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ABSTRACT

The timing of leaf emergence in temperate and boreal forests is changing, which has profound implications for a
wide array of ecosystem processes and services. Spring phenology models, which have been widely used to
predict the timing of leaf emergence, generally assume that a combination of photoperiod and thermal forcing
control when leaves emerge. However, the exact nature and magnitude of how photoperiod and temperature
individually and jointly control leaf emergence is the subject of ongoing debate. Here we use a continuous
development model in combination with time series of land surface phenology measurements from MODIS to
quantify the relative importance of photoperiod and thermal foreing in controlling the timing of canopy greenup
in eastern temperate and boreal forests of North America. The model accurately predicts biogeographic and
interannual variation in the timing of greenup across the study region (median RMSE = 4.6 days, median bias =
0.30 days). Results reveal strong biogeographic variation in the period prior to greenup when temperature and
photoperiod influence greenup that covaries with the importance of photoperiod versus thermal controls.
Photoperiod control on leaf emergence is dominant in warmer climates, but exerts only modest influence on the
timing of leaf emergence in colder climates. Results from models estimated using ground-based observations of
cloned lilac are consistent with those from remote sensing, which supports the realism of remote sensing-based
models. Overall, results from this study suggest that apparent changes in the sensitivity of trees to temperature
are modest and reflect a trade-off between decreased sensitivity to temperature and increased photoperiod
control, and identify a transition in the relative importance of temperature versus photoperiod near the 10 °C
isotherm in mean annual temperature. This suggests that the timing of leaf emergence will continue to move
earlier as the climate warms, and that the magnitude of change will be more pronounced in colder regions with
mean annual temperatures below 10 °C.

1. Introduction

change in the future. These challenges are further complicated by
fundamental issues in the way that the sensitivity of phenological events

There is overwhelming evidence that leaf emergence is occurring to temperature is generally quantified (Keenan et al., 2019). Because

earlier in temperate and boreal forests (Menzel et al., 2006; Schwartz
et al., 2006). However, a number of recent papers have concluded that
the sensitivity of leaf emergence to changes in temperature has
decreased in recent decades (Fu et al., 2015; Piao et al., 2017) and that
the period when trees are sensitive to thermal forcing is becoming
shorter (Fu et al., 2019; Giisewell et al., 2017; Wenden et al., 2020).
These results complicate interpretation of observed trends and exacer-
bate challenges involved in forecasting how the phenology of trees will

changes in phenology impact important ecosystem functions ({eenan
et al., 2014; Richardson et al., 2013), understanding how changes in
climate affect phenology is critical to forecasting how ecosystems will
respond to future climate change (Penuelas et al., 2009; Piao et al.,
2019).

To address this, a variety of recent studies have focused on improving
understanding of bioclimatic controls on plant phenology (Liu et al.,
2017; Zohner et al., 2016). Results from both lab- and field-based
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experimental studies have provided insights (Montgomery et al., 2020;
Richardson et al., 2018a), but are limited by the fact that phenological
behavior in controlled laboratory- and field-based warming experiments
differs from behavior observed in natural ecosystems (Clark et al.,
2014a; Wolkovich et al., 2012). Further, the manner in which envi-
ronmental conditions are perturbed in such experiments (e.g., 2 C
warming) is not representative of climate changes expected in the
future, which are predicted to occur gradually, but with large year-to-
year variability (Schewe et al., 2019; Walther et al., 2002). These is-
sues are compounded by the fact that the geographic sampling of data
sets used in these studies is often limited and does not reflect the full
biogeographic range of species examined (Richardson et al., 2013).
Hence, geographic variation in the relative importance of different
climate drivers on phenology, both within and across plant commu-
nities, is not well understood (Piao et al., 2019).

One widely used strategy for investigating the response of plant
phenology to climate change is to calibrate mechanistic models using
weather data in combination with long-term records of phenology
collected on the ground (Basler, 2016; Fu et al., 2019) or from remote
sensing (Liu et al., 2017; Melaas et al., 2018). In addition to thermal
controls, photoperiod is widely assumed to control the timing of leaf
emergence by regulating the entrance of ecodormancy, triggering
thermal forcing to stimulate bud swelling and leaf emergence (Chuine
et al., 2016; Jackson, 2009; Korner and Basler, 2010). Hence, many
models include explicit representation of photoperiod (e.g., Bliimel and
Chmielewski, 2012; Masle et al., 1989; Basler, 2016; Migliavacca et al.,
2012). To capture the role of thermal forcing, mechanistic models
generally use aggregated bioclimatic variables such as growing degree
days or winter chilling as their primary inputs. However, Clark et al.
(2014a) have suggested that the use of such aggregated quantities is
problematic because values for prescribed variables required by these
models (e.g., start date of forcing accumulation) are not identifiable.

