
Automatic Optimization of Matrix Implementations for
Distributed Machine Learning and Linear Algebra

Shangyu Luo, Dimitrije Jankov, Binhang Yuan, Chris Jermaine
Rice University

Houston, TX, USA
{sl45,dj16,by8,cmj4}@rice.edu

ABSTRACT
Machine learning (ML) computations are often expressed using
vectors, matrices, or higher-dimensional tensors. Such data struc-
tures can have many different implementations, especially in a
distributed environment: a matrix could be stored as row or col-
umn vectors, tiles of different sizes, or relationally, as a set of
(rowIndex, colIndex, value) triples. Many other storage for-
mats are possible. The choice of format can have a profound impact
on the performance of a ML computation. In this paper, we propose
a framework for automatic optimization of the physical implemen-
tation of a complex ML or linear algebra (LA) computation in a
distributed environment, develop algorithms for solving this prob-
lem, and show, through a prototype on top of a distributed relational
database system, that our ideas can radically speed up common ML
and LA computations.

CCS CONCEPTS
• Information systems→Computing platforms;Databaseman-
agement system engines; Data analytics.

KEYWORDS
Distributed systems and machine learning

ACM Reference Format:
Shangyu Luo, Dimitrije Jankov, Binhang Yuan, Chris Jermaine . 2021. Au-
tomatic Optimization of Matrix Implementations for Distributed Machine
Learning and Linear Algebra. In Proceedings of the 2021 International Confer-
ence on Management of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event,
China. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.
3457317

1 INTRODUCTION
As machine learning (ML) has become an increasingly important
class of computation, a lot of attention has been focused on build-
ing high-performance computing systems targeted at running ML
or linear algebra (LA) computations. TensorFlow [3], PyTorch [1],
MXNet [11], Pandas [30], and scikit-learn [31] are just a few exam-
ples of such systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3457317

Lack of abstraction in ML system design. High-performance
ML systems can be surprisingly inflexible, as they are often built
to make one particular style of ML computation run fast. These
systems often perform poorly (or simply do not work at all) when
running distributed computations or computations that require a
lot of RAM [23]. We assert that the core problem is lack of abstrac-
tion: in popular ML systems such as TensorFlow, an operation such
as a matrix multiply is not an abstract or logical operation that the
system will figure out how to run efficiently; it is an actual physical
operation that needs to be run somewhere, using an available com-
putational kernel. There is little built-in support for figuring out
how to (automatically) distribute the computation across multiple
machines or even multiple GPUs on the same machine.

A database engine as an ML engine. This is where key concepts
from database systems, particularly declarativity and data indepen-
dence, can be very useful. This was one of the main motivations
for the SystemML project [17], for example. A programmer speci-
fying a matrix multiplication as part of an ML computation on a
“database style” system needs not worry about how the matrices
are physically represented, how they are stored, or what hardware
is being used. The programmer simply asks for the multiply, and
the system figures out how to run it automatically and efficiently.

For this reason, a database-like system—or even a traditional
database system—can serve as an excellent platform for running
ML computations. For example, one can augment a database system
with a special MATRIX type, and declare two 2 × 104 by 2 × 104

matrices, stored tiled (or chunked) into relations having 400 tuples:

myMatrix (tileRow INTEGER, tileCol INTEGER,
mat MATRIX[1000][1000])

anotherMat (tileRow INTEGER, tileCol INTEGER,
mat MATRIX[1000][1000])

Then simple SQL code runs an efficient, distributed matrix multiply:

SELECT lhs.tileRow, rhs.tileCol,
SUM (matrix_multiply (lhs.mat, rhs.mat))

FROM myMatrix AS lhs, anotherMat AS rhs
WHERE lhs.tileCol = rhs.tileRow
GROUP BY lhs.tileRow, rhs.tileCol

One of the key advantages of using a database-style engine in
this way is automatic optimization. For two large matrices such
as myMatrix and anotherMat, the database will choose to co-
partition the matrices before joining. But if one of the matrices (for
example, myMatrix) is relatively small, a high-quality database
engine will decide to broadcast it to each site, while partitioning
the other matrix (anotherMat) across sites, and then at each site
joining the full myMatrixwith a portion of anotherMat. In this

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1222

https://doi.org/10.1145/3448016.3457317
https://doi.org/10.1145/3448016.3457317
https://doi.org/10.1145/3448016.3457317

way, a database engine has important advantages over a special-
builtML engine such as TensorFlow, because amatrixmultiplication
is a logical construct that the system “figures out” how to run.

