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Abstract

The rheological behaviors of suspension of ideally conductive particles in an electric field are studied using large-scale numerical simulations
in the limit of the zero-shear-rate flow. Under the action of an electric field, the particles undergo the nonlinear electrokinetic phenomenon
termed dipolophoresis, which is the combination of dielectrophoresis and induced-charge electrophoresis. For ideally conductive particles,
the dynamics of the suspension are primarily controlled by induced-charge electrophoresis. To characterize the rheological properties of the
suspension, the particle stress tensor and particle pressure are calculated in a range of volume fraction up to almost random close packing.
The particle normal stress and particle pressure are shown to behave nonmonotonically with volume fraction, especially in concentrated
regimes. In particular, the particle pressure is positive for volume fraction up to 30%, after which it becomes negative, indicating a change in
the nature of the particle pressure. The microstructure expressed by the pair distribution function and suspension entropy is also evaluated.
Visible variations in the local microstructure seem to correlate with the nonmonotonic variation in the particle normal stresses and particle
pressure. These nonmonotonic behaviors are also correlated with the change in the dominant mechanism of particle pairing dynamics
observed in our recent study [Mirfendereski and Park, J. Fluid Mech. 875, R3 (2019)]. Finally, the effects of confinement on the particle
stress and particle pressure are investigated. It is found that the particle pressure changes its nature very quickly at high volume fractions as
the level of confinement increases. This study should motivate control strategies to fully exploit the distinct changing nature of the pressure
for rheological manipulation of such a suspension system. © 2020 The Society of Rheology. https://doi.org/10.1122/8.0000081

. INTRODUCTION suspension displays nontrivial behaviors in concentrated
regimes [11].

In the class of ER suspensions, electronic control of stress
transfer tends to establish the concept of distinct fluid types.
These suspensions are sometimes denoted as smart fluids,
leading to various applications, including active shock
absorbers, clutches, brakes, dampers, actuators, and artificial
joints [2,14]. The ER fluids under the action of an electric
field are known to undergo dielectrophoresis (DEP) and
exhibit a dramatic viscosity enhancement, which is reversible
and can be controlled by the electric field [2,15,16]. This
increase in viscosity, potentially leading to a transition to
solid-state, is known as a consequence of a rapid formation
of particle chains and columns along the applied field direc-
tion due to dipolar interactions between particles [17-20].
These fibrillated chain structures are regarded as a typical
feature of ER fluids and were first found by Winslow [21].
Above a limiting volume fraction, these fibrillated structures,
which span the electrode gap in quiescent suspensions, tend
to become larger with particle concentration and eventually
degrade with increasing shear rate in a shear flow [22]. It has
also been well known that the unique rheological properties
of the ER fluids are attributed to the resistance to deforma-
tion of the field-induced structures [22,23].

In a similar fashion, the presence of external magnetic
fields in a suspension of highly magnetizable particles can
also lead to a significant change in apparent viscosity and a
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jaesung.park @unl.edu Such suspension is also termed a magnetorheological (MR)

An electric-field-driven suspension of particles in a
viscous fluid has been widely studied in a number of fields
including material science, microfluidics and nanofluidics,
and bioengineering [1-4]. In general, there are two classes in
such systems. The most notable class is the so-called electro-
rheological (ER) suspension in which nonconductive but
electrically active particles are suspended in an electrically
insulating fluid. A wide spectrum of industrial applications
for ER suspensions has been enabled by a rich rheological
property [5]. The other class is comparatively new, where
conductive or polarizable particles are suspended in an elec-
trically conductive fluid or electrolyte. Recently, such sus-
pension has gained a growing interest in the additive
manufacturing of 3D printing technology and electrochemi-
cal energy storage technology [6—8]. As highly concentrated
suspensions are commonly used for these technologies,
understanding the rheological behaviors of such suspensions
is of practical interest. However, the studies on the rheology
of such suspensions remain limited [9,10] to which this work
is intended. The dynamics of such suspensions is governed
by the so-called induced-charge electrophoresis (ICEP)
for ideally polarizable particles [11-13]. Recently, such
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fluid. The viscosity of MR fluids, which contain the particles
with a typical diameter of 1-10 um, can also be tuned with
the field strength. As opposed to MR fluids, ferrofluids are
composed of much smaller magnetic particles and exhibit a
very small change in viscosity in the presence of an external
field due to the considerable Brownian effects, disrupting the
formation of the structures [26].

Rheological properties due to dipolar interactions have
received much attention in both fields of electrorheology and
magnetorheology [27,28]. Sim et al. studied the large ampli-
tude oscillatory shear (LAOS) behavior of ER fluids, relating
the nonlinear LAOS behavior to the microstructural change
of the suspension [29]. They also found that the cluster for-
mation along with a slight rearrangement within a cluster
results in the strain overshoot phenomenon, often seen in the
system of complex fluids. Bonnecaze and Brady observed
different types of rearrangements at small Mason numbers
(MNs), the ratio of viscous to electrostatic forces [23]. They
correlated the macroscopic rheology to the dynamics of the
suspension for a range of MNs. They also showed that the
decrease in MN, which is associated with an increase in elec-
trostatic force relative to the viscous force, leads to an
increase in effective viscosity [23,30]. This MN is originally
used for MR fluids, where it represents the ratio between the
viscous and magnetic forces. Similar to ER fluids, the appar-
ent shear viscosity of an MR suspension was seen to collapse
onto a single function of MN for a range of conditions
[31,32]. It is worth noting that Anderson claimed that the
polarizability of particles could significantly affect the ER
behavior of the suspension as conductive particles can
acquire additional charges and, in turn, fail to participate in
the formation of the structure as opposed to dielectric
particles [33].