In recent years, data-driven models based on state-space represen-
tations of phenological processes have been developed that overcome
many of the weaknesses of both mechanistic and experimental ap-
proaches (e.g., Clark et al., 2014b; Qiu et al., 2020; Senf et al., 2017,
Seyednasrollah et al., 2018). By modeling phenological dynamics
directly from data, these models avoid issues arising from mis-
specification of functional relationships between forcing variables and
processes that regulate phenological development (Clark et al., 2014b).
Building on this approach, here we use a data-driven spring onset model
in combination with gridded weather data and time series of ground-
based and remotely sensed observations of spring greenup dates to
explore biogeographic patterns in photoperiod and thermal controls on
the timing of spring greenup. Specifically, we use this model to: (1)
quantify the relative importance of thermal forcing, photoperiod, and
winter chilling in controlling spring greenup; (2) identify the pre-season
period when plants are sensitive to bioclimatic controls; and (3) char-
acterize how covariance among thermal forcing, photoperiod, and the
length of the pre-season period control the biogeography of spring
greenup in deciduous forests of eastern temperate and boreal North
America.

2. Methods
2.1. Study region

The study region includes the Northern Forests and Eastern
Temperate Forest ecoregions included in Level I of the US EPA Ecor-
egions of North America (Fig. A1). To distinguish deciduous forests from
evergreen forests and other land cover types within the study area, the
500 m Collection 6 MODIS Land Cover Type product was used. This
product provides annual land cover maps based on machine learning
that are post-processed using a multi-temporal state-space modeling
framework that reduces spurious land cover change introduced by
classification uncertainty in individual years (Abercrombie and Friedl,
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2016; Sulla-Menashe et al., 2019).

The continuous development spring onset model (Section 2.3) is
estimated on an equal-area grid, where each grid cell is 4.67 km 4.67
km (10 10 MODIS pixels; ~22 krnz). In each grid cell, only pixels
labeled as deciduous broadleaf or mixed forests throughout the entire
study period from 2001 to 2017 were included in the analysis. To ensure
analyses were based on grid cells dominated by deciduous forest cover,
we excluded model grid cells where the fraction of MODIS pixels labeled
as deciduous broadleaf or mixed forests was less than 50% (Fig. Al).

2.2. Spring greenup and meteorological data

To identify the timing of springtime leaf emergence from 2001 to
2017, we used the Collection 6 MODIS Land Cover Dynamics product
(MCD12Q2; Gray et al., 2019). This product uses time series of the two-
band Enhanced Vegetation Index (EVI2) to identify the timing of six key
phenophase transition dates during each growing season in each 500-m
MODIS pixel. Numerous studies have reported that this product provides
a reliable measure of vegetation phenology (Moon et al., 2019;
Richardson et al., 2018b) and seasonal changes in ecological function
and surface biophysical characteristics (Melaas et al., 2013; Moon et al.,
2020). For this analysis, we use the MCD12Q2 ‘greenup metric, which is
defined by the Land Cover Dynamics product as the day of year (DOY)
during the greenup phase in spring when the EVI2 time series at each
pixel crosses 15% of its seasonal amplitude (Gray et al., 2019).

To provide the meteorological data required for model estimation,
we used the Version 3 Daymet dataset for North America (Thornton
et al.,, 2017) (https://daymet.ornl.gov). This data set uses digital
elevation data in association with a land-water mask and meteorological
observations collected at ground-based stations to create gridded time
series of surface meteorological fields at daily time step and 1 km spatial
resolution for the period 1980 to present. For this work, we used daily
maximum and minimum 2-m air temperatures from 2000 to 2017 along
with day-length, resampled to 500 m and co-registered to the MODIS
data over all grid cells included in our analysis.

2.3. Continuous Development Spring Onset Model

To estimate the sensitivity of different climatological controls on
springtime phenology, we developed a continuous development spring
onset model (hereafter, CDSOM) based on a hierarchical Bayesian
framework that predicts the timing of springtime greenup using three
drivers: photoperiod, thermal forcing, and chilling units. The original
form of this model was proposed by Clark et al. (2014b), who used the
same general approach to show that because conventional process-based
phenology models (e.g., Hufkens et al., 2018.) aggregate daily air tem-
perature time series into cumulative sums or mean values for each year
or season, they misrepresent how thermal forcing controls the timing of
phenology.

Similar to Clark et al. (2014b), the CDSOM we use here tracks the
continuous response of phenological development to variation in envi-
ronmental controls at daily time step. To do this, the model uses a state-
space framework that includes an unobservable latent state (h), which
responds continuously to environmental controls and captures ecolog-
ical responses to bioclimatic forcing:

@
where hg, s qis the latent state for grid cell gand sample (i.e., pixel) s on

day d. In this framework, hg s gis the increment in h from day d to day d
1, which is estimated using:

(2

where X, 4 is a matrix of predictor variables that includes the daily
mean temperature (Tg s 4), day-length (i.e., photoperiod; Lg s 4), and
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chilling units (CUy, ;; defined below) on each day, and where daily mean
temperature is computed as the average of daily maximum and mini-
mum temperatures from Daymet in each 500 m MODIS pixel. is a
vector of estimated model coefficients for each grid cell (g), and hpqy is
the final state value of h, which is prescribed to be 100. Note that: (1)
even though a linear formulation is used to describe the relationship
between model predictors and coefficients, the model accommodates
nonlinear responses in phenological responses to environmental con-
trols using an asymptotic limit for the latent state (i.e., hg, 5, ¢/hmax); and
(2) the latent state increment is always non-negative.