While there are considerable advantages to using a database
engine as a distributed ML or LA engine, there is still a gap between
the simple code that an ML programmer would ideally expect to
write, and the required SQL code given above. The SQL program-
mers have to implicitly make several difficult decisions:

• They decided to decompose (tile) each input matrix.
• They decided that there should be 400 tiles in each matrix,
where each tile is sized 1000 by 1000.
• They decided on a particular SQL code to logically specify
how to run the multiplication over the tiles.

The problem is that each of these decisions can have a significant
impact on the performance of the multiplication, and the implica-
tions can be difficult or impossible to reason through. One could,
for example, have chosen to decompose the matrices into vertical
and horizontal strips, respectively:

myMatrix (tileRow INTEGER, mat MATRIX[50][20000])
anotherMat (tileCol INTEGER, mat MATRIX[20000][50])

Then, the matrix multiplication would not require aggregation:

SELECT lhs.tileRow, rhs.tileCol,
matrix_multiply (lhs.mat, rhs.mat)

FROM myMatrix AS lhs, anotherMat AS rhs

The SQL code then results in an output matrix that consists of
160,000, 50 by 50 tiles. Would this have been a preferred implemen-
tation? It is likely impossible for a programmer to know.

The problem of choosing a physical representation for the input
matrices is even more difficult in the case of a complicated ML
computation, which may require hundreds of individual operations
(matrix multiplications, Hadamard products, function applications,
etc.) to perform the full computation. The problem is harder because
the different operations interact: a particular implementation of a
matrix multiplication may leave the matrix in a physical organiza-
tion that is inappropriate for the next operation (or next operations
if the result of an operation has multiple consumers).

Our contributions. We consider the problem of automatic, phys-
ical “database” design for ML and LA computations, such as the
matrix multiply above, that are to be run on a database-style engine.
The goal is to automatically choose an optimal storage for each
input and intermediate matrix/tensor, as well as an appropriate im-
plementation for each operation, to minimize the overall running
time. Some specific contributions are:

(1) We propose a framework to automatically explore the phys-
ical design space for the vectors/matrices that are used to
power complex ML/LA computation.

(2) We define a novel optimization problem where the goal is
to compute the set of data formats and associated logical
ML operator implementations so as to minimize the running
time of the input ML computation. To achieve this goal, we
also propose a cost model to compute the cost of a ML/LA
operation in a specific format.

(3) We adapt and extend a classical dynamic programming al-
gorithm from computational genetics (called Felsenstein’s
algorithm [15]) to solve this optimization problem.

(4) We implement our ideas on top of SimSQL [9], a parallel
relational database system, and PlinyCompute [41], a high-
performance relational algebra system. Our experiments
show that the physical design selected by our framework
tends to have a better performance than the formats manu-
ally picked up by an expert user.

2 PRELIMINARIES
2.1 Motivating Example
We begin with a simple example that illustrates some of the trade-
offs that must be managed when optimizing the physical design of a
distributed LA or ML computation. Suppose we have three matrices
matA, matB and matC, sized 100 × 104, 104 × 100 and 100 × 106,
respectively. The matrix matA is stored as ten “row-strips” (that is,
sub-matrices where the number of columns is equal to the number
of columns in the original matrix) and the matrix matB is stored
as ten “column-strips”. The bigger matrix matC is stored as one
hundred column-strips. Relational schemas are:

matA (tileRow INTEGER, mat MATRIX[10][10000])
matB (tileCol INTEGER, mat MATRIX[10000][10])
matC (tileCol INTEGER, mat MATRIX[100][10000])

Now, a programmer wants to compute matA × matB × matC.
At a first glance, the multiply between matA and matB is straight-
forward. Assuming data are stored in a relational database system,
as matA is stored in row-strips, and matB is in column-strips, the
multiplication between them can be written in one SQL query:

CREATE VIEW matAB (tileRow, tileCol, mat) AS
SELECT x.tileRow, m.tileCol,

matrix_multiply(x.mat, m.mat)
FROM matA AS x, matB AS m;

One benefit of this implementation is that no aggregation is
needed. The resulting matrix, matAB, will then have schema:

matAB (tileRow INTEGER, tileCol INTEGER,
mat MATRIX[10][10])

A natural choice for the multiplication between matAB and
matC is a tile-based matrix multiply, where the matC is chunked
into 10 × 10 tiles before the multiply. SQL code for performing the
chunking and the subsequent multiplication are:

CREATE VIEW matCTile(tileRow, tileCol, mat) AS
SELECT bi.rowID, bi.colID,

get_tile(C.mat, bi.rowID, bi.colID -
C.tileCol * 1000, 10, 10)

FROM matC AS C, tileIndex AS bi
WHERE bi.colID / 1000 = C.tileCol;

CREATE VIEW matABC(tileRow, tileCol, mat) AS
SELECT x.tileRow, m.tileCol,

sum(matrix_multiply(x.mat, m.mat))
FROM matAB AS x, matCTile AS m
WHERE x.tileCol = m.tileRow
GROUP BY x.tileRow, m.tileCol;

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1223

Implementation 1 Implementation 2
matA × matB

Multiply row-strip × col-strip row-strip × col-strip
Join Type Shuffle Join Pipelined
Time 15 sec 16 sec

matAB × matC
Transform col-strip⇒ tile tile⇒ single
Trans. Time 2 min 7 sec 8 sec
Multiply tile × tile single × col-strip
Join Type Shuffle Join Broadcast Join
Mult. Time 16 min 27 sec 14 sec

Total
Total Time 19min11sec 56sec
Figure 1: Comparison of matmul implementations.

Alternative implementation. There is, however, an alternative
implementation that may have some runtime advantages.

Specifically, the matrix matAB has a total size of 100 × 100.
Since it is relatively small, we may store it as a single tuple (that is,
without chunking); in this case, the multiplication between matAB
and matC can be run as an inexpensive broadcast join.

The difficulty is that the matrix matAB is stored as a set of 100,
10 × 10 chunks after the first multiply. If a database is augmented
with simple vector andmatrix operations [27], transformingmatAB
so that it can be stored in a single attribute can be performed by
executing two aggregate functions, ROWMATRIX and COLMATRIX,
which aggregate the tiles along rows and columns, respectively.
The SQL code for this transformation is:
CREATE VIEW matABStrip(tileRow, mat) AS

SELECT x.tileRow,
ROWMATRIX(label_matrix(x.mat, x.tileCol))

FROM matAB AS x
GROUP BY x.tileRow;

CREATE VIEW matABSingle(mat) AS
SELECT COLMATRIX(label_matrix(x.mat, x.tileRow))
FROM matABStrip AS x;

After we obtain the single-tuple matrix matABSingle, the last
multiply can be implemented as:

CREATE VIEW matABC(tileCol, mat) AS
SELECT m.tileCol, matrix_multiply(x.mat, m.mat)
FROM matABSingle AS x, matC AS m;

Performance. We run these two implementations on a five-node
Amazon compute cluster (see the Experimental section of the paper
for details of the cluster setup), and give their runtime performance
in Figure 1. For the multiplication between matAB and matC, im-
plementation 1 is much slower than implementation 2 as the latter
uses a broadcast join for the multiply, and produces fewer tiles and
intermediate data. The difference in total running time is significant.

2.2 Problem Statement
As shown, different physical data design choices for the same
LA/ML computation can lead to very different runtime behaviors,
and choosing a performant implementation for a LA computation is
not an easy task. First, it is difficult for a programmer to anticipate

Figure 2: A compute graph and an annotated compute graph
for the example of Section 2.

the effect of choosing one physical implementation for a matrix
versus another. And second, even if a programmer is able to choose
the best physical design for one particular operation, the design
space increases in size exponentially with the number of physical
designs and the complexity of the input computation.

Our goal is to allow a programmer to specify a distributed
ML/LA computation at a very high level, without committing
to a particular physical design. For example, in a database sys-
tem, the programmer might simply give the logical specification:

CREATE TABLE matA (
mat MATRIX[100][10000])

and then load the table with data in whatever physical format
is desired. All computations are specified without reference to a
physical data format. For example:

CREATE VIEW matAB(mat) AS
SELECT matrix_multiply(x.mat, m.mat)
FROM matA AS x, matB AS m;

CREATE VIEW matABC(mat) AS
SELECT matrix_multiply(x.mat, m.mat)
FROM matAB AS x, matC AS m;

The system would accept this high-level specification and ex-
plore the various physical implementations available for all of the
matrices and vectors in the computation—as well as the implemen-
tations of the operations over them—with the goal of choosing the
set of physical implementations that minimize the running time.

We now formalize the problem of choosing the optimal physical
implementation for a distributed LA/ML computation.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1224

3 MATRIX TYPES AND OPERATIONS
To formalize our problem definition, it is necessary to define a
few key concepts: matrix types and physical matrix implementa-
tions, as well as the atomic computations and atomic computation
implementations and transformations that operate over them.