As for the other class, which is the case of interest for this
study, conductive particles are suspended in a conducting
fluid. The dynamics of the system becomes more complex
and far apart from that of the conventional ER suspensions
governed by DEP interactions. In this system, ICEP [34,35]
arises as the particles acquire additional surface charges
resulting in a nonlinear fluid flow around particle surfaces.
This phenomenon was first analyzed in the Russian colloidal
literature [36,37], which was reviewed by Murtsovkin [38],
and later rediscovered and coined by Squires and Bazant
[34]. It has been observed that ICEP is predominant over
DEP for a suspension of ideally conductive particles [12],
but this predominance can be modulated by surface contami-
nation [39]. Recent numerical simulations were performed to
investigate the effects of ICEP on the dynamics of such sus-
pensions in a range of volume fractions up to a maximum of
about 60%, where nontrivial behaviors in large-scale dynamics
were discovered in concentrated regimes (volume fraction of
45-50%) and explained by the nature of contact mechanisms
[11]. Yet, no rheological studies of such system have been
done in the literature, which motivates the current study.

It should be noted that owing to qualitatively similar far-
field fluid disturbances governed by a Stokes dipole, the
system studied shares similarities with active suspensions such
as a suspension of spherical squirmers driven with a prescribed
axisymmetric tangential velocity [40,41]. Hydrodynamic

interactions in active suspensions induced by permanent swim-
ming dipoles result in complex dynamics and mixing and dif-
fusive behaviors [42], which are qualitatively similar to ones of
the current system governed by ICEP. However, the expected
differences are the magnitude and orientation of the surface (or
slip) velocity, which may modify the relative importance of
attractive and repulsive interactions between particles [43,44].
In the context of the rheology of active suspensions, theoretical,
numerical, and experimental studies have shown that particle
activity causes an increase in intrinsic viscosity of the suspen-
sion of pullers, while reducing the intrinsic viscosity of the sus-
pension of pushers when the particles are strongly active
relative to the weak external flow (low Péclet numbers)
[42,45-47]. It is also consistent with the observations that the
suspension of living algae (pullers) is more viscous than the
suspension of dead ones, while the suspension of both E. coli
bacteria and sperms (pushers) is less viscous when alive than
dead [48].

In this paper, large-scale numerical simulations are used
to investigate the rheology of the suspension of noncolloidal,
ideally conductive spheres in a uniform electric field for
volume fractions up to random close packing in the limit of
the zero-shear-rate flow. The suspensions under these
conditions are known to undergo both ICEP and DEP. A
combination of these two phenomena is also known as dipo-
lophoresis (DIP) [49]. The particle-particle interactions
arising from DIP are generally governed by ICEP in a sus-
pension of ideally conductive particles since the leading-
order contributions to ICEP and DEP interactions are a
Stokes dipole and a potential quadrupole, respectively, where
the former has a slower decay with separation distance R as
O(R™?) than the later as O(R™*) [11=13]. Under these condi-
tions, the particles undergo random chaotic motions, which
result in the constant rearrangement of the particle configura-
tions but do not lead to the formation of chains as in the case
of DEP only. The details of the simulation method adopted
to facilitate the study of highly concentrated suspensions are
reported in Sec. II. In Sec. III, the simulation results for
rheology and microstructure in the suspension as functions of
volume fraction along with the system relaxation are pre-
sented and discussed. The effect of wall confinement on the
rheology is also evaluated in Sec. III E.

Il. GOVERNING EQUATION AND SIMULATION
METHOD

We consider a suspension of N identical neutrally buoyant
ideally polarizable spheres of radius a in a viscous electrolyte
with the permittivity £ and viscosity 7. A cubic periodic
domain is used to simulate an unbounded, infinite suspen-
sion. An external uniform electric field Ey = Eyz is applied
in the z direction. The particles are assumed to carry no net
charge, so the linear electrophoresis is not expected to occur.
We also assume weak electric fields, thin Debye layers, and
zero Dukhin number for no surface conduction [34]. It is
also assumed that the particle size is large enough so that the
Brownian motion is negligible. Under these conditions and
assumptions, the suspension dynamics results entirely from
the effect of DIP.
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As a uniform electric field is applied, electric and hydro-
dynamic interactions between particles arise as a result of
DEP and ICEP, which may lead to relative motions of parti-
cles. For ICEP, each spherical particle polarizes and forms a
nonuniform surface charge distribution, which then attracts
counterions in an electrolyte. The migration and accumula-
tion of these counterions near the polarized surface result in
the formation of a nonuniform Debye layer. The charging
time of this nonuniform Debye layer is very small on the
order of 7. = Apa/D, where Ap is the Debye layer screening
length, a is the particle radius, and D is the characteristic dif-
fusivity of ions in solution. In a typical experiment
(@~ 10um, Ap ~ 10nm, D ~ 10~> cm?s~!), the charging
time 7. ~ 10~*s, which is much smaller than the diffusion
time across the particle 7, = a*>/D ~ 10~!s. Therefore, the
nonuniform Debye layer can be assumed to remain at equilib-
rium. The effect of the electric field on the nonuniform
Debye layer drives disturbance flows around the particle
surface, which may lead to relative motions due to ICEP.
The current calculation for ICEP interactions is based on the
standard model of induced-charged electroosmosis (ICEO)
around an ideally conductive sphere [34], which has limita-
tions compared to experimental observations, such as electro-
static  correlations, electroviscous  effects,  dielectric
decrement, among others [50]. Thus, it should be noted that,
in general, the various neglected conditions are likely to
modify the magnitude of ICEP interactions and shift their
frequency response compared to the standard model used in
the current study. In addition, given that in the current
model, Debye layers are sufficiently thin (1p/a ~ 1073) and
the minimum distance between particles in a suspension is
larger than 21 even at high volume fractions, it can also be
assumed that the Debye layer overlapping is negligible.
Hence, the capacitance or polarizability of particles remains
at equilibrium even at high volume fractions. However, in the
case of highly concentrated suspensions, the Debye layer
overlapping might happen due to strong excluded volume
interactions, leading to the modification of the Debye layer
capacity [51], which is not considered in the current study.
For DEP, the presence of other particles like a suspension
causes disturbances to the local electric field around particles,
resulting in a nonuniform Maxwell stress tensor O(E?) in the
fluid. This tensor can yield a nonzero DEP force on sur-
rounding particles, leading to relative motions in particle sus-
pensions due to DEP [12].