To convert the continuous scale of the latent state (h) into a form that
identifies discrete phenological events (i.e., the timing of spring greenup
onset), a logit transformation is used:

3)

where P, ; 4 is the probability that the onset occurs at sample pixel s in
grid gon day d, and and are the intercept and slope of the trans-
formation, respectively. Because greenup onset is defined to be a
discrete event, Py s g follows a Bernoulli distribution:

4

where Y, 4 indicates whether or not greenup onset has occurred for
sample s in grid g on day d.
Following convention, chilling units (CUg, ;) were defined as:

(5)

Hence, CUy,  is defined as the number of days below prescribed
threshold T, during the period after the onset of dormancy until an
unobserved date ¢, s when the chilling requirement is satisfied. Previous
studies have suggested that boreal and temperate tree species respond to
air temperatures ranging from 5 to 10 C as a threshold for chilling
requirements (Hanninen et al., 2019). Here we used 0 C because the
study area covers a large range of climate conditions. Further, and more
importantly, sensitivity analyses revealed that model results were not
sensitive to variation in T} (not shown), which is supported by results
indicating that chilling control on the timing of greenup is minor (see
Results).

2.4. CDSOM estimation

As we described above, the CDSOM was estimated using a regular
grid, with each grid cell composed of 100 MODIS pixels. We excluded all
pixels with more than one land cover type label between 2001 and 2017
(i.e., that nominally experienced change) and excluded all cells that
were composed of less than 50% deciduous or mixed forests. Because the
CDSOM is computationally expensive, we used a two-stage sampling
approach to estimate the model for randomly selected grid cells in each
of the 13 MODIS tiles that intersect the study region. In the first stage,
we randomly sampled grid cells within each MODIS tile that met the
criteria listed above. If less than 300 valid grid cells were available
within a tile, we included all valid grid cells. If more than 300 grid cells
were available in a tile, we randomly selected a sample of 300 cells. In
the second stage, we randomly selected MODIS pixels located in each
grid cell across time. To minimize the impact of spatial and temporal
correlation, we used a sub-sample of 100 pixel-years (i.e., 100 unique
greenup dates randomly selected across 17 years) to estimate a unique
model for each cell. Each sample was selected from a total pool of be-
tween 850 and 1700 sample points (i.e., 50 100 pixels per year in each
grid across 17 years).

For each year, December 1st of the previous year and DOY 250
(~Sept. 7) of the current year were used as the start and end dates of
latent state development, respectively. Posterior sampling was per-
formed using the R2jags package in R (Su and Yajima, 2015), with
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10,000 iterations and 3000 burn-in periods. As a final step, to reduce
noise in our results, we excluded grid cells where estimated model co-
efficients were outside 95% of the range of estimated model coefficients
across all grid cells. This yielded a final data set consisting of 1685 grid
cells with valid results.

Model results from a representative grid cell are shown in Fig. 1.
Overall, predicted onset dates are well aligned with observed onset dates
at this grid cell, with a root-mean-square error (RMSE) of 3.7 days across
the time series (Fig. 1a). Because the input forcing data are normalized
prior to model estimation (i.e., having a mean of 0 and a standard de-
viation of 1 for each of the input variables in each grid g and sample s),
the posterior distributions for each model coefficient, which reflect the
dependence of phenological development on each input variable, show
differences that are independent of the magnitude or units of each input
variable (Fig. 1b). Time series of the latent state generated by the model
(Fig. 1c) provide information regarding the timing and duration of the
pre-season period prior to greenup onset. This period has been previ-
ously described as as the most temperature-sensitive period preceding
the phenological event (Giisewell etal., 2017) or the period before leaf
unfolding for which the partial correlation coefficient between leaf
unfolding and air temperature is highest (Fu et al., 2015). Here we
define this period as corresponding to the time interval when pheno-
logical development is affected by bioclimatic forcing, and we use the
CDSOM to identify the pre-season period as starting on the DOY when
the latent state variable (h) starts to increase and ending on the DOY
when greenup onset occurs (i.e., the period indicated by the arrow in
Fig. 1c).

2.5. Quantifying the relative importance of bioclimatic forcing variables

To address our goal of quantifying the relative importance (and
geographic variation thereof) among bioclimatic controls on the timing
of springtime phenology, we compute a normalized index with values
that range from 1 to 1 that captures this effect. Because each of the
input variables in each grid g and sample s have been normalized to have
a mean of 0 and a standard deviation of 1, model coefficients can be
directly compared to assess the relative importance of each control
variable. To quantify this, we calculated the relative importance (RI) of
each control variable relative to each other variable using a normalized
index computed from CDSOM model results. For example, to compute
the relative importance of photoperiod versus thermal forcing in any
given grid cell, we computed:

_ ©

where rand | are the average model coefficients for thermal forcing
and photoperiod (respectively) during the pre-season period, which are
estimated for each grid cell by the CDSOM.