LetM be the set ofmatrix types. A matrix type is a pair of the form
(𝑑, b) where 𝑑 is the dimensionality of the matrix. 𝑑 = 1 for a vector,
𝑑 = 2 for a classical matrix, and 𝑑 ≥ 3 for a higher dimensional
tensor. b ∈ N𝑑 is a vector giving the number of entries of the matrix
along each dimension. So, for example, the type corresponding to
all two by two matrices𝑚2×2 is (2, ⟨2, 2⟩).

Let P be the set of physical matrix implementations. Intuitively, a
physical matrix implementation is a storage specification such as
“single tuple” or “tile-based with 500 by 500 tiles” or “row strips
with rows of height 50.” Each physical matrix implementation has
a matrix type specification function 𝑓 :M → {true, false}. That is,
given a matrix type𝑚 ∈ M and physical matrix implementation
𝑝 ∈ P, 𝑝 .𝑓 (𝑚) evaluates to true if 𝑝 can be used by the system to
implement𝑚, and false otherwise. For example, imagine that𝑚 =

(2, ⟨105, 105⟩), and 𝑝 corresponds to a “single tuple” implementation.
We would expect that 𝑝.𝑓 (𝑚) would evaluate to false, as one could
not typically store a 40GB matrix in a single tuple.

LetA be the set of atomic computations overmatrices. Intuitively, an
atomic computation is an operation such as a “matrix multiply” or a
“3-D convolution”. Each has an input arity𝑛, and a type specification
function 𝑓 :M𝑛 →M ∪ {⊥}. For an atomic computation 𝑎, given
a set of input matrix types, 𝑎.𝑓 either returns the output type of 𝑎,
or else it returns ⊥ indicating that 𝑎 cannot accept the input types.
For example, if 𝑎 is a matrix multiply, 𝑎.𝑓

((
2, ⟨5, 10⟩

)
,
(
2, ⟨10, 5⟩

))
would return (2, ⟨5, 5⟩), as multiplying a 5 × 10 matrix and a 10 × 5
matrix results in a 5 × 5 matrix.

Let I be a set of atomic computation implementations. Whereas
an atomic computation is an abstract computation, without an im-
plementation, each 𝑖 ∈ I is an implementation for a specific com-
putation. An atomic computation implementation has an atomic
computation 𝑎 ∈ A of an input arity 𝑛 that it implements, as well
as a type specification function 𝑓 : (M × P)𝑛 → P ∪ {⊥}. This
type specification function is analogous to the type specification
function associated with an atomic computation, except that it
considers both the matrix type and the associated physical matrix
implementation. The function returns ⊥ if the atomic computation
implementation cannot process the input types. For example, we
may have a particular matrix multiplication implementation that
works when both inputs are chunked into 103 × 103 chunks (in
which case 𝑓 may specify that the implementation outputs 103×103

chunks) but does not work if one input is chunked into 103 × 103

chunks and the other decomposed into column-strips. Here, the
associated type specification function would output ⊥ in this case.

Finally, let T be the set of physical matrix transformations. These
transformations are associated with algorithms that move from
one physical matrix implementation to another (for example, an
algorithm that moves from a 1000 × 1000 tiling for a matrix, to a

row-strip implementation with a row height of 10). Such transfor-
mations allow us to chain implementations of atomic computations
(such as matrix multiplies) whose output and input physical im-
plementations do not match. Each physical matrix transformation
has a matrix type specification function 𝑓 : M × P → P ∪ {⊥}.
This function takes two arguments: an input matrix type and an
input physical implementation, and it returns an output physical
implementation if the transformation is feasible. Otherwise, ⊥.

4 FORMAL PROBLEM DEFINITION
4.1 Compute Graph
Given these preliminaries, a compute graph 𝐺 = (𝑉 , 𝐸) is defined
to correspond to the computation that we want to develop an opti-
mized physical implementation for. A compute graph is a directed
acyclic graph (DAG), whose structure corresponds to the logical
computation that we wish to perform, where vertices are opera-
tions and edges control the flow of data. Since not all of the atomic
computations are commutative, the input edges into a vertex have
an implicit ordering that corresponds to the order of arguments.

