW observed in the SH since
1979 (see Sidebar 6.1 for more details).

Time series of annual anomalies of middle and upper stratosphere temperatures from satellite
observations are shown in Figs. 2.8a—c. These data represent ~20-km thick layer measurements
from the Stratospheric Sounding Unit (SSU) merged with more recent satellite measurements
(Randel et al. 2016; Zou and Qian 2016). Middle and upper stratospheric temperatures show
distinctive cooling since 1979, with stronger negative trends at higher altitudes, which is a char-
acteristic response to increases in atmospheric CO, (Manabe and Wetherald 1967). The cooling is
modulated by upper stratospheric ozone changes, with somewhat weaker stratospheric cooling
after 1998 tied to observed increases in ozone. The ozone is evolving as a response to changes
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Fig. 2.8. (a)-(c) Annual anomalies of global middle to upper stratospheric temperatures from Stratospheric Sounding Unit
channels 1-3, representing thick-layer averages centered near 30, 38, and 45 km (SSU1, SSU2, and SSU3, respectively).
Results from two different merged datasets are shown (Randel et al. 2016; Zou and Qian 2016). (d)-(f) Annual anoma-
lies of global lower stratosphere temperature (LST; ~13-22-km layer average) from (a),(d) radiosondes; (b),(e) satellites;
and (c),(f) reanalyses. For direct comparison, the radiosondes and reanalyses have been convolved with the satellite LST
weighting function.

in ozone depleting substances (ODS) linked to the Montreal Protocol (see section 2g4; Maycock
et al. 2018; WMO 2018). In addition to long-term cooling, the time series highlight modulation by
the 11-year solar cycle in the upper stratosphere and transient warming from volcanic eruptions

in 1982 and 1991.

Time series of global lower strato-
spheric temperature (LST; layer mean
over ~13-22 km) from satellites, radio-
sondes, and reanalyses in Figs. 2.8d—f
all show long-term cooling trends, in
addition to transient warming events
tied to large volcanic eruptions in
1963, 1982, and 1991. The time series
also show very small changes since
1998. Over most of the globe the LST
layer more or less spans the cross-over
between tropospheric warming and
stratospheric cooling associated with
CO, increases; long-term LST cooling
prior to ~1998is tied to observed ozone
decreases in the lower stratosphere,
while small ozone changes thereafter
are linked to nearly constant tempera-
tures (Maycock et al. 2018).
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Transient but common features of stratospheric temperature variability are polar SSWs that
occur episodically during winter, mainly in the NH. At least one SSW occurred in 34 of the past
62 winters in the NH, while only one was observed in the SH (in 2002) prior to 2019. Time series
of 50-hPa temperature over the Antarctic during the last several years are shown in Fig. 2.9, in
the context of the historical average and range of observations. The September 2019 SSW resulted
in a 50-hPa temperature increase over the polar cap of ~30°C over two weeks, with temperatures
well outside the range of previous variability. While these SSW events have strong effects on polar
temperatures, they have minimal influence on global mean stratospheric temperatures. However,
Australian hot and dry extremes are statistically associated with weakening and warming of the
Antarctic stratospheric polar vortex (Lim et al. 2019). The September 2019 SSW is one of many
possible factors contributing to this year’s eastern Australian bushfires (see section 7h4 for more
details; Phillips and Bogrady 2020).

c. Cryosphere
1) Permafrost thermal state—I. Noetzli, H. H. Christiansen, K. Isaksen, S. Smith, L. Zhao, and D. A. Streletskiy

The global picture of permafrost state and changes continued in 2019: permafrost is warming
in both mountain and polar regions, and the highest increase is observed where permafrost tem-
peratures and ice contents are lowest. At warmer and ice-rich locations the temperature change
is smaller due to the energy uptake during ice melt processes. The thickness of the active layer
(ALT)—the uppermost ground layer above the permafrost subject to positive temperatures during
summer—is globally increasing.

In the Arctic regions, permafrost temperatures measured at 20-m depth at many of the moni-
toring sites during 2019 were the highest observed during the observation period, continuing the
trend reported by Meredith et al. (2019). Observations now cover up to four decades at several sites.
At some locations, temperatures were 2°-3°C higher than 30 years ago. More details on the Arctic
region are given in Chapter 5. For Antarctica, increasing permafrost temperatures were reported
for the past decade (cf. Noetzli et al. 2019). However, for 2019 no data update is available yet.

Mountain permafrost accounts for nearly 30% of the global permafrost area (Hock et al. 2019),
but datasets for many mountain regions are obtained at only a limited number of sites. Data are
primarily available from boreholes and networks in the European Alps, the Nordic countries,
and central Asia (Qinghai-Tibetan Plateau, QTP). A general warming trend during recent decades
until 2016 is also reported for mountain ranges in Canada, Mongolia, and Tien Shan in central
Asia (Hock et al. 2019). Due to the high spatial variability in characteristics and permafrost tem-
peratures, warming rates are highly heterogeneous, depending on topography, snow regime,
and ground ice content.

Permafrost temperatures observed in the European Alps in 2019 were influenced by an early
and long-lasting snow cover—trapping the heat from summer 2018—followed by another extremely
warm summer in 2019. Permafrost temperatures continued the increasing trend since 2010 after
a temporary interruption of the warming trend due to snow-poor winters reported in 2017 (Fig.
2.10; Noetzli et al. 2018; PERMOS 2019). At most sites, the temperatures at 10-m depth in 2019 were
slightly below the record temperatures measured in 2015 (updated from PERMOS 2019). Likewise,
permafrost temperatures at 20-m depth increased since 2018, but not above the previous high
from 2015. Repeated electrical resistivity tomography at several borehole sites indicate a decrease
in ice content, particularly for sites close to 0°C (Mollaret et al. 2019; PERMOS 2019). Permafrost
temperatures measured at steep bedrock sites at high elevation are typically not influenced by
annual snow conditions and have continuously increased, with 2019 values higher than those
previously recorded down to 10-m depth (updated from PERMOS 2019; Magnin et al. 2015). Fur-
ther, rock glacier creep velocities generally follow permafrost temperatures and have increased
considerably in the past decade (PERMOS 2019).
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permafrost temperatures
increased to their highest
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warm permafrost (updated
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Fig. 2.10. Permafrost temperature (°C) measured in boreholes in the European dencies with variable rates
Alps and the Nordic countries at a depth of approximately 10 m (monthly means) that are highest in lower-
and 20 m (annual means). (Sources: Swiss Permafrost Monitoring Network
PERMOS; Norwegian Meteorological Institute and the Norwegian Permafrost
Database NORPERM, updated from Magnin et al. 2015.)

temperature permafrost
(Cheng et al. 2019; Sun
et al. 2019).

The ALT continued to in-
crease in 2019 for the majority of the observational sites. Out of 92 sites that reported data in 2018/19
in the Northern Hemisphere (NH), only a few had below-average ALT relative to the 2003-12 period.
About 66% of the sites had larger 2019 ALT than in 2018. At North American sites, ALT continues
to increase since the beginning of the observations in the mid-1990s, with the highest increase in
the Alaskan Interior and smaller increases in the Mackenzie Valley of northwestern Canada and
the Alaska North Slope. In 2019, ALT was close to maximum values at the group of sites located in
the Pacific Arctic sector (Alaska, Chukotka). At many interior Alaska sites, the active layer did not
freeze completely down to the underlying permafrost due to a combination of long-term warming
and the relatively mild and snowy past two winters (2017/18 and 2018/19). During all previous years
of observations, complete active layer freeze-up was observed. North Atlantic Arctic sites had the
largest or close-to-largest ALT in 2019; sites in Svalbard and Greenland show at least 0.05 m larger
ALT than average. The Russian Arctic, with the exception of northeast Siberia, experienced a
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= values up to about 0.05
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maximum values were

fe80 1990 2000 2010 2020 observed at many of the

sites. ALT also continued
to increase at sites located
in permafrost regions of
the hinterland of the QTP
by about 0.2 m decade™ since the 1980s (Fig. 2.11; Cheng et al. 2019; Zhao et al. 2019). In 2019, ALT
was, on average, slightly smaller in the QTP than in 2018 (0.02 m).

Long-term observation of permafrost change relies on ground temperatures measured in
boreholes, which are collected in the framework of the Global Terrestrial Network for Permafrost
(GTN-P) as part of the Global Climate Observing System of the World Meteorological Organization.
Borehole temperatures are logged manually or continuously using multi-sensor cables down to at
least the depth of the zero annual amplitude (ZAA), the depth where seasonal variations become
negligible. An assessment of the measurement accuracy of borehole temperatures in permafrost
worldwide varied from 0.01° to 0.25°C and a mean overall accuracy of about 0.1°C can be assumed
(Biskaborn et al. 2019; Romanovsky et al. 2010). The current global coverage of permafrost tem-
perature monitoring in boreholes is sparse and very limited in regions such as Siberia, central
Canada, Antarctica, and the Himalayan and Andes Mountains. The distribution of observation
sites is typically biased to accessible locations (highways or cable cars).

Fig. 2.11. Annual ALT (cm) and air temperature anomaly (°C) across the Qinghai
Tibet Highway.

2) Northern Hemisphere snow cover extent—D.A. Robinson

Annual snow cover extent (SCE) over NH lands averaged 24.8 million km? in 2019. This is 0.8
million km? smaller than the 2018 mean extent and 0.3 million km”smaller than the 50-year aver-
age (mapping extends back to late 1966; however, several early years in the record are incomplete)
and ranks 2019 as having the 17th-least extensive cover on record (Table 2.4). SCE over Eurasia and
North America, including the Greenland ice sheet (GrIS), is considered in this analysis. Monthly
SCE in 2019 ranged from 47.2 million km? in January to 2.5 million km?in August.

January 2019 NH SCE was near average, ranking as the 27th-most extensive over the past 53
years. Both Eurasia and North America ranked similarly. The NH as a whole had near-average SCE
in February; however, North America and Eurasia ranked fourth and 42nd largest, respectively.
The continental disparity continued into March with the combined rank falling into the lowest
third. This decline became greater through the spring and early summer, with both continents
ranking in the lower tercile throughout this interval. June had the largest negative monthly NH
anomaly of the year (3.6 million km’ or 38% below normal). NH SCE has been below average for
14 of the past 15 years in May and all of the past 15 years in June (Fig. 2.12).

Autumn SCE emerged at an average pace in September but increased rapidly in October, having
the largest positive monthly anomaly of 2019 at 3.8 million km’. October and November SCE each
ranked fifth largest of the satellite era for their respective months. NH SCE has now been above
average in 10 of the past 11 years in October and all of the past 11 years in November. December
SCE was also above average over North America, but Eurasian cover increased slowly during
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the month, resulting in the
13th-smallest December extent
(Table 2.4).

The 2019 SCE over the con-
tiguous United States was

Table 2.4. Monthly and annual NH and continental snow extent (million km?)
between Nov 1966 and Dec 2019. Included are the numbers of years with
data used in the calculations, means, standard deviations, 2019 values, and
rankings. The years 1968, 1969, and 1971 have 1, 5, and 3 missing months
respectively, thus are not included in the annual (Ann) calculations. Ranks
are from most extensive (1) to least (ranges from 50 to 54 depending on the

month). near average in January. Feb-

ruary and March had their

fourth- and sixth-most exten-

sive SCE, respectively. April

Jan >3 47.2 15 41.2 2 5 27 SCE returned to near average,

— = 5L e — = = = while May SCE was quite low.

Mar 53 40.5 1.8 39.5 37 47 9 While not much in terms of

Apr 53 305 1.7 291 42 4 35 coverage, September SCE was

May 53 19.2 1.9 171 44 46 46 record large for the month, fol-

Jun 52 9.5 24 5.9 49 46 50 lowed by the third-largest Oc-

Jul 50 3.9 1.2 2.6 44 38 47 tober extent, and 11th-largest

Aug 51 3.0 07 25 a1 0 34 November extent, which was

Sep 51 54 0.9 51 2 27 36 similar to Canada. SCE was
oct 5 185 27 223 5 7 3 near-average in December.

Nov ” 312 )1 371 . " 3 SCEis calculated at the Rut-

gers Global Snow Lab from

Dec >4 437 18 433 3 a2 18 daily SCE maps produced by

Ann >0 251 08 248 34 40 20 meteorologists at the National

Ice Center (a U.S. joint NOAA,

3L —N. Homiephere —N.America = e Navy, and Coast Guard facility), who rely

= Eurasia

primarily on visible satellite imagery to con-
struct the maps (https://snowcover.org).

3) Glaciers—M. S.Pelto and World Glacier

Monitoring Service

The World Glacier Monitoring Service
(WGMS) record of mass balance and terminus
behavior (WGMS 2017) provides a global in-
dex for alpine glacier behavior. Glacier mass
balance is the difference between accumula-
tion and ablation, reported here in millimeter
of water equivalence (mm). In 2019, a nega-
tive annual mass balance was reported from
all 45 glaciers where annual mass balance

Anomaly (Million km?)

ATl PR TN AN AR FN AN AN NN TR

1970 1980 1990 2000 2010 2020

Fig. 2.12. Twelve-month running anomalies of monthly snow
cover extent (million km?) over NH lands as a whole and Eur-
asia and North America separately plotted on the seventh
month using values from Nov 1966 to Dec 2019. Anomalies

are calculated from NOAA snow maps. Mean hemispheric
snow extent is 25.1 million km? for the full period of record.
Monthly means for the period of record are used for nine
missing months between 1968 and 1971 in order to create
a continuous series of running means. Missing months fall
between Jun and Oct; no winter months are missing.

was measured and reported to the WGMS,
including 26 glaciers of the reference glacier
network. The mean mass balance of the
reference glaciers reporting for the 2018/19
hydrological year is —1241 mm; this includes
data from 12 nations on four continents. This
makes 2019 the 32nd consecutive year with

a global alpine reference glacier mass balance loss and the 10th consecutive year with a mean

global mass balance loss greater than 700 mm.

Figure 2.13 illustrates glacier mass balance for a set of global reference glaciers with more than
30 continuous observation years for the time period 1950-2019. Global values are calculated using
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i a single value (averaged) for each
-0 of 19 mountain regions in order
' to avoid a bias to well-observed
regions. In the hydrological year
2016/17, all observed glaciers ex-
perienced an ice loss of —550 mm,
and 2017/18 of —720 mm. For the
2018/19 hydrological year, a region-
ally averaged value will become
available in late 2020; however,
the overall mean of all reference
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20980 1985 1090 1995 2000 2005 2010 2015 2020 (2019) calculated that the collective

loss of alpine glaciers from 2006
Fig. 2.13. Global alpine glacier annual mean mass balance record (x 10° P 5

mm w.e.) of reference glaciers submitted to the WGMS 1980-2018, based to 201? contributed to a glOballsea

on average annual value determined for 19 different alpine regions. The level rise of 0.92 + 0.39 mm yr™.

2019 value is the mean of all reporting reference glaciers. The decadal-averaged annual
mass balance for the reference gla-

ciers was —172 mm in the 1980s, —460 mm in the 1990s, -500 mm for the 2000s, and —889 mm
for the 2010s. The increasing rate of glacier mass loss, with 8 out of the 10 most negative mass
balance years recorded after 2010, during a period of retreat, indicates that alpine glaciers are not
approaching equilibrium and retreat will continue to be the dominant terminus response (WGMS
2017). The lack of retained snow cover on two WGMS reference glaciers is a visual illustration of
the mass balance loss (Fig. 2.14).

All 14 glaciers in the Alps with mass balance observations had negative measurements, averag-
ing -1100 mm in 2019. In Austria in 2018, of the 93 glaciers with annual terminus observations, 89
(95.7%) withdrew and four remained stationary (Lieb and Kellerer-Pirklbauer 2019). This retreat
trend has continued in 2019 based on preliminary observations. The 2018/19 winter in the Alps
featured above-average snowpack. During several heat waves in the summer of 2019, glacier melt
peaked, leading to another year with large losses in ice mass balance loss.

Lemon Creek Alfotbreen

Fig. 2.14. Lemon Creek Glacier, United States, and Alfotbreen, Norway, had significant negative annual mass balance in
2019 at —2400 mm and -3400 mm. Alfotbreen’s boundary is marked by white dots. On Alfotbreen, less than 20% of the
glacier has retained snow cover in this 26 Aug Landsat image. On Lemon Creek Glacier, there is no significant snow ac-
cumulation retained in this 8 Aug Landsat image. The darkest blue color is bare glacier ice, with firn that is more than
year old a medium blue and snow from the 2019 winter a light blue.

AUGUST 2020 | state of the Climate in 2019 BAMS Unauthenticatet AEQBALELMATE | 151538 e



In Norway, the seven glaciers reporting mass balance had an average loss of —1354 mm in
2019. This loss leads to continued retreat; in 2018, of 32 glaciers measured, 28 retreated more than
10 m, and four were approximately stationary, retreating, or advancing less than 6 m (Kjellmoen
et al. 2019).

In Alaska and Washington, all 15 glaciers observed in 2019 had a negative mass balance, aver-
aging —1372 mm. This is significantly larger than the long-term average of four USGS benchmark
glaciers, which have a cumulative mass loss since the mid-twentieth century that average from
-580 to —300 mm yr' (O’Neel et al. 2019). During the 74-year annual mass balance record for
Taku Glacier, Alaska, the end of summer snowline, which is the equilibrium line altitude, had
never exceeded 1225 m until 2018, when it reached 1425 m, and then reached a new maximum of
1450 m in 2019 (Pelto 2019).

In South America, 2019 mass balance data were reported from one glacier in Chile and three
in Argentina, and indicate a mean of —1559 mm. This is greater than the 2000-18 average loss
observed in the Andes of —720 + 220 mm, with the Patagonia Andes having the highest rate of
loss at =780 + 250 mm (Dussaillant et al. 2019).

In High Mountain Asia, all five reporting glaciers had negative mass balances. King et al. (2019)
found no substantial difference in the mass loss of debris-covered and clean-ice glaciers but more
negative mass balances for lake-terminating glaciers for the 1974-2015 period. The continued
expansion of established proglacial lakes and the formation of new proglacial lakes will enhance

ice mass loss from the region in coming decades (King et al. 2019).

Sidebar 2.1: Lake Ice—S. SHARMA AND R.I. WOOLWAY

Lake ice is a sensitive indicator of climate as it integrates
antecedent air temperatures in the range of weeks to months
prior to ice breakup and closely tracks the 0°C isotherm (Brown
and Duguay 2010). Lake ice has long fascinated people because
of its importance to transportation, refrigeration, and recreation,
thus comprising some of the earliest records of climate before
the advent of meteorological stations (Magnuson et al. 2000;
Sharma et al. 2016). Records of lake ice phenology (defined as
the timing of ice-on and ice-off) benefit from in situ records with
high temporal resolution, satellite records, and reanalyses (i.e.,
ERAS) with high spatial resolution. This section covers the 2018/19
Northern Hemisphere (NH) winter, with ice-on data from autumn
2018 and ice-off from spring 2019. The winter season spans two
years and is defined as the time lakes experience seasonal ice
cover, typically between November and April. For example, the
1981 winter would typically begin in November 1980 and end
in April 1981.

In 2019, lake ice phenology anomalies across the NH, derived
from ice cover data from ERAS reanalysis (Hersbach et al. 2020),
showed that on average, ice-on was one day later and ice-off
was two days earlier than the 1981-2010 base period over the
winter season (Figs. SB2.1 and SB2.2). Lake ice froze later, melted
earlier, and had shorter seasonal ice duration over western North
America, northern Europe, and northern Asia. In contrast, lake
ice-on was earlier, ice-off was later, and ice duration was longer
across Canada (except the west), the northern United States, and
southern Eurasia (Fig. SB2.1).
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Ice-on was four days later and ice-off was three days earlier
on average for lakes distributed across the NH in 2019 based on
long-term in situ phenological records (Fig. SB2.2). For moni-
tored lakes in Europe, ice duration was 18 days shorter than the
1981-2010 base period. In contrast, for North American lakes, ice
duration was nine days longer. Generally, across the NH, lake ice
cover followed the long-term warming trend such that since 1981,
lake ice duration is seven days shorter per decade on average for
the 18 lakes with in situ measurements. Lake ice-on is five days
later decade™, with the most negative trend at 0.2 days earlier
decade™ (95% confidence interval: —3.6, 3.3 days decade™) and
the most positive trend at 11 days later decade™ (95% confidence
interval: 5, 17 days decade™). Lake ice-off is on average two days
earlier decade™, but varies from 4.1 days earlier decade™ (95%
confidence interval: -5.9, —2.3 days decade™) to 1.2 days later
decade™ (95% confidence interval: 2.1, 4.5 days decade™).

This year, the Great Lakes of North America had greater maxi-
mum ice cover, suggesting a cooler winter. On average, the Great
Lakes had 30.1% additional ice coverage than the 1981-2010
normal. The larger and most northern of the Great Lakes had the
highest positive anomaly, such that Lake Superior (82 103 km?)
had 34.2% more ice cover, whereas the smaller southern lakes,
such as Lakes Erie (25 744 km?) and Ontario (18 960 km?), had
13% additional maximum ice coverage (Fig. SB2.3). During the
2019 winter, Lakes Superior, Huron, and Erie had ice coverage
across more than 90% of their respective surfaces.
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Fig. SB2.1. Lake ice 2019 anomalies for (a) ice-on, (b) ice-off, and (c) ice duration for lakes
across the NH (base period: 1981-2010). (Source: ERA5.) (d) Nov-Apr 2018/19 air tempera-

tures. (Source: GISTEMP.)

The changes in ice cover in 2019 relate to air temperature
anomalies across the NH. Specifically, the spatial pattern in ice-
on, ice-off, and ice duration are consistent with NH cold season
(November—April) averaged surface air temperature anomalies
(Fig. SB2.1). Regions with shorter ice duration, later ice-on, and
earlier ice-off, such as northern Eurasia and western North
America, are those with positive air temperature anomalies during
the cold season in 2019 (Fig. SB2.1d). Conversely, regions with
longer ice cover duration, such as the Great Lakes region, are
those with negative air temperature anomalies during the cold
season in 2019. Thus, lake ice cover anomalies in 2019 broadly
track surface air temperatures (section 2b1), although factors
such as wind speed, humidity, snow cover, hydrology, and lake
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morphometry contribute to variations in ice cover (Brown and
Duguay 2010). The relationship between air temperature and lake
ice cover, published in previous studies (Palecki and Barry 1986;
Weyhenmeyer et al. 2004; Brown and Duguay 2010), suggest that
antecedent air temperatures are the most important drivers of ice
cover and phenology in 2019. For example, in past years, winter
air temperatures alone explain 93% of variation in ice duration
in Lake Muggelsee, Germany (Adrian and Hintze 2000), and in
55 Alaskan lakes, air temperature, along with lake area, explain
over 80% of the variation in ice-off dates (Arp et al. 2013).
Ice-on, ice-off, and ice duration were derived from EC-
MWEF's ERAS5 reanalysis product for land pixels filled with water
(>1% coverage) on a 0.25° x 0.25° latitude-longitude grid
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Fig. SB2.2. ERA5 (teal line) and in situ-derived (gray line) anomalies (days) based on an arithmetic mean for (a) ice-on, (b)

ice-off, and (c) ice duration from 1980 to 2019.

(Hersbach et al. 2020). Ice cover within ERAS5 is simulated via
the Freshwater Lake model (FLake; Mironov 2008; Mironov
et al. 2010), which is implemented within the Hydrology Tiled
ECMWF Scheme for Surface Exchanges over Land (HTESSEL;
Dutra et al. 2010; Balsamo et al. 2012) of the European Centre
for Medium-Range Weather Forecasts (ECMWF) Integrated Fore-
casting System (IFS). A detailed description of the model and its
implementation in ECMWF's IFS is provided by ECMWF (2018).
In situ ice phenology data were acquired for 18 lakes across
the NH where ice-on, ice-off, and ice duration have been col-
lected for at least 130 years (Benson et al. 2000). We updated
ice phenology data to 2019 for 10 lakes in Sweden and Finland,
one lake in Russia, and seven lakes in the United States. We
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calculated trends using linear regression models and calculated
95% confidence intervals for the slope of the line. Lastly, we
acquired annual maximum ice cover for the Great Lakes encom-
passing 1973-2019 from the Great Lakes Environmental Research
Laboratory. The maximum amount of ice coverage observed over
the winter season is calculated across the entire area of each of
the Great Lakes by using a combination of composite ice charts
and observations from satellites, ships, and air craft (https://www
.glerl.noaa.gov/datalice/).