In a uniform electric field, both ICEP and DEP do not
lead to the motion of a single sphere owning to fore-aft sym-
metry. Indeed, the presence of other particles in a suspension
leads to the symmetry breaking, resulting in the relative
motion between the particles due to ICEP and DEP. The
detailed description of paring dynamics associated with DIP
for ideally conductive spheres in a uniform electric field was
presented in the previous studies [12,13].

For electric and hydrodynamic interactions in a suspen-
sion, the method of simulation is based on the previous work
of Park and Saintillan [12], for which a new approach was
introduced to efficiently prevent particle overlaps in our
recent work [11]. The outline of the method is as follows.
Based on pair interactions due to DIP [13], the translational

velocity x, of a given particle @ in a suspension can be
expressed by

. eabR? ..
Xy = TO > IMPF(Rap/a) + M (Rop fa)) 22
p=1
+MLFP a=1,...,N, (1)

where R,s = x3 — x,, is the separation vector between parti-
cle a and particle B, and M/“EF and MPEP are third-order
dimensionless tensors accounting for the ICEP and DEP
interactions, respectively. My is a mobility constant of a
single sphere, I is an identity tensor, and F? is the interparti-
cle force for excluded volume interactions. It is shown that
these two tensors M/EF and MPEP can be entirely deter-
mined by the scalar functions of the dimensionless inverse
separation distance A = 2a/|R|. Specifically, for both DEP
and ICEP, M is calculated as follows:

M — { M,(R /a) R/a4,
M,(R/a) — Mpr(R/a) + Mpy(R/a) R/a <4,

2)

where M, denotes the periodic version of the far-field
tensors My, which are given by

MEE R [a) = TR a) + 0GY), @)

MR a) = — SR/a) — 3 TR ) + 0G0, ()

where the two tensors S and T = V28 are the Green’s func-
tions for a Stokes dipole and for a potential quadrupole,
respectively [52]. These two third-order tensors are also
given in index notations as follows:

1 RiR R

Six(R) = — F(aink —0aR; —6jR) —3 st L6
6 RiR iR

Tij(R) = — 25 (GyRe + SuR; + 8Ry) + 30— (6)

These far-field tensors are asymptotically valid to order
O(A*) for any pair of particles, and their use is consequently
justified when they are sufficiently far apart (i.e., their sepa-
ration distance is greater than 4a). The far-field interactions
(A < 1) can be readily computed using the method of reflec-
tions. These tensors reconfirm the dominance of hydrody-
namic interactions due to ICEP over ones due to DEP in a
suspension of ideally conductive particles. However, the
near-field corrections are necessary as the method of reflec-
tions becomes inaccurate when particles are close to each
other (typically |R,s| < 4a), for instance, during pairing
events. This is achieved by correcting the far-field tensor
Mjr with a more accurate version My, calculated using the
method of twin multiple expansions [13]. This method is
very accurate down to separation distances on the order of
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|Rgp| ~ 2.005a [12]. In addition, this method captures the
strong modification of the local electric and hydrodynamic
interactions between the two particles very accurately even at
high volume fractions.

To account for hydrodynamic interactions between parti-
cles @ and B and all its periodic images, the tensors of
Egs. (3) and (4) can be expressed as the periodic version of
the far-field tensors, which are valid to order O(R;g). Since a
high-order computation O(N?) is required to direct calcula-
tion of the sums in Eq. (1), the smooth particle mesh Ewald
(SPME) algorithm based on the Ewald summation formula
of Hasimoto [53] and on fast Fourier transforms is used to
accelerate the calculation of the sums to O(N log N) opera-
tions [12]. The details of the SPME algorithm on calculations
of particle velocities can be found in the Appendix.

Once all the particle velocities x, (¢ =1, ..., N) are cal-
culated, particle positions are advanced in time using a
second-order Adams—Bashforth time-marching scheme, with
an explicit Euler scheme for the first time step. A fixed time
step At is used and is chosen so as to ensure that particles
only travel a fraction of the mean interparticle distance
during one integration step. In order to prevent particle over-
laps that occur due to the use of finite time steps in simulations,
the application of a repulsive interparticle force is necessary.
For this purpose, an effective algorithm, functionally identical
to the potential-free algorithm [54], is implemented to prevent
excessive particle overlaps as a result of DIP interactions,
where particles are moved almost exactly, within roundoff
errors ( ~ 2.005a), to contact. The form of the repulsive poten-
tial for excluded volume (EV) interactions is

1
UtV = Sk(2a— R)?, (7)

where k is the time step-dependent prefactor, which can be
expressed as k = 3zna/At [55]. A particle velocity driven by
a short-range repulsive force, which is the negative gradient
of the potential with respect to the coordinates of the particle,
can be obtained by the Stokes drag law. This repulsive force
corresponds to the interparticle force in Eq. (1). The resulting
velocity contributes to the displacement along the direction
connecting the center of the two spheres at the points of
closest approach. We tested the robustness with respect to the
excluded volume interactions by using different values of the
prefactor in Eq. (7) and no excluded volume interactions,
where almost identical results were produced. Another trou-
blesome factor for suspension simulations in concentrated
regimes is to provide the initial configuration of random par-
ticle distributions. To this end, the initial random configura-
tions were generated using a similar procedure to ones
suggested for dense hard-sphere systems [56-59]. In the
present simulations, all runs were started with hard-sphere
equilibrium configurations, but the first 100 time steps were
discarded for better steady-state configurations beginning to
compute averages.