Each source vertex (that is, each vertex with no incoming edges)
in 𝑉 corresponds to a matrix that is input into the computation,
and hence it is labeled with both a matrix type𝑚 and an associ-
ated physical matrix implementation 𝑝 . Each non-source vertex is
labeled with an atomic computation 𝑎. Implicitly, each non-source
vertex also has a matrix type𝑚, which can be inferred by traversing
the compute graph from the source vertices. Specifically, if a vertex
𝑣 has input edges (𝑣1, 𝑣), (𝑣2, 𝑣), ..., then 𝑣 .𝑚 = 𝑣 .𝑎.𝑓 (𝑣1 .𝑚, 𝑣2 .𝑚, ...).

The compute graph corresponding to the example of the Section
2 is shown in Figure 2.

4.2 Problem: Annotating a Compute Graph
The central problem studied in this paper is the problem of anno-
tating a compute graph. When annotating a compute graph 𝐺 to
produce an annotated graph 𝐺 ′, we have two subtasks:

(1) Label each non-source vertex in 𝐺 with an atomic computa-
tion implementation 𝑖 that will actually be run.

(2) Label each edge 𝑒 = (𝑣1, 𝑣2) in𝐺 with a physical matrix trans-
formation 𝑡 . This transformation handles the case where the
physical matrix implementation output from 𝑣1 .𝑖 cannot be
processed by 𝑣2 .𝑖 (effectively, when it does not match the
type requirement of 𝑣2 .𝑖). In this case, the transformation 𝑒.𝑡
is used to transform the output implementation so that it
can be processed.

Note that annotating a compute graph implicitly assigns a phys-
ical matrix implementation 𝑝 to each vertex, where 𝑝 serves to
describe the implementation associated with the output of the ver-
tex. There are two cases: if 𝑣 is a source vertex, then 𝑣 is explicitly
given, as every input matrix has a physical implementation.

If 𝑣 is not a source vertex, then assume 𝑣 has input edges 𝑒1 =

(𝑣1, 𝑣), 𝑒2 = (𝑣2, 𝑣), Then, the physical matrix implementation
associated with the vertex is determined as:

𝑣 .𝑝 = 𝑣 .𝑖 .𝑓 (𝑣1 .𝑚, 𝑒1 .𝑡 .𝑓 (𝑣1 .𝑚, 𝑣1 .𝑝),
𝑣2 .𝑚, 𝑒2 .𝑡 .𝑓 (𝑣2 .𝑚, 𝑣2 .𝑝), ...)

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1225

That is, the physical implementation of a vertex 𝑣 is determined
by taking the physical implementations of all vertices feeding into
𝑣 , pushing those implementations through the transformations
associated with each input edge, and then feeding those resulting
implementations to 𝑣 .𝑖 .𝑓 . Note that the physical implementations
running on CPU, or accelerators such as GPUs and FPGAs would
typically be different. Also note that for an implementation 𝑖 , 𝑖 .𝑓
typically takes into account the hardware available, so that (for
example) if 𝑣 .𝑖 requires the use of a GPU, 𝑣 .𝑖 .𝑓 would return ⊥ if
there was no enough GPU RAM to perform the operation.

Finally, we note that not all annotations are acceptable. The
annotated compute graph 𝐺 ′ must be type-correct. That is:
• The atomic computation implementation associated with
each vertex must implement the correct atomic computation.
It is not acceptable to annotate a vertex that corresponds to
a matrix multiply with an implementation for a 3-D convo-
lution. Formally, it must be the case that 𝑣 .𝑖 .𝑎 = 𝑣 .𝑎.
• The atomic computation implementation 𝑖 associated with
each vertex must be able to correctly process all of its input
physical matrix implementations. That is, intuitively, it is
incorrect to feed a tile-matrix-multiply to matrices stored as
single tuples. Formally, if 𝑣 has input edges 𝑒1 = (𝑣1, 𝑣), 𝑒2 =

(𝑣2, 𝑣), Then, it must be the case that

𝑣 .𝑖 .𝑓 (𝑣1 .𝑚, 𝑒1 .𝑡 .𝑓 (𝑣1 .𝑚, 𝑣1 .𝑝),
𝑣2 .𝑚, 𝑒2 .𝑡 .𝑓 (𝑣2 .𝑚, 𝑣2 .𝑝), ...),≠ ⊥

or, equivalently, 𝑣 .𝑝 ≠ ⊥.
The annotated compute graph corresponding to Implementation

2 for the example of the Section 2 is shown in Figure 2.