2.6. CDSOM assessment and comparison with conventional phenology
models

To provide a baseline comparison against previously developed and
widely used springtime phenology models (hereafter, the ‘conventional
models ), we compared results from the CDSOM with four widely used
process-based phenology models included in the phenor package in R
(Hufkens et al., 2018). Specifically, we compared our results against the
thermal time (TT) model, the photo-thermal time (PTT) model, the
exponential photo-thermal time model (M1), and the alternating (AT)
model, as described by Hufkens et al. (2018). These models are funda-
mentally different from the CDSOM in that they assume a linear rela-
tionship between spring thermal forcing and the rate of phenological
development, and that spring onset occurs when accumulated forcing
(after a prescribed start date) reaches a critical threshold (F*). The TT
model relies only on thermal forcing (daily air temperature in each
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Fig. 1. Model results for a randomly selected grid cell. (a) Relationship between the greenup onset dates from MODIS and onset dates estimated by the model. (b)
The distribution of model coefficients for each control variable (i.e., the relative dependence on each climate control; Therm.: thermal forcing; Photo.: photoperiod;
Chill.: chilling units). (c) Time series of the latent state (red line) and the length of the pre-season (identified by the horizontal arrow). In panel (a), each dot (totaln =
100) represents an individual pixel-year sampled from the grid cell comprised of 10 by 10 MODIS pixels across 17 years of the study period (i.e., 100 out of the total
1700 pixel-years). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

MODIS pixel, Ty ; ¢) with no additional inputs. In this model, the state of
forcing (Sp) increases each day until F* is reached, when leaves emerge
(Chuine et al., 1999; Hunter and Lechowicz, 1992):

R(Tya) = {T

&

0forTy,.<T,

@
sd T Tbﬁ‘"r Tk;,d' =T,

8§ =Y R(Tesa) ®

where tp is the starte date. For consistency with the CDSOM, we set tp
and Ty, to December 1st and 0 °C, respectively. The PTT model includes
day-length (i.e., photoperiod; Lg s g) as an additional factor that regu-
lates the rate of thermal forcing (Crepinsek et al., 2006; Masle et al.,
1989):

1]
L,
§ = Z R(Tx;ﬂi) x ;_Zd ©
g

The exponential M1 model also includes photoperiod, but treats the
relationship between photoperiod and Sy as an exponential (Bliimel and
Chmielewski, 2012):

] L.R k
5 = R(Ty.) x (2;;’“) (10)

where k is an empirically estimated constant. Finally, the AT model
includes the number of days when the daily mean temperature falls
below T, (i.e., the number of chilling days; NCD), and treats NCD as an
exponential function that reduces the thermal forcing accumulation
required for spring onset to occur (Cannell and Smith, 1923):

F' = a+bx exp[c x NCD(1) ] (12)

where a, b, and ¢ are empirically estimated constants, and NCD(t) is
defined as the number of chilling days since December 1st. A table
summarizing the variables and main characteristics of the CDSOM and
conventional models is provided as an appendix (Table A1).

For this analysis, we assessed model performance for both the
CDSOM and the conventional models in two ways. First, we assessed
results from model-based predictions for the timing of spring greenup
based on all available years (from 2001 to 2017). Second, to provide a
more robust assessment of model performance, we held out two years
(2010 and 2012) with anomalously warm springs in much of the study
region (Friedl et al., 2014), and evaluated model performance for each
of these years. In this way, we were able to assess not only how well the
models performed under average conditions, but also how well they
performed under unusual springtime weather conditions that were not
represented in the data used to estimate the models.

2.7. CDSOM estimation using ground-based observations

As a final element of our analysis, to complement model results based
on remotely sensed greenup dates and to provide an independent basis
for assessing the realism and robustness of our results, we estimated the
CDSOM using time series of leaf unfolding dates for cloned lilac (Syringa
x chinensis ‘Red Rothomagensis’) (Rosemartin et al., 2015). By applying
the model to data from cloned plants, genetic variability is eliminated,
and which allows us to investigate how differences in the timing of leaf
unfolding between different individuals are caused by differences in
local environmental controls. Unlike our approach using MODIS spring
greenup dates, the model is estimated by pooling site-years across the
region because the number of lilac leaf-out dates for each location is too
small to accurately estimate models for each site. The dataset includes
254 leaf unfolding dates from 60 locations across the study region,
spanning the period from 2001 to 2008 (Fig. A1). For reasons we explain
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below, we stratified the dataset into “warm’ versus ‘cold’ sites based on
whether the mean annual temperature at each site is above or below
10 °C. Based on this stratification, the model was applied to 182 and 72
leaf unfolding dates for the colder and warmer regions, respectively.