In the remainder of the paper, all variables are made
dimensionless using the following characteristic length and
velocity scales: [, = a and u, = saE(Z] /n.

lll. RESULTS AND DISCUSSION

We performed large-scale simulations in a cubic periodic
domain (L, x L, x L, = 20°) for a range of volume fraction
¢ up to almost random close packing (¢ ~ 64%). In our pre-
vious study, the nontrivial suspension dynamics was
observed in concentrated regimes, where the velocity fluctua-
tion, hydrodynamic diffusivity, and number density fluctua-
tion tend to increase with volume fraction at ¢ = 35 before
reaching a local maximum at ¢ ~ 45% and then drop as
approaching to the random close packing [11]. We attributed
this nonmonotonic behavior to the change in the dominant
direction of particle-particle contacts from the field direction
to the transverse direction. In this study, the local microstruc-
ture, which is correlated with the suspension dynamics, is
evaluated by a pair distribution function. The rheology of the
system is characterized by computing suspension bulk stress.
Particle extra stress tensor X,, which provides the essential
explanation of the mean particle effect on the flow, is calcu-
lated based on the Batchelor calculation of the average stress
tensor in particle suspension [60]. The particle pressure as an
isotropic part of the stress is evaluated for a range of volume
fraction [61].

A. Suspension dynamics: Relaxation time and
interparticle distance

The mean-square displacement (MSD) of particles versus
time, which generally has been served as a start of the
pathway to quantify the collective dynamics of suspended
particles, is presented for four different volume fractions in
Figs. 1(a) and 1(b) for the z direction (field direction) and
the x direction (transverse direction), respectively. After a
few particle-particle interactions, the initial quadratic growth
of the MSD curve is followed by a transition to the diffusive
regime in which the MSD curve linearly grows with time in
both x and z directions. To compute a time required to reach
the diffusive regime due to loss of memory, denoted as a
relaxation time (also known as crossover time), the autocorre-
lation functions C,, of particle velocities in the x and z direc-
tions are calculated, as seen in Fig. 2. The relaxation time
can be approximated as the time when the function reaches
its first global minimum. In both directions, the function
decorrelates very quickly with increasing volume fraction.

Figure 3 shows the relaxation time 7 as a function of
volume fraction ¢ on a log-log scale. In the dilute regime
(¢ < 5%), the relaxation time tends to decrease with volume
fraction and scale as 7 ~ ¢~ . Subsequently, in the semidi-
lute regime (¢ =5 — —35%), the relaxation time decreases
faster than for the dilute regime, approximately scaling as
7~ ¢ '. The decreasing trend in the relaxation time with
volume fraction is easily explained by an increase in the
magnitude of particle-particle interactions with increasing
volume fraction. Interestingly, the relaxation time appears to
increase at ¢ ~ 35% up to ¢ ~ 47.5% and then decrease
again as approaching random close packing. It is this range
of volume fraction that the nontrivial behavior of increasing
hydrodynamic diffusivity and velocity fluctuation was
observed in our previous study for the same suspension [11].
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10° 10" 10° 10°
Time ¢

FIG. 1. The mean-square displacement (MSD) in (a) the z direction (field
direction) and (b) the x direction (transverse direction) as a function of time
on a log-log scale at four different volume fractions.

To further distinguish different behaviors in different
ranges of volume fraction, the mean interparticle gap
h = R, — 2a is calculated as a function of volume fraction,
as shown in Fig. 4. Four different zones can be readily distin-
guished by different slopes in the log-log plot, namely,
dilute, semidilute, concentrated, and very concentrated (close
to random close packing) regimes. In dilute regime
(first zone), the average interparticle gap is proportional to
h~ d)‘l/ 3, which has also been observed in many dilute
suspensions [62—65]. The exponent then becomes larger at
¢ ~ 5%, providing the second slope of —0.75 (second
zone). In concentrated regime (third zone), it decreases dra-
matically with a much higher exponent as a volume fraction
increases. Finally, the slope in the very high concentrated
regime (fourth zone) decreases slowly compared to the third
zone because the average interparticle gap is approaching the
value of designated prefactor corresponding to excluded
volume interaction in Eq. (7).

oS-SS

200

200

FIG. 2. The autocorrelation function of the particle velocity components in
(a) the z (field) direction and in () the x (transverse) direction as a function
of time for four different volume fractions.

B. Suspension microstructure and entropy

The suspension microstructure is known to provide impor-
tant information in complex flows, especially its implications
to rheology [66—68]. An appropriate way to characterize the
suspension microstructure, which is the spatial arrangement
of particles, is to calculate the pair distribution function. This
function provides information about the probability of
finding a particle with respect to a probe one at the origin.
Figure 5 shows the effect of volume fraction on this function.
As seen in the figure, the maximum probability is first
located near the particle poles at ¢ = 10% and ¢ = 20%, as
previously observed in both suspension of spherical [11,12]
and rodlike [69] particles. In the concentrated regime
(¢ > 30%), the maximum shifts from the poles to equators
due to the change of the dominant mechanism of pairing
dynamics [11]. With a further increase in volume fraction up
to ¢ = 59%, this shifted maximum probability region seems
to emanate and propagate over the particle surface toward the
poles where the peak region finally turns to entirely cover the
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FIG. 3. The relaxation time in the transverse (x) and field (z) directions as a
function of volume fraction on a log—log scale. Different zones associated
with the different slopes are seen on a log—log scale for ¢ < 35%, and a
nontrivial variation in relaxation time is seen for ¢ > 35%.

particle surface, forming seemingly microstructural isotropy.
Specifically, starting at ¢ ~ 20%, the dominant mechanism
and direction of particle parings change from attractive in the
field direction to repulsive in the transverse direction due to
strong ICEO flows in the lateral direction. This change in the
dominant mechanism leads to pushing the particles to contact
in the transverse direction, resulting in the appearance of the
second high probability region at the equator [11]. The
further increase in the repulsive interactions with volume

S. MIRFENDERESKI AND JAE SUNG PARK

10°

10° 102 10" 10°

Volume fraction

FIG. 4. The average interparticle gap h/a = R,,/a —2 as a function of
volume fraction on a log-log scale. Four different zones associated with dif-
ferent slopes in a power law of the volume fraction are identified.

fraction eventually causes nearly 95% of particle contacts to
occur in the lateral directions, leading to a clear transition of
the high probability region from the polar to the equator at
¢ ~35%. As a volume fraction is further increased, the
increase in excluded volume interactions results in increasing
particle contacts in all directions by which the high probabil-
ity region starts to entirely cover particle surface for
45¢$59%. Again, it should be noted that the local microstruc-
ture of the current system is primarily governed by ICEP as

8
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2 22
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10 50
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sgn(x)r/a sgn(x)r/a sgn(x)r/a

FIG. 5. Pair distribution functions in suspensions undergoing DIP at six different volume fractions in coordinates (sgn(x)r, z), where r> = x> + y*. A probe par-

ticle is located at the origin (white areas are indeed an excluded volume).
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the pair distribution function of the suspensions undergoing
only ICEP (not shown) is almost identical to that of Fig. 5.
Finally, the function seems to show a crystal structure at
random close packing (¢ = 64%), where the multiple high
probability spots indicates the typical crystal structural infor-
mation [70-72].