Surface air temperature data for November—April were down-
loaded from the NASA Goddard Institute for Space Studies (GISS)
surface temperature analysis (Lenssen et al. 2019). Temperature
anomalies were calculated relative to the 1981-2010 average.
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d. Hydrological cycle
1) Surface humidity—K. M. Willett, A. J. Simmons, M. Bosilovich, and D. I. Berry

Surface specific humidity remained high in 2019 (Fig. 2.15). Over land, the global average
anomaly relative to the 1981-2010 average was between 0.14 and 0.25 g kg™ across all estimates,
slightly higher than in 2018. Over ocean, 2019 had higher anomalies than 2018 and was one of
the moistest years on record, between 0.21 and 0.35 g kg™

Simultaneously, 2019 was the driest year on record in terms of relative humidity over land
for all products, ranging between —0.86 and -1.27 %RH below average, albeit not significantly
so given the 2 std. dev. uncertainty spread for HadISDH at least (Fig. 2.15). Over ocean, relative
humidity anomalies were close to or below average, between —0.29 and 0.03 %RH. This moister,
yet less saturated, land surface atmosphere occurred along with near-record temperatures over
land and ocean (section 2b).

Collectively, 2019 humidity continued the long-term trends of increasing moisture over land
and ocean while decreasing levels of saturation over land. From HadISDH, the corresponding
1973-2019 trends (90th percentile confidence intervals) are 0.09 (0.07 to 0.11) g kg™ decade™,
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Fig. 2.15. Global average surface humidity annual anomalies (1981-2010 base period). For the in situ
datasets, 2-m surface humidity is used over land and ~10-m over the oceans. A 2 std. dev. uncertainty
range is shown for HadISDH, capturing the observation, gridbox sampling, and spatial coverage un-
certainty. For the reanalysis, 2-m humidity is used over the whole globe. For ERA5 ocean series, only
points over open sea are selected, and background forecast values are used as opposed to analysis
values because of unreliable use of ship data in producing the analysis. (Sources: HadISDH [Willett
et al. 2013, 2014, in review]; NOCSv2.0 [Berry and Kent 2009, 2011]; ERAS [C3S 2017; Hersbach et al.
2020]; JRA-55 [Ebita et al. 2011]; MERRA-2 [Gelaro et al. 2017]; and 20CRV3 [Slivinski et al. 2019].)
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0.08 (0.06 to 0.09) g kg decade™, and —0.16 (-0.29 to —0.03) %RH decade™, respectively. Water
vapor increased relative to 2018 far more over ocean compared to land. The 2019 record low land
relative humidity is consistent with the small land specific humidity increase. Global specific
humidity values over both land and ocean have remained above the 1981-2010 average for a
decade now, and land relative humidity values have remained below average since the early
2000s, although HadISDH uncertainty spread crosses the zero-line periodically, particularly for
ocean specific humidity. Both ERA5 and HadISDH suggest that ocean relative humidity has been
lower in recent years, but the wide uncertainty spread suggests low confidence in this. Overall,
the 2010s were the moistest yet least saturated decade since records began (Fig. 2.15).

Spatially (Plates 2.1g,h; Figs. A2.10-A2.13), 2019 specific humidity was moister than average
over the tropical Pacific Ocean and drier than average over Australia. Although such features are
often seen during El Nifio years, generally, spatial patterns were not ENSO-like.

The high specific humidity signal came largely from the Indian Ocean and is consistent with
other variables (see section 2d) and the strong Indian Ocean dipole (IOD). There were also very
strong moist anomalies over southern Asia, the central and northeastern Pacific Ocean, the Gulf
of Mexico, and the southern tropical Atlantic to some extent. These ocean regions were also
anomalously warm during 2019. Aside from southern Asia and especially India, much of the
land had weaker moister-than-average anomalies with widespread drier-than-average anomalies
that were particularly strong over southern Africa and Australia. The very high specific humid-
ity anomalies over India were associated with much higher-than-average relative humidity
anomalies. Conversely, most of the land and oceans had lower-than-average relative humidity
anomalies. HadISDH has uncertainty estimates from observation quality, gridbox sampling, and
spatio-temporal coverage (Willett et al. 2014, 2020 - in review; Fig. 2.15). These uncertainties are
larger for relative humidity than specific humidity and larger over ocean than land, particularly
for recent years when digital ocean metadata are unavailable. They do not bring the long-term
trend into question nor the fact that 2019 was much moister and yet less saturated than average.

The degree to which the products agree or disagree also provides uncertainty information.
Although there is reasonable agreement in the year-to-year variability and long-term trends,
there are differences hetween the in situ and reanalysis products and between the reanalyses
themselves. Relative humidity is particularly problematic, with MERRA-2 showing moistening
over Asia, unlike ERA5, and HadISDH land and ocean relative humidity showing quite different
features. It is not clear which is most reliable. Recently, Freychet et al. (2020) found and adjusted
inhomogeneities in Chinese stations. Resulting long-term relative humidity trends were near con-
stant and were larger in wet-bulb temperature compared to ERA5. These trends also differ from
those in HadISDH where homogenization was necessarily automated and, therefore, unlikely to
be as powerful as regionally applied methods that utilize known changes.

This year version 3 of the 20th Century Reanalysis (20CRv3) is included. Although ending in
2015, it is a useful monitoring tool to compare with other products. ERA-Interim (Dee et al. 2011)
is no longer being updated and has been replaced by ERA5. These are similar for the global land
surface but differ over ocean, especially for relative humidity (Willett et al. 2019). Greater tem-
poral stability is expected in ERA5 compared to ERA-Interim, and ERA5 assimilates more data,
generally. However, uncertainties remain, especially for hydrological cycle variables. These
uncertainties arise from errors remaining in the assimilated data, changing data streams over
time, and the fact that ERA5 does not impose balance on its water or energy budget (Gelaro et al.
2017; Hersbach et al. 2020).
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2) Total column water vapor—C. Mears, S. P. Ho, Olivier Bock, Xinjia Zhou, and Julien P. Nicolas

In 2019, total column water vapor (TCWV) anomalies were below the record levels observed in 2016,
but remained above the 1981-2010 climatological average in most locations (Plate 2.1i; Fig. A2.14).
TCWYV estimates are available from satellite-borne microwave radiometers over ocean (Mears et al.
2018); from COSMIC; Metop-A,-B, and -C; and COSMIC2 GPS-RO (Global Positioning System—Radio
Occultation) over land and ocean (Ho et al. 2010a,b, 2020; Teng et al. 2013; Huang et al. 2013; Ho
et al. 2020, submitted to Remote Sens.); and from ground-based Global Navigation Satellite System
(GNSS) stations (Bock and Parracho 2019; Bock 2019). In addition, TCWV data from three global
atmospheric reanalysis products are also used here: ERA5 (Hersbach et al. 2020), MERRA-2 (Gelaro
et al. 2017), and JRA-55 (Kobayashi et al. 2015). Note that all three reanalyses assimilate satellite
microwave radiometer and GPS-RO data and are therefore not independent from these two datasets.

The most prominent feature in Plate 2.1i for 2019 was the strong east-west dipole in the equatorial
Indian Ocean, associated with the positive phase of the IOD mode observed in late 2019 (see section
4h). A similar dipole feature was also observed in precipitation (section 2d4). A positive IOD phase
has been linked to reduced precipitation over Australia (Ashok et al. 2003), as depicted in Plate 2.1i.
There were also moderate wet anomalies in the western tropical Pacific and in sub-Saharan Africa.
Other regions showed a mix of smaller wet and dry anomalies, with more regions slightly wetter than
the 1981-2010 normal. The patterns in TCWV from ERAS (Plate 2.1i) over the ocean are confirmed
by microwave radiometers (Fig. A2.14), COSMIC ocean measurements, and by output from the three
additional reanalyses. Over land, the patterns from COSMIC and other RO missions (satellite RO) are

generally similar to the reanalysis
output except over northern Africa,
where RO shows a pronounced dry
anomaly not present in reanalysis.
The ground-based GNSS results
are also in good agreement with
reanalysis.

Over the ocean, the TCWV anom-
aly time series (Figs. 2.16a,b) from
reanalyses and microwave radi-
ometers show maxima in 1983/84,
1987/88, 1997/98, 2009/10, and
2015/16 associated with El Nifio
events, with 2019 approaching
the 2015/16 record levels. The ra-
diometer data show an increasing
trend of 0.43 mm decade™ over
their period of record (1988-2019).
The different reanalysis products,
on the other hand, show a wide
range of long-term trends over the
entire period, but agree well with
the radiometer data after the mid-
1990s. The satellite RO data are
in relative agreement with both
the radiometer and reanalysis
data after COSMIC began in 2006.
Note that the uncertainty in these
large-scale averages is larger at
the beginning and end of the time
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series due to reduced sampling. TCWYV is
strongly driven by ENSO conditions and to a
lesser extent by stratospheric aerosols from
volcanic eruptions. After the 2015/16 El Nifio
peak, all datasets show a return to drier
conditions due to generally neutral/weak
La Nifla conditions in 2017/18, followed by
wetter conditions linked to the weak El Nifio
in winter—spring 2018/19.

Over land, the three reanalyses, satellite
RO missions, and GNSS are in good agree-
ment (Figs. 2.16c,d). The small differences
in GNSS anomalies are due to asymmetry
in the spatial sampling (more stations are
located in the Northern Hemisphere [NH]),
but the general trend and inter-annual vari-
ahility are well observed. A latitude—time
Hovmuller plot of TCWV anomalies over
land and ocean derived from ERA5 (Fig. 2.17)
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Fig. 2.17. Hovmuller plot of TCWV anomalies (mm; base period
1981-2010) including both land and ocean anomalies derived

from the ERAS reanalysis.

indicates that the long-term increase in TCWV is occurring at all latitudes, with less variability
outside the tropics. Following the most recent El Nifio in 2015/16, elevated moisture has persisted
in the tropics, particularly north of the equator.

3) Upper tropospheric humidity—V. 0. John, L. Shi, E.-S. Chung, R. P. Allan, S. A. Buehler, and B. J. Soden
The 2019 global-average upper tropospheric (relative) humidity (UTH) continued to stay close to
the 2001-10 average (+0.016 %RH for the microwave dataset; Fig. 2.18). This implies a continued
moistening of the upper troposphere with warming. A near-zero decadal trend in the UTH indicates
an increase in absolute (specific) humidity in line with the warming mid- and upper troposphere
(about 0.2 K decade™ as shown for example in Santer et al. [2017]; section 2b4), and hence is consistent
with a positive (amplifying) water vapor feedback (Chung et al. 2016). The water vapor feedback is
determined mainly by the mid- to upper-troposphere (Allan et al. 1999; Held and Soden 2000), be-

cause the radiative effect of water vapor is
proportional to relative changes in water
vapor (John and Soden 2007) and not to
the absolute amount.

During the first half of 2019, the
anomalies were slightly below average
(-0.071 %RH compared to 0.103 %RH in
the second half for the microwave data-
set), indicating weak El Nifo-like condi-
tions, in which an intensified Hadley cir-
culation leads to enhanced subsidence in
dry zones (e.g., Tivig et al. 2020). During
the second half of the year, the anomalies
were generally above average, associated
with ENSO-neutral conditions.

There is broad agreement among the
three available datasets (HIRS infrared
satellite [Shi and Bates, 2011]; microwave
satellite data [Chung et al. 2013]; ERAS
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reanalysis [Hersbach et al. 2020]) in the interannual variability despite their structural differences.
During their common period, there is a correlation of 0.6 between the two satellite datasets and 0.5
between ERA5 and either of the satellite datasets. The inter-satellite calibrated and bias-corrected
infrared and microwave satellite measurements sample a broad upper tropospheric region (roughly
between 500 and 200 hPa, but this layer varies slightly depending upon the atmospheric humid-
ity profile) two times per day, and infrared observations only sample clear-sky scenes (John et
al. 2011). The ERAS reanalysis is based on model runs constrained with in situ and satellite data
including the HIRS and microwave radiances. ERA5 samples all regions every hour, but here only
displayed at 400 hPa. During the common period (1999-2019), the mean and standard deviation
of the anomaly time series are —0.39 + 0.48, 0.08 + 0.61, and 0.00 + 0.34 %RH for the ERA5, HIRS,
and microwave datasets, respectively. Compared to its previous version (ERA-Interim), the ERA5
time series shows improved consistency with the satellite datasets but displays anomalies more
negative than HIRS or the microwave data.

Annual anomalies of UTH for 2019 are shown in Plate 2.1j and Fig. A2.15 for the microwave and
HIRS datasets, respectively. Positive anomalies in central and eastern Africa reflect above-average
precipitation and flooding events in those areas. Negative anomalies over southern Africa indicate
the drought conditions there (see section 2d12). The strong positive phase of IOD can also clearly
be seen in the anomalies. During the positive phase of IOD, sea surface temperatures (SSTs) in the
Indian Ocean near Africa’s east coast are higher than usual, while SSTs in the waters northwest
of Australia are comparatively lower. These conditions led to below-average precipitation across
Australia, which is also reflected in the negative UTH anomalies over most of Australia. The close
connection of UTH to convection makes it suitable for monitoring large-scale dynamics of the
troposphere.

4) Precipitation—R.S. Vose, R. Adler, 100

A. Becker, and X. Yin

Precipitation over global land
areas in 2019, as estimated from
three different monitoring prod-
ucts, was below the 1981-2000
long-term average (Fig. 2.19a). The

I L e e e e |
(a) Land in Situ s GHCN === GPCPv23
— GPCC

observational datasets with the el e s s S L I H i T o
20 AR
most complete global coverage, 30_“’) Ocean

that is, the gauge-based product
from the Global Precipitation Cli-
matology Centre (GPCC; Becker et
al. 2013) and the blended gauge-
satellite product from the Global

Anomaly (mm yr-1)

Precipitation Climatology Project
(GPCP; Adler et al. 2018), had
almost identical anomalies for
2019 (-16.57 mm and -18.32 mm,
respectively). The gauge-based
Global Historical Climatology
Network (GHCN; Peterson and

Vose 1996) dataset was closer 1980 1985 1990 1995 2000 2005 2010 2015 2020
to the long-term average, with

Fig. 2.19. Globally averaged precipitation anomalies (mm yr™) relative

an anomaly OF _{*'80 mm. All to the 1981-2000 base period over (a) land, (b) ocean, and (c) globe.
three products indicate that 2019 Land and ocean time series were created using a proportional land/
was marginally drier than 2018. sea mask at the 1° x 1° scale.
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According to the GPCP dataset, the precipitation anomaly over the global ocean (Fig. 2.19b) was
+5.9 mm and the global combined land and ocean anomaly (Fig. 2.19c) was —0.68 mm, both of
which were slight increases from the previous year.

As is always the case, there was substantial variability across the planet in 2019. Much of
Africa, Eurasia, North America, and the Amazon basin were wetter than normal, as were the
equatorial western Pacific Ocean and the western Indian Ocean (Plate 2.1k). The wet anomaly in
the Indian Ocean extended into east Africa, where floods were prevalent during 2019, including
floods in March 2019 associated with Cyclone Idai, which killed over 1200 people in Mozambique,
Zimbabwe, Malawi, and Madagascar (see Sidebar 7.3 for details). The eastern Indian Ocean, the
Maritime Continent, and Australia all experienced much-below-normal precipitation; likewise,
Australia had its driest year on record and a very active wildfire season. Parts of the western
Atlantic and central Pacific Oceans were also much drier than normal. Large-scale anomaly pat-
terns for 2019 were generally comparable to those of 2018, with notable exceptions; for instance,
departures from normal in 2018 were less extreme in the Indian Ocean, the Maritime Continent,
and Australia, and the region of drier-than-normal conditions in the equatorial Pacific was deeper
and extended farther to the west.

The most striking feature in 2019 was the large rainfall deficit from the eastern Indian Ocean to
the South Pacific Ocean east of Australia. With weak El Nifio or neutral ENSO conditions during
the year, the strong features in this area were driven by conditions in the Indian Ocean; notably,
the I0OD was strongly positive during the last few months of the year, indicating higher-than-
normal SSTs in the western Indian Ocean and lower-than-normal SSTs closer to Australia. The
I0D index decreased to near neutral by the end of December, but the rainfall patterns persisted
(see section 4h for details).

5) Land surface precipitation extremes—sS. Blenkinsop, M. R. Tye, M. G. Bosilovich, M. G. Donat, |. Durre,

A. ). Simmons, and M. Ziese

Precipitation extremes in 2019 were typically mixed, with strong regional signals of both
above- and below-average anomalies of frequency (R10mm, R20mm) and intensity (Rx1day,
Rx5day; Table 2.5). In many regions, above-average anomalies of either, or both, components led
to flooding events. Overall, these extremes’ anomalies contributed to a global mean precipitation
anomaly below the climatological mean (see section 2d4).

The data used include gauge (GHCNd; Menne et al. 2012) and gridded (GPCC-First Guess Daily;
Schamm et al. 2013) observations, GHCNd-derived gridded extremes (GHCNDEX; Donat et al. 2013),
and reanalysis products (ERA5; Hersbach et al. 2020; MERRA-2; Gelaro et al. 2017).

Observational and reanalysis estimates of 2019 R10mm (Plate 2.11; Fig. 2.20a) and R20mm (not
shown) frequency anomalies revealed fewer-than-average heavy (and very heavy) precipitation
days over Australia, Japan, most of Europe, and interior Russia, with above-average frequencies
over much of the United States and northeast Russia. There is broad agreement between the global
datasets and the more limited coverage of GHCNDEX (not shown) over these areas, but disagree-
ment on the sign of anomalies over Scandinavia and southeast Asia. The above-average heavy
precipitation days in the United States were consistent with extensive flooding in the Midwest

Table 2.5. WMO Expert Team on Climate Change Detection and Indices (ETCCDI; Zhang
et al. 2011) precipitation indices used in this section and their definitions.

Rx1day Max 1-day precipitation amount Highest 1-day precipitation amount (mm)
Rx5day Max 5-day precipitation amount Highest 5-day precipitation amount (mm)
R10mm Heavy precipitation days Heavy precipitation days > 10 mm (days)
R20mm Very heavy precipitation days Very heavy precipitation days > 20 mm (days)
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Fig. 2.20. Anomalies of 2019 indices for (a) R10mm derived from MERRA-2 relative to a 1981-2010
baseline and Rx1day derived from (b) GHCNDEX relative to 1961-90 and (c) ERAS relative to 1981-2010.
(d) 2019 absolute Rx1day values from GHCNDEX.

throughout spring and summer, notably the Mississippi and Missouri basins. The globally com-
plete datasets indicated above-average frequencies over Peru, western Brazil, and eastern Africa,
all areas affected by flooding in 2019. High frequencies over northern India were associated with
late monsoon rainfall and resulted in extensive flooding. There were additional localized areas
of high frequency over Afghanistan and Iran, also resulting in flash floods throughout the spring
(Floodlist 2019).

Maximum intensity anomalies of Rx1day (Figs. 2.20b,c) and Rx5day (not shown) were noisier
than the frequency indices, but largely consistent. GHCNDEX (Fig. 2.20b) shows below-average
intensities for most of Australia and western Europe and areas of above-average intensity across
the United States. The values of Rx1day for 2019 shown in Fig. 2.20d provide a reference point for
these anomalies in absolute terms to enable an estimation of proportional anomalies. The GPCC
dataset and the ERAS (Fig. 2.20c) and MERRA-2 reanalysis products broadly agree and, in par-
ticular, confirm a consistent signal over Australia. This reflects the record dry conditions there
described in section 7h4 and suggests that severe drought conditions were at least partly related
to an absence of heavy precipitation events (see also RI0mm). Only over northern Queensland is
there a positive anomaly of Rx1day across all data products due to a notable extreme event (e.g.,
562 mm at Mossman at the end of January, see section 7h4), contrasting with a closer-to-average
signal for R1I0mm over this part of the state. The more extensive coverage provided by the re-
analyses also suggests maxima of below-average intensity over India (contrasting with higher
frequency extreme precipitation), parts of China, and central and southern Brazil (see section
2d4); GPCC-First Guess Daily (not shown) also indicates more extensive areas of below-average
intensity in tropical and equatorial regions compared with other datasets, which may reflect
its coarser resolution and highlighting some of the uncertainty in estimates of precipitation ex-
tremes, particularly where gauge data are sparse. Above-average Rx1day intensities were also
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clearly identifiable in the reanalysis and
GPCC products over Mozambique, producing
a stronger signal there than R10mm. This was 15.0
associated with the destructive tropical cy-
clones Idai and Kenneth, in March and April,
respectively (see section 4f6 and Sidebar 7.3
for more details). 75
The spatial and temporal variability of

17.5

125

« 10.0H

5.0
precipitation extremes and relatively short "
records makes detection of long-term change 2.5 "
difficult; historical context for 2019 is only 0.0

1920 1940 1960 1980 2000

provided for available long series of indices

2020

(=50 years) over Europe, Australia, and the Fig. 2.21. Percentage (%) of the contiguous United States
United States. Ranking 2019 extreme precipi- with a much-greater-than-normal proportion of precipitation

tation indices over Europe from the European
Climate Assessment and Dataset blended
time series (Klein Tank et al. 2002) revealed  |ine denotes the series mean.

76 (1.3% of gauges) new Rx1day and 16 (0.3%)

new Rx5day records, although some were

likely from the same event (for example, the Rx1day total includes new records at five gauges in
Murcia, Spain, in September; see section 7f4 for details). In total, 10.6% (5.1%) of Rx1day (Rx5day)
values ranked in the top decile for an individual gauge in 2019 compared with 15.4% (16.8%) in
2017; 2018 was anomalously dry (Vose et al. 2019) and saw only 7.9% (4.4%) of gauges in the top
decile. The R10mm and R20mm frequency indices also confirmed fewer heavy precipitation days
in 2019, with only 3.9% of gauges recording frequencies in the top decile compared with 14.7% in
2017. This is consistent with Plate 2.11 in suggesting that 2019 saw relatively few heavy precipita-
tion days across much of Europe but with localized high annual maxima.

Australian GHCNd observations also included few new records for Rx1day (3 from 1359 gauges)
and Rx5day (10), as ENSO moved from a weak El Nifio to a neutral state and due to the influence
of a strong positive I0D in late 2019. Only 3% (2.5%) of locations experienced Rx1day (Rx5day)
in their top decile compared with 13.7% (11.2%) in 2017. The new records were set in northern
Australia where, for example, in early February, Yabulu, Queensland, received 948 mm over a
5-day period.

An updated assessment of the U.S. NOAA Climate Extremes Index (Gleason et al. 2008) indi-
cated that annually, component 4 of the index (area of the United States that experienced 1-day
precipitation totals exceeding the 90th percentile) ranked 20th in the 110-year record (CEI4 =
13.6%) compared to the 2018 ranking of eighth (17.7%). However, the spring CEI4 of 18.5% was the
highest spring value on record for the contiguous United States, with 6 of the 10 highest spring
totals occurring in the 2010s (Fig. 2.21). The season also saw record highs in the South (30.6%)
and Southwest (38.0%) climate regions.

6) Lake water levels—B. M. Kraemer

Near real-time variation in lake water levels can serve as an integrative indicator of current
global hydrological change. Based on nearly three decades of water level variation analysis for
198 of Earth’s largest lakes with publicly available satellite altimetry data (U.S. Department of
Agriculture G-REALM project), the annual average water level across these lakes for 2019, giving
equal weight to each lake, was 1.70 m higher than the mean water level for each lake from 1992 to
2002 (minimum level: -23.55 m; first quartile: —0.13 m; median: +0.26 m; third quartile: +1.05 m;
maximum: +114.04 m). Water levels were above average in 68% of the lakes analyzed here (134 out
of the 198). However, the average volumetric anomaly across lakes (calculated as an approximate
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Fig. 2.22. Time series of lake water level (m) for the lakes with the largest volumetric anomalies (2019 water level anomaly
x average lake surface area). The top four panels in (d) show lakes with the four largest positive anomalies The bottom
four panels in (d) show the lakes with the largest negative anomalies. “Large” Aral Sea is meant to distinguish the lake
water level data shown here from water level data for the two other basins formed as the Aral Sea desiccated. Lake
Michigan is excluded from the time series because it is hydrologically connected to Lake Huron and its water level varia-

tion is nearly equivalent.
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estimate by multiplying the water level anomalies for each lake by their average surface area)
was —0.46 km?, and the cumulative volumetric change was -91.2 km?. The contrast between the
2019 positive mean water level anomaly and negative mean volumetric anomaly arises from the
large volumetric decrease in the Caspian Sea, which offsets the numerically more increases in
less voluminous lakes.