3. Results

The CDSOM accurately predicts biogeographic and interannual
variation in the timing of springtime greenup across the study region.
The median RMSE between predicted and observed spring greenup dates
was 4.6 days (Fig. 2), which is roughly equivalent to the uncertainty in
spring greenup dates estimated from MODIS (Moon et al., 2019). In-
spection of results from the conventional spring onset models show that
median RMSEs were ~ 20% larger (~5.5 days vs. 4.6 days) relative to
those obtained from the CDSOM (Fig. 2b). Further, RMSEs for years with
anomalous springs (2010 and 2012) were unchanged for the CDSOM,
but increased by roughly 2 days for conventional models when 2010 and
2012 were excluded during model estimation (Fig. 3). For completeness,
Fig. A2 shows the relationship between anomalies in MODIS greenup
dates and anomalies in predicted onset set dates, and demonstrates that
the CDSOM outperforms the conventional models in capturing year-to-
year variations in spring onset dates. These results suggest that the
CDSOM not only provides more accurate predictions of greenup relative
to predictions from conventional phenology models, but that the
CDSOM miore effectively captures the impact of geographic and year-to-
year variation in bioclimatic controls. More generally, the accuracy of
CDSOM results indicates that the model realistically captures the nature
and magnitude of ecophysiological responses to interannual and
biogeographic variation in climate controls that regulate the timing of
greenup.

The dependence of spring greenup on thermal forcing estimated by
the CDSOM is higher in Northern Forests than in Eastern Temperate
forests (Fig. 4), but overall differences, while statistically significant, are
modest (Fig. 4d). In contrast, dependence on photoperiod control ex-
hibits systematic geographic variation across the study domain, with
large differences between each ecoregion. Eastern Temperate Forests,
which are warmer, show substantially higher dependence on

RMSE (days)
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photoperiod relative to the Northern Forests ecoregion, which is much
cooler (Fig. 4b and d). This difference is especially pronounced in
Eastern Canada where dependence on photoperiod is low, versus the
Southern United States, where photoperiod dependence is high.
Dependence of spring onset on chilling units is uniformly low
throughout the study region, which indicates that the influence of
chilling control, relative to photoperiod and thermal foreing, is effec-
tively negligible (Fig. 4c and d).

Geographic patterns in the RI of photoperiod versus thermal forcing
indicates that photoperiod exerts proportionally more control on the
timing of spring greenup in warmer regions, while thermal forcing ex-
erts proportionally more control in colder regions (Fig. 5a). By plotting
the RI in climate space (i.e., as a function of mean annual temperature
and precipitation) (Fig. 5b), the pattern becomes even more clear. In
regions where mean annual temperature is above ~10 °C, photoperiod
exerts stronger control on the timing of spring greenup than thermal
forcing. Conversely, in regions where mean annual temperature is less
than ~10 °C, thermal forcing is more important. RI values near the 10°C
isotherm in mean annual temperature are generally close to zero, indi-
cating equal influence of thermal forcing and photoperiod (plotted as
purple points in Fig. 5). These results suggest that the 10 °C isotherm in
mean annual temperature identifies a transition zone between regions
where thermal forcing versus photoperiod is more dominant.

Results from applying CDSOM to ground-based observations of leaf
unfolding dates for cloned lilac reveal that even though the individual
lilac plants are genetically identical, the relative dependence of leaf
unfolding dates on thermal foreing versus photoperiod depends on local
bioclimatic conditions (Fig. 6). Consistent with previous studies (Basler
and Korner, 2012; Schwartz et al., 2006), model coefficients and RI
values indicate that leaf unfolding in cloned lilac depends more strongly
on thermal forcing than on photoperiod, irrespective of location. How-
ever, thermal control is stronger in colder regions and RI values are
significantly smaller (i.e., thermal control is less dominant) in warm
sites than in cold sites. In addition, comparison of cloned lilac data
against greenup dates from MODIS for the same location show that
MODIS greenup dates are biased late relative to lilac unfolding dates
(Fig. A3), especially in warmer areas with earlier greenup dates, which
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Fig. 2. Continuous Development Spring Onset Model (CDSOM) performance. (a) Geographic variation in model root-mean-square error (RMSE) between greenup
onset dates observed from MODIS and onset dates predicted by the CDSOM model. (b) Boxplots showing the distribution of RMSEs for the CDSOM model and four
widely used conventional spring greenup models. M1: The exponential photo-thermal time model; PTT: The photo-thermal time model; TT: The thermal time model;
AT: The alternating model. In panel (b), boxplots are presented in increasing order of magnitude with respect to mean RMSE.



M. Moon et al.

a o

) i : : :
o | R | ! 1

(}ﬁ-“_ ! i ' ! '

= : ' i '

= i

i |

w H

w

= w0 A T [ ! 1

[in ; ; :
o - i

cbsoM M1 PTT AT TT

260 (2021) 112466

ing of Envir

o |

0 LT

© : : ;

= | - i

[ H | [

5] ] . :

z '

o !