Having determined the pair distribution functions, the sus-
pension microstructure can be linked to the suspension
entropy. Typically, the Shannon entropy S is calculated [73]
and is given by

M
S(¢) = — > P(x)log,P(x;). ®)
i=1

where P is the pair distribution function at a volume fraction
&, x; is the ith location in P, and M is the total number of the
locations in P. This entropy is also known to quantify the
order of a suspension. Figure 6 shows the deviation of the
suspension entropy normalized by the maximum entropy,
1 — 8/Suax, as a function of volume fraction. The maximum
entropy, Smay, results from an equiprobable pair distribution
function, meaning that the probability of finding a particle is
constant at all locations. It is found that the normalized sus-
pension entropy (1 —S/S,..,) decreases as ~ ¢ %7 from
¢ =025% to ¢ =20% at which the Shannon entropy S
eventually reaches a maximum value, meaning that the sus-
pension becomes the least ordered. The normalized entropy
starts to increase and reach the maximum value at the
random close packing, where the crystal structure is likely to
be formed. At the volume fraction of the minimum normal-
ized entropy (¢ =20%), the secondary high probability
region starts to appear at the equators in a pair distribution

10°}

10-43 — ‘Hll2 — ‘H‘lll - 0
10 10 10 10

Volume fraction

FIG. 6. The normalized deviation of the suspension entropy from the
maximum entropy (1 — S(¢)/Smax) as a function of volume fraction on a
log—log scale, where S(¢) is the entropy of suspension at a certain volume
fraction ¢ and S,,,, is the maximum entropy resulted from the equiprobable
pair distribution function.

function (see Fig. 5). In addition, it is worth noting that at
this volume fraction, the nature of pairing dynamics is
changed from repulsive to attractive, where particle contacts
along the transverse direction become predominant over the
attractive contacts along the field direction [11].

C. Particle stress

For defining the rheological properties of the suspension,
the calculation of the bulk stress (X) is needed, where the
angle bracket denotes an ensemble average over the particles.
Here, we use the Batchelor calculation for the average stress
tensor in a suspension of force-free particles [60]. The
average of bulk stress is then determined by the average of
the Cauchy stress tensor o over a characteristic volume V,

() = %J o(x)dV = —p I+ 2n(E”) + 7, 9)
14

where py = (p); is the (constant) pressure in the fluid, I is
the identity matrix, and 2n(E®) is the deviatoric contribution
from an incompressible fluid containing rigid particles.
These first two terms are the contributions of the fluid to
the stress, comprising a Newtonian behavior [70]. The
non-Newtonian behavior is captured by the particle contribu-
tion to the stress X, which is given by (in index notation)

1 N
ZZ, = V E J [o,-kxjnz - n(uinjq + ujn?) dA
a=1 740
1Y 1 &
_ a L%
v Sty el (10)

where Ay is the surface of particle a, u; is the velocity com-
ponent in an ambient fluid, and n{ is the component of the
normal vector pointing outward from the particle surface to
the fluid. $* and L%is the stresslet and torque on particle «,
respectively. For torque-free rigid particles, in which case the
present suspension is, the stresslet is the only contribution to
the particle stress and is simply computed by

1
0

where the position vector x can be taken from an arbitrary
origin as long as the total hydrodynamic force on N particles
vanishes. The particle stress tensor is then readily obtained
by

2 = n(Sy), (12)

where n = N/V is the number density of the suspension.
Specifically, the particle stress is the number density times
the average symmetric force dipole per particle.

For the suspension considered, which includes non-Brownian
particles in a quiescent flow, the stresslet can be further decom-
posed into two stress-generating mechanisms, namely, ICEP
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effects and hydrodynamic interactions
P _ ICEP H
= n(SIE) +n(st). (13)

The first term is associated with an induced nonlinear slip
velocity over particle surface due purely to electric interac-
tions, while the second term corresponds to the effect of
hydrodynamic interactions between particles. Note that as
mentioned above, the effect of electrostatic forces (DEP
effect) is negligible compared with ICEP for the system
studied; therefore, the contribution of DEP to the stress
would not be included.

As the slip velocity on the particle surface drives the flow
in a suspending fluid, the velocity field around a given parti-
cle due to the slip velocity can be found by solving the
Stokes equations [13,34]. To leading order of O(R73), the
contribution of the slip velocity to the particle stress S is
now given by

9
SIFEP = Ze E2( ) (AE, + EA) + OR™), (14)
where A = (I -3RR)-E,, R=R/a, and E,=E/E,.

Subsequently, the velocity field generated by the slip veloc-
ity causes the motion of other particles, which can be
obtained by Faxen’s law [52]. This particle motion corre-
sponds to the first effect of hydrodynamic interactions. The
contribution of this hydrodynamic interaction to the particle
stress Sfj' is then captured by the disturbance velocity field
due to the particle motion when placed in the velocity field
generated by the slip velocity. In other words, the contribu-
tion to Sff is related to the hydrodynamic interactions cap-
tured by the reflection of a velocity disturbance from one
particle to another. To leading order of O(R™3) in the first
effect of hydrodynamic interactions, the contribution to Sfj?'
is given by

st = %eﬁ( ) [(I — 3RR) — 3(E, - R)(EoR + REy)

—3(Ey-R) (1 ~5RR)]1+ O(R™). (15)

Given these two contributions to the particle stress, we
turn to the dependence of the particle stress tensor on a
volume fraction. Figure 7 shows the diagonal entities (i.e.,
normal stresses) in the particle stress tensor. It was found that
the diagonal entities are several orders higher in magnitude
than nondiagonal ones (i.e., shear stresses), suggesting that
the rheological behavior of the current system is essentially
governed by the normal stresses.