The water level anomaly estimates presented here differ widely across lakes and across regions,
reflecting the heterogeneity of underlying changes in regional hydrological fluxes. As shown in
Fig. 2.22, the lakes with the largest positive volumetric anomalies occurred in Huron-Michigan
(North America), Superior (North America), Balkash (central Asia), and Tanganyika (eastern Africa)
while the largest negative volumetric anomalies occurred in the Caspian Sea (central Asia), Large
Aral Sea (central Asia), Urmia (Western Asia), and Rukwa (eastern Africa). Some regions showed
coherent changes across lakes in their water level anomalies. Lakes in central Brazil, the south-
western United States, Ukraine, and eastern China had consistent negative water level anomalies
while equatorial Africa, eastern Kazakhstan, the northeastern United States, and central Canada
had consistent positive water level anomalies (Plate 2.1m). Conversely, lake water level anoma-
lies varied substantially within other regions. For example, Tanganyika and Rukwa, the lakes
with the fourth-largest positive volumetric anomaly and the fourth-largest negative volumetric
anomaly, respectively, are within only 85 km of each other. The Tibetan plateau, the Middle East,
and southern Africa all included lakes with both strong positive water level anomalies and strong
negative anomalies often in close proximity, highlighting the strong lake-to-lake variation within
regions. Variation in water level anomalies across lakes is also partially attributable to upstream
land use and land cover change as well as anthropogenic water extractions and diversions.

Water level data were acquired from the NASA/CNES Topex/Poseidon and Jason-1 satellite
missions via the Global Reservoir and Lake Monitoring (G-REALM) project version 2.3 (Crétaux
et al. 2016). Although these altimeters were developed to map ocean surface height, they have
also been used to detect water level changes in lakes (Crétaux et al. 2016). Only a small subset of
the world’s lakes is monitored in this way because the space-borne sensors must pass directly
over the lake with sufficient regularity to produce accurate and complete time series. The lakes
in this study comprise the 198 lakes with the longest (>28 years) and highest temporal resolution
time series. Comparing satellite altimeter measurements derived from the NASA/CNES Topex/
Poseidon and Jason-1 satellite missions to in situ measurements, the root mean-squared error of
elevation variations is ~5 cm for large lakes. Water levels are typically measured every 10 days,
but the exact dates on which water levels are measured vary from lake to lake. To make water level
data temporally consistent, each lake’s time series was linearly interpolated to the daily scale so
that all lakes had time series of the same interval. Seventy-two of the 198 water level time series
had substantial data gaps from 2003 through the middle of 2008, so a period prior to these gaps
(1992-2002) was used as the baseline for calculating 2019 water level anomalies.

7) Global cloudiness—M. ). Foster, L. Di Girolamo, R. A. Frey, A. K. Heidinger, C. Phillips, W. P. Menzel, and G. Zhao

Global cloudiness in 2019 decreased relative to 2018 (0.3 + 0.3%), based on several satellite
cloud records including PATMOS-x/AVHRR (Pathfinder Atmospheres Extended/Advanced Very
High Resolution Radiometer), Aqua MODIS C6 (Moderate Resolution Imaging Spectroradiometer
Collection 6), MISR (Multi-angle Imaging SpectroRadiometer), HIRS High Cloud (High Resolution
Infrared Sounder), and PATMOS-x/Aqua MODIS (this last record applies the PATMOS-x algorithms
to Aqua MODIS measurements and was created for this report). Figure 2.23 shows global cloudi-
ness from 1979 to 2019, with additional long-term records that do not currently extend through
2019: CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), CERES
(Clouds and the Earth’s Radiant Energy System), CLOUD_CCI (Cloud Climate Change Initiative
AVHRR-PM v3.0), CLARA-A2 (cloud, albedo and radiation dataset), and SatCORPS (satellite cloud
and radiative property retrieval system).
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A decrease in global annual cloudi-
ness from 2018 to 2019 of 0.3% seems like
a small change; however, mean annual
cloudiness tends to be very stable. Sever-
al of the cloud records shown in Fig. 2.23
are derived from sensors on satellites
flown as part of NASA’s Earth Observing
System (EOS) project. The EOS satellites
represented here include Terra, Aqua,
and CALIPSO and the records begin as
early as 2000. The standard deviations
of mean annual cloudiness for these
records range from 0.2% to 0.3%. These
records show that 2019 was the least
cloudy year in over a decade. Cloud re-
cords that rely on the NOAA Polar Opera-
tional Environmental Satellites (POES)
begin as far back as 1979, and these
standard deviations range from 0.7%
to 1.59%. These records have more vari-
ability due to less stability in the 1980s
and 1990s. Large-scale events, such as
the volcanic eruptions of El Chichén and
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Fig. 2.23. Annual global cloudiness anomalies (%) for 1980-2019,
defined as the annual value minus the mean, derived between
2003 and 2015, a period common to the satellite records excluding

CALIPSO, where the entire record was used instead. (b) Annual
actual global cloudiness (%).

Pinatubo, and strong El Nifios, may contribute to some of this variability. Instrumental factors
such as fewer measurements (from fewer available satellites), increased orbital drift (satellites
drift from their original orbit resulting in an aliasing effect), fewer available spectral channels
(e.g., 5-channel AVHRR versus the 36-channel MODIS), and the lack of on-board visible calibra-
tion systems may also contribute to increased variability (Stubenrauch et al. 2012). It should be
noted that the convergence of the records seen in Fig. 2.23 beginning after 2000 is partly due to
the use of a common period (2003-15) when creating the cloudiness anomalies.

Although globally-averaged cloudi-
ness does not tend to change much
year-to-year, the global distribution of
clouds can vary significantly. The distri-
bution of clouds over the Pacific Ocean
is affected by the phase of ENSO. The
gradients of SST and low-level wind be-
tween the central equatorial Pacific and
Indonesia serve to enhance or suppress
convection, which drives the formation
of clouds. During years where there is
a strongly positive or negative phase
of ENSO, this can result in statistically
significant cloudiness anomalies over
the Pacific. This can be seen in Fig. 2.24,
where positive and negative cloudiness
anomalies are consistent with phases of
ENSO in the PATMOS-x/AVHRR record.
In 2019, the ENSO index was weakly
positive or neutral throughout the year
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Fig. 2.24. Annual global cloudiness anomalies (%, relative to
the 1981-2010 base period) from the PATMOS-x/AVHRR record
calculated using the same method as Plate 2.1n but zonally for
each degree latitude.
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(b) MAM (MELv2; T. Zhang et al.

- [P e 2019), and no cloudi-
ness anomalies greater
than two standard de-
viations from the mean
were detected over the
Pacific. However, oth-
er areas of the world
experienced similar
large-scale weather
patterns that had more
significant impacts on
the global distribution
of cloudiness. The 10D
is similar to ENSO in
that it involves the SST
temperature gradient
between opposite ends
of the Indian Ocean.

-2.5 0 2.5
Anomaly (%)

Fig. 2.25. Global seasonal cloudiness anomalies (% relative to 1981-2010) for 2019 When the eastern part
from the 30-year PATMOS-x/AVHRR cloud climatology. of the Indian Ocean
experiences below-av-
erage temperatures relative to the western part, the IOD is considered to be in a positive phase. In
this event, eastern Africa frequently experiences positive cloudiness anomalies while southeast
Asia and Australia experiences negative cloudiness anomalies. In 2019, the IOD index became
positive in the boreal summer and continued to increase, peaking in October in a strong positive
phase (BoM 2020; see section 4h). In terms of cloudiness, the positive phase IOD coincided with a
significant negative cloudiness anomaly in the eastern Indian Ocean that had the largest spatial
extent of any anomaly observed in 2019 (Fig. 2.25). Cloudiness in this area was reduced by 10%
to 20% for the year. This extended into Australia, which experienced dry conditions and severe
wildfires (see section 7h4 and Sidebar 7.6). There were also significant negative anomalies in
the Atlantic Ocean, ranging from 5% to 10%, the largest being located in the tropics north of the
equator and extending into the northern subtropics. Minimum cloudiness in this region occurred
in the boreal winter, but much of the year saw reduced cloudiness. Combined, these anomalies
and the lack of positive anomalies, contributed to the overall decrease in global cloudiness.

8) River discharge and runoff—H. Kim

Runoff is a key component in the water cycle: it balances precipitation with evapotranspira-
tion and storage changes through the energy and water balance at Earth’s surface. In numeri-
cal models, it is defined as water draining out from a soil column when infiltration capacity is
exceeded. A river is an integrated transport of runoff to the ocean. It has important roles, not
only the lateral distribution of water (Kim et al. 2009) but also energy (Tokuda et al. 2019) and
biogeochemical constituents (Beusen et al. 2016). In this section, we focus on mass transportation
(i.e., freshwater discharge) which is more directly related with both climate variability and society
(e.g., Hirabayashi et al. 2013; Dankers et al. 2014; Schewe et al. 2014; Madakumbura et al. 2019).

Global distributions of discharge (Plate 2.10) and run off (Plate 2.1p) anomalies for 2019 (compared
to the 1961-90 reference period) indicate many regions where anomalies are opposite to those in
2018.1n 2019, large areas of eastern North America and southern China became anomalously wet-
ter (under strong dry conditions in 2018; Kim 2019), while areas including the Indochina peninsula,
the western Maritime Continent, northern India, and eastern Siberia became anomalously drier.
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z Northern North America,
western Siberia, and north-
ern South America (wet),
and eastern South Ameri-
ca, central Africa, Europe,
eastern Siberia, and the
Korean Peninsula (dry)
saw greater intensification
of their hydrologic states
compared to 2018.

Global total freshwater
discharge is strongly cor-

PDO
o

Runoff Anomaly (mm)

ONI
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Fig. 2.26. Interannual variability of ONI (lower), PDO (upper), and global runoff .
(rr?iddle; mm; thick line is 12-m::nth moiing a\.?erage)f (;}I\FI'I a)nd PDg are shaded related with ENSO and the
red (positive phase) or blue (negative phase). Shading above and below the Pacific Decadal Oscillation
zero-line of global runoff is proportional to PDO and ONI, respectively. (PDO; Zhang et al. 1997;
e.g., Kim 2017, 2018, 2019).

. i 13 Figure 2.26 shows the long-
s term variability of the total

runoff, with the ONI and

(mm)

- 0.0
» =05 PDO indices indicating that
40 in the global average, dry
and wet states tend to be
in accord with positive and
negative phases of ENSO
and PDO, respectively. Ac-
cording to multivariate
regression analysis, the
variance contribution of
the Oceanic Nifio Index
(ONI) and PDO together
comprises ~49% of the total
variance of global runoff.
In 2019, the average global
Fig. 2.27. Monthly anomaly for the long-term seasonality (lower, mm month™) runoff remained at a level
and relative annual anomaly (upper, %; open [uncolored] and closed [colored] similar to the previous year
circles indicate 2018 and 2019, respectively) of 30 major global rivers’ discharge. after a bounce-back from

The basin mask used in the analysis is referred to here: http:/hydro.iis.u-tokyo
.ac.jp/~hjkim/soc/30basins.png.
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the anomalous dry state in
2016 that was associated
with the strong El Nifio. The ONI and PDO indices also remained in a slightly warm phase, similar
to 2018, and the global runoff anomaly increased from 1032 km? yr to 1758 km? yr.

The state of wetness in 2019 was analyzed for 30 major global basins with consideration of
geographical distributions and quality of the estimations, as suggested by Kim et al. (2009; Fig.
2.27). In general, the wet deviations were stronger, but the discharge increases were typically less
than 50% when compared to their climatological means for the given reference period. In 2019,
the wet state of the rivers in South America (i.e., Amazon and Orinoco) was due to the wetter-
than-average wet season. In contrast, the African rivers (i.e., Niger, Zambezi, and Chari) were
relatively dry, and seasonal discharge was persistently below average throughout the year, except
during the wet seasons (September—December) for the Niger and Chari. In the United States, the
Mississippi River was irregularly wet throughout the year (see section 7b2), while the Columbia
River was dry due to the Pacific Northwest drought in 2018-19 and 2019-20. The Mackenzie and
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Yukon Rivers in northern North America had above-average discharge, with an anomalous wet
season contributing to the Yukon’s high discharge. The major Arctic basins, including the Ob,
Yenisei, and Lena, were in slightly wet states during 2018 and 2019, and the rivers in eastern Sibe-
ria (Kolyma, Indigirka, and Yana) shifted to weak dry states in 2019. Rivers affected by the Asian
summer monsoon system (i.e., Amur, Brahmaputra, and Changjiang) experienced opposing states
during the boreal summer of 2019. The Amur and Changjiang during the East Asian Monsoon
were wetter than their mean states, while the Brahmaputra was in a drier state during the South
Asian Monsoon. The Mekong was in a dry but near-normal state in 2019; it is speculated that the
severe drought in 2019 in this region was heavily affected by human impacts (e.g., dam operation).

The 62-year (1958-2019) record is based on off-line land surface simulations of the Ensemble
Land State Estimator (ELSE; Kim et al. 2009) over 1° grids globally. To produce the atmospheric
boundary conditions, the Japanese global atmospheric reanalysis (JRA-55; Kobayashi et al. 2015)
and the GPCC Monitoring Product version 6 (Schneider et al. 2018) were combined. The con-
figurations of the modeling system remain the same as previously (e.g., Kim 2018), and human
interventions are not considered.

9) Groundwater and terrestrial water storage—M. Rodell, B. Li, and D. Wiese

Groundwater, soil moisture, surface water, snow, and ice are the components of terrestrial
water storage (TWS). On multi-annual timescales, groundwater typically controls TWS variabil-
ity, except in permanently frozen regions (Li et al. 2015). Even on an annual basis, TWS changes
are a reasonable proxy for groundwater storage changes, the latter being insufficiently observed
in most of the world. From 2002 to 2017, the Gravity Recovery and Climate Experiment (GRACE;
Tapley et al. 2004) and since 2018 the GRACE Follow On (GRACE-FO) satellite missions have
enabled estimation of TWS anomalies (departures from the long-term mean) based on precise
observations of variations in Earth’s gravity field. To bridge the 11-month gap between GRACE
and GRACE-FO, we make use of output from a land surface model that assimilates data from both
missions (Li et al. 2019).

Plate 2.1q maps the changes in annual mean TWS between 2018 and 2019, as equivalent heights
of water in centimeters, based on the data assimilation results. TWS changes reflect integrated
hydrometeorological variations, includ-

ing precipitation, solar radiation, air L I L L
temperature, and other model forcings. ISk 7 bl | LA
Australia had its warmest and driest
year on record (dating to 1910 and 1900,
respectively), with TWS losses almost
everywhere save for the northeast of
the country, contributing to notorious
wildfire damage (see Sidebar 7.6). Cen-
tral Africa saw TWS gains following two
dry years, while Angola and Zambia in
southern Africa dried considerably. Con-
ditions were mixed in South America,
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with drought accompanying heat across
southeastern Brazil, leading to TWS
losses in that region, and TWS gains in
many other parts of the continent. The

effects of heavy precipitation and subse-
quent record spring and summer flood-
ing in the midwestern United States can
be seen in Plate 2.1q, as well as a return
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Fig. 2.28. Zonal mean terrestrial water storage anomalies (cm
equivalent height of water), based on observations from GRACE
(through Jun 2017) and GRACE-FO (beginning Jun 2018), exclud-
ing the previously identified ice-covered regions. Anomalies are
relative to a 2005-10 base period.
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to normal conditions after a particularly wet
2018 in the East. Near-record heat drove TWS
losses across most of Europe despite near-
normal precipitation. In Siberia and parts
of southeastern Asia, drought caused water
storage declines. TWS in Iraq and western
Iran, on the other hand, was replenished by
increased rainfall.

TWS changes in ice-covered regions have
been dominated by ice sheet and glacier
losses during the past two decades, to the
point that annual hydroclimates there must
be interpreted from the GRACE and GRACE-
FO obhservations with caution. Hence, TWS
changes in Greenland, Antarctica, the Gulf
Coast of Alaska, parts of Patagonia, and
most polar islands are omitted here. Despite

Anomaly (cm)

— GRACE — GRACE FO

2004 2006 2008 2010 2012 2014 2016 2018 2020

Fig. 2.29. Global average terrestrial water storage anomalies
from GRACE (gray lines) and GRACE-FO (black lines), excluding
the previously identified ice-covered regions, in cm equivalent
height of water relative to a 2005-10 mean base period.

those omissions, ice losses continue to contribute to the high latitude trends (Fig. 2.28) and to the
global mean, deseasonalized, monthly TWS anomaly time series (Fig. 2.29). Drying across three
continents centered near 15°S, as seen in Plate 2.1q, is evident in Fig. 2.28, as is wetting just north
of that. Most of the NH resumed a long-term drying trend, and, overall, 2019 was near the lower
end of the range of global mean TWS since 2002, with monthly anomalies that ranged from -2.10

to —0.77 cm equivalent height of water.

10) Soil moisture—W. Preimesberger, A. Pasik, R. van der Schalie, T. Scanlon, R. Kidd, R. A. M. de Jeu,

and W. A. Dorigo

Global soil moisture in 2019 was characterized by significant differences between the two hemi-
spheres: this discrepancy was the largest yet recorded. The strongest negative anomalies were

recorded throughout Australia, southern
Africa, and Argentinian Patagonia in
the Southern Hemisphere (SH), while
parts of North America, East Africa,
and Asia in the Northern Hemisphere
(NH) experienced above-average soil
moisture conditions due to an increase
in precipitation (section 2d4; Plate 2.1Kk).
A continuation of drier-than-usual con-
ditions observed in 2018 across the SH
(Scanlon et al. 2019) is evident, with
anomalies in 2019 being even stronger
and more widespread. Meanwhile, the
2019 global average soil moisture condi-
tions were close to the 1991-2010 mean
despite the evident difference between
the hemispheres (Fig. 2.30).

Australia experienced both its driest
and warmest year since records began
(section 7h4), resulting in strong nega-
tive soil moisture anomalies throughout
the continent and priming the land for
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Fig. 2.30. Time series of average NH, SH, and global surface soil
moisture anomalies for 1991-2019 (upper, m* m~%; 1991-2010 base
period) and the percentage of land points with valid observations
(lower, %). Data were masked as missing where retrievals were
either not possible or of low quality due to dense forests, frozen
soil, snow, ice, etc. (Source: ESA CCl Soil Moisture.)
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Fig. 2.31. Time-latitude diagram of surface soil moisture
anomalies (m? m™3; 1991-2010 base period). Data were
masked as missing where retrievals are either not possible
or of low quality due to dense forests, frozen soil, snow, ice,
etc. (Source: ESA CCl Soil Moisture.)

catastrophic wildfires in the latter part of the
year. One of the climatic drivers responsible
for this situation was a strong positive phase
of the IOD, an index of SST difference between
the eastern and western Indian Ocean influ-
encing rainfall patterns in Australia and the
Indian Ocean basin.

While contributing to a reduction in pre-
cipitation over Australia, the positive I0D
also contributed to excess rainfall to the
Greater Horn of Africa from August through
December. This resulted in widespread flood-
ing across East Africa (see section 7e4 for
details and impacts). The influence of 10D
on soil moisture in India and East Africa is
manifested as a strong positive anomaly in
the latitudes between the equator and 30°N
visible in Fig. 2.31.

Heavy rains led to severe floods in parts of

India, especially during August and Septem-
ber (Figs. A2.16h,i). Soil moisture measurements show extremely wet conditions from September
through December (Figs. A2.16i-1), largely due to rainfall driven by the positive IOD. Soil moisture
conditions for the year as a whole were also above average (Plate 2.1r).

Very dry soil moisture conditions continued in southern Africa for the fifth consecutive year
(Dorigo et al. 2017b, 2018). The resulting prolonged and increasingly severe drought was especially
apparent in Namibia. Zambia was also among the most affected countries in the region after the
2018/19 rainfall season was among the driest since 1981; the consequent soil moisture deficit is
visible in the annual anomalies (Plate 2.1r).

In 2019, the United States received above-average rainfall, with many precipitation records
set, especially in the north and the Midwest (see section 7b2). This excess precipitation resulted
in above-average soil moisture conditions across large parts of the country throughout the year.

In March, large parts of Iran recorded above-average precipitation, leading to nationwide floods
following this period (Fig. A2.16c). Soil moisture conditions were exceptionally high between
February and May, declining to around average in November (Figs. A2.16b,e,k, respectively).

Soil moisture observations for this analysis were obtained from the COMBINED product of ESA’s
Climate Change Initiative for Soil Moisture (ESA CCI SM) v04.7. The product merges measurements
from passive and active microwave remote sensing instruments into a single long-term data
product based on the quality of available observations (Dorigo et al. 2017a; Gruber et al. 2019).
ESA CCI SM therefore achieves higher spatial and temporal (more than 40 years) data coverage
than the single-satellite sensor products and is validated against in situ soil moisture measure-
ments and multiple reanalysis products (Dorigo et al. 2017a). Satellite soil moisture observations
are representative of the surface layer only (~5 cm) and are masked in cases of snow coverage
or frozen soil conditions and for areas covered by dense vegetation or with high topographic
complexity (mountains).

11) Land evaporation—D. G. Miralles, B. Martens, H. E. Beck, and M. F. McCabe

At the planetary scale, terrestrial evaporation comprises about two-thirds of terrestrial pre-
cipitation. This “loss of water” from the land surface to the atmosphere plays a key role in water
management (Teuling et al. 2013) and agricultural planning (Liu et al. 2015), and it is also central
in modulating the strength and behavior of the water cycle (Huntington 2006) and associated

AUGUST 2020 | State of the Climate in 2019 BAMS

Unauthe nticat%ﬁ Pﬂr&%ﬁo@h IM&A'E 1121 4%? uTtc



eXtreme events (Miralles et al' 2019)' Cur_ T III TIrrrrrr l‘I T I‘I L l.l T lll TrTr l.lblll-:lll T |:| T lll’
rently, in the same way that evaporationisin-  60°NH ' ! i L b b e s f I f '
: ' 1 | (Al

visible to our eyes, it remains invisible to our Lo, 44l Lytiy 1 S T
satellite sensors, making it one of the most ~ 30°N[i e FLT b ! -,J f " iy
uncertain components of Earth’s energy and ;
water balance (Dolman et al. 2014). However,
models that combine satellite-observed land-  3q°g
scape attributes with meteorological drivers -
of terrestrial evaporation (e.g., vegetation  60°Sf:
cover, solar radiation, temperature) are often

o

0

il hmr i

fk“s ln #‘!l,:‘l

3 ,-‘..

"r'|i "' r'l
"J f""{i .l!i ||’ﬂ';]{l |

e S S R

applied to yield global climatological records T T

of the flux (McCabe et al. 2016; Miralles et al. 19w1990| 199|5 20|00 ZIOOS A01E efile =050
[ .

2016). Based on simulations from one of the 8 -6 -4 -2 0 2 4 6

few regularly updated and long-term global Anomaly (mm month")
records, namely the Global Land Evaporation

Fig. 2.32. Zonal mean terrestrial evaporation anomalies (mm

Amsterdam Model (GLEAM; Miralles et al. month™; relative to 1981-2010 base period). (Source: GLEAM.)

2011), Plate 2.1s illustrates the geographical
patterns of land evaporation anomalies for 2019.

During the year, several regions in the tropics and the SH subtropics experienced anoma-
lously low values of evaporation (Plate 2.1s), in particular, southern Africa (mainly Namibia and
Botswana), Australia, and parts of South America (including northern Amazonia). All of these
regions suffered from intense drought conditions during 2019. In Australia, the extraordinary
drought (see sections 2d12 and 7h4) led to a decline in terrestrial evaporation, which itself was
mostly attributed to anomalies in plant transpiration (Fig. A2.17). In accordance with these global
patterns (Plate 2.1s), the latitudinal distribution in Fig. 2.32 highlights unusually low values around
30°S, which were exacerbated at the beginning of the austral summer due to water stress. At the
other end of the distribution, unusually high values of land evaporation can be observed in Plate
2.1s, concentrated over the Horn of Africa, the east Sudanian Savanna, and central Asia, among
other less extensive regions. The spatially extensive positive anomaly in central Asia was one of
the most pronounced in 2019. Initiated during the first half of the year, as shown in Fig. 2.32 (see
anomaly around 30°N), it was associated with a combination of positive temperature and precipita-
tion anomalies. In Europe and North America, mild positive anomalies were widespread, except
for a few regions such as Canada and the Iberian Peninsula (see Plate 2.1s), which were drier.