=

L 1 ) ! i

2] : : i :

= i ! : -

o ! : : ;
ol | |

CDSOM M1 AT PTT TT

Fig. 3. BMSE results across models for anomalous years. (a) Boxplots of RMSEs for each model for 2010 and 2012. (b) Boxplots showing increase in RMSEs for model
predictions for all years versus anomalous years (i.e., RMSEs for 2010 and 2012 — RMSEs for 2001-2017) at each grid cell. CDSOM: continuous development spring
onset model; M1: The exponential photo-thermal time model; PTT: The photo-thermal time model; TT: The thermal time model; AT: The alternating model. Boxplots

are presented in increasing order of magnitude with respect to mean RMSE.

supports the conclusion that lilacs are sensitive to temperature.

Finally, results from the CDSOM reveal patterns of covariance among
pre-season period length, photoperiod, and thermal forcing that jointly
control the timing of greenup that are not captured in conventional
models. In particular, geographic variation in the pre-season period is
strongly and negatively correlated with geographic variation in the
relative importance of photoperiod on spring greenup. Fig. 7b shows
that this relationship follows a power law, where photoperiod control
decreases (R = 0.70, p < 0.001) as the length of the pre-season period
increases. Fig. 7b also reveals modest heteroscedasticity in the rela-
tionship between pre-season period length and photoperiod control,
which reflects the fact that spring greenup in locations with cooler mean
annual temperatures and longer pre-seasons have lower dependence on
photoperiod and higher dependence on thermal forcing (Fig. 5). In
contrast, the relationship between pre-season period and dependence on
thermal forcing is statistically significant, but much weaker (R% = 0.13;
Fig. A4).

4. Discussion

We assessed the relative importance of photoperiod, chilling, and
thermal forcing in controlling the timing of leaf emergence in Eastern
Temperate and Boreal Forest ecoregions of North America. To do this,
we used a hierarchical Bayesian model in combination with time series
of land surface phenology measurements from remote sensing. The
former provides a data-driven framework for investigating how different
bioclimatic controls influence the timing of leaf emergence (Clark et al.,
2014b; Seyednasrollah et al., 2020); the latter provides a robust and
repeatable means of measuring and monitoring phenological dynamics
over large areas (Bolton et al., 2020; Zhang et al., 2018).

The core hypotheses that motivate this research include two main
elements. First, the ecophysiological processes that control leaf emer-
gence respond continuously to variation in environmental controls
throughout pre-season period prior to greenup in a manner that is not
represented in conventional models (Clark et al., 2014b). Second, rather
than simply acting as a cue for entering ecodormancy, photoperiod ex-
erts continuous control on the timing of greenup during the pre-season
period. The results presented in this study suggest that both hypothe-
ses are supported. The preseason period, which corresponds to the
period when the CDSOM latent state variable (h) responds to bioclimatic
forcing (Fig. 1¢), ranges from roughly 2-12 weeks over the study domain
(Fig. 7a). Throughout this period, changes in h reflect the net effect of
daily changes thermal and photoperiod controls. By estimating the
model in a spatially explicit fashion over a large geographic and climatic

range, CDSOM results provide an empirical basis for quantifying not
only how thermal forcing and photoperiod individually and jointly in-
fluence the timing of greenup, but more generally, how the length of the
preseason period and relative importance of photoperiod versus thermal
forcing vary over the study domain.

Conventional models calibrated using long-term observations of
phenological events such as those used in this study have been widely
used to simulate and forecast phenological events for decades (Chuine
and Régniere, 2017). Like the CDSOM, these models generally use air
temperature, photoperiod, and chilling units in different configurations
and combinations to parameterize the response of plants to bioclimatic
controls and predict the timing of phenophase transitions (Basler, 2016;
Hufkens et al., 2018). However, as we described previously, Clark et al.
(2014a, 2014b) argue that most conventional phenology models are
fundamentally limited because: (1) they aggregate measurements with
substantial day-to-day variability over periods of weeks-to-months into
single parameters and therefore do not capture how short-term vari-
ability in control variables influences the timing of leaf emergence; (2)
they rely on parameters that are not identifiable; and (3) they do not
account for uncertainty in model predictors or leaf emergence data. As a
solution, Hanninen et al. (2019) argue that carefully designed factorial
experiments provide the most robust basis for improving understanding
of processes that control leaf emergence, and hence, for developing and
testing process-based models. However, implementing such studies is
difficult and expensive, and collecting sufficient sample data to support
robust and generalizable models is generally not possible. Reflecting
these challenges, results from a meta-analysis of warming studies
showed that phenological changes observed in such experiments do not
replicate the magnitude of phenological responses to natural variation in
air temperature observed in natural systems (Wolkovich et al., 2012).