Figure 7(a) shows the normal stresses in the transverse
directions (x and y directions). To leading order, the ICEP
effect appears to provide no contribution to the normal
stresses in both x and y directions, essentially
SICEP = SICEP = 0. However, the hydrodynamic interactions
contnbute to the particle normal stress in the transverse direc-
tions, which are almost the same in both x and y directions,
that is, S ~ Sfly. Furthermore, nontrivial behavior is
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FIG. 7. Dependence of the particle normal stresses, namely, ICEP (S/CEP)

and hydrodynamic (S”) contributions, on volume fraction in (a) the trans-
verse (x, y) directions (note that 32 = n{S%) and ¥ = n<Sf" ) and (b) the
field (z) direction. The ICEP effect only contributes to the particle normal
stress in the field direction. Due to symmetry with respect to the field direc-
tion, X = Zf,’\..

observed in terms of sign and trend. The transverse hydrody-
namic normal stresses are positive in dilute regimes and
increase with volume fraction before reaching a local
maximum at ¢ = 25%. They start to decrease and become
negative at ¢ = 32.5%, reaching a minimum at ¢ = 40%.
They start to increase again and become positive at
¢ =47.5%. Finally, they increase rapidly as approaching
random close packing.

For the field direction, the particle normal stress is pre-
sented in Fig. 7(b). As opposed to the transverse directions,
the ICEP effect contributes to the particle normal stress in
the field direction. Nontrivial behaviors are also observed in
the field direction. However, in this case, both ICEP and
hydrodynamic contributions are all negative in dilute regimes
and become more negative with volume fraction up to
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¢ = 25%. They then start to increase and become positive at
¢ ~ 32.5%, reaching a maximum at ¢ = 45% and ¢ = 40%
for ICEP and hydrodynamic contributions, respectively.
While the ICEP contribution stays positive for the rest of
volume fraction with a slight decrease toward random close
packing, the hydrodynamic contribution rapidly decreases
and becomes negative again at ¢ = 47.5%, reaching a
minimum at random close packing. This nonmonotonic
behavior of the particle normal stresses with volume fraction
could imply distinctive rheological behaviors of the system
studied.

Interestingly, for the hydrodynamic contributions, the
normal stresses in the transverse directions, <Sfx> and <S£’\ s
are exactly opposite to that in the field direction, (7). " =

This can be explained by the stress-generating response
of the particle pairing originated due to DIP or ICEP.
Specifically, for each pair of particles undergoing ICEP,
SH = —(S% + Sf) always holds. Considering ( S% ) ~ (S%)
for the current system with an electric field applied in the z
direction, then (S7)~ —2(S%). Note that the particle
pairing dynamics, where particles tend to be attracted along
the field direction and repulsive along the transverse direc-
tion, essentially results in exactly opposite flow fields around
particles as the particles move in the transverse and field
directions, resulting in the opposite signs for stresslets
[11-13].

The sign of all the contributions in the particle normal
stress seems to be correlated with the local microstructure
seen in Fig. 5. In dilute regimes, the high probability region
in the pair distribution function is located near the particle
poles, which corresponds to a negative sign in <Sf> < 0 and
(SICEP) < 0, indicating that the particles are mostly paired
up along the field direction (attractive pairings). Note that
there is a positive sign in <Sfx> > 0, but its effect is negligi-
ble on the microstructure. Their signs eventually change with
the increase in volume fraction at ¢ ~ 32.5%, which corre-
sponds to transition in local microstructure that the high
probability regions now shift to the equators (repulsive pair-
ings). With further increase in volume fraction, the second
transition in particle normal stress associated with a change
in the sign of hydrodynamic contributions is also confirmed
by the local microstructure, where the high probability region
in the equators propagates toward the poles. Therefore, it is
suggested that the nonmonotonic variation of the particle
stress system ties into the variation of the microstructure due
to a change in the dominant mechanism and direction of par-
ticle parings [11].

It is worth mentioning that the contribution of the short-
range repulsive force to the bulk stress can be negligible
because it decays very quickly to zero within a very short dis-
tance h < a [74]. To validate that the contribution of the
short-range repulsive force to the bulk stress is negligible for
the current system, we have calculated the hard-sphere inter-
particle stresslet (S”) = —n(xF") [75] in the range of
volume fraction (not shown). It is seen that the maximum
contribution of the short-range repulsive force to the particle
normal stress is of O(10™%), which is almost two orders of
magnitude smaller than that of ICEP and hydrodynamic con-
tributions shown in Fig. 7.

D. Particle pressure

The particle pressure represents the isotropic contribution
of particles in bulk stress and is mechanically defined as the
negative mean normal stress exerted by the particles in a
viscous fluid, i.e., IT = —1/3Zf’i [61]. The particle pressure is
also referred to as the nonequilibrium continuation of the
osmotic pressure [76,77]. This particle pressure has been
employed in many studies to characterize the rheological
properties of the suspension of hard particles under the shear
flow [70,76,78]. Although the whole suspension, which is
the mixture of hard particles and a viscous fluid, is typically
incompressible, the entire collection of the suspended parti-
cles is compressible from a macroscopic point of view [78].
With that said, the particle pressure has been quantified
based upon the tendency of particle phase to expand [77]. As
a way to evidencing the particle pressure, a U-shaped tube
was sheared in a Couette device with a semipermeable mem-
brane placed in the middle to separate a pure liquid on one
side and a suspension on another (i.e., the particles are
restricted to pass the membrane) [77]. The pure liquid has
been observed to be sucked into the other side of a tube con-
taining particles as the device is sheared. This observed
suction indicates that the particle phase tends to expand,
which means placing the suspending fluid in tension rela-
tively, leading to the positive particle pressure [76]. In this
regard, we investigate the sign of the particle pressure in the
suspension studied.