The 40-year (1980-2019) evolution of evaporation shown in Fig. 2.33 illustrates the statistically
significant long-term tendency

towardhighe[annualvalues drr—r—rrrrrrr YU 7 T T T T T T T T T
that has been reported exten- — Globe

. . A —— N. Hemisphere

sively in the literature (Y. Zhang 15} —— S. Hemisphere

et al. 2016; Miralles et al. 2014;
Brutsaert 2017; Anabalén and
Sharma 2017). The average ter-
restrial evaporation in 2019 was
77 x 10° km’, slightly below this
long-term global trend, yet still
higher than the long-term mean

Anomaly (mm yr™)
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(Fig. 2.33). The positive trend 1980 1985 1990 1995 2000 2005 2010 2015
is more pronounced in the NH

Fig. 2.33. Land evaporation anomaly (mm yr™"; 1981-2010 base period)

and mostly related to increasing for the NH, SH, and the entire globe (blue, red, and black solid lines, re-
temperatures and global green- spectively). Linear trends in evaporation (dashed lines) and the SOI from

ing (Cheng et al. 2017; Zhang CRU (right axis, shaded area) are also shown. (Source: GLEAM.)
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et al. 2016; Miralles et al. 2014). Indeed, for the NH, 2019 represented the third-largest positive
anomaly on record after 2018 and 2016. On the other hand, the year-to-year variability in the SH
has previously been reported to be dictated largely by ENSO, due to the drought conditions it
triggers in regions such as South Africa and Australia (Martens et al. 2018; Miralles et al. 2014).
In agreement with that thesis, prevailing marginal El Nifio conditions in 2019 appear once again
to be influencing the below-average mean values in the SH. In fact, the geographical patterns
of evaporation anomalies shown in Plate 2.1s closely mimic those characteristic of El Nifio years
(Miralles et al. 2014), and thus may relate to the weak El Nifio that developed in 2019 (see SOI
[Southern Oscillation Index] in Fig. 2.33).

The results shown here are based on recent simulations of GLEAM v3.4a (Martens et al. 2017). Its
accuracy has been reported to be on the order of 0.7 mm day™ (unbiased root mean square error),
with correlations against in situ eddy covariance measurements of around 0.8 on average (Martens
et al. 2017). Notwithstanding the steady progress in remote-sensing and modeling communities
to improve the product accuracy and spatial resolution of land evaporation estimates (McCabe et
al. 2019; Fisher et al. 2017; McCabe et al. 2017), trends and patterns in satellite-based evaporation
should be interpreted with care, and a weighting based on multiple retrieval approaches is usu-
ally recommended (Jiménez et al. 2018). Still, as of today, the algorithms dedicated to estimating
evaporation using satellite observations at global scales are mostly intended for research appli-
cations and are not regularly updated (Fisher et al. 2017), which constrains the undertaking of a
comprehensive analysis that would ensure a more thorough uncertainty appraisal.

12) Monitoring global drought using the self-calibrating Palmer Drought Severity Index—

1. Barichivich, T. J. Osborn, 1. Harris, G. van der Schrier, and P. D. Jones

Hydrological drought results from a period of abnormally low precipitation, sometimes exac-
erbated by additional evapotranspiration (ET), and its occurrence can be apparent in reduced
river discharge, soil moisture, and/or groundwater storage, depending on the season and dura-
tion of the event. Here, an estimate of drought called the self-calibrating Palmer Drought Sever-
ity Index (scPDSI; Wells et al. 2004; van der Schrier et al. 2013) is presented, using precipitation
and Penman-Monteith Potential ET from an early update of the CRU TS 4.04 dataset (Harris et
al. 2020). Moisture categories are calibrated over the complete 1901-2019 period to ensure that
“extreme” droughts and pluvials (wet periods) relate to events that do not occur more frequently
than in approximately 2% of the months. This affects direct comparison with other hydrological
cycle variables in Plate 2.1 that use a different baseline period.

Drought area according to the scPDSI
decreased slightly across the globe in 2018
2 (Barichivich et al. 2019) and continued de-

45 . . ‘ , . 0 creasing through early 2019, but then rose

2019 30

401 g‘:\f‘;f:t(i (_‘3;2) sharply after May (Fig. 2.34). The global land

351 Extreme (< -4) JFMAMJ JASOND ° area undergoing extreme drought condi-
3 30r 1 tions increased from a minimum of 1.7% in
< 257 May to 4.7% in December, surpassing the
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most recent previous peak of 4.3% in Octo-
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ber 2017, but not as extensive as some earlier

10 ;
; periods of extreme drought. Also from May
) M.“&“M to December 2019, the area including severe
1950 1960 1970 1980 1990 2000 2010 2020 and extreme drought conditions increased

0 0
Fig. 2.34. Percentage of global land area (excluding ice sheets fr(l)ll:lil = /odto 12% of the glgbal l?lnd ariﬁ’
and deserts) with scPDSI indicating moderate (< -2), severe while moderate or worse drought condi-

(< -3), and extreme (< -4) drought for each month of 1950- tions increased from a minimum of 19.2%
2019. Inset: Each month of 2019. to 24.6% of the global land area.
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Similar to 2018, moderate to severe drought
conditions during 2019 were extensive in
South America, the western United States,
and the Middle East. Previous moderate
to severe drought conditions over Europe,
southern Africa, and Australia intensified to
extreme drought (Plate 2.1t). The east—-west
moisture contrast observed across the United
States since 2017 further strengthened in
2019, with extensive wetter conditions ex-

[ | [ [ tending over the whole eastern half and drier
ory -4 ghangezin Catelgoﬁes ?rom 20113 - 2(2) 1 (scl3='DSI) 4 et in the west. Protracted drought over most of
the semiarid northeastern region of Brazil

Fig. 2.35. Change in drought from 2018 to 2019 (mean scPDSI (Jimenez-Mufioz et al. 2016) and central Chile
for 2019 minus mean scPDSI for 2018). Increases in drought (Garreaud et al. 2017) intensified again in
severity are indicated by negative values (brown), decreases 2019 (Fig. 2.35) )

by positive values (green). No calculation is made where a . .
drought index is meaningless (gray areas: ice sheets or deserts A large part of South Africa experienced

with approximately zero mean precipitation). extreme drought during 2019 (Plate 2.1t),
continuing or intensifying (Fig. 2.35) dry
conditions from previous years. In the Cape region, this is consistent with a long-term drying
associated with human-caused climate change (Seager et al. 2019), which increases the risk of
such rare events (Otto et al. 2018). Previous moderate to severe drought along parts of the west
coast of Africa appear to have eased, while wetter conditions in most of central and eastern Africa
persisted in 2019 (Fig. 2.35). However, these changes should be interpreted with caution as station
data are sparse in these regions. See section 7e for more detailed precipitation analyses for Africa.
Extreme drought conditions that affected Afghanistan in 2018 eased through 2019, and the area
under drought was reduced and concentrated mostly over the south of the country. Drought sever-
ity also decreased in parts of the Arabian Peninsula that have seen dry conditions since 2017 (Fig.
2.35). Most of Australia saw an increase in drought intensity to severe and extreme conditions due
to the continuation of the rainfall deficit combined with record high temperatures. These extreme
conditions contributed to the most devastating fire season on record. Fire spread through the
southeastern states causing unprecedented devastation. Extreme drought in the Murray—Darling
Basin has been characterized as the worst on record. See section 7h4 and Sidebar 7.6 for details.
Antecedent dry conditions, below-average spring precipitation, and extreme summer heat
waves pushed most of Europe into drought during 2019 (Plate 2.1t). The most intense drought in
the annual average occurred across northern Germany and Poland, where there was already a
strong soil moisture deficit in 2018 (Fig. 2.35). The sustained low precipitation in spring and sum-
mer in combination with exceptionally high temperatures in late winter-early spring—especially
February—and the record-breaking temperatures in June and July further intensified the drought
conditions in much of midlatitude Europe.

e. Atmospheric circulation
1) Mean sea level pressure and related modes of variability—R. Allan

Mean sea level pressure (MSLP) data can be used to derive indices of many regional modes
of variability that drive significant weather and climate events (Kaplan 2011) such as El Nifio—-
Southern Oscillation (ENSO), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO),
and the Antarctic Oscillation (AAO; Fig. 2.36). ENSO, which is measured in the atmosphere by
the sea level pressure derived Southern Oscillation Index (SOI; Allan et al. 1996; Kaplan 2011),
arguably has the most global impact.
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ENSO describes a variety of events and episodes that, individually, can exhibit wide-ranging
characteristics across the Indo-Pacific region and have teleconnections to higher latitudes in
both hemispheres (Capotondi et al. 2015; L'Heureux et al. 2017; Wang et al. 2017; Timmermann
et al. 2018; Santoso et al. 2019). These different “flavors” of ENSO include protracted El Nifio and
La Nina episodes (Allan and D’Arrigo 1999; Allan et al. 2019), which are manifest by persistent
sea surface temperature (SST) anomalies in the Nifio 4 region in the western equatorial Pacific.

Some international ENSO forecasts and outlooks have deemed 2019 conditions as starting with
aweak El Nifio and changing to ENSO-neutral in July. However, since March—April 2018, monthly
Nifio 4 SST anomalies have remained positive and, if they continue to be so for 24 months or more
(March—April 2020), they will pass one criterion for this period being indicative of a protracted
El Nifio episode (Allan et al. 2019). The second criterion, for the SOI to have acted similarly by
being consistently negative (allowing for only any two months to have gone positive), has held
since June 2018 (https://iridl.ldeo.columbia.edu/maproom/ENSO/Time_Series/SOLhtml), and
this is reflected in Plate 2.1u. This period of continuously warm Nifio 4 SST anomalies has led to
enhanced atmospheric convection over that region and the generation of a teleconnection that
caused large-scale subsidence and suppressed rainfall across eastern Australia in the early-2018
to early-2020 period (see section 7h4 and Sidebar 7.6 for more details). The Nifio 4 SST response
during the 2018-20 “protracted” El Nifio episode may also have been possibly enhanced by an-
thropogenic forcing, as suggested by Newman et al. (2018).

In the Northern Hemisphere (NH), the last several boreal winters have displayed a variety
of AAO and NAO conditions (Figs. 2.36, 2.37). Over the 2017/18 boreal winter (Figs. 2.37a,d),
the NAO was mainly positive except in late February (Fig. 2.37d), with temperatures in Europe
mostly mild to warm, and the region experienced its fifth-warmest year on record. In particular,

40 Ll L] I L] Ll I L] L] I Ll 40

a) SOl (b) soI'

Standard Units

I I I I L L L L I L L I L L l L
1880 1920 1960 2000 2007 2010 2013 2016 2019

Fig. 2.36. Time series for modes of variability described using sea level pressure for
the (left) complete period of record and (right) 2006-19. (a),(b) SOI (provided by
the Australian Bureau of Meteorology); (c).(d) AO (NOAA NCEP Climate Prediction
Center); (e),(f) AAO (NOAA NCEP Climate Prediction Center); (g).(h) winter (Dec-Feb)
NAO average (NCAR; presented for winter at the beginning of each year so winter
2019/20 is not shown).
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France, Germany, Switzerland, the Netherlands, and Denmark experienced record or near-record
warm conditions in 2018.

During the 2018/19 boreal winter (Figs. 2.37b,e), the NAO swung from moderate positive values
in early-to-mid-December to moderate negative values from late December to mid-January 2019,
fluctuating between positive and negative values thereafter (Fig. 2.37e). The anticyclonic circula-
tion was dominated by southerly flow over Europe, which led to exceptionally high temperatures
in February 2019.

The 2019/20 boreal winter (Figs. 2.37c,f) was characterized by a persistent, mainly positive NAO,
which led to warm and mild conditions across the entire European region, with heavy rainfall
leading to flooding, and a series of deep Atlantic cyclones. The winter was dominated by a strong
stratospheric polar vortex extending down through the troposphere, associated with one of the
coldest Arctic winters in the last 10 years.

In the Southern Hemisphere (SH) during the latter half of 2019, the AAO transitioned from
being predominantly in its positive phase since 2015/16 (Figs. 2.36f) to negative. This favored a

(a) 2017/18 25| (d) 2017/18
Anomaly 50
(hPa) 25

<25
=50

75
50
25

=25
=50

Winter NAO Index (hPa)
o

(b) 2018/19

1
75 |- (f) 2019/20

=50

Fig. 2.37. Boreal winter sea level pressure anomalies (hPa; 1981-2010
base period) around the NH (hPa; 1981-2010 base period) averaged
over Dec-Feb for (a) 2017/18, (b) 2018/19, and (c) 2019/20. NAO daily
time series (hPa) for boreal winter (d) 2017/18, (e) 2018/19, and (f)
2019/20. The 5-day running mean is shown by the solid black line.
(Source: HadSLP2r [Allan and Ansell 2006].)
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2) Land and ocean surface winds—
C. Azorin-Molina, R. J. H. Dunn, L. Ricciardulli,

-0.2

g™ Reanalyses - all Speeds C. A. Mears, T. R. McVicar, J. P. Nicolas, G. P. Compo,
—— ERAS (land only) ~——— 20CRv3 (land only) A
—— MERRA-2 (land only) and C. A. Smith

Global average near-surface wind speed
over land (i.e., ~10 m above the ground) has
continued the reversal described in previ-
ous reports (e.g., Azorin-Molina et al. 2019),
which started around 2010 (Zeng et al. 2019;
[ () InSitu >3 m s Winds SR B S Fig. 2.38a). The 30-50 years leading up to
601 2010 were dominated by a gradual reduction
55} M in surface winds over land, termed global
501 N—\fmw terrestrial stilling (Roderick et al. 2007). In
s SN SN~ — 2019, the global (excluding Australia) aver-

40 ’
35+ M age wind speed anomaly was +0.033 m s™*
301 with respect to the 1981-2010 climatology

........................... Ft (Table 2.6), the third-largest positive wind
| Jein St >10m 51 Winds speed anomaly since 2010. Regionally, Europe
R showed the largest rebound as the negative
anomaly in 2018 became positive in 2019. In
contrast, the positive anomalies in central
Asia and east Asia were smaller than in 2018.
Lastly, North America still showed a nega-
............................................. tive anomaly yet smaller than the lowest one
1970 7950 7950 7000 7070 2020 yrecorded in 2012 (Iacono and Azorin-Molina

Wind Anomaly (m s™1)
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Fig. 2.38. Global (excluding Australia in panels [a], [c], and [d]) and regional annual time series of land surface wind
speed anomaly (m s™"; relative to 1981-2010) using (a) HadISD3 (1973-2019), and (b) ERAS5 (1979-2019), MERRA-2
(1980-2019), and 20CRv3 (1836-2015, only 1970-2015 shown here). HadISD3 occurrence frequencies (in %) for wind speeds
()>3ms'and (d) >10 ms™.

Table 2.6. Global and regional statistics for land surface wind speed (m s™') using the
observational HadISD3 dataset for the period 1979-2019.

Gloiiﬁ:(acllila‘?ing 3.326 0033 (-o.os_:zoﬁsfo.oa,s) 2536
North America 3.705 -0.112 - 0.09_10'_28_1 0.072) 569
Europe 3.689 +0.028 (-o. 05;0£4_60_ 036) 759
Central Asia 2.897 +0.134 “ 0_12; 0;;0—00.076} 257
East Asia 2.719 +0.104 (_0.04_00'_0)310.019) 458
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Fig. 2.39. Wind speed trends (m s™' decade™) for the obser-
vational HadlSD3 dataset (circles) over land, and MERRA-2
reanalysis output over land/ice and Remote Sensing Systems
(RSS) satellite radiometers (SSM/1, SSMIS, TMI, GMI, AMSR2,
ASMR-E, and WindSat) over ocean for 1988-2019 (shaded
areas).

2014). The recovery observed since 2010
was discussed in regional (e.g., Kim and
Paik 2015; Azorin-Molina et al. 2018a; R.
Zhang et al. 2019) and global (Zeng et al.
2019) studies. As in previous years, this
recovery comes from an increase in the
frequency of moderate winds around 2013
(>3 m s; e.g., see central and east Asia in
Fig. 2.38c), whereas strong winds (>10 m s™;
Fig. 2.38d) are still declining (Azorin-Molina
et al. 2016).

The multi-decadal variability and trends
of surface winds over land during the 1979-
2019 period have been assessed here using
station-based observations and gridded re-
analysis products. The observations consist
of global quality-controlled anemometer
observations from 2536 stations from the

HadISD3 dataset (1973-2019, Dunn et al.
2016; Dunn 2019). The reanalysis data are
based on three products: the full-input ERA5
(1979-2019, Hersbach et al. 2020), MERRA-2
(1980-2019, Gelaro et al. 2017), and the
surface-input 20CRv3 (1836-2015, Slivinski
et al. 2019, the latter of which is included
to reinforce the other products in common
years). The reanalyses provide complete spa-
tial and temporal coverage; however, their
inability to reproduce the observed long-term
changes in wind anomalies (Fig. 2.38b) is a
limitation (Torralba et al. 2017; Ramon et al.
2019; Wohland et al. 2019).

One of the key effects of the recent reversal
and stabilization of land surface wind speeds
is a lower magnitude of the negative trends. Globally, terrestrial surface winds declined at a rate
of —0.058 m s~ decade™ during 1979-2019 (Table 2.6), which is close to half of the lowest trend
recorded for 1981-2012 (-0.111 m s decade™; see Table 2.4 in McVicar et al. 2013). Regionally, the
magnitude of negative trends is slightly weaker than in previous years, being most negative in
central Asia, followed by North America and Europe, and least negative in East Asia. The 5th to
95th percentile confidence ranges also shifted toward less negative trend values. In order to com-
pare with Remote Sensing Systems (RSS), Fig. 2.39 shows HadISD and MERRA-2 trends over the
1988-2019 period. Negative trends (59.0% of stations) dominated northern midlatitude regions,
with MERRA-2 also showing declining values for regions with scarce observations, e.g., South
America, Africa, and Australia.

Over ocean, the three above-mentioned reanalyses and satellite-based products were used to
assess surface winds for the period 1987-2019: the Special Sensor Microwave/Imager (SSM/I),
the Special Sensor Microwave Imager/Sounder (SSMIS), the Advanced Microwave Scanning Radi-
ometer (AMSRE and AMSR2), Tropical Rainfall Measuring Mission Microwave Imager (TMI), and
WindSat (Wentz 1997, 2015; Wentz et al. 2007). The 2019 mean global mean wind speed anomaly
over the ocean (Fig. 2.40) shows negative values for satellite radiometers and MERRA-2, but only

......... [T T T T T T T
0.4 satellites & Reanalyses — g;ﬂ'“e MW Radiometers
—— MERRA-2

Anomaly (m s71)

-0.2F

1970 1980 1990 2000 2010 2020

Fig. 2.40. Annual anomalies of global mean wind speed
(m s™'; 1981-2010 base period) over the ocean from satellite
radiometers and reanalysis outputs.

AUGUST 2020 | State of the Climate in 2019 BAMS

Unauthenticat%ﬁ %&%&léb I@&&§E1 12: 14%4 uTtc



a weak negative anomaly for ERA5. According to the satellite measurements, 2019 marked the
second-lowest wind speed anomaly over ocean in the twenty-first century. The global spatial
anomalies (Plate 2.1v) show a dominance of negative anomalies, in particular over the western
Pacific and over the Indian Ocean (< -1 m s™), due to an intense positive phase of the Indian
Ocean dipole (IOD), and in the central Pacific and South Atlantic Ocean; in contrast, positive
anomalies (> +1 m s™') occurred over the Southern Ocean, North Atlantic Ocean, and the Bering,
Mediterranean, and Coral Seas. As in 2018, ocean wind speed trends for 1988-2019 (Fig. 2.39) were
mostly dominated by weak negative values along with a clear tendency toward a strengthening
of winds in the Southern Ocean, the trade winds in the Pacific and Atlantic Oceans, and some
isolated regions (Young and Ribal 2019).

The potential causes underlying global terrestrial stilling and its reversal over the last decade
are varied (Azorin-Molina et al. 2018b) and likely not all presently known. Recently, Zeng et al.
(2018) rejected the attribution of the slowdown of winds to the increase of terrestrial surface rough-
ness due to vegetation/urbanization growth (Vautard et al. 2010), and Zeng et al. (2019) proposed
that the major driving force of wind speed changes (i.e., both the stilling and the recent rebound
of winds) is associated with decadal ocean—atmosphere oscillations and changes in large-scale
atmospheric circulation patterns. Moreover, Zeng et al. (2019) concluded that the relationship of
ocean—atmosphere oscillations to anthropogenic warming and the impact on surface wind speed
variability remains unclear, representing a large scientific challenge.

3) Upper air winds—L. Haimberger, M. Mayer, and V. Schenzinger

As in past years, we examine the 200-hPa velocity potential to evaluate the imprint of tropical
climate anomalies on upper air divergent winds. A strong positive I0D event developed in the
course of 2019, peaking in boreal autumn (see section 4h). Figure 2.41 displays anomalous 200-hPa
velocity potential and divergent winds for August-December 2019 and shows a clear imprint of the
10D event. The positive IOD event occurred in the absence of classical El Nifio conditions, which is
relatively rare but linked to the protracted El Nifio (section 2el). Consequently, the strongest velocity
potential anomalies were found over the Indian Ocean. There is a prominent dipole in the velocity
potential, with positive anomalies over the Indo-Pacific Warm Pool and negative anomalies over the
western Indian Ocean, which leads to a westerly divergent wind anomaly over the Indian Ocean. The
positive anomalies and associated wind convergence over the Warm Pool are indicative of reduced
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Fig. 2.41. Anomalous 200-hPa velocity potential (x 10° m*s™") and divergent winds (m s™") averaged over Aug-Dec 2019
(1981-2010 base period) based on ERAS data.
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0.6 The positive velocity potential
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§ wind convergence and sinking

24 motion is consistent with the

persistent dry conditions over the
Australian continent (see section
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1960 1970 1980 1990 2000 2010 7h4 for more details).

Plate 2.1w shows the 850-hPa

(m s7'; 1981-2010 base period) at 850 hPa from four reanalyses (ERAS, eastward wind patterns 111' au-
ERA-Interim, MERRA-2, JRA-55). The numbers in parentheses are linear tumn 2019. The most obvious
trends in m s™" decade™ for the period 1980-2019. feature is the anticyclonic struc-

ture over Australia and the Indian

Ocean, with strong easterly anomalies over the equator south of India and over northern Australia
together with strong westerly anomalies over the southern Indian Ocean and south of Australia,
which is perhaps enhanced by the negative Antarctic Oscillation in 2019. This indicates a strong
anomalous anticyclonic circulation over the Australian continent, which is consistent with the
drought conditions observed there (Ummenhofer et al. 2009). Together with the patterns shown
in Fig. 2.41, the easterly 850-hPa wind anomaly over the equatorial Indian Ocean completes the
picture of the perturbed Walker circulation in this region, with anomalous upward motion in the
western Indian Ocean and anomalous sinking motion over the Maritime Continent.

The 2019 global mean wind speed at 850 hPa was lower than in 2018 and slightly below the
1981-2010 average (Fig. 2.42). The positive trend over the past 40 years still remains in all four
reanalyses presented here.

The 2019 behavior of the Quasi-Biennial Oscillation (QBO) can be described as being fairly regu-
lar (see Fig. A2.18). The westerly phase had a maximum amplitude of 17 m s, which is comparably
high (mean 14.8 + 1.8 m s™), but not at record levels. It descended with about 1 km yr on average,
well within the long-term range of descent rates (1.2 + 0.6 km yr) and lasted for 25.8 months in
total, which is about 2.5 months shorter than on average. At 10 hPa, the easterly phase started in
April, which is a common month for a phase transition at this height. Its descent progressed with
0.8 km yr™ so that it reached the 30 hPa level by the end of the year. However, one noteworthy
behavior was the onset of the easterly phase at 45 hPa at the end of October, which means that it
developed within a zone of westerly winds, similar to the anomaly in the 2015/16 boreal winter.

-0.2

Fig. 2.42. Annual anomalies of global mean wind speed

f. Earth radiation budget
1) Earth radiation budget at top of atmosphere—T. Wong, P. W. Stackhouse, Jr., D. P. Kratz,

P. Sawaengphokhai, A. C. Wilber, S. K. Gupta, and N. G. Loeb

The energetic state of the Earth—atmosphere system is defined by the balance of the incoming
total solar irradiance (TSI) and the reflected shortwave (RSW) and outgoing longwave radiation
(OLR) from Earth. This balance defines Earth’s radiation budget (ERB) at the top of the atmosphere
(TOA), and its regional distribution drives atmosphere and ocean circulations.

An analysis of all CERES ERB measurements (Table 2.7) shows that 2019 global annual mean
OLR increased by ~0.60 W m™? and RSW decreased by ~0.55 W m™ relative to their correspond-
ing values in 2018 (rounded to nearest 0.05 W m™). Over the same timeframe, the global annual
mean TSI remained nearly unchanged. The sum of these components amounts to a near zero
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Table 2.7. Global annual mean top of the atmosphere (TOA) radiative flux changes
between 2018 and 2019, the 2019 global annual mean radiative flux anomalies
relative to their corresponding 2001-18 mean climatological values, and the
2-sigma interannual variabilities of the 2001-18 global annual mean fluxes (all
units in W m™) for the outgoing longwave radiation (OLR), total solar irradiance
(TSI), reflected shortwave (RSW), and total net fluxes. All flux values are rounded
to the nearest 0.05 W m~? and only balance to that level of significance.