Data-driven models like the CDSOM are not a panacea, but they do
resolve several of the issues discussed above. In addition to addressing
the three limitations identified by Clark et al. (2014a, 2014b), functional
relationships among control variables in CDSOM are entirely estimated
from data. Hence the CDSOM avoids issues related to misspecification of
functional relationships that are inherent to conventional models.
Further, by exploiting time series of remote sensing observations
collected over large areas that span nearly two decades, the CDSOM
results presented here capture and reflect a much broader range of
climate regimes and climate variability than is generally possible using
designed experiments. Indeed, we posit that natural variability captured
through interannual variability in climate over large geographic scales
provides an important and useful strategy for characterizing and un-
derstanding the sensitivity of plant phenology to climate change (Fried!
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Fig. 4. Geographic variation in the dependence of spring greenup onset date to: (a) thermal forcing, (b) photoperiod, and (c) chilling units. In panel (d), boxplots
show the distribution of model coefficients for each control variable during the pre-season period prior to leaf emergence in Northern Forests (blue) versus Eastern
Temperate Forests (red). Differences between the means in both are statistically significant (p < 0.001). (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

et al., 2014).

Moreover, and perhaps most importantly, while the patterns pre-
sented in Figs. 4-7 are superficially consistent with results from previous
studies suggesting that the timing of spring greenup in deciduous forests
has become less sensitive to thermal forcing and that the so-called
‘temperature sensitive period’ of temperate and boreal trees is chang-
ing (Fu et al., 2019, 2015; Piao et al, 2017). We suggest that this
inference may be spurious. Specifically, results from the CDSOM show
that thermal forcing control on the timing of greenup is heterogeneous
and exhibits weak covariance with pre-season period. Hence, apparent
decreases in temperature sensitivity actually reflect shorter pre-season
periods with increased photoperiod control (Keenan et al, 2019).
Stated another way, as the climate warms, higher temperatures tend to
increase the relative importance of photoperiod, while dependence on
temperature has remained relatively constant. Further, in regions where
mean annual temperature is below ~10 °C, which encompasses a

significant proportion of the temperate zone and all of the boreal zone,
photoperiod control is modest and thermal forcing is clearly the domi-
nant control. Indeed, our results suggest that the biogeographic range in
which the relative importance of photoperiod control is increasing is
restricted to locations with mean annual temperatures between
~8-10 °C, and hence, is relatively narrow.

The simplest explanation for why photoperiod control varies
geographically is provided by the “law of the minimum™, which states
that plant growth is controlled by the scarcest resource rather than by
the total resources available (Liebig, 1841). Our results are, to a first
order, consistent with this law. In cold regions (i.e., identified here as
regions where mean annual temperature is less than ~10 °C; Fig. 5),
temperature is the primary limiting factor that controls the timing of
greenup. In warmer regions where temperature is less limiting, light (or
moisture) becomes the primary limiting resource. Invoking a similar
argument, Park et al. (2019) suggest that extensive areas of high-latitude
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Fig. 6. Dependence of cloned lilac leaf unfolding date on thermal forcing and
photoperiod, and relative importance (RI). 254 total leaf unfolding dates from
cloned lilac were divided into two groups based on mean annual temperature
(<£10°C, n=182; > 10 °C, n = 72). The left panel plots the mean dependence
of leaf unfolding on thermal forcing and photoperiod estimated by the CDSOM.
The right panel plots the mean RI in each group. Positive R indicates stronger
control by thermal forcing relative to photoperiod. Vertical lines show +1
standard deviation.

ecosystems that were previously constrained by temperature are
becoming more sensitive to photoperiod. Further, the results from our
study are consistent with recent experimental results from Zohner et al.
(2016), who concluded that springtime phenology in deciduous trees at
lower latitudes tended to depend more strongly on photoperiod, while
species at high latitudes leafed out independent of photoperiod. Hence
our results are consistent with both long-established and more recent
ecological literature.

Lastly, it is important to note several limitations of the current study.
First, rather than modeling the role of chilling in controlling spring
greenup using continuous (i.e., daily) forcing (Hanninen et al., 2019;
Murray et al., 1989), the CDSOM uses chilling units, which provide an
accumulated measure chilling requirements. This suggests that the role

of the chilling units may not be fully accounted for in this study, and may
explain the relatively minor role of chilling units in predicting the timing
of spring greenup that we observed in this study (Fig. 4c and d) (c.f,,
Heide and Prestrud, 2005; Laube et al., 2014). Second, to capture the
effect of thermal forcing, the CDSOM used daily mean temperature as
opposed to other measures of thermal forcing such as daily maximum
and minimum temperature, which some studies have suggested may be
better predictors. However, results from CDSOM using daily maximum
and minimum temperatures as inputs did not show significant differ-
ences from results based on daily mean temperatures (not shown), and
more generally, results from studies that have explored this question are
somewhat inconsistent (c.f., Huang et al., 2020; Piao et al., 2015; Shen
et al., 2018). That said, because continuous development models are
explicitly designed to capture the effects of short-term variability in
forcing variables, selection of optimal metrics to this variability is
clearly important and merits more investigation.