Figure 8 shows the particle pressure as a function of
volume fraction. To leading order of O(R~?), it turns out that
there is no hydrodynamic contribution to the particle pressure
because () = —((SH) + §S® ). The only contribution to
the particle pressure results from the ICEP effect. At ¢30%,
the particle pressure is positive (IT > 0) similar to that of the
hard-sphere suspensions in a simple shear flow, which is
always positive [76,77]. Again, it implies that the particle
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FIG. 8. The particle pressure I1 as a function of volume fraction. The nature

of the particle pressure is changed at ¢ ~ 30% as it turns into negative from
positive.
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pressure places the suspending fluid in tension relative to the
pure fluid state as the particles exhibit volumetric expansion
regarding pr = —II. Interestingly, the particle pressure
becomes negative at ¢ > 30%, which indicates the change in
its nature in a way that the suspending fluid is now relatively
placed in compression as particles show volumetric contrac-
tion. Eventually, the particle pressure reaches its minimum
and also maximum in magnitude at ¢ = 45%. It is at this
volume fraction that a nontrivial local maximum was
observed in suspension dynamics, for instance, hydrody-
namic diffusivity and velocity fluctuation [11]. It suggests a
clear relationship between the particle pressure and the sus-
pension dynamics in concentrated regimes, where the nega-
tive particle pressure might be the manifestation of the
change in the predominance of particle pairings from mild
attractive contacts to massive, strong repulsive contacts [11].

E. Confinement effect

It has been well-known that the hydrodynamics and rheol-
ogy of suspensions are strongly affected by confinement
[79-81]. We investigate the effects of confinement on the
particle stress and pressure in the current system. To this end,
we modify the boundary conditions in the z direction from
periodic to wall-confined conditions as followed by our pre-
vious study [20], where only short-range interactions with
the boundaries were captured. Specifically, to introduce the
rigid boundaries in a domain, a short-range repulsive force is
imposed between the particles and the boundaries by imple-
menting the algorithm similar to the one used to prevent
excessive particle overlaps. However, it should be noted that
long-range interactions with the boundaries are likely to have
an effect on particle dynamics, particularly in the direct
vicinity of the boundaries, which will be included in future
work. We introduce the confinement factor y = 2a/L, to
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FIG. 9. The particle normal stresses in the transverse (x) and field (z) direc-
tions for periodic and confined suspensions. The confinement is placed in
the z direction and the confinement level is y = 0.1, where y = 2a/L.,
L, = 20, and L, is the electrode spacing. For both periodic and confined sus-
pensions, X, ~ 3.

quantify the level of confinement, where L, is the electrode
spacing. The larger y, the stronger the level of confinement.
Typically, y < 0.05 corresponds to a weakly confined
regime [82].

Figure 9 shows the dependence of the particle normal
stresses on volume fraction for periodic suspensions and con-
fined suspensions (y = 0.1, where L, = 20). The confinement
level y = 0.1 can be regarded as a moderately confined
regime. The general shapes of the particle normal stress for a
confined suspension are similar to ones for a periodic sus-
pension. Notably, the confinement appears to cause the
opposite effects on the transverse and field directions.
Compared to the periodic suspension, the transverse normal
stresses (27, Zﬁy) are lower, while the field normal stress
(22 is higher at all volume fractions considered. A differ-
ence of the particle stress between the periodic and confined
suspensions gets larger as a volume fraction is increased and
becomes constant in concentrated regimes.

Figure 10 compares the particle pressure between periodic
and confined suspensions (y = 0.1). A difference of the par-
ticle pressure between the periodic and confined suspensions
keeps larger as a volume fraction is increased. The noticeable
change is that the confinement makes the particle pressure
decrease and become negative earlier starting at ¢ ~ 20%. It
implies that the confinement essentially results in augmenting
the volumetric particle contraction. The short-range repulsive
interactions between particles and boundaries could be
responsible for this change, for which detailed investigations
will be included in future work.

Lastly, the effects of the confinement factor y on the parti-
cle stress and pressure are considered. Figure 11(a) shows the
particle normal stresses of suspensions at ¢ = 10% from
weakly confined regime y = 0.05 to strongly confined
regime y = 0.25 (note that y = 0.05 and 0.25 correspond to
20 and 4 particle diameters, respectively). As the confine-
ment level gets stronger (i.e., increasing the confinement
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FIG. 10. The particle pressure IT for periodic and confined suspensions.
The confinement level is y = 0.1, where the confinement factor y = 2a/L,,
L, =20, and L, is the electrode spacing.
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FIG. 11. The effect of the level of confinement on (a) the particle normal
stresses at ¢ = 10% and (b) the particle pressure at different volume frac-
tions. The level of confinement is captured by the confinement factor
X = 2a/L,, where L, is the electrode spacing.

factor), the noticeable rise of the normal stress in the field
direction is observed, while a relatively small decrease is
observed for the transverse directions. Thus, it appears that
the change in the particle normal stress in the z direction due
to the increase in the level of confinement essentially
governs the particle pressure reduction as no significant
change is observed for the normal stresses in the x and y
directions in the range of y. More interestingly, X, and X/,
are almost the same up to y = 0.13 but become separated
from each other and almost opposite in sign beyond
x = 0.13. This separation might result from the instability
induced by the strong confinement. Finally, the dependence
of the particle pressure on the level of confinement is pre-
sented in Fig. 11(b). Five different volume fractions up to
¢ = 25% are considered because the corresponding particle
pressures are all positive for a periodic domain, as seen in
Fig. 8. As the level of confinement increases, the particle
pressure decreases with the confinement factor and then
eventually becomes negative for all volume fractions.
Moreover, the changeover at which the particle pressure turns

into negative from positive arises earlier as a volume fraction
increases. It is suggested that the strong confinement
increases the volumetric contraction of the particle phase in a
suspension.