OLR 0.60
TSI 0.00
RSW —-0.55
Net —0.05

+0.55
-0.10
-1.20
+0.55

+0.60
+0.15
+0.95
+0.80
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Fig. 2.43. Annual average TOA flux differences between 2019 and
2018 for the (a) OLR (top panel) and (b) TOA RSW (bottom panel). The
pattern of differences shows several significant features including
changes over the tropical Pacific, Indian, and North Atlantic Oceans.
The tropical Pacific pattern is dominated by an atmospheric shift from
La Nifia conditions during the first half of 2018, to weak El Nifio in
the first half of 2019, to near-neutral condition by the end of 2019.
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change (decrease of ~0.05 W m™)
in the global annual mean total net
radiation into Earth’s climate system
for 2019 compared with 2018. Figure
2.43 shows the annual mean regional
difference maps in the OLR and RSW
between 2019 and 2018. Peak OLR flux
changes are largely compensated by
RSW changes, but OLR increases are
spread over broader areas including
the Indian Ocean, continental Asia,
Australia, and South America. Large
reductions in OLR and increases in
RSW are observed over large areas
of the Pacific that stretch from east of
New Guinea to the eastern equatorial
Pacific and from east of New Guinea
to the southern Pacific. These regional
changes are associated with the tropi-
cal climate oscillation between minor
La Nifa conditions in early 2018, weak
El Nifio conditions during the first half
of 2019, and near-neutral conditions
by the end of 2019. Relative to the mul-
tivear data average from 2001 to 2018,
the 2019 global annual mean flux
anomalies (Table 2.7) are +0.55, —0.1,
-1.20, and +0.55 W m™ for OLR, TSI,
RSW, and total net flux, respectively.
With the exception of RSW, these
global annual averaged anomalies
are within the corresponding 2-sigma
interannual variability (Table 2.7) for
this period. The 2-sigma anomaly in
the RSW relative to climatology indi-
cates significant variability that could
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be indicative of cloud and/or snow/ice changes. More analysis is needed to attribute the source of
the variability.

The global monthly mean anomaly time series of TOA fluxes (Fig. 2.44) reveal that the global month-
ly mean OLR anomaly remained mostly positive throughout 2019. The OLR anomalies in 2019 began
with avalue of +0.10 Wm™, reached +0.77 W min March, dropped to —0.10 W min June, then mostly
increased each month for the rest of the year. It ended the year with a very large positive OLR anomaly
(~ +1.62 Wm™). This large December OLR anomaly is consistent with the values obtained from the
NOAA HIRS OLR (Lee and NOAA CDR Program 2011) and NASA AIRS OLR (Susskind et al. 2012)
dataset. The global monthly mean absorbed shortwave (TSI - RSW) anomaly remained entirely
positive during 2019, and the magnitudes of this anomaly were larger than the corresponding OLR
anomaly. The absorbed shortwave anomaly began with a value of +0.58 W m™, oscillated around
the value of +1.0 W m2 throughout the year, reached its maximum value of +1.71 W m2in Octo-
ber, ending the year with a value of +1.40 W m™. For the year as a whole, the 2019 global annual
mean absorbed shortwave anomaly was +1.1 W m™. The global monthly mean total net anomaly,
which is calculated from the absorbed shortwave anomaly minus the OLR anomaly, began 2019
with a value of +0.48 W m, remained positive throughout the year, reached a maximum value of
+1.51 W m~ in October, and ended the year with a value of —0.22 W m™. The positive absorbed
shortwave anomalies in 2019 dominated the negative effect of the OLR anomaly and resulted in the
positive 2019 global annual mean total net anomaly of +0.55 W m™. This was the sixth consecu-
tive year that the TOA global annual mean total net anomaly was positive relative to climatology.
Long-term trend analyses that include the last two months of the merged dataset are discour-

aged because of the natural

3 r—r—T—T—T"—"T"T—T—T—TTT—TT T 771711 fluctuation in ERB compo-
1
0

data merging process, and
potential for drift in the
FLASHFIlux product.

The TSI data used in this
study are provided by the
Total Irradiance Monitor
aboard the Solar Radiation
and Climate Experiment
(SORCE) mission (Kopp and
Lean 2011) and the Royal
Meteorological Institute of
Belgium composite dataset
(Dewitte et al. 2004), both
renormalized to the SORCE
Version 15. The RSW and
OLR data were obtained
from the CERES mission

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 (Wielicki et al. 1996, 1998)
aboard Terra and Aqua

Fig. 2.44. Time series of global monthly mean deseasonalized anomalies (Wm™)  gpacecraft.
of TOA Earth radiation budget for OLR (upper), absorbed shortwave (TSI-RSW;
middle), and total net (TSI-RSW-OLR; lower) from Mar 2000 to Dec 2019. Anoma-
lies are relative to their calendar month climatology (2001-18). Time series shows
the CERES EBAF Ed4.1 1° data (Mar 2000-Oct 2019) in red and the CERES FLASH- {10 the CERES EBAF (En-
Flux version 3C data (Nov-Dec 2019) in blue; see text for merging procedure. ergy Balanced And Filled)
(Sources: https:/ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAF41Selection.jsp and Ed4.1 product (Loeb et al.
https:/ceres-tool.larc.nasa.gov/ord-tool/jsp/FLASH_TISASelection.jsp.) 2009, 2012, 2018) for March

Anomaly (W m™?)

_3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The time series (Fig.
2.44) were constructed
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2000-0October 2019 and from the CERES Fast Longwave and Shortwave Radiative Fluxes (FLASH-
Flux) version 3C product (Kratz et al. 2014) for November—December 2019. The normalization of the
FLASHFIlux data (Stackhouse et al. 2016) results in 2-sigma monthly uncertainties of +0.42, +0.08,
+0.22, and +0.52 W m ™ for the OLR, TSI, RSW, and total net radiation, respectively. Global annual
averaged maps were normalized on a region-by-region basis for November and December 2019.

2) Mauna Loa clear-sky “apparent” solar transmission—J. A. Augustine, K. O. Lantz, J.-P. Vernier, and

H. Telg

Apparent solar transmission has been measured at the Mauna Loa Observatory in Hawaii by
NOAA’s Global Monitoring Division and its predecessors since the International Geophysical
Year in 1958. It is the longest record of its kind. Because the observatory is in a pristine environ-
ment, elevated far above the marine boundary layer, the Mauna Loa apparent transmission is
an effective proxy for stratospheric aerosol loading, although it is affected each spring by peren-
nial tropospheric Asian dust events (Bodhaine et al. 1981). It has been used primarily to track
background stratospheric aerosols and the decay of volcanic plumes that had been injected into
the stratosphere. Other studies have examined the influence of water vapor, ozone, and the
Quasi-Biennial Oscillation (QBO) on the transmission at Mauna Loa (Dutton et al. 1985; Dutton
and Bodhaine 2001; Dutton 1992).

Figure 2.45 presents monthly averages of the apparent transmission through December 2019
in time series along with a locally weighted scatterplot smoothing (LOWESS) fit smoothed with
six-month filter. The high frequency variability of the fit reveals the springtime minimum each
year as dust from Asia passes over. The cleanest extended period of the record is its first five years
prior to the Agung eruption (Indonesia, 1963—64). After the recovery from Agung, that level of
“background” stratospheric cleanliness, delineated by the horizontal dotted line in Fig. 2.45, has
only been achieved for brief periods. The largest anomalies are from the eruptions of El Chichon
(Mexico, 1982) and Mt. Pinatubo (Philippines, 1991), for which minimum transmissions of 0.80
and 0.82, respectively, were realized. Recoveries from those events lasted five to six years. About
five years after the stratosphere recovered from the effects of Pinatubo, a series of medium-scale
volcanic events, some of which were at high latitudes (Vernier et al. 2011; Andersson et al. 2015),
impacted the stratosphere over
Mauna Loa. Their combined T T T T T T T T T TR T T T
effect was a small downward 0.94
trend in transmission of —0.001
decade™ from 2002 through
2012 (large shaded area in Fig.
2.45) that is consistent with
a reported increase in strato-
spheric aerosols of 4%—7% per
year during the first half of the
period (Hofmann et al. 2009).
The anchor of that small trend
is the effect from the plume of 0.82} .
the Nabro eruption (Eritrea,

0.92

0.90

0.88} El Chichon

0.86[

0.84F

Apparent Transmission

lllllllllllllllllllllllllllllllllllIllllllllllll..l..l.ll.llllu—.j
June 2011) that lasted through 0.80™9560 1970 1980 1990 2000 2010 2020

2012. The largest anomaly after
Pinatubo was when transmis- Fig. 2.45. Time series of the clear-sky apparent transmission at MLO, Hawaii,

sion values of 0.90 and 0.91 for 1958-2019. Red circles represent monthly means. The gray curve is a
) ; six-month smoothed LOWESS fit to the time series. The horizontal dotted
in March and April of 2009 line represents the mean pre-Agung “background” transmission from 1958
matched the maximum ef- to 1962 (0.934). Major events that impacted the transmission record are
fect from Agung. Mt. Redoubt labeled, and shaded areas are relevant to the discussion.
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(Alaska) erupted in March 2009 and did reach the stratosphere, but trajectories show that its
plume did not escape the high latitudes. Because this short-term anomaly was not seen by the
Mauna Loa stratospheric lidar, tropospheric events may be responsible for the observed reduc-
tion in transmission. Kilauea (~32 km east of Mauna Loa) was highly active during that period,
and effluent from its lava flowing into the sea ~40 km southeast of Mauna Loa and strong Asian
dust events are both evident in satellite imagery (https://worldview.earthdata.nasa.gov) during
those two months.

After the effect from Nabro subsided in 2012, the transmission over Mauna Loa was relatively
high through 2016. However, since 2017 the transmission has been generally decreasing (small
shaded area in Fig. 2.45). The initial decrease in 2017 may be from Asian dust, but the decrease in
the latter half of that year is likely due an active wildfire season and associated pyro-thunderstorm
activity in British Columbia and the northwestern United States. Those events lofted smoke into
the stratosphere that was observed by CALIPSO, SAGE III, and surface-based lidars in France
into 2018 (Khaykin et al. 2018). The minimum transmission in September 2019 is very likely as-
sociated with the Raikoke eruption on the Kuril Islands on 22 June 2019, which was larger than
Sarychev (Kuril Islands, 2009) and Nabro. Balloon measurements in Virginia on 4 October 2019,
three months after the eruption, show the Raikoke plume residing in the lower stratosphere be-
tween 15 and 25 km above ground level. A combination of the CALIPSO space-borne lidar and a
trajectory model (Vernier et al. 2013) shows the plume over Hawaii on that day, and as of January
2020 it was still significantly impacting the composition of the stratosphere (see Fig. SB2.5).

The observatory is located near the top of the Mauna Loa volcano on the island of Hawaii at
3400 m above mean sea level. “Apparent transmission” is calculated from the ratio of solar hbeam
measurements at two fixed solar elevations (Ellis and Pueschel 1971), which is mathematically
equivalent to a traditional vertical column transmission calculation. For this application, repre-
sentative daily transmissions are computed as the mean of three such ratios from pyrheliometer
measurements at solar pathlengths of 2, 3, 4, and 5 atmospheres. To avoid contamination from
afternoon upslope winds, only morning measurements are used. This method minimizes error
because neither the calibration of the pyrheliometer nor the solar intensity at TOA are needed,
resulting in a precise time series back to 1958. The monthly product reported is the average of all
acceptable clear-sky morning transmissions of a particular month.

g. Atmospheric composition
1) Long-lived greenhouse gases—X. Lan, B. D. Hall, G. Dutton, J. Mihle, and J. W. Elkins

Increases in atmospheric greenhouse gas burdens, especially the long-lived greenhouse gases
(LLGHGS) carbon dioxide (CO,), methane (CH,), and nitrous oxide (N,0), are mainly the result
of human activity since the industrial revolution and largely responsible for increasing global
temperature (IPCC 2013).

The atmospheric pre-industrial abundance of CO, is estimated to be ~278 ppm (parts per mil-
lion by moles in dry air), based on air extracted from ice in Greenland and Antarctica (Etheridge
etal. 1996). Systematic measurements of atmospheric CO, began at Mauna Loa, Hawaii (MLO), in
1958, when the atmospheric CO, abundance was about 315 ppm. In 2019, annually averaged CO,
at MLO reached 411.4 + 0.1 ppm (all uncertainties are 68% confidence intervals), while globally
averaged CO, at Earth’s surface was 409.8 = 0.1 ppm (Fig. 2.46a).

Annual growth in global mean CO, has risen steadily from 0.6 + 0.1 ppm yr " in the early 1960s
to an average of 2.3 ppm yr' during 2009-18, with large interannual variability (Fig. 2.46a). The
increase in global mean CO, from 2018 to 2019 was 2.5 + 0.1 ppm (Table 2.8).

Variations in the atmospheric CO, show the changing imbalance between its emissions and
sinks. From 1850 to 2018, 440 + 20 Pg C (1 Pg C = 10" g C) were emitted as CO, from fossil fuel
burning (Friedlingstein et al. 2019). For 2018 alone, global fossil fuel emissions reached 10 = 0.5
Pg C yr for the first time in history (Friedlingstein et al. 2019). About half of the CO, emitted
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CO, (ppm)

Growth rate (ppm yr™)

CH, (ppb)

Growth rate (ppb yr'")

N,O (ppb)

Growth rate (ppb yr™")

Fig. 2.46. Global monthly mean dry-air surface mole fractions (black) of (a) CO,, (b) CH,, and (c) N,O derived from the
NOAA air-sampling network. Instantaneous growth rates (red), calculated as time-derivatives of deseasonalized trend
curves (see Dlugokencky et al. 1994b for methods), are shown on the right axis (insufficient and noisy N,O data prior to

1995 hinder calculation of a growth rate).

Table 2.8. Summary table of long-lived greenhouse gases for 2019 (CO, mixing ratios are in ppm, N,O and CH, in ppb,

and all others in ppt).

Carbon Dioxide Co, 1.37x10°° 2.08 409.8 (2.5) —
Methane CH, 3.63 x 107" 0.52 1866.6 (9.2) 9.1
Nitrous Oxide N,O 3.00x 107 0.20 331.9 (1.0)° 123
Chlorofluorocarbons
CFC-1 CCLF 0.26 0.059 226.5 (-1.6) 52
CFC-12 CCl,F, 0.32 0.161 501.5 (-4.2) 102
CFC-113 CCl,FCCIF, 0.30 0.021 69.7 (-0.6)° 93
Hydrochlorofluorocarbons
HCFC-22 CHCIF, 0.21 0.052 246.8 (2.7) 11.9
HCFC-141b CH,CCL,F 0.16 0.004 24.4 (0.0) 9.4
HCFC-142b CH,CCIF, 0.19 0.004 22.0(0.0) 18
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(cont.) Table 2.8. Summary table of long-lived greenhouse gases for 2019 (CO, mixing ratios are in ppm, N,0 and
CH, in ppb, and all others in ppt).

Hydrofluorocarbons
HFC-134a CH,FCF, 0.16 0.017 107.8 (5.8) 14
HFC-152a CH;CHF, 0.10 <0.001 6.9 (0.0) 1.6
HFC-143a CH;CF; 0.16 0.004 23.8(1.6) 51
HFC-125 CHF,CF,4 0.23 0.007 291 (3.1) 30
HFC-32 CH,F, 0.1 0.002 19.2 (2.8) 5.4
HFC-23 CHF, 0.18 0.006 32.5(1.3) 228
HFC-365mfc CH;CF,CH,CF, 0.22 <0.001 1.01 (0.04) 8.9
HFC-227ea CF;CHFCF, 0.26 <0.001 1.56 (0.14) 36
Chlorocarbons
Methyl Chloroform CH,CCl4 0.07 < 0.001 1.6 (-0.3) 5.0
Carbon Tetrachloride cal, 017 0.013 78.4 (-0.8)° 32
Methyl Chloride CH,Cl 0.01 <0.001 546.5 (1.4) 0.9
Bromocarbons
Methyl Bromide CH,Br 0.004 <0.001 6.56 (—0.06) 0.8
Halon 1211 CBrCIF, 0.29 0.001 3.25 (=0.10) 16
Halon 1301 CBrF, 0.30 0.001 3.28 (0.01) 72
Halon 2402 CBrF,CBrF, 0.31 <0.001 0.40 (-0.01) 28
Fully fluorinated species
Sulfur Hexafluoride SF; 0.57 0.006 9.96 (0.35) > 600
PFC-14 CF, 0.09 0.005 85.5(0.9) ~ 50000
PFC-116 CF, 0.25 0.001 4.85 (0.09) ~ 10000
PFC-218 CsFy 0.28 <0.001 0.69 (0.03) ~ 2600
PFC-318 ¢-C,Fg 0.32 <0.001 1.76 (0.07) ~ 3200
“Radiative efficiencies and lifetimes were taken from Appendix A in WMO (2018), except for SF, lifetime from Ray et al. (2017), CH, lifetime
from Prather et al. (2012). For CO,, numerous removal processes complicate the derivation of a global lifetime. AGGI = Annual Greenhouse
Gas Index. For radiative forcing, see https://www.esrl.noaa.gov/gmd/aggi/aggi.html
Mole fractions are global, annual surface means for the indicated calendar year determined from the NOAA cooperative global air sampling
network (Hofmann et al. 2006), except for PFC-14, PFC-116, PFC-218, PFC-318, and HFC-23, which were measured by AGAGE (Muhle et al.,
2010; Miller et al., 2010). Changes indicated in brackets are the differences between the 2019 and 2018 means. All values are preliminary and
subject to minor updates.
“Global mean estimates derived from multiple NOAA measurement programs (“Combined Dataset”).

since 1850 remains in the atmosphere. The rest of it has partially dissolved in the world’s oceans
where it has made seawater ~30% more acidic (as indicated by [H*], Tans 2009), with potential
impacts on marine life. While the terrestrial biosphere is currently also a sink for fossil fuel CO,,
the cumulative emissions of CO, from land use changes such as deforestation cancel terrestrial
uptake over the 1850-2018 period (Friedlingstein et al. 2019). While emissions of CO, from fossil
fuel combustion drive its increasing atmospheric burden, the large interannual variability in CO,
growth rate is mostly driven by terrestrial exchange of CO, influenced by changing meteorology; for
example, the strong El Nino that peaked in late 2015 contributed to a strong global CO, increase of
3.0 ppm yr (Betts et al. 2016). The connection between meteorology and terrestrial CO, exchange is
under investigation, as an important step to understand climate feedbacks. For example, regionally,
enhanced carbon uptake by North American ecosystems during the 2015 El Nifio was suggested to
be due to increased water availability and favorable temperature conditions (Hu et al. 2019).
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The global mean CH, abundance at Earth’s surface increased from 722 + 15 ppb (parts per bil-
lion) in 1750 to 1866.6 + 0.9 ppb in 2019 (Fig. 2.46b). The growth rate of CH, varies decadally and
interannually. A stabilization in CH, burden was observed during 1999-2006 after a large rise
in the 1980s and 1990s, followed by a period of rapid increase since 2007. The increase in global
mean CH, from 2018 to 2019 was 9.2 + 0.9 ppb, which is among the three largest annual increases
(with 2014 and 2015) since 2007. The drivers behind the changing CH, growth rates are still being
debated, mainly due to the complexity and uncertainty in the atmospheric CH, budget. Although
total global emissions of CH, are well-constrained by the current network of atmospheric mea-
surements and an estimate of its lifetime (DlugokencKky et al. 2011), the magnitude and trend in
emissions from individual sources and trends in CH, atmospheric lifetime are still uncertain. The
sources of atmospheric CH, are from anthropogenic (50%-65%) and natural origins (Saunois et al.
2016). The CH, loss process is atmospheric oxidation, mainly through reaction with the short-lived
(~1second lifetime) hydroxyl radical (OH), which is poorly constrained by observations. Other pro-
cesses are destruction by bacteria in soils and reaction with chlorine radicals in the atmosphere,
both of which are highly uncertain. The large variability in the CH, growth rate results predomi-
nantly from changes in emissions from wetlands and biomass burning driven by meteorology, but
it has also been affected by volcanic eruptions (Banda et al. 2013; Dlugokencky et al. 1994) and
fossil fuel emissions (DlugokencKky et al. 1998). Measurements of CH, abundance and its isotopic
composition suggest the drivers behind the post-2006 rise are mainly increased emissions from
biogenic sources and from natural and/or anthropogenic origins (Nisbet et al. 2019; Schaefer et
al. 2016; Schwietzke et al. 2016), while a decrease in biomass burning and a small increase in
fossil fuel emissions (Worden et al. 2017) can also play a minor role. Some studies have proposed
a significant role of increased
shale gas emissions from the

United States (Franco et al. 3‘0’:(3):23: AGGI (2019) = 1.45 14
2016; Hausmann et al. 2016; 1 =NoO 12
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2.47. (a) Direct radiative forcing (W m™) due to five major LLGHG and 15
minor gases (left axis) and the associated values of the NOAA AGGI (right
axis). The five major LLGHG include CO,, CH,, N,O, CFC-11, and CFC-12. The
15 minor gases consist of halogenated gases (CFC-113, CCl,, CH,CCl,, HCFCs
22, 141b and 142b, HFCs 1344, 152a, 23, 143a, and 125, SF,, and halons 1211,
1301 and 2402). (b) Annual increase in direct radiative forcing referenced
to 1990 (solid black line).
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1940s (MacFarling Meure et al. 2006; Thompson et al. 2019). The mean global atmospheric N,0
abundance in 2019 was 331.9 = 0.1 ppb, an increase of 1.0 + 0.2 ppb from 2018 (Fig. 2.46c). This
1.0 ppb increase in the annual mean is similar to the average annual increase over 2009-18
(1.0 £ 0.2 ppb) but larger than the average annual increase over 1995-2008 (0.8 + 0.2 ppb).

The impacts of these LLGHGs on global climate is estimated by their abilities to change the
global radiative energy. Compared with preindustrial times, increasing atmospheric CO, has
increased radiative forcing by > 2.0 W m™. The increase in CH, has contributed to a 0.51 W m™
increase in direct radiative forcing while the CH,-related production of tropospheric ozone (0,)
and stratospheric water (H,0) also contributes to ~ 0.30 W m™ indirect radiative forcing (Myhre
et al. 2014). NOAA’s Annual Greenhouse Gas Index (AGGI; Fig. 2.47) summarizes trends in the
combined direct radiative forcing by CO,, CH,, N,0, CFC-11, CFC-12, and 15 minor gases (Table 2.8;
Hofman et al. 2006). This index represents the annual cumulative radiative forcing of these gases
relative to the Kyoto Protocol baseline year of 1990. The 2019 AGGI was 1.45, suggesting a 45%
increase in radiative forcing since 1990 (combined radiative forcing in 2019 was 3.14 W m ). While
the atmospheric burdens of some greenhouse gases such as chlorofluorocarbons have declined
in recent decades (Fig. 2.48), the combined radiative forcing of LLGHGs has increased each year
(Fig. 2.47). Year-to-year variations in the AGGI increment correspond roughly with variability in
CO,, since CO, is responsible for about 65% of radiative forcing by LLGHGs and its rate of increase
during 2014-19 accounts for 82% of total increase in radiative forcing (Fig. 2.46).