5. Conclusions

Changes in springtime phenology are among the most obvious and
observable responses of organisms to climate change, but the mecha-
nisms behind these changes are poorly understood (Parmesan and Yohe,
2003; Piao et al., 2019). By directly estimating and mapping the
geographic dependence of greenup on photoperiod and thermal forcing,
results from this study elucidate how the nature and magnitude biocli-
matic control on spring phenology depend on geography and climate,
and provide a novel and nuanced explanation for why the temperature
sensitivity of deciduous forests appears to be decreasing. Specifically,
our results indicate that apparent changes in temperature sensitivity
may reflect a misinterpretation of the data, and where present, observed
decreases actually reflect increased dependence on photoperiod. The
results also help to clarify the mechanisms behind observed changes and
have important implications for a variety of ecological processes, such as
the role of safety mechanisms that are widely ascribed to photoperiod
constraints on spring phenology (I{ormer and Basler, 2010). For example,
Fig. 5 shows that the relative importance of photoperiod decreases as



M. Moon et al. Remote Sensing of Envi 260 (2021) 112466

In(Dependence on Photoperiod)

"1 R?=0.695 .
y =-1.76x + 5.25

2 3 4 5
In(Pre-season period)

Fig. 7. Variation in pre-season period and the relationship between greenup dependence on photoperiod and length of pre-season period. (a) Geographic pattern in
pre-season period, and (b) log-log relationship between the dependence of greenup on photoperiod and the length of the pre-season period.

mean annual temperature decreases, which suggests that safety mech- drafting the manuscript.
anisms related to photoperiod provide only modest protection in colder

climates (Richardson et al., 2018a). More generally, our results support
the argument posited by Zohner et al. (2016) who reported that tree
species with strong photoperiod control on leaf-out tend to be located in
warmer regions, and challenge the idea that photoperiod provides a
safeguard against early leaf emergence in temperate woody species.
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Appendix A. Appendix

Table A1
Models descriptions.
Model Model type Variables Main characteristics & Statistical assumptions of the model
CDSOM  Date-driven h; 8h; hmay; X; T; L; CU; 3 P; Pl logical develop t resp conti ly to variations in environmental controls at daily time step
54EY; Ty throughout pre period; Invoking no ptions about functional relationships between control variables
TT Knowledge- F45:T: T Greenup onset occurs when accumulated forcing reaches a critical threshold, which sorely relies only on thermal
driven forcing with no additional factors
PTT Knowledge- F5 8T Ty L Greenup onset occurs when accumulated forcing reaches a critical threshold, but the rate of thermal forcing is regulated
M1 Knowledge- F4 5 T Ty Ly k Greenup onset occurs when accumulated forcing reaches a critical threshold, but the rate of thermal forcing is regulated
driven by photoperiod as an exponential
AT Knowledge- F*;NCD; a@; b; ¢ Greenup onset occurs when accumulated forcing reaches a critical threshold, but the rate of thermal forcing is regulated
driven by the number of chilling days

CDSOM: Continuous Development Spring Onset Model; TT: Thermal Time model (TT); PTT: Photo-Thermal Time model (PTT); M1: Exponential Photo-Thermal Time
model (M1); AT: Alternating model; h: latent state; sh: daily latent state increment; hy,,,: theoretical final state of h; X: matrix of predictor variables T, L, and CU (daily
mean temperature, day-length, and chilling units, respectively); §: vector of estimated model coefficient for T, L, and CU; P: probability that greenup onset occurs; x and
A: intercept and slope for logit transformation, respectively; ¥: Bernoulli trial indicating whether or not greenup onset has occurred; Ty: base temperature for chilling
requirement; F*: critical threshold that spring greenup onset occurs when the state of forcing (Sg) reaches it; k: exponential coefficient for M1; NCD: number of chilling
days; estimated constants for AT.
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Fig. Al. Map of the study area. Extents of the US EPA Northern Forest and Eastern Temperate Forest Level I ecoregions, along with the proportion 500 m MODIS
pixels labeled as deciduous forests in each grid cell according to the Collection 6 MODIS Land Cover Type product. Red crosses show the USA-National Phenology
Network site locations where lilac data are collected. Note that because the MODIS Land Cover Type product uses a threshold of 60% cover to define forest classes,
the map shown in Fig. A1 modestly over-represents the actual proportion of deciduous forest cover. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Development Spring Onset Model (CDSOM), the thermal time model (TT), the photo-thermal time model (PTT), the exponential photo-thermal time model (M1), and
the alternating model (AT), respectively. Dashed lines and correlation coefficients (r) show the results from standard major axis regression.

o | ® Colder region
= | ® Warmer region
(=] -
=+ - -
[} L4 V.~
g ‘8- b -"5;.:\: s ‘s
w
5 L A
28] g 4o
g . /’/. 4 .:%
E 8 _/ 5 ® L
R? = 0.600
o | y = 0.495x + 61.1
® n=198
60 80 100 120 140 160

NPN leaf un-folding dates
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dates (n = 254) due to cases where no MODIS dates were available because the lilac site was not located in a location dominated by deciduous or mixed forest at the
scale of MODIS pixels. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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