4.3 Optimizing the Annotation
There are many possible type-correct annotations for a given com-
pute graph, and not all of them make sense from a computational
point-of-view. Thus, our goal is not simply to produce a type-correct
annotation, but to produce the optimal type-correct annotation.

Optimality will be defined in terms of the cost of the annotation.
Thus, we augment each item in I and in T with a cost function 𝑐 ,
which returns the time (or some other, appropriate notion of cost)
of the implementation or transformation.

Costing atomic computation implementations. Specifically,
for each 𝑖 ∈ I, we define the cost function 𝑖 .𝑐 : (M × P)𝑛 → R.
That is, the cost function accepts a matrix type as well as a physical
matrix implementation for each input, and returns a real number
indicating the cost. Then, for a vertex 𝑣 ∈ 𝑉 with input edges
𝑒1 = (𝑣1, 𝑣), 𝑒2 = (𝑣2, 𝑣), ..., we associate a cost:

𝑣 .𝑐 = 𝑣 .𝑖 .𝑐 (𝑣1 .𝑚, 𝑒1 .𝑡 .𝑓 (𝑣1 .𝑚, 𝑣1 .𝑝),
𝑣2 .𝑚, 𝑒2 .𝑡 .𝑓 (𝑣2 .𝑚, 𝑣2 .𝑝), ...) .

Costing physical matrix transformations. For each 𝑡 ∈ T , we
define the cost function 𝑡 .𝑐 :M×P → R. That is, the cost function
accepts a matrix type as well as a physical matrix implementations,
and returns the cost of performing the transformation. Then, for
an edge 𝑒 = (𝑣1, 𝑣2) from 𝐸, define the cost:

𝑒.𝑐 = 𝑒.𝑡 .𝑐 (𝑣1 .𝑚, 𝑣1 .𝑝) .

Algorithm 1: GetCost (𝑉 , 𝐸, 𝑣)
1 // This computes the cost associated with vertex 𝑣
2 // It also associates a transformation with each edge into 𝑣
3 Let 𝑒1 = (𝑣1, 𝑣), 𝑒2 = (𝑣2, 𝑣), ... be all input edges in 𝐸 into 𝑣
4 Set each 𝑒 𝑗 .𝑡 so that 𝑣 .𝑖 .𝑓 (

𝑣1 .𝑚, 𝑒1 .𝑡 .𝑓 (𝑣1 .𝑚, 𝑣1 .𝑝), 𝑣2 .𝑚, 𝑒2 .𝑡 .𝑓 (𝑣2 .𝑚, 𝑣2 .𝑝), ...) ≠ ⊥
5 𝑣 .𝑝 ←

𝑣 .𝑖 .𝑓 (𝑣1 .𝑚, 𝑒1 .𝑡 .𝑓 (𝑣1 .𝑚, 𝑣1 .𝑝), 𝑣2 .𝑚, 𝑒2 .𝑡 .𝑓 (𝑣2 .𝑚, 𝑣2 .𝑝), ...)
6 cost← 0
7 cost += 𝑣 .𝑖 .𝑐 (𝑣1 .𝑚, 𝑒1 .𝑡 .𝑓 (𝑣1 .𝑚, 𝑣1 .𝑝), 𝑣2 .𝑚, 𝑒2 .𝑡 .𝑓 (𝑣2 .𝑚, 𝑣2 .𝑝) ...)
8 for each input edge 𝑒 𝑗 ∈ {𝑒1, 𝑒2, ...} do
9 cost += 𝑒 𝑗 .𝑡 .𝑐 (𝑣 𝑗 .𝑚, 𝑣 𝑗 .𝑝)

10 end
11 return cost

Costing an annotation. Given this, the cost for an annotated
graph 𝐺 ′ = (𝑉 , 𝐸) is simply:

𝐶𝑜𝑠𝑡 (𝐺 ′) =
∑
𝑣∈𝑉

𝑣 .𝑐 +
∑
𝑒∈𝐸

𝑒.𝑐 .

The problem we consider is: out of all annotated, type-correct ver-
sions of 𝐺 , choose the 𝐺 ′ that minimizes the value 𝐶𝑜𝑠𝑡 (𝐺 ′). We
denote this optimal, annotated, type-correct version of 𝐺 by 𝐺∗.

A brute-force algorithm to compute𝐺∗ is given as Algorithm 2. It
is invokedwith𝐵𝑟𝑢𝑡𝑒(𝑛𝑢𝑙𝑙 ,∞,𝑉 , 𝐸,𝐶𝑜𝑝𝑦 (𝑉), 0). At each invocation,
Brute chooses a vertex from unset and considers all applicable
atomic computation implementations for the vertex. For each, it
incrementally updates the cost obtained so far, and then recursively
considers all possible atomic computation implementations for the
remainder of the vertices in unset.