— "'"-".‘F-_ —
50097 croap - ccl,
——CFC-11  ....cHCCI
400 - — CFC-113 53
——— HCFC-22

= HCFC-141b

100 HCFC-142b
—— HFC-134a

80 - ===-H1211x10

ppt

-==-H1301 %10
--=CF,

—-—SF,
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Fig. 2.48. Global mean mole fractions at Earth’s surface (ppt; dry air)
for several LLGHG, many of which also deplete stratospheric ozone.
See Table 2.8 for the 2019 global mean mole fractions of these and

other gases.
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2) Ozone-depleting substances—B. D. Hall, S. A. Montzka, G. Dutton, B. R. Miller, and J. W. Elkins
Halogenated gases, such as CFCs and HCFCs, influence climate directly through radiative forc-
ing and indirectly by contributing to stratospheric ozone depletion (Karpechko et al. 2018). The
emissions and atmospheric abundances of most ozone depleting substances (ODS) are declining
as expected due to controls implemented in the Montreal Protocol (Engel et al. 2018). By mid-2019,
tropospheric CFC-11 and CFC-12 declined 15% and 7.5% from their maximum abundances in the
mid-1990s and early 2000s, respectively (see Fig. 2.48). However, CFC-11 has not been declining as
fast after 2012, likely indicating a resumption of production, in violation of the Montreal Protocol
(Montzka et al. 2018a; Rigby et al. 2019), which banned production for emissive use starting in 2010.
Global CFC-11 emissions, derived from atmospheric data, were 13%-25% higher during 2014-16
compared to 2008-12 (Montzka et al. 2018a). The globally averaged decline in CFC-11 from 2018
to 2019 (1.6 ppt; Table 2.8) is slightly larger than in previous years (Hall et al. 2019), although the
significance of this difference and the influence of potential emission changes and atmospheric
processes (Ray et al. 2020) on these recent observations have not yet been determined.
Atmospheric abundances of HCFCs, which are replacements for CFCs, increased as CFC produc-
tion was phased out. In recent years the rates of increase of HCFC-22, HCFC-141b, and HCFC-142b
have slowed (Fig. 2.48). In fact, globally averaged abundances of HCFC-141b and HCFC-142b did
not change between 2018 and 2019 (Table 2.8). Substitutes for HCFCs, known as HFCs, do not
deplete ozone, but do contribute to radiative forcing. Abundances of many HFCs are increasing
at rates of several percent per year, although as a group their contribution to current forcing is
still small relative to that from ozone-depleting gases (~11%; Montzka et al. 2018b). Of the HFCs,
HFC-134a contributes most to radiative forcing (17 mW m™ in 2019). Its abundance increased by
5.8 ppt from 2018 to 2019, which is similar to the average increase (5.6 ppt yr) since 2010.
Equivalent effective stratospheric chlorine (EESC) is a measure of the ozone-depleting potential
of the stratospheric halogen loading at a given time and place. EESC is calculated from global
average surface mole fractions of long-lived ozone-depleting gases and weighting factors that
include surface-to-stratosphere transport times, mixing during transit, photolytic reactivity,
and ozone-destruction efficiency (Montzka et al. 1996; Newman et al. 2007). EESC is typically
calculated for two regions that differ in total available reactive halogen: the Antarctic and the
midlatitude stratosphere (Fig. 2.49). EESC is larger in the Antarctic compared to the midlatitudes
because a larger fraction of ODSs are converted into reactive halogen as they are transported to the
Antarctic. Even though the abundances of CFCs are decreasing, their contribution to EESC is still
substantial because of their long atmospheric lifetimes (Table 2.8). In contrast, the contribution

(a) Midlatitude (b) Antarctic
40004 mcFCs 4000 —
B HCFCs
B CCl,
30001 m CH.CCI, 3000
g halons g
o _— 5 CH,Br o
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2 moHO o |2 =
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Fig. 2.49. EESC for the midlatitude and Antarctic stratosphere derived from NOAA surface measurements of long-lived

ODSs, supplemented with data from the WMO A1 scenario (Carpenter et al. 2018). EESC values correspond to Jan of each

year. In this context, Antarctic and midlatitude represent regions of the stratosphere having a mean age-of-air equal to
5.5 and 3 years, respectively.
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of methyl chloroform (CH,CCl,) to EESC is now very small because emissions have decreased to
near zero and its lifetime is relatively short (five years).

By the beginning of 2019, EESC decreased to 3710 ppt and 1575 ppt in Antarctic and midlatitude
regions, respectively. These represent 22% and 47% reductions from the peak values in EESC
over Antarctica and the midlatitudes, respectively, toward the 1980 benchmark values (see also
www.esrl.noaa.gov/gmd/odgi/). EESC is expected to return to 1980 benchmark levels around 2050
in the midlatitudes and around 2075 in the Antarctic (Carpenter et al. 2018).

3) Aerosols—S. Rémy, N. Bellouin, Z. Kipling, M. Ades, A. Benedetti, and O. Boucher

Atmospheric aerosols play
an important role in the cli-
mate system by scattering and
absorbing radiation, and by
affecting the life cycle, optical
properties, and precipitation
activity of clouds. Aerosols
also represent a serious public
health issue in many countries,
and hence are subject to moni-
toring and forecasting as part
of air quality policies.

The Copernicus Atmosphere
Monitoring Service (CAMS)
runs a near-real time global
analysis of aerosols and trace
gases. The CAMS project also
produced a reanalysis of glob-
al aerosols and trace gases
that covers the years 2003-19,
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Fig. 2.50. Globally averaged total AOD at 550 nm over monthly (red) and

annual (blue) periods for 2003-19.

named the CAMS reanalysis (CAMSRA; Inness et al. 2019) by combining state-of-the-art numerical
modeling and aerosol remote-sensing retrievals from MODIS (Levy et al. 2013) and the Advanced
Along Track Scanning Radiometer (AATSR; Popp et al. 2016). Other reanalysis products, such as
MERRAero (Buchard et al. 2016), are also available. Verification of aerosol optical depth (AOD)
at 550 nm against independent AERONET observations shows that the CAMS reanalysis has a
smaller bias and error than its predecessors, the CAMS interim reanalysis (Flemming et al. 2017)
and the Monitoring Atmospheric Composition and Climate (MACC) reanalysis (Inness et al. 2013).
This section uses data exclusively from the CAMS reanalysis.

The time series of monthly and yearly globally averaged total AOD during 2003-19 (Fig. 2.50)
shows strong seasonality, driven mainly by dust episodes between March and July in the Sahara,
Middle East, and Taklimakan/Gobi and seasonal biomass burning in Africa, South America,
Indonesia, and other regions. There is no significant trend over the period, but extreme events
such as the September—October 2015 fires over Indonesia associated with El Nifio are prominent.
The summer maximum was very pronounced in 2019 mainly because of the large fires in July
and August, particularly over Alaska, Siberia, and in the Amazon basin.

The AOD climatology between 2003 and 2019 (Fig. 2.51a) is marked by high values over the
highly populated regions of India and China, mainly caused by anthropogenic emissions. High
AOD over the Sahara and Middle East is primarily from dust, while the maxima over central Af-
rica, Indonesia, the Amazon basin, and parts of Siberia are caused by fire emissions. The high
values over Hawaii and close to Mexico City are a known artefact of the CAMS reanalysis related

to volcanic outgassing.

AUGUST 2020 | State of the Climate in 2019

BAMS

Unauthe nticat%ﬁ Pﬂr&%ﬁo@h IM&A'E 1121 45??@ uTtc



As compared to the 2003-18
average from the CAMS reanalysis,
2019 saw negative anomalies of
total AOD over most of the United
States, Europe, and Africa, as well
as China, Korea, Japan, and parts
of the Amazon basin (Plate 2.1x),
although AOD in the last was sig-
nificantly higher than in 2018. The
negative anomalies over Brazil, the
United States, Europe, and China
are part of alonger trend over these
regions, as shown in Fig. 2.51b. Fig-
ure 2.51c indicates that the trend is
much more negative over China for
2012-19 than for 2003-19, which is
consistent with the observed de-
crease in industrial sulfur dioxide
(SO,) emissions driven by tighter
emission standards (Karplus et al.
2018). The 2012-19 trends are not
significant over much of the Ama-
zon basin, showing that most of the
decrease in AOD occurred before

2012. The negative anomaly over
l | | I the Sahel and Sahara (Plate 2.1x)
-0.020 -0.010 -0.006 -0.004 -0.002 0.002 0.004 0.006 0.010 0.020

AOD yr-1 was caused by reduced dust pro-
duction in 2019, while the negative
anomaly over most of west Africais
explained by a less active biomass

burning season than usual there.

Positive anomalies of total AOD
in 2019 (Plate 2.1x) are found in the
southern part of the Arabian Pen-
insula, Iran, Pakistan, northern
India, and parts of Iran, caused
by more active dust production
- = over these regions. The positive
T I I T _ anomaly over the Indian subcon-

-0.02 -0.01 -0.006 -0.004 -0.002 0002 0004 0006 001  0.02 tinent corresponds to a long-term
ARDyre trend of increasing anthropogenic

Fig. 2.51. (a) Total AOD at 550 nm averaged over the period 2003-19.  €missions (Satheesh et al. 2017),
Note the regional differences, with much greater total AOD values over as shown in Figs. 2.51b,c. Positive
parts of northern Africa, the Arabian Peninsula, southern Asia, and east- anomalies (Plate 2.1x) were also
ern China. Linear trends of total AOD (AOD yr™) for (b) 2003-19 and (c) caused by extreme fires, such as

2012-19. Only trends that are statistically significant (95% confidence)
are shown. Color scales have been constructed to highlight trends.

over Alaska, northern Canada, and
large parts of Siberia during boreal
summer, and over Australia and Indonesia from October to December. Some of these events even
led to the injection of aerosol in the stratosphere (see Sidebar 2.2). The drought that provoked
the increased occurrence of fires over southeastern Australia and Indonesia was caused in part
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by a strong anomaly of the Indian Ocean dipole (IOD), the main cause of extreme droughts over
Australia (Ummenhofer et al. 2009). The exceptional severity of the Australian fires is highlighted
in Plate 2.1y, which shows the number of days with daily AOD at 550 nm above 99.9% of the daily
record between 2003 and 2018. Sidebar 7.6 discusses these fires in more detail.

Radiative forcing resulting from aerosol-radiation (RFari) and aerosol-cloud interactions
(RFaci) for the period 2003-19 is shown in Fig. 2.52, as estimated using the methods described in
Bellouin et al. (2020). The year 2019 was close to the long-term average in terms of both RFari and
RFaci. Time series indicate no statistically significant trends in aerosol radiative forcing because
the radiative impact of decreasing trends over Europe, North America, and China is offset by in-
creasing trends over India. Evaluating trends remains statistically challenging because of large
uncertainties in the estimates, which are mostly due to lack of knowledge of the anthropogenic
fraction of the aerosol and its radiative forcing efficiency.

(b)

V3T T T T T T T T

(a) CAMSRA: RFari

RFari (W m~2)

-14 -1 -06-04-02 0 02 04 06 1 14

Anomaly (W m~2) -0.gu ‘ il ' . : L '

2003 2005 2007 2009 2011 2013 2015 2017 2019

(c) CAMSRA: RFaci

RFaci (W m~2)
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-1 1 M TPOREN (NN (LS NP S A S M, M
2003 2005 2007 2009 2011 2013 2015 2017 2019

Fig. 2.52. Radiative forcing in the shortwave spectrum of (a), (b) aerosol-radiation (RFari) and (c), (d) aerosol-cloud interac-
tions (RFaci) for 2003-19. The left column shows the average distribution. The right column shows time series of global
averages, with the uncertainties of these estimates shown in gray.

4) Stratospheric ozone—M. Weber, W. Steinbrecht, C. Arosio, R. van der A, S. M. Frith, J. Anderson,
M. Coldewey-Egbers, S. Davis, D. Degenstein, V. E. Fioletov, L. Froidevaux, D. Hubert, C. S. Long, D. Loyola,
A. Rozanov, C. Roth, V. Sofieva, K. Tourpali, R. Wang, and J. D. Wild
The ozone layer that protects the biosphere from the harmful effects of ultraviolet radiation
(UV) resides in the stratosphere. The total ozone column, with its main contributions from lower
stratospheric ozone, determines how much UV reaches the surface. Over recent decades, changes
in the upper stratospheric ozone have shown the clearest signs of ozone recovery due to the phas-
ing out of ODSs since the late 1980s, following the Montreal Protocol (section 2g2). The total ozone
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column annual mean anomaly distribution for 2019 in Plate 2.1z shows opposite behavior in the
two hemispheres. While the Southern Hemisphere (SH) shows positive anomalies with respect
to the long-term mean, steadily increasing towards the South Pole and over Australia, negative
anomalies cover most of the Northern Hemisphere (NH) with some positive values, mostly at high

(a) ) ) J  Fig. 2.53. Time series of annual mean total ozone (DU)
295 Near Global (60°N-60°S) 71 in(a)-(d) four zonal bands, and (e) polar (60°-90°) to-
290 tal ozone in Mar (NH) and Oct (SH), the months when

a 285 polar ozone losses usually are largest. Data are taken
280 from WOUDC (World Ozone and Ultraviolet Radiation
Data Centre) ground-based measurements combining
(b) Brewer, Dobson, SAOZ (Systéme D'Analyse par Ob-
350 servations Zénithales), and filter spectrometer data
(red; Fioletov et al. 2002; 2008); the BUV/SBUV/SBUV2
340 V8.6/0MPS merged products from NASA (MOD V8.6,
a dark blue; Frith et al. 2014, 2017) and NOAA (light
e blue; Wild and Long, pers. comm., 2019); the GOME/
230p SCIAMACHY/GOME-2 products GSG from University
B of Bremen (dark green; Weber et al. 2018) and GTO
320 from ESA/DLR (light green, Coldewey-Egbers et al.
. 2015; Garane et al. 2018). MSR-2 (purple) assimilates
© st - nearly all ozone datasets after corrections with re-
s spect to the ground data (van der A et al. 2015). All
2 285 - six datasets have been bias corrected by subtract-
260} ing averages for the reference period 1998-2008
255 and adding back the mean of these averages. The
A . dotted gray lines in each panel show the average
(d) 330 1964-80 1 ©zone level for 1964-80 calculated from the WOUDC
_________________________________________________________________ 1 data. The thick orange lines shows the average from
300k o e chemistry-climate (CCMI) model runs (Eyring et al.
o f SH (35°-60°S) 2013; Morgenstern et al. 2017; WMO 2018; SPARC/
o [ 103C/GAW 2019). All observational data for 2019 are
310 preliminary.
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northern latitudes. Total ozone levels vary from year to year, depending on the dynamical state
of the global atmosphere mainly determined by El Nifio—Southern Oscillation (ENSO) and the
Quasi-Biennial Oscillation (QBO). Both ENSO and the QBO are tropical phenomena that have a
strong influence on the Brewer-Dobson circulation (BDC) determining the global stratospheric
ozone distribution (e.g., Diallo et al. 2018; Olsen et al. 2019). Throughout 2019, the QBO was in its
west phase, which generally leads to higher total ozone in the inner tropics and lower ozone in
the subtropics and beyond (Plate 2.1z). The extended regions of below-average total ozone at low
to middle NH latitudes are possibly linked to the weak ENSO condition in 2019 (Olsen et al. 2019).
A major feature of 2019 is the very weak stratospheric SH winter polar vortex, a very small ozone
hole (see Sidebar 6.1), and above-average total ozone at high southern latitudes during austral
winter/spring as well as in the annual mean (Plate 2.1z). During the 2019 Antarctic winter/spring
season, a stratospheric warming event, which is rare in the SH but frequent in the NH, strongly
perturbed the polar vortex. A persistent weak polar vortex in winter/spring, as in 2019, is associ-
ated with a stronger hemispheric BDC, occurring usually during west QBO phases, that leads to
more ozone being transported into middle to high latitudes throughout much of the SH. In addi-
tion, higher polar winter stratospheric temperatures also reduce polar chemical ozone loss (e.g.,
Weber et al. 2011). As a consequence, annual mean total ozone in 2019 was fairly high, by up to
65 DU above the long-term average, at high southern latitudes (Plate 2.1z).

Figure 2.53 displays the annual mean total column ozone time series from various merged
datasets for the near-global (60°N-60°S) average, tropics, extratropics, and selected months in
the polar regions. In October 2019, the SH polar cap total ozone (Fig. 2.53e) was as high as in 2002
and 1988, both years characterized by high dynamical activity and perturbed winter vortices
(Schoeberl et al. 1989; Sinnhuber et al. 2003) and about 100 DU above the value in October 2015,
a year with substantial polar ozone loss (Solomon et al. 2016). On the global scale (Fig. 2.53a),
total ozone mean values in 2019 were lower than the previous year but within the variability
observed during the last two decades. The same is true for the NH midlatitudes and the tropics
(Figs. 2.53b,c) while midlatitude SH values were above the post-1990 average (Fig. 2.53d). In Fig.
2.53a, the median of 17 climate-chemistry model CCMI runs are also shown (Eyring et al. 2013;
Morgenstern et al. 2017; WMO 2018; SPARC/IO3C/GAW 2019). The agreement of the observations
with models that account for changes in ODS and greenhouse gases gives strong evidence that
total ozone is on its slow path of recovery. However, in 2019 and previous years, the global ozone
means from observations, as well from the CMI models, are still about 3% below the average from
the period 1964-1980, when ODS levels were low.

Figure 2.54 shows ozone changes at two different altitudes, in the upper stratosphere (panels
a—c, 42 km altitude) and in the lower stratosphere (panels d—f, 22 km). Ozone in the upper strato-
sphere shows the larger decline due to ODS increases until the late 1990s (WMO 2018). This large
decline was stopped as a result of measures mandated in the international Montreal Protocol
to phase-out ODS. Since about 2000, we have been in a phase of slow ozone recovery. In 2019,
ozone values in the upper stratosphere were above the 1998-2008 average. In the lower strato-
sphere, long-term ozone variations are dominated by meteorological variations and transport
(e.g., Chipperfield et al. 2018). Figures 2.54d—f show no clear sign of ozone increases in the lower
stratosphere over the last 20 or so years. In 2019, the lower stratospheric values were at the lower
end of expectations (gray shaded area of model predictions) in the NH and tropical bands (Figs.
2.54d,e). The continuing tropical decline (20°N-20°S) has been linked to climate change-related
acceleration of the meridional BDC (Ball et al. 2018; Chipperfield et al. 2018; WMO 2018). Large
interannual variations, as well as uncertainties in the observational data records (spread between
different datasets), make reliable detection of the expected small underlying trends rather dif-
ficult, especially in the lower stratosphere.
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5) Stratospheric water vapor—S. M. Davis, K. H. Rosenlof, D. F. Hurst, H. Vomel, and H. B. Selkirk

Stratospheric water vapor (SWV) is a radiatively and chemically important trace gas with
its variability strongly affected by the absolute humidity of air entering the stratosphere in the
tropics, which is in turn largely determined by the temperature of the tropical cold point tropo-
pause. Following 2018, a year in which lower stratospheric water vapor in the tropics dropped to
a near-record low for the Aura Microwave Limb Sounder (MLS) satellite record (2004-19), water
vapor abundance in the tropical lower stratosphere increased slightly during 2019 (Fig. 2.55). In
January 2019, the Aura MLS monthly mean tropical (15°N-15°S) lowermost SWV anomaly (at 82
hPa, or ~17 km) was —0.6 ppm (parts per million, equivalent to a mole fraction of pmol mol™),
about 20% below the 2004-19 January average. The tropical lower SWV anomaly transitioned to
positive in April and remained between +0.3 and +0.4 ppm (within 10% of the average value for
each month) for the remainder of the year (Fig. 2.55).

In general, the qualitative behavior of lowermost SWV observed by Aura MLS is consistent with
balloon-borne frost-point hygrometer soundings at five locations (Fig. 2.56), although a small drift
in MLS relative to the balloon measurements noted in earlier work persists (Hurst et al. 2016). The
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Fig. 2.55. (a) Time series of vertical profiles of tropical (15°N-15°S) SWV
anomalies and (b) latitudinal distributions of SWV anomalies at 82 hPa.
Both are based on Aura MLS data. Anomalies are differences from the
mean 2004-19 water vapor mixing ratios (ppm) for each month. Panel
(b) shows the propagation of tropical lower SWV anomalies to higher
latitudes in both hemispheres as well as the influences of dehydrated
air masses from the Antarctic polar vortex as they are transported
toward the SH midlatitudes at the end of each year.

dry anomaly at San José, Costa Rica
(10°N), at the start of 2019 propa-
gates northward to progressively
reach Hilo, Hawaii (20°N), Boulder,
Colorado (40°N), and then Linden-
berg, Germany (52°N), by mid-2019
(Figs. 2.55h, 2.56). In contrast, the
dry anomaly was barely observed
in the southern midlatitude records
from MLS (Fig. 2.55b, Fig. 2.56e) and
frost point hygrometers launched
at Lauder, New Zealand (45°S, Fig.
2.56e). Similarly, the subsequent
wet anomaly at San José starting in
April 2019 propagates poleward and
can be seen at Boulder by the end of
the year.

At the tropical sites Hilo and San
José, the seasonal and interannual
variability of SWV is well correlated
with variations in the cold-point
temperature (CPT), as expected
(Fig. 2.56d). Monthly mean tropical
CPT anomalies increased from very
cold at the beginning of 2019 (-1 K)
to moderately warm at the end of
the year (+0.5 K), congruent with
the dry-to-wet transition in tropical
lower SWV.

In general, interannual varia-
tions in CPTs are correlated with
those observed in several modes of
large-scale climate variability such
as tropical lower stratospheric up-
welling rates, an important part of
the BDC, ENSO, and QBO in tropical

stratospheric winds (Dessler et al. 2014). After January 2019, the QBO was in its westerly (warm)
phase at 50 hPa. ENSO was in a weak El Nifio phase for the first half of the year, followed by
six months in its neutral phase. Reduced tropical upwelling due to the QBO westerly phase may
have produced warming tropical tropopause temperatures and, therefore, the positive tropical
lower SWV anomalies during the latter half of the year. Additionally, it is worth noting that the
I0D was in its positive phase from May 2019 through the end of the year, including record-setting
positive indices in October and November (see section 4h for details). It is unknown whether the
I0D impacts SWV, but there is some indication of correlation between SWV and Indian Ocean

sea surface temperatures (SSTs; Garfinkel et al. 2018).
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Fig. 2.56. Lower SWV anomalies over five balloon-borne frost-point (FP) hygrometer stations. Each panel shows the
lower stratospheric anomalies of individual FP soundings (black) and of monthly zonal averages of MLS retrievals at
82 hPa in the 5° latitude band containing the FP station (red). High-resolution FP vertical profile data were averaged be-
tween 70 and 100 hPa to emulate the MLS-averaging kernel for 82 hPa. Each MLS monthly zonal mean was determined
from 2000-3000 profiles. Anomalies for MLS and FP data are calculated relative to the 2004-19 period for sites except
for Lindenberg (2009-19) and Hilo (2011-19). Tropical CPT anomalies based on the MERRA-2 reanalysis (d; blue curve),
which are generally well correlated with the tropical lower SWV anomalies, are the driving force behind the variations
in tropical SWV during 2019.

6) Tropospheric ozone—J. R. Ziemke and O. R. Cooper

The Intergovernmental Panel on Climate Change identifies tropospheric ozone as the third most
influential greenhouse gas, following carbon dioxide and methane (IPCC 2013). Tropospheric
ozone contributes to net warming of the atmosphere, with average global radiative forcing of
0.4 + 0.2 W m™. While tropospheric ozone is a surface pollutant detrimental to human health and
vegetation (Fleming et al. 2018; Mills et al. 2018), it is also the dominant producer of the hydroxyl
radical (OH), the primary oxidant of pollutants in the troposphere. Sources for tropospheric ozone
include ozone from the stratosphere and photochemical production from precursors in the tropo-
sphere including methane, volatile organic compounds, biogenic hydrocarbons, lightning NOx,
and emissions generated from combustion of fossil fuels and biomass burning (Neu et al. 2014;
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Fig. 2.57. Monthly averages of OMI/MLS tropospheric ozone burdens
(Tg) from Oct 2004 through Dec 2019. The top curve (black) shows
60°N-60°S monthly averages (solid line) with 12-month running
mean (dashed line). The bottom two curves show monthly averages
(solid lines) and running means (dashed lines) for the NH (red) and SH
(blue). Slopes of linear fits to the data are presented with their 95%
confidence-level uncertainties. All three trends are deemed statisti-
cally significant at the 95% confidence level.
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Fig. 2.58. Linear trends in OMI/MLS tropospheric column ozone (DU
decade™) on a 5° x 5° grid from Oct 2004 through Dec 2019. Circles
denote trends with p-values less than 0.05. Trends were calculated us-
ing a multivariate linear regression model (e.g., Randel and Cobb 1994,
and references therein) that includes a seasonal cycle fit and the Nifo
3.4index as an ENSO proxy; trend uncertainties include autoregressive
adjustment via Weatherhead et al. (1998).

Young et al. 2013, 2018; Monks et al.
2015). The main drivers of planetary-
scale variability of tropospheric
ozone include dynamical forcing
from ENSO and the Walker circula-
tion in the tropics, and baroclinic
waves in midlatitudes (Chandra
et al. 1998, 2009; Sun et al. 2014;
Ziemke et al. 2015). Main drivers of
small-scale patterns are largely de-
pendent on local emissions of ozone
precursors, both anthropogenic and
natural, such as fossil fuel combus-
tion and biomass burning. The high
temporal and spatial variability of
tropospheric ozone makes it difficult
to determine decadal trends on re-
gional or global scales based solely
on in situ observations (Cooper
et al. 2014; Lin et al. 2014; Barnes
etal. 2016; Strode et al. 2019; Gaudel
et al. 2018; Tarasick et al. 2019).

All State of the Climate reports
since 2012 have provided updates
on global tropospheric ozone based
on independent measurements
from ground- and satellite-based
instruments (Ziemke and Cooper
2018). Due to limited spatial cover-
age and annual updates of ground-
based ohservations, these reports
have relied primarily on combined
Aura Ozone Monitoring Instrument
(OMI) and MLS satellite ozone
measurements (Ziemke et al. 2019).
OMI/MLS data show broad regions
of positive 2019 tropospheric ozone
column anomalies (relative to the
2005-18 average) of ~1.3 DU (4%) in
the NH midlatitudes, with smaller
anomalies of ~1 DU or less else-
where (Plate 2.1aa). Hemispheric
and global average tropospheric
ozone burdens and their 95% confi-
dence levels for 2019 were 162 + 7 Tg
(0°-60°N), 151 + 8 Tg (0°-60°S), and
313 £ 8 Tg (60°N-60°S) (Fig. 2.57).