IV. CONCLUDING REMARKS

We have performed large-scale Stokesian dynamics simu-
lations to study suspensions of ideally conductive spheres
undergoing DIP, the combination of DEP and ICEP. In the
current system, it is found that ICEP dominates DEP as a
result of the slower decay of hydrodynamic interactions—a
Stokes dipole for ICEP as O(R~?) and a potential quadrupole
for DEP as O(R™*), where R is the separation distance
between two particles. The suspension dynamics was investi-
gated by the relaxation time, where it appears to relax very
quickly with increasing volume fraction up to ¢ = 35%, but
the relaxation time increases up to ¢ =~ 47.5% and decreases
again as approaching random close packing.

The particle stress tensor is computed to characterize the
suspension rheology and shows that the normal stresses are
predominant over the shear stresses. The particle normal
stress is primarily a sum of two contributions, the ICEP
effect, which only contributes to the normal stress in the field
direction, and hydrodynamic interactions, which contribute
to both transverse and field directions.

The nonmonotonic behaviors of both the particle normal
stress (22, Z’y’y, 2?) and the particle pressure (IT = —1/ 3328
with the volume fraction were observed and shown to tie into
the suspension dynamics and microstructure. At ¢ < 30%,
the particle pressure IT > 0, which is similar to a hard-sphere
suspension in a simple shear flow, implying that the particle
pressure places the suspending fluid in tension relatively.
Interestingly, the nature of the particle pressure is changed at
¢ ~ 35% at which it turns negative, indicating that the sus-
pending fluid is now placed in compression. The negative
particle pressure eventually becomes maximum at ¢ = 45%,
where the hydrodynamic diffusivity and the velocity fluctua-
tion reach a local maximum, as observed in our previous
study [11]. It suggests that the negative particle pressure is
connected to the observed nontrivial behaviors in the system.

Lastly, the wall confinement in the field direction is shown
to strongly affect both the particle normal stress and particle
pressure. It enhances the negative particle pressure drastically
as a result of the augmentation of the volumetric particle con-
traction as a result of the short-range repulsive force between
walls and particles. The confinement effect is further investi-
gated by the confinement factor (y = 2a/L,, where L, is the
electrode spacing). It is observed that the field normal stress is
more affected by the confinement than the transverse ones,
and the particle pressure turns negative much earlier with
increasing confinement factor. For a confined suspension in
microfluidic geometries, where the confinement is likely to
introduce environmental heterogeneity, the conductive parti-
cles can display even more complex interactions with the
walls, depending on the direction and frequency of the applied
electric field, wall conductivity, and particle asymmetry
[83-85]. Such interactions have yet to be fully explained and
will be a subject of interesting future work.
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Moving forward, the investigation of suspensions of
ideally conductive particles in the shear flow is necessary for
a complete study of the rheology of such suspension, which
will be included in future work. Another interesting future
work is to control the rheology of such suspension via
surface treatments such as surface coating or ion surface
absorption. It was shown that a thin dielectric coating over
ideally conductive particles leads to the change in the sus-
pension dynamics from ICEP-dominated to DEP-dominated,
where the local aggregation of particles is observed [39].
Thus, the surface treatments can be considered as a tuning
factor to control dynamics and rheology of such suspension,
which may provide a useful avenue toward new engineering
applications. Finally, these distinct changing nature of rheo-
logical properties could suggest that different flow control
techniques could be used to delay or promote the changing
nature in such suspension systems.

ACKNOWLEDGMENTS

The authors gratefully acknowledge financial support
from the Collaboration Initiative and Interdisciplinary
Research Grants at the University of Nebraska and, in part,
from the National Science Foundation through Grant No.
CBET-1936065 (Particulate and Multiphase Processes
program). This work was completed utilizing the Holland
Computing Center of the University of Nebraska, which
receives support from the Nebraska Research Initiative.

APPENDIX: SPME ALGORITHM

For large-scale dynamics driven by DEP and ICEP, we
wish to calculate sums of form

N
uy(xo) = > Splxp — Xo):i,

(A1)
B=1
N
u(xg) = Z Tp(xs — x4):22, (A2)
p=1
where a =1, ..., N and S, and T, denote the periodic ver-

sions of Green’s function of Stoke dipole and a potential
quadrupole. By making use of the known Ewald summation
formula [53,86], Eqs. (A1) and (A2) can be recast into the
following Ewald summations:

N
u.v(xa) = Z Z Ax(éy Xp — Xa +p)ii

r p=1

+ Y e TS EB, (&, k)i,
k#0

(A3)

N
W) = > A& xp — Xo +p)idi

p p=1

+3 e RSB, (€, k)22,
k#0

(A4)

where £, called the Ewald coefficient, which determines the
relative importance of the real and Fourier sums. This coeffi-
cient is user-defined and is chosen to minimize the overall
cost of the algorithm. The first sums (real sums) in Egs. (A3)
and (A4) are over all particle positions xz and their periodic
images (which are denoted by the lattice vectors p), and the
second sums (Fourier sums) are over wave vector k. The
structure factor S(k) in Egs. (A3) and (A4) is obtained for the
suspension as follows:

N
Stk) = Z ik (A5)
B=1

The convolution kernels A,, A;, B,, and B, are third-order
tensors and can be calculated analytically (see Park and
Saintillan [12]). These tenors decay exponentially, which
consequently results in exponential convergence of the sums
in Eqs. (A3) and (A4). The details of evaluating these tenors
in the SPME algorithm are provided in Saintillan ef al. [86].
An O(N) cost for the evaluation of the real sums at all parti-
cle positions is obtainable by choosing Ewald coefficient &
so as to exclude all the terms beyond a fixed cutoff distance
r. from the reals sums, which allows truncation of these
sums after a finite number of terms independent of the
system size. For the Fourier sums (second sums), the particle
distribution is transformed to Fourier space using the fast
Fourier transform algorithm, after assigning to Cartesian gird
by B-spline interpolation [87]. It yields structure factor S(k),
which is then multiplied by the convolution kernels By and
B,. The inverse Fourier transform is applied, and the value of
Fourier sums is determined at the particle locations by inter-
polation. The computation cost of Fourier sums is limited by
the fast Fourier transform algorithm, scaling as O(K log K)
with the number K of grid points (or Fourier modes). This
number is typically chosen to be proportional to the number
of particles N; therefore, the overall cost for the velocities
evaluation is O(N log N).
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