5 OPTIMIZING TREE-SHAPED GRAPHS
5.1 Preliminaries
Fortunately, there exists a common class of compute graphs for
which it is possible to compute 𝐺∗ in time that is linear to the
number of vertices in𝐺 . Specifically, the optimization can be done
in linear time if𝐺 is “tree shaped”—that is, each vertex in𝐺 has only
one directed out-edge. The optimization algorithm we develop for
this particular case is a dynamic programming algorithm inspired
by Felsenstein’s algorithm in computational genetics [15].

We begin with some definitions. For tree-shaped 𝐺 , for vertex 𝑣 ,
we use 𝐺𝑣 to denote the subgraph of 𝐺 that consists of all vertices
from which 𝑣 can be reached, and all edges between those vertices.
Using the notation from the last section, 𝐺∗𝑣 is the cost-optimal,
annotated, type-correct version of 𝐺𝑣 .

Now, define the function F where F (𝑣, 𝜌) returns 𝐶𝑜𝑠𝑡 (𝐺∗𝑣),
subject to the constraint that 𝑣 .𝑝 = 𝜌 (that is, subject to the constraint
that the physical matrix implementation resulting from the atomic
computation implementation associated with 𝑣 is 𝜌).

5.2 Recursively Computing the Optimal Cost
Next, we make an observation. Assume we have a vertex 𝑣 with
𝑛 input edges 𝑒1 = (𝑣1, 𝑣), 𝑒2 = (𝑣2, 𝑣), ..., 𝑒𝑛 = (𝑣𝑛, 𝑣). Then, it is

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1226

Algorithm 2: Brute (bestG, lo, 𝑉 , 𝐸, unset, costSoFar)
1 // Recursive algorithm to compute the optimal compute

graph
2 if unset = {} then
3 if costSoFar < lo then
4 lo← costSoFar; bestG← Copy(𝑉 , 𝐸)
5 end
6 return
7 end
8 Pick a vertex 𝑣 and remove 𝑣 from unset
9 for 𝑖 ∈ I such that 𝑖 .𝑎 = 𝑣 .𝑎 do
10 𝑣 .𝑖 ← 𝑖; cost← costSoFar
11 if it holds for all input edges into 𝑣 : 𝑒1 = (𝑣1, 𝑣),

𝑒2 = (𝑣2, 𝑣), ... that 𝑣1 ∉ unset, 𝑣2 ∉ unset, and so on
then

12 cost += GetCost (𝑉 , 𝐸, 𝑣)
13 end
14 for 𝑣 ′ where (𝑣, 𝑣 ′) ∈ 𝐸 and forall (𝑣 ′′, 𝑣 ′) ∈ 𝐸,

𝑣 ′′ ∉ unset do
15 cost += GetCost (𝑉 , 𝐸, 𝑣 ′)
16 end
17 Brute (bestG, lo, 𝑉 , 𝐸, unset, cost)
18 end
19 Add 𝑣 back into unset

possible to compute F (𝑣, 𝜌) from each F (𝑣 𝑗 , .) Specifically, we
enumerate all possible combinations of the following:

(1) An atomic computation implementation for 𝑣 that results in
the desired physical matrix implementation 𝜌 ;

(2) The physical matrix implementations output by each 𝑣 𝑗 ;
(3) A set of physical matrix implementations (denoted by pin)

input into the implementation for 𝑣 , from each 𝑣 𝑗 ; and
(4) A set of physical matrix transformations that move between

the set of physical matrix implementations (denoted by pout)
output by executing each 𝑣 𝑗 and the set of physical matrix
implementations input into 𝑣 .

For each possible combination that is type-correct, we compute a
cost associated with the combination. Then, out of all enumerated
combinations of implementations and transformations that result
in the physical matrix organization 𝜌 , we choose the lowest cost
combination and use its cost as the value of F (𝑣, 𝜌).

More formally, the following recurrence can be used to compute
the optimal value of F (𝑣, 𝜌) for any value of 𝜌 :

F (𝑣, 𝜌) =argmin {𝑖 ∈ I, pin ∈ P𝑛, pout ∈ P𝑛, t ∈ T𝑛}
∞ if 𝑖 .𝑎 ≠ 𝑣 .𝑎

∞ if 𝑖 .𝑓 (𝑣1 .𝑚, pout1 , 𝑣2 .𝑚, pout2 , ...) ≠ 𝜌

𝑖.𝑐 (𝑣1 .𝑚, pout1 , 𝑣2 .𝑚, pout2 , ...) otherwise
+

∑
𝑗 ∈{1...𝑛}

∞ if t𝑗 .𝑓 (𝑣 𝑗 .𝑚, pin

𝑗
) ≠ pout

𝑗

F (𝑣 𝑗 , pin𝑗) + t𝑗 .𝑐 (𝑣 𝑗 .𝑚, pin
𝑗
) otherwise

(1)

Algorithm 3: DPGraphOpt (𝑉 , 𝐸)
1 Forall 𝑣 ∈ 𝑉 , visited𝑣 ← false
2 for each 𝑣 with no input edges do
3 // 𝑣 is input data, so 𝑣 .𝑝 is known
4 visited𝑣 ← true; F (𝑣, 𝑣 .𝑝) ← 0
5 Forall 𝜌 ≠ 𝑣 .𝑝 , F (𝑣, 𝜌) ← ∞
6 end
7 while exists 𝑣 ∈ 𝑉 s.t. visited𝑣 = false do
8 Choose 𝑣 ∈ 𝑉 s.t. visited𝑣 = false and where, for each

vertex 𝑣 ′ s.t. (𝑣 ′, 𝑣) ∈ 𝐸, visited𝑣′ = true
9 visited𝑣 ← true

10 for 𝜌 ∈ P do
11 Compute and record F (𝑣, 𝜌) as in Equation (1)
12 end
13 end

Intuitively, to compute the lowest cost solution that ensures the
result of computing vertex 𝑣 is the physical implementation 𝜌 , we
need to figure out how to minimize the sum of three terms:

(1) The cost to execute some atomic computation implementa-
tion 𝑖 for 𝑣 .𝑎; and

(2) The cost to compute the cost-optimal, annotated, type-correct
version of each input into 𝑣 .

(3) The cost to transform eachmatrix associatedwith {𝑣1, 𝑣2, ..., 𝑣𝑛}
to the physical matrix implementation required by 𝑖 .

Those terms are all represented in Equation (1). In addition, there
are a number of constraints represented by the recurrence.

(1) The chosen atomic computation implementation 𝑖 must im-
plement the atomic computation 𝑣 .𝑎 associated with 𝑣 ; if
𝑖 .𝑎 ≠ 𝑣 .𝑎, the wrong computation type is chosen and hence
we incur a cost of∞, indicating an infeasible solution.

(2) The atomic computation implementation must result in the
correct output, i.e., the physical matrix implementation 𝜌 .

(3) Whenwe choose an atomic computation implementation, we
must also be able to choose a transformation that produces
the correct physical matrix implementation for that atomic
computation implementation.

This recurrence optimally computes F (𝑣, 𝜌) from each F (𝑣 𝑗 , .)
because first, each F (𝑣 𝑗 , .) computes the optimal cost for each 𝐺𝑣𝑗 .
Second, when choosing the optimal atomic computation implemen-
tation to ensure that 𝑣 .𝑖 = 𝜌 , the details of the actual computation
associated with each 𝐺𝑣𝑗 are irrelevant, other than the physical
matrix implementation that is output. Thus, once we compute each
F (𝑣 𝑗 , .), this function “hides” the details of the sub-computation.

5.3 Dynamic Programming
Then, all of this suggests a simple, dynamic programming algorithm
to compute 𝐺∗ from 𝐺 in the case of a tree-shaped graph. This is
given as Algorithm 3, which is used to compute F . After computing
F , traverse backward through the graph. Label each edge with
the physical matrix transformation that was used to produce the
optimal cost, and label each vertex with the atomic computation

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1227

Algorithm 4: FrontierGraphOpt (𝑉 , 𝐸)
1 Forall 𝑣 ∈ 𝑉 , visited𝑣 ← false; front← {}
2 for each 𝑣 with no input edges do
3 // 𝑣 is input data, so 𝑣 .𝑝 is known
4 visited𝑣 ← true; F ({𝑣}, 𝑣 .𝑝) ← 0
5 Forall 𝜌 ≠ 𝑣 .𝑝 , F ({𝑣}, 𝜌) ← ∞
6 front← front + {𝑣} // The frontier is a set of sets
7 end
8 while exists 𝑣 ∈ 𝑉 s.t. visited𝑣 = false do
9 Choose 