Trends in hemispheric and global burdens from October 2004 through December 2019 indicate
clear increases of ~0.6% yr . Spatially, trends are overwhelmingly positive, the strongest of which
are ~ +3.3 DU decade™ (~ +1% yr') above India and east/southeast Asia, extending eastward over
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the North Pacific Ocean (Fig. 2.58). These trends are consistent with model estimates based on
strengthening emissions of ozone precursors from southeast, east, and south Asia, primarily
due to fossil fuel combustion (Zhang et al. 2016; Lin et al. 2017). The models indicate that ozone
produced in these areas is transported eastward in the free troposphere over the North Pacific
Ocean, supported by the trends in Fig. 2.58. Positive trends in the SH extra-tropics have been
linked to a broadening of the Hadley circulation (Lu et al. 2018a).

Three long-term baseline monitoring sites, with quality-assured data, are available for updating
surface ozone trends through 2019: 1) Mauna Loa Observatory (MLO), Hawaii (19.5°N, 155.6°W, 3397
m a.s.l.); 2) South Pole Observatory (SPO), Antarctica (90°S, 59°E, 2840 m a.s.l.); and 3) Barrow
Atmospheric Baseline Observatory, Utgiagvik, Alaska (71.3°N, 156.6°W, 11 m a.s.l.). Continuous
measurements began at MLO in September 1973, at SPO in January 1975, and at Barrow in March
1973, with additional observations available at SPO for the years 1961-63 and at MLO for the years
1957-59 (Tarasick et al. 2019).

The limited data at MLO and SPO from the 1950s/1960s indicate that ozone at these remote high-
elevation sites was similar in the mid-twentieth century despite being located in different hemi-
spheres. Ozone at SPO has changed little since the exploratory measurements of the early 1960s,
with only a slight increase of ~2 ppbv during the period of continuous measurements (1975-2019;
Fig. 2.59). In contrast, ozone at MLO increased at the rate of 0.14 + 0.05 ppbv yr, resulting in a 17%
(6.4 ppbv) increase since 1973. MLO experiences high inter-annual ozone variability due to its loca-
tion in the transition region between tropical and extratropical air masses. The ozone trend in the
extratropical air masses can be isolated by focusing on the dry air masses, which tend to originate
at higher altitudes and latitudes to the west and northwest of MLO (Gaudel et al. 2018). The trend
in the dry air masses (23%, or 9.9 ppbv, total increase since 1974) is 50% greater compared to the
trend using all air masses, which implies that the site is influenced by ozone increases in upwind
regions to the west and northwest, most likely Asia where surface and free tropospheric ozone has
generally increased over the past two decades (Cohen et al. 2018; Lu et al. 2018b; Gaudel et al. 2018).
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80 Mauna Loa trend 1973-2019: 0.14 = 0.05 ppbv yr™', p=0.00 4
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Fig. 2.59. Monthly median ozone at Utgiagvik (Barrow), Alaska (Mar 1973-Dec 2019, green) and South Pole (Jan 1975-Dec
2019, black) using data from all hours of the day. Additional data from South Pole are shown for the early 1960s. Also
shown are nighttime monthly median ozone values at MLO calculated with all available data for months with at least 50%
data availability, Oct 1973-Dec 2019 (blue), with early observations from the late 1950s. MLO data are limited to nighttime
observations to focus on free tropospheric air masses. In addition, the monthly median values associated with dry air
masses (orange) at MLO are included (dewpoint < the climatological monthly 40th percentile, and a sample size of at least
24 individual hourly nighttime observations). Trends (solid straight lines) are based on least-squares linear regression fit
through the monthly values (1970s-2019), and reported with 95% confidence intervals and p-values. The MLO and South
Pole trend lines are extrapolated back in time to the late 1950s (dashed lines).
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7) Carbon monoxide—). Flemming, A. Inness, A. Crotwell, and G. Pétron

Carbon monoxide (CO) is a short-lived air pollutant with indirect impacts on climate forcing. CO
is emitted by incomplete combustion sources and produced during the oxidation of methane and
nonmethane hydrocarbons (Hartmann et al. 2013). In the troposphere CO has a lifetime of one to
three months. It is destroyed mostly by hydroxyl radicals, OH, which are also the main sink for
CH,. Due to its short lifetime, atmospheric levels of CO reflect the distribution and seasonality of
its sources and the OH sink.

Unusually strong wildfire activity in 2019, especially over Indonesia, eastern Siberia, Alaska,
Amazonia, and Australia led to regional CO anomalies at the seasonal time scale, as shown in
Plate 2.1ab, which is based on CAMS reanalysis. On the other hand, tropical and southern Africa,
an area that generally has one of the largest contributions from fires to the global CO burden, did
not have increased emission in 2019.

The most pronounced CO anomaly in 2019 appeared over Maritime Southeast Asia in autumn
because of intense wildfires in the region, which were the third strongest since 2003. The fire-
driven CO anomalies occurred against a background of a continually decreasing CO burden in
the NH.

Figure 2.60a shows a time series of the monthly mean global burden of CO from the CAMS
reanalysis for the period 2003-19 (Inness et al. 2019). Approximated with a linear trend over the
whole period, the total global CO burden has declined by 1.7 Tg yr, and as piecewise trends
following Flemming and Inness (2018) for the periods 2003—-07, 2008, and 2009-19 by -3.1, -14.0,
and +0.1Tg yr', respectively. The global CO burden in 2019 was similar to most years in the last
decade, with the exception of 2015 when wildfires in Indonesia led to exceptionally large burdens.
Clean marine boundary layer observations of CO are shown in Fig. 2.61. Background CO declined
at an average rate of -1 ppb yr' in the NH temperate latitudes and 1.5 ppb yr* for latitudes north
of 53°N (Novelli et al. 2003; Pétron et al. 2019). Based on measurements of Greenland firn air (old
air trapped in perennial snowpack), this negative trend in the NH started in the 1970s or 1980s
and is likely explained by decreasing anthropogenic CO emissions (Petrenko et al. 2013).

The spatial distribution of the 2019 CO anomalies with respect to the period 2003-19 is shown
in Plate 2.1ab. Small negative anomalies of up to —5% were seen for most of the NH. 2019 was
a year of increased fire activity in areas experiencing positive temperature anomalies and dry
conditions. Intensive fire activity in Indonesia during September—November increased the CO
burden in this region by up to 20 Tg, which was the third highest since 2003 after the two El Nifio
years 2006 and 2015 (Fig. 2.60b). Furthermore, unusually strong fires in Alaska, Siberia, and
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Fig. 2.60. Time series of monthly CO burdens (Tg) for (a) the whole globe and (b) over Maritime Southeast Asia from the
CAMS reanalysis for 2003-19 (2019 is shown in red) and a piecewise linear trend (dotted line) for the periods 2003-07,
2008, and 2009-19.
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The global CO burden since the early

g5l h 2000s has been recorded by reanalyses of

i ] atmospheric composition, which assimilate

b ] CO satellite retrievals in chemistry transport

1990 1995 2000 2005 2010 2015 202q  Mmodeling systems (Miyazaki et al. 2015;

Flemming at al. 2017; Gaubert et al. 2017;
Inness et al. 2019). The CAMS reanalysis
assimilated TIR version 6 total column CO
retrievals of the Measurement of Pollution
in the Troposphere (MOPITT) instrument
(Deeter et al. 2014) globally, only excluding observations poleward of 65°N/S using the ECWMF
4D-VAR data assimilation system. The CAMS reanalysis can be compared with independent CO
column retrievals, xCO, at the ground-based Total Carbon Column Observing Network (TCCON)
site, Park Falls, Wisconsin, for the 2003-19 period. At Parks Falls retrieved xCO decreased with
a rate of —0.56 ppb yr'', and the CAMS reanalysis at a rate of —0.48 ppb yr (Fig. 2.62). Park Falls
was chosen to illustrate the quality of the CAMS reanalysis because it has the longest record,
dating to 2004. More comprehensive validation of the CAMS reanalysis against TCCON data can
be found in Inness et al. (2019).

Surface CO dry air mole fractions are measured using in situ sensors and discrete air analysis
using flask samples. NOAA and its cooperative air-sampling partners have been monitoring CO
levels since 1991 through a global network of remote surface sites (Novelli et al. 2003; Pétron et al.
2019). The long-term calibrated CO measurements are available through the WMO Global Atmo-
spheric Watch Programme World Data Center for Greenhouse Gases (https://gaw.kishou.go.jp/).

Fig. 2.61. Time series of surface CO (ppb) measured at 31
NOAA in situ flask observations sites and averaged over the
clean marine boundary layer for the NH (0°-90°N, black) and
SH (0°-90°S, red) for the period 1991-2019.
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Fig. 2.62. Column-averaged CO (xCO, in ppb) at the Park Falls TCCON station. Monthly mean observations are shown by
the black dots, and corresponding monthly mean xCO columns calculated using the TCCON-averaging kernels are shown
by the blue triangles. The continuous blue line is the monthly xCO from the CAMS reanalysis.

AUGUST 2020 | State of the Climate in 2019 BAMS

Unauthe nticat%ﬁ Pd}&%laognll IM&!E 1121 45§? uTtc



Sidebar 2.2. 2019: A 25-year high in global stratospheric aerosol loading—T. LEBLANC,
F. CHOUZA, G. TAHA, S. KHAYKIN, J. BARNES, J.-P. VERNIER, AND L. RIEGER

The role of stratospheric aerosols in Earth's radiative budget
and chemistry has long been recognized (Mitchell 1971; Robock
2000; Hofmann and Solomon 1989; Aquila et al. 2013). Their
presence in the stratosphere is mainly driven by the injection
from below of tropospheric aerosols and sulphur-containing
compounds (e.g., sulfur dioxide [SO.] and carbonyl sulfide [0CS])
that act as precursors for the formation of sulfuric acid droplets
in the stratosphere. Explosive volcanic eruptions are the major
source of stratospheric sulfur, but in volcanic quiescent peri-
ods, OCS and other non-sulfate compounds such as ash, black
carbon, organic aerosols, and smoke particles from biomass
burning contribute to the background stratospheric aerosol
burden. The last major volcanic eruption that critically affected
stratospheric aerosol loading was Mt. Pinatubo in 1991, which
resulted in an estimated total mass injection of nearly 20 Tg,
i.e., 30—60 times the estimated background content (Guo et al.
2004). As a result of the Pinatubo eruption, the global surface
temperature was estimated to have decreased by 0.4°C after
two years (Thompson et al. 2009). Stratospheric aerosol loading
did not return to background levels until 1997, when nearly a
decade of volcanic quiescence started. After this period, several
eruptions moderately impacted the midlatitudes of both hemi-
spheres between 2005 and 2012, and the Southern Hemisphere
(SH) between 2012 and 2017. The past 2-3 years, however, have
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shown a break from the previous years, with several volcanic
and biomass burning events that loaded the stratosphere with
aerosol levels unprecedented since the Mt. Pinatubo era. Results
from ground-based lidar and satellite measurements provide a
fresh, near-real-time view of these recent events.
Ground-based data come from two lidars located at Mauna
Loa (MLO; 19.5°N, 155.6°W), namely the Jet Propulsion Labo-
ratory’s (JPL) Mauna Loa Stratospheric Ozone Lidar (MLSOL;
McDermid et al. 1995), and the NOAA Aerosol Lidar (Barnes and
Hofmann 1997), which have monitored stratospheric aerosols
for several decades for the global Network for the Detection of
Atmospheric Composition Change (NDACC). The satellite data
come from 1) GloSSAC v1.1, a merged dataset combining the
measurements of SAGE and SAGE-II between 1979 and mid-
2005, and OSIRIS and CALIPSO since 2005 (Thomasson et al.
2018), and 2) OMPS/LP (2012—present; Chen et al. 2018).
Figure SB2.4a shows a time-altitude cross-section of
monthly-mean aerosol extinction at MLO derived from MLSOL.
MLO is located in a region of stratospheric aerosol minimum,
on the edge of the tropical reservoir and away from the main
entry pathways (Tropical Tropopause Layer [TTL], Asian Sum-
mer Monsoon Anticyclone [ASMA], volcanoes, and wildfires),
thus facilitating detection of background levels. The injection of
aerosols from below is clearly characterized by transient plumes
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Fig. SB2.4. (a) Time-altitude cross-section of the monthly mean aerosol extinction profiles at MLO derived from the MLSOL
lidar. (b) Time series of stratospheric aerosol optical depth (sAOD; 17-33 km) from the MLSOL lidar, NOAA lidar, GIoSSAC
at 17.5°N, and OMPS/LP near MLO (see text for coincidence criterion). Significant volcanic eruptions are denoted by red
arrows and letters in (a). White lines represent gaps in the data.
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spreading upwards with time, mostly visible below 23 km.
The upward propagation speed depends on the timing of the
injection (Vernier et al. 2011b; Trepte and Hitchman 1992) and
roughly ranges between 3 and 6 km per year, consistent with
Quasi-Biennial Oscillation- (QBO) modulated Brewer-Dobson
circulation (BDC) ascent rates inferred from water vapor and CO
measurements in the tropical lower stratosphere (Minschwaner
et al. 2016).

The stratospheric aerosol optical depth (SAOD) time series
(1999—present) derived from MLSOL, the NOAA lidar, Global
Space-based Stratospheric Aerosol Climatology (GloSSAC;
zonal mean at 17.5°N + 2.5°), and Ozone Mapping and Profiler
Suite/Limb Profiler (OMPS/LP; £1° latitude, £12.5° longitude),
is shown in Fig. SB2.4b. With the exception of a few points, all
datasets remain within 10% of each other, well within mea-
surement uncertainties. The time series is characterized by a
quiescent period before 2005, a period of moderate volcanic
activity between 2005 and 2013, and another period of low
aerosol loading between 2013 and 2017 (Chouza et al. 2020),
also observed at other Northern Hemisphere (NH) sites (Khaykin
et al. 2017). The background level during that time is noticeably
higher than that in the pre-2005 quiescent period. But most
importantly, the time series is strongly disturbed in the summer
of 2019 by the Raikoke eruption, with sAOD reaching 0.015,
a level not reached at this latitude since 1995, i.e., the post-
Pinatubo area. Chouza et al. (2020) showed that the Raikoke
plume ascended rapidly into the mid-stratosphere, reaching an
altitude of 27 km within two months. During that period, the

(@)

main plume transited gradually from 55°N to 19°N and circled
Earth three times. A strong extinction signature is noticeable
at 27 km on the MLSOL extinction time series (Fig. SB2.4a).

Figure SB2.5a shows the sAOD derived from GloSSAC as a
function of time and latitude since the post-Pinatubo era. Fig.
SB2.5b shows the sAOD derived from OMPS/LP. The signatures
of Kelut and Calbuco eruptions are visible in the southern tropics
and midlatitudes in 2014 and 2015, respectively. The signature
of the 2017 Pacific Northwest wildfires is visible at high and
midlatitudes of the NH. The signature of the Aoba eruption
extends in the SH in late 2018. But the most prominent feature
is the very large signature of the Raikoke eruption, which yields
an sAOD larger than 0.025 for at least four to five months. The
second most prominent feature is the large signature of the
Australian fires in late 2019 (see Sidebar 7.6), with values of
sAOD exceeding 0.025 for several weeks. The Ulawun eruption
also caused high sAOD values in the tropics starting in mid-2019.
Altogether, these major events have caused sAOD to exceed
0.012 for several months in 2019 at almost all latitudes between
60°S and 90°N, simultaneously, a level of global aerosol loading
unseen since 1994.

Although the occurrence and frequency of large volcanic
eruptions remain random, there is a concern that favorable
conditions (e.g., increase of surface temperature or drought)
may lead to an increase in the occurrence and strength of pyro-
cumulonimbus events and its associated stratospheric aerosol
injection (Peterson et al. 2018). Early estimates of the 2019/20
Australian wildfires total mass injected in the stratosphere

point to the equivalent
of a mid-size, possibly
larger, volcanic erup-

GloSSAC v1.1

0.030 tion (see Sidebar 7.6).

Although the compo-
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Fig. SB2.5. Time-latitude 2-D contour of the monthly mean sAOD derived from (a) GloSSAC and
(b) OMPS/LP. Significant volcanic and biomass burning events are annotated by white letters.
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h. Land surface properties
1) Land surface albedo dynamics—G. Duveiller, N. Gobron, and B. Pinty

Albedois the fraction of shortwave radiation reflected by the surface and depends on a number
of surface attributes such as snow cover, vegetation cover, and soil moisture among others. The
year 2019 exhibited large regional contrasts in terms of land surface albedo in the visible part
of the spectrum (see Plate 2.1ac), with the Northern Hemisphere (NH) overall darker (i.e., less
reflective) and the Southern Hemisphere (SH) brighter that the baseline period 2003-10. Strong
negative anomalies in visible albedo (on the order of —-30%) were especially noticeable in central
and eastern Europe. Similarly, high negative values were observed in the Caucasus and the Middle
East; in eastern Asia (western China and Mongolia, Korea, and Japan); northwestern America
(Alaska, Yukon, and Northwest Territories); eastern United States; and parts of Argentina and
Chile. Milder negative anomalies (-10%) were found in Canada’s Baffin Island, Mexico, much of
northern South America, central Africa, and India. Large positive anomalies (up to +30%) were
found in North America, in the Himalayas and eastern China, in eastern Australia, southern
Africa, and sporadically in South America. The near-infrared anomalies follow the same general
patterns as for the visible albedo
but with moderate amplitudes (see
Plate 2.1ad) and a relative tendency
toward brightening.

The large albedo anomalies in
northern latitudes largely follow
those of snow cover. With the excep-
tion of January, Europe experienced
much less snow cover than usualin
both the early and late months of
2019 (see section 2c2 for an overall
hemispheric and continental sum-
mary), resulting in an overall darker
surface than the baseline. North-
eastern China, Korea, and Mongolia
similarly saw much reduced snow
cover during the beginning of the
year with respect to the 2003-10
baseline, which was not compen-
sated by above-average snow cover
in October—-December. On the con-
trary, large areas of North America
were more extensively covered with
snow than usual in early and late
2019, which translated to brighter
surfaces over these areas (section
R 3 2c2). The same is true for the Tibetan
s Plateau and neighboring areas. The
‘ i i ﬁ ' i fact that the northernmost latitudes
were less extensively covered with
T T T snow than usual from May to June
-20 -15 -10 -5 0O 5 10 15 20 probably explains the darker sur-

Normalized Anomaly (%) faces in various areas nearer to the

Fig. 2.63. Zonally averaged surface albedo anomalies (%; 2003-10 base North Pole (Alaska, Baffin Island,
period) in (a) visible and (b) near-infrared broadband. and the northern tip of Siberia).
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For regions not affected by snow cover, the main driver affecting land albedo is the relative
vigor and health of vegetation, which itself largely depends on water availability. The drought
that led to the disastrous fire season in Australia during late 2019 and early 2020 (see Sidebar
7.6) is responsible for brightening the surface, while the potential darkening effect of the fires is
not significant enough to be observed in the yearly averaged data. Southern Africa has also seen
clear reductions in soil moisture (section 2d10) and vegetation photosynthesis activity (section
2h2) during 2019, resulting in a relative brightening of the surfaces. India and China have seen
significant trends in greening over the recent years due to intensified agriculture, translating to
a reduction of surface visible albedo (Chen et al. 2019). In Europe, the strong summer drought
(section 2d11) may have brightened the surface, partly by accelerating the end of the season (see
Fig. 2.69d), but this was insufficient to counter the strong overall darkening effect generated by
the reduction of snow cover in the cold months.

The separate contribution of snow occurrence and vegetation cover to albedo anomalies can
be represented in a multiannual perspective using latitudinal averages for the entire record (Fig.
2.63). The effect of snow cover in the NH follows a clear seasonal cycle that is in phase between
the visible and the near-infrared parts of the spectrum, and for which there is no clear trend.
Aside from that, the rest of the world shows a slight overall negative trend in visible albedo and a
lightly rising trend in near-infrared, which is consistent with the enhanced greening observed in
the fraction of absorbed photosynthetically active radiation (FAPAR) estimates (section 2h2). The
year 2019 does stand out by showing a contrasting pattern between North and South, respectively
darker and brighter than the baseline (which is again consistent with the FAPAR anomalies in
2019). The global average shows a higher albedo in the SH for both the visible and near-infrared
albedo, while the NH is slightly

brighter in the near-infrared and 15F ) Vietre T
darker in the visible (Fig. 2.64).
The albedo anomalies are cal- 10
culated based on the NASA Collec- shy |41
tion 6 MCD43C3 products derived Mt e 1o

from satellite observations of the
Moderate Resolution Imaging Spec-
troradiometer (MODIS) instrument
on-board of the Terra and Aqua

platforms (Schaaf et al. 2002; Schaaf

l
4 (b) I{Iear lnIJrared :
and Wang 2015). The retrieval algo-
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Fig. 2.64. Global and bi-hemispherical averaged surface albedo

the 2003-10 reference period. (%; 2003-10 base period) in (a) visible and (b) near-infrared broadband.
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2) Terrestrial vegetation dynamics—N. Gobron

Fraction of absorbed photosynthetically active radiation (FAPAR) anomalies exhibited signifi-
cant regional variations in vegetation conditions worldwide in 2019 (Plate 2.1ae). The greatest
negative anomalies (brown: not favorable for vegetation) were observed in Australia, southern
Africa, Kostanay (northern Kazakhstan), and eastern Russia (from Krasnoyarsk eastward around
60°N). Local negative anomalies affected northern China, Iowa and Wisconsin (United States),
Bahia State (Brazil), Bolivia, La Pampa (Argentina), and Kenya. The greatest positive anomaly
(green) was again observed in eastern China (as during the last four years) as well as northern
India (Rajasthan, Uttar Pradesh, and Punjab), Bangladesh, Syria, and northern Iraq. To a lesser
magnitude, the entire central region of the African continent and the region surrounding the
Black Hills (South Dakota, United States) also had positive deviations.

The strongest negative annual anomaly, with a maximum absolute value of 0.15, occurred
in Australia, possibly due to the strongly positive Indian Ocean dipole (IOD; section 4h) that
influenced severe extreme weather events. This year was the warmest and driest year on record
there, which implied drought, heat waves, and devastating bushfires. Over Botswana, Namibia,
Zambia, and southern Mozambique, the negative anomalies were due to very dry conditions
(section 2d12). Dry conditions and high temperatures from January to June over Kenya resulted
in negative annual anomalies.

In the northern part of Kazakhstan and eastern Russia, the hot and dry climatic conditions
hindered vegetation during the growing season (spring), which strongly affected the annual
anomaly. Bad weather conditions with heavy spring rains in Wisconsin in the United States, and
some adjoining regions delayed planting and affected crops. High temperatures associated with
SH winter rainfall deficits had significant negative regional impacts on vegetated conditions such
as over Bahia State (Brazil), Bolivia, and Argentina.

Terrestrial photosynthesis was again enhanced over eastern China with vegetation growth in
2019, similar to 2017 and 2018 (Gobron 2018, 2019) due to important changes in the overall land
use (Chen et al. 2019). In addition, northern Turkey got an increase of vegetation activity for the
last two years. Late in the year, the central region of the African continent had high positive
anomalies, due to high temperatures and heavy rainfall that impacted the annual results.

Figure 2.65 displays the zonal average anomalies from 1998 to 2019 compared to the 1998-2010
base period. Strong seasonal de-

viations include mainly positive L B L B
anomalies north of 20°N after 2014. ahrradharEE Ayt pRARD R

Negative anomalies from 2002to ~ 60°N[= = y S TSR TS %' HEPSTATEAT
2014 affected the SH, except in f ] 3 SR R
2010-12. In contrast to the positive 30°N |-
anomalies around 30°S from 2014

to 2017, anomalies turned negative
againin 2018, with strongest values
in 2019.

Figure 2.66 shows the global and
bi-hemispheric anomalies, reveal-
ing more oscillations between the
seasons in the SH with its smaller
land area than in the NH. The NH
had fewer negative events than the
SH, and its plant activity increased
from 2010 to 2017 and, after a short
decline in late 2017/early 2018, in-
creased again afterward. Analysis
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Fig. 2.65. Zonally averaged FAPAR anomalies for 1998-2019 (1998-2010
base period).
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of SH data reveals two positive

0020 extreme peaks in 2000 and 2017,
0.015 while extreme minimum events
occurred in 2008-09. Following
0.010 the decline from positive anoma-
lies with negative values between
0.005 2002 and 2009, there has been an
0.000 increase in positive values since
2011. Since 2017 the global anoma-
-0.005 lies have decreased but are still
positive with 2019 equal to those
-0.010 in 2018; however, SH anomalies
~0.015 have decreased sharply since 2017.
—=—=- Globe —— Globe Smoothed Space-based measurements are

—==- N. Hemisphere —— N. Hemisphere Smoothed . . .
-0.020}--- S. Hemisphere — S. Hemisphere Smoothed essential for monitoring the activ-
' '20'00' =500 5010 '20'1 . '20'20 ity of terrestrial plants worldwide.

These observations are used to
recover FAPAR, an essential cli-
mate variable (as defined by GCOS
[2016]). The 2019 analysis merged
22years of global FAPAR products
based on three optical sensors from 1998 to 2019 (Gobron et al. 2010; Pinty et al. 2011; Gobron and
Robustelli 2013; the base period is 1998-2010). Comparisons between each dataset and with mul-
tiple surrogates using ground measurements provide an estimate of the uncertainties and biases.
Given the biases between the various sensor products, this long-term global dataset presents an
estimated average uncertainty close to 5%-10%.

Fig. 2.66. Global (black lines), NH (blue), and SH (red) FAPAR anomalies
for 1998-2019 (1998-2010 base period). Dotted lines denote each month-
ly period; solid lines indicate the six-month running averaged mean.

3) Biomass burning—). W. Kaiser, G. R. van der Werf, and I. Hiiser

During 2019, anomalously high vegetation fire emissions in several forested regions of Indone-
sia, Russia, Australia, Brazil, and Bolivia (Plate 2.1af) compensated the long-term global downward
trend in emissions from savanna regions. The global annual emission of 1836 TgC was 9% lower
than the average for the reference period 2003-10 (Table 2.9). The emission in 2019 was, however,
substantially increased compared to 2018 and 2017 with 1600 TgC and 1680 TgC, respectively.
Despite the declining trend in savanna regions, upward trends related to climate change with
more extreme fire weather and longer fire seasons are emerging in several regions. Biomass burn-
ing displays large interannual variability driven by fire weather and human behavior. Its global
distribution in 2019 is shown in Fig. 2.67.

Indonesia experienced a relatively long dry spell in September, which led to above-average
emissions (Fig. 2.68). Usually, such dry spells are associated with El Nifio years, which was not
the case in 2019. Rather, it was related to the strong positive IOD (see section 4h). Annual emis-
sions in the larger tropical Asian region were dominated by fires in eastern Sumatra and southern
Borneo, which elevated the emissions by 62% to the third-largest value (191 TgC) since at least
2003, with larger values of 425 TgC and 228 TgC in 2015 and 2006, respectively.

Strong fire activity in Siberia led to a 62% increase in emissions from the northern Asia region.
Many fires during June—August burnt farther north than usual, which led to a new record of
27 TgC for fire emissions from the Arctic. The emissions have increased in every year since 2015
and were more than twice as high in 2019 than in any preceding year (Fig. 2.68).

In December 2019, the Australian states of New South Wales and Victoria experienced their
highest monthly fire activity since at least 2003 (Fig. 2.68, Sidebar 7.6). Their annual emission of
29 TgC more than doubled the previous record of 13 TgC set in 2003 and made up almost all of the
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Table 2.9. Annual continental-scale biomass burning budgets in terms
of carbon emission (Tg C yr') from GFASv1.4.

Global R 82280_1;272) 1836 —174(-9%)
North America 133?,:;3‘;“‘,'; (633?09} 70 -9 (-12%)
Central America 190;_3??;3% (731322) 106 +18 (+20%)
S. Hem. America 19[1:,__63(;0050E @ 1351473) 274 —107 (-28%)
ME:Ll:IIrT(tJtI;?aannein 3330[:"_—?65; °NE [293—762) 36 =1 (=2%)
N. Hem. Africa 323:32325 (35;1_353} 296 -123(-29%)
S. Hem. Africa 323320055 @ aﬁ:zal 428 -56(-12%)
Northern Asia gg;?;oNE (991_7; 8 214 +38 (+21%)
South-East Asia ;3::13;(;1 R 0;5?50) 87 -41 (-32%)
Tropical Asia :;?,:!1_;3:: (381—11?28) 191 +73 (+62%)
Australia ;3:_‘11%"35 ( 4?25’3?) 133 +34 (+35%)

359 anomaly in fire emissions from all of Australia. The fires started in September, i.e., relatively
early, were strongest in December, and continued into 2020. The extreme fire weather was linked
to the strong positive IOD anomaly and record temperatures in Australia.

Substantial media attention was also given to fires burning in the Amazon. Significant positive
anomalies occurred in Bolivia and the Brazilian states of Amazonas and Roraima (see Plate 2.1af),
although south of the equator there
was an overall strong negative
anomaly of —28% compared to the
2003-10 reference period. This
period was characterized by high
deforestation and drought years
in Brazil. After 2010, emissions
dropped significantly (Fig. 2.68),
and emissions in 2019 were still
in the typical range of its decade,
albeit at the upper limit. An in-
crease of deforestation in 2019 was
reported by the PRODES program
[ [ I I [ T T of the Brazilian space agency INPE

1 3 10 40 80 120 160 200 (http://terrabrasilis.dpi.inpe.br
/app/dashboard/deforestation

Fig. 2.67. Global map of fire activity (g C m™ yr™) in 2019 in terms of /biomes/legal_amazon/
carbon consumption. (Source: GFASv1.4.) rates). Whether 2019 marked a
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corresponding reversal of the de-

140 . .
120 creasing long-term trend remains to
100 be seen.
80 The established long-term down-
gg ward trend related to changes in land

use in frequently burning savannas

: (Andela et al. 2017), in combination
jpl 21 Artic with a delay in the start of the fire
gl season in sub-Saharan Africa, led
6 to a 29% decrease (123 TgC) in fire
ak emissions from NH Africa. Fires here
2

normally burn in December and Janu-
ary but started weeks later related to

Tg(C) month-1
(=]
B

_(c) New South Wales and Victoria (Australia) wet conditions that were associated
12 with the strong positive anomaly of
10 the I0D.

The fire emission estimates have
been derived from the Global Fire
Assimilation System (GFAS; Kaiser
et al. 2012, 2017), which uses satellite
data of active fire detections and its
intensity and is calibrated against the
Global Fire Emissions Database (van
der Werf et al. 2017). Here, vegeta-
tion fire activity is reported in terms
of carbon emissions. Most biomass
is released as CO,, but substantial

Fig. 2.68. Time series of monthly open biomass burning in (a) tropi- amounts of other gases and aerosols
cal Asia, (b) the Arctic, (c) New South Wales and Victoria, Australia, are emitted as well. Most of the carbon
and (d) Southern hemispheric America. The Arctic is bounded by released into the atmosphere is taken
the Arctic Circle (66.5°N); the definitions of the other regions are
provided in Table 2.9. (Source: GFASv1.4.)

2005 2010 2015 2020

up again by vegetation regrowth.
However, tropical rain forests and
peat lost to fires regrow on time scales
longer than a few hundred years or not at all. Their emissions are, therefore, practically irrevers-
ible. Given the large spatio-temporal variability in fire activity and the difficulty to constrain
those with ground measurements, emission estimates are notoriously uncertain. The presented
estimates of relative anomalies in entire regions are more reliable because they are derived from
consistent observations by NASA’s two satellite-based MODIS instruments. The launch dates of
the satellites carrying these instruments restrict the GFAS dataset to the period starting in 2003.

4) Phenology of primary producers—D. L. Hemming, J. Garforth, T. Park, A. D. Richardson, T. Rutishauser,

T. H. Sparks, S. J. Thackeray, and R. Myneni

Climate and nature are mutually dependent. This is visible from global to organism scales by
phenological indicators—events in nature (Demarée and Rutishauser 2011). Here, the timing of
NH spring and autumn events of primary producers (terrestrial vegetation and lake plankton)
is compared, utilizing records that reach across spatial scales from satellite remote sensing to
site-level monitoring.

For 2019, the satellite-derived (MODIS) normalized difference vegetation index (NDVI; Park
etal. 2016) revealed the earliest average start of season since the beginning of the record in 2000
(SOSM, 4.3 days) and a later-than-average end of season (EOSM , 2.4 days) across the NH (>30°N),
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Fig. 2.69. (a) Time series of area mean anomalies (days relative to 2000-09 baseline) in MODIS NDVI-based vegetation
growing season onset (SOS; purple) and MERRA-2 spring (Mar-May, green) temperature for NH (> 30°N). (b) Same as (a)
but for end of growing season (EOS) and autumn (Sep-Nov) temperature. Note temperature scale reversal in panel (b).
Spatial pattern of (c) SOS and (d) EOS anomaly in 2019 with respect to the baseline. Note the color bar reversal in (d) to
highlight the longer growing season as green. Colored circles and box in (c) identify the location of sites shown in Figs.
2.70 and 2.71: Harvard Forest PhenoCam site (pink circle), UK phenology network (yellow box), lake phytoplankton NH
monitoring sites (green circles).

relative to the 2000-09 baseline (SOS = day of year [DOY] 137, 17 May; and EOS = DOY 283, 10
October; Figs. 2.69a,b). This resulted in an 8-day longer growing season, relative to the baseline
(161 days, estimated for all NH pixels and averaged over the baseline). Overall, about 65% and
56% of the NH region showed earlier SOS,; and later EOS,, in 2019, respectively (Figs. 2.69c,d).
Regionally, earlier SOS,; occurred across northwestern North America (NA) and most of Eurasia,
and later SOS,; occurred over central and eastern NA. A contrasting pattern of earlier and later
EOS, was observed in eastern and western Eurasia, whereas EOS,; in NA was spatially heteroge-
neous. Interannual variations in SOS, and EOS,, correlate with changes in spring and autumn
temperatures from MERRA-2 reanalysis (Gelaro et al. 2017). For 2019, SOSM and EOS,, are broadly
consistent with spatial temperature patterns noted in section 2b of this report.

Two case studies for ground-based phenology observations are compared with the satellite
data. PhenoCam data across NA (Richardson et al. 2018a) show similar spatial and temporal pat-
terns to satellite-derived phenology data (Zhang et al. 2018; Richardson et al. 2018b), although
the agreement tends to be better in spring than autumn (Melaas et al. 2016; Moon et al. 2019).
Here, we compare site PhenoCam estimates for start of season (SOS,;.) and end of season (EOS;.)
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Fig. 2.70. Day of year (DOY) of spring and autumn vegetation phenology indicators and associated 2019 images for (a)
Harvard Forest, Massachusetts, United States, SOS (green, bottom) and EOS (orange, top) days derived from PhenoCam
and MODIS remote sensing (black), and (b) UK mean oak (Quercus robur) "first leaf” (bottom, green), “bare tree” (top,
orange), and MODIS (black).

at Harvard Forest, a deciduous forest in Massachusetts (United States) with the same indicators
derived from MODIS (Figs. 2.70a,b). SOS,. and SOS,; are strongly correlated (r = 0.83, n = 12),
although SOSPC is later by 11 + 3 days, relative to SOS,, (Fig. 2.70a). The correlation between
EOS,. and EOS,; is weaker (r = 0.46), and EOS, is 48 + 12 days earlier on average relative to EOSy
(Fig. 2.70b). In 2019, SOS,. for Harvard Forest (DOY 131, 11 May, + 2 days) was four days later
relative to 2018 (DOY 127, 7 May, + 2 days), and EOS,. (DOY 291, 18 October, + 1 days) was 13 days
earlier relative to 2018 (DOY 304, 31 October, + 2 days). The MODIS changes for this site were more
extreme: SOS,,was 11 days later and EOS,, 20 days earlier in 2019 relative to 2018 (Figs. 2.70a,b).
PhenoCam-derived total growing season length in 2019 was more than two weeks shorter than
2018, mostly because of the earlier EOS. This is the shortest growing season observed at Harvard
Forest in the 12-year PhenoCam record.

Across the United Kingdom (UK), mean dates of oak (Quercus robur) “first leaf” and “bare tree”
(indicators of start and end of season) recorded by citizen scientists have been collated by the
Woodland Trust since 1999. Over the 2000-09 baseline, the mean first leaf and bare tree dates
were 26 April (DOY 116) and 30 November (DOY 334), respectively, giving a 218-day season length
(Figs. 2.70b). Both events are strongly influenced by prevailing temperature; first leaf advances by
about six days for every 1°C increase in mean February—April temperature, and bare tree dates are
delayed by about three days for every 1°C increase in October temperature. In 2019, the very warm
spring resulted in mean first leaf nearly 11 days earlier than the baseline. In contrast, October
temperature was similar to recent years and bare dates were delayed by about one day compared
to the baseline. The net result was an “oak season” 12 days longer than the 10-year mean. These
results are qualitatively comparable with UK mean MODIS NDVI SOS and EOS anomalies.
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Fig. 2.71. Box-whisker plot showing the DOY of mean (green line),
50th (box), 90th (whiskers), and 99th (black open circles) percentiles
of spring phytoplankton peak for 2000-10, and the 2019 mean day
(red circles) for nine global lake basins: Annecy and Bourget (France),
Chascomus (Argentina), Geneva (France-Switzerland), Kinneret (Is-
rael), Kasumigaura (Japan), Loch Leven (UK), Muggelsee (Germany),
Taupo (New Zealand), and Windermere north and south basins (UK).

Long-term (fortnightly-monthly) monitoring data on lake water concentrations of the photo-
synthetic pigment chlorophyll-a can be used to derive the seasonality of phytoplankton growth
and the timing of the spring phytoplankton peak in lake ecosystems (Winder and Cloern 2010;
Thackeray et al. 2013). We present such data from 11 lake basins (Fig. 2.71): Lakes Annecy and
Bourget (France), Chascomus (Argentina), Geneva (France-Switzerland), Kinneret (Israel),
Kasumigaura (Japan), Loch Leven (UK), Miiggelsee (Germany), Taupo (New Zealand), and the
north and south basins of Windermere (UK). During the 2000-10 baseline, the mean day of year
of the spring bloom in the nine NH basins ranged from 76 (17 March, Loch Leven) to 122 (2 May,
Windermere North Basin). In lakes Chascomus and Taupo, in the SH, the corresponding means
were 274 (1 October) and 222 (10 August), respectively. In 2019, the day of year of the spring peak
was later than the base period in eight lake basins (by 1 to 82 days), but earlier for Miiggelsee,
Loch Leven, and Windermere North Basin (by 37, 35, and 9 days, respectively). This site-based
variability suggests the agency of additional factors, such as nutrient availability (Thackeray
et al. 2008), that interact with climate to influence seasonal ecosystem behavior.
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Appendix 1: Acronyms

20CRv3
ALT

AMSRE and AMSRE2

20th Greenhouse Gas Index
active layer thickness
Advanced Microwave Scanning Radiometer

AO Arctic Oscillation

AOD aerosol optical depth

ASMA Asian summer monsoon anticyclone

ATSR Along Track Scanning Radiometer

AVHRR Advanced Very High Resolution Radiometers

BDC Brewer-Dobson circulation

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation

CAMS Copernicus Atmosphere Monitoring Service

CAMSRA CAMS reanalysis

CCMI Chemistry-Climate Model Initiative

CERES Clouds and the Earth’s Radiant Energy System

CH,Cdl, methyl chloroform

CH, methane

CLARA-A2 cloud, albedo and surface radiation dataset

CLOUD_CcI Cloud Climate Change Initiative

co carbon monoxide

co, carbon dioxide

CPT cold-point temperature

EBAF Energy Balanced And Filled

ECMWF European Centre for Medium-Range Weather Forecasts

EESC equivalent effective stratospheric chlorine

ELSE Ensemble Land State Estimator

ENSO El Nifo—Southern Oscillation

EOS Earth Observing System

EOS end of season

ERA5 European Centre for Medium-Range Forecasts Reanalysis
version 5

ERB Earth’s radiation budget

ESA CCl SM European Space Agency Climate Change Initiative for
Soil Moisture

ET evapotranspiration

ETCCDI Expert Team on Climate Change Detection and Indices

FAPAR Fraction of absorbed photosynthetically active radiation

FLASHFlux Fast Longwave and Shortwave Radiative Fluxes

GFAS Global Fire Assimilation System

GHCN Global Historical Climatology Network

GISS Goddard Institute for Space Studies

GLEAM Global Land Evaporation Amsterdam Model

GLoSSAC Global Space-based Stratospheric Aerosol Climatology

GNSS Global Navigation Satellite System

GPCC Global Precipitation Climatology Centre

GPCP Global Precipitation Climatology Project

GPS-RO Global Positioning System—Radio Occultation
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GRACE
GRACE-FO
G-REALM
GrlS
GTN-P
H,O

HIRS

IFS

IOD

JAS

JJA

JPL
JRA-55
LLGHGs
LST
LSWT
LTT
MACC
MHW
MISR
MLO

MLS
MLSOL
MODIS C6

MOPITT
MSLP
N,O

NA
NAO
NDACC

NDVI

NH

o,

OCSs

ODS

OH

OLR

OoMI
OMPS/LP
ONI

PATMOS-x/AVHRR

Gravity Recovery and Climate Experiment
GRACE Follow On

Global Reservoir and Lake Monitoring
Greenland ice sheet

Global Terrestrial Network for Permafrost
water

High Resolution Infrared Sounder
Integrated Forecasting System

Indian Ocean dipole

July, August, September

June, July, August

Jet Propulsion Laboratory

Japanese global atmospheric reanalysis
long-lived greenhouse gases

lower stratospheric temperature

lake surface water temperature

lower tropospheric temperature
Monitoring Atmospheric Composition and Climate
marine heat wave

Multi-angle Imaging SpectroRadiometer
Mauna Loa (Hawaii)

Microwave Limb Sounder

Mauna Loa Stratospheric Ozone Lidar
Moderate Resolution Imaging Spectroradiometer
Collection 6

Measurement of Pollution in the Troposphere
mean sea level pressure

nitrous oxide

North America

North Atlantic Oscillation

Network for the Detection of Atmospheric
Composition Change

normalized difference vegetation index
Northern Hemisphere

ozone

carbonyl sulfide

ozone depleting substance

hydroxyl

outgoing longwave radiation

Ozone Monitoring Instrument

Ozone Mapping and Profiler Suite/Limb Profiler
Oceanic Nifio Index

Pathfinder Atmospheres Extended/Advanced Very High

Resolution Radiometer

PDO Pacific Decadal Oscillation

POES Polar Operational Environmental Satellites
ppb parts per billion

ppm parts per million

QBO Quasi-Biennial Oscillation
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QTP Qinghai-Tibetan Plateau

RFaci radiative forcing resulting from aerosol-cloud interactions
RFari radiative forcing resulting from aerosol-radiation
RSS Remote Sensing Systems

RSW reflected shortwave

sAOD stratospheric aerosol optical depth

SatCORPS satellite cloud and radiative property retrieval system
SCE snow cover extent

scPDSI self-calibrating Palmer Drought Severity Index

SH Southern Hemisphere

SO, sulfur dioxide

SOl Southern Oscillation Index

SORCE Solar Radiation and Climate Experiment

SOS start of season

SPO South Pole Observatory

SSM/I Special Sensor Microwave/Imager

SSMIS Special Sensor Microwave Imager/Sounder

SST sea surface temperature

SSU Stratospheric Sounding Unit

SSwW sudden stratospheric warming

SWV stratospheric water vapor

TCCON Total Carbon Column Observing Network

TCWV total column water vapor

T™MI Tropical Rainfall Measuring Mission Microwave Imager
TOA top of the atmosphere

TSI total solar irradiance

TTL tropical tropopause layer

TTT tropical trophospheric temperature

TWS terrestrial water storage

UTH upper troposphere (relative) humidity

uv ultraviolet

WGMS World Glacier Monitoring Service

WMO World Meteorological Organization

ZAA zero annual amplitude
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Appendix 2: Supplemental Material

2b1 Surface air temperature
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Fig. A2.1. Global land and ocean surface annual temperature anomalies for 2019
(°C; 1981-2010 base period). (Source: HadCRUT4.)
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Fig. A2.2. Global land and ocean surface annual temperature anomalies for 2019
(°C; 1981-2010 base period). (Source: NASA GISTEMP.)
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Fig. A2.3. Global land and ocean surface annual temperature anomalies for 2019
(°C; 1981-2010 base period). (Source: ERA5.)
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Fig. A2.4. Global land and ocean surface annual temperature anomalies for 2019
(°C; 1981-2010 base period). (Source: JRA-55.)
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2b3 Surface temperature extremes
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Fig. A2.5. (a) warm day threshold exceedance (TX90p), (b) cool night threshold ex-
ceedance (TN10p) in 2019. (Source: ERA5.)
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2b4 Tropospheric temperature
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Fig. A2.6. Average area of highest (red) (blue) and lowest temperatures by month for the 41 years of observations in ERA5,
RSS, and UAH datasets. This is an update of the figure from SotC 2018 (Christy et. al. 2019).
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Fig. A2.7. (Top) Time series of annual anomalies of global lower tropospheric temperature (°C)from radiosonde datasets
only. (Middle) Differences of individual radiosonde datasets (at —1.0°C axis) versus the radiosonde average. (Bottom) Dif-
ferences relative to the radiosonde average (top) for satellite and reanalyses (at —1.5°C axis). As noted in the text, those
datasets that are not exclusively radiosondes (bottom) show decreasing values after 2009 possibly related to spurious
warming in the radiosondes as a consequence of a change in the software processing system at many of the stations.
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Fig. A2.8. Update of tropical temperature (TTT) trend comparisons (1979-2019) from SotC 2016 (Christy 2017) between
observational datasets and the Climate Model Intercomparison Project version 6 (CMIP-6). The trend values for each
pressure level are shown from 1000 to 100 hPa with central values represented by the green (mean radiosondes) and red
(median model) lines. The upper box provides the trends for the average of the bulk atmospheric layer TTT as described
in the text. The model time series are constructed with historical forcings from 1850 to 2014 and after 2014 with forcing
scenario ssp245. The 30 CMIP-6 models used are ACCESS-CM2, ACCESS-ESM1-5, AWI-CM-1-1-MR, BCC-CSM2-MR, CanESM5
(warmest), CanESM5-OE, CESM2, CESM2-WACCM, CNRM-CM6-1, CNRM-ESM2, EC-EARTH3, EC-EARTH3-VEG, FGOALS, FIO,
GFDL-CM4, GFDL-ESM, GISS-E2-1-G, HadGEM, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, MCM-UA, MIROC6, MIROC6-2L
MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0 (coolest), NESM, NorESM2-LM, and UKESM1-0-LL.
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Fig. A2.9. Paired intercomparisons of the datasets utilized here for the tropical TTT metric, calculating the extent to which
the identified paired datasets agree in terms of common variance (r?).
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Table A2.1. Comparison of decadal trend values (°C decade™') between
observations and CMIP-6 climate model simulations. (See Fig. A2.8)
Layer LTT LTT 7T 71T
Start year 1958 1979 1958 1979
Median Observations +0.18 +0.18 +0.16 +0.16
. CMIP6
Median (30 models) +0.20 +0.29 +0.22 +0.32

AUGUST 2020 | State of the Climate in 2019 BAMS Unautheniicaes GSQBALELMATE | 2. 810 urc



2d1 Surface humidity
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Fig. A2.10. Surface specific humidity anomalies for 2019. (Source: ERA5.)
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Fig. A2.11. Surface specific humidity anomalies for 2019. (Source: MERRA-2.)
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Fig. A2.12. Surface relative humidity anomalies for 2019. (Source: ERAS5.)
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Fig. A2.13. Surface relative humidity anomalies for 2019. (Source: MERRA-2.)
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2d2 Total column water vapor
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Fig. A2.14. Total column water vapor anomalies for 2019 relative to a 1981-2010
base period. Over the oceans, the data are from COSMIC, GPS RO, and satellite
radiometers, and from COSMIC and GPS RO over land.

2d3 Upper tropospheric humidity
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Fig. A2.15. Annual average upper tropospheric humidity anomalies anomaly map
for 2019 relative to the 2001-10 climatology based on the HIRS dataset.
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2d10 Soil moisture
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Fig. A2.16. Monthly soil moisture anomalies for 2019 (base period: 1991-2010). Data were masked as missing where retriev-
als are either not possible or of very low quality (dense forests, frozen soil, snow, ice, etc.). (Source: ESA CCl Soil Moisture.)

AUGUST 2020 | State of the Climate in 2019 BAMS Unauthenticated %%%5&5@4&551 12:1§1AMUTC



2d11 Land evaporation
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Fig A2.17. Plant transpiration anomalies (mm yr™'). (Source: GLEAM.)
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2e3 Upper air winds
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Fig. A2.18. Stratospheric monthly mean zonal winds over Singapore in 2019. Purple
depicts westerly, brown easterly wind.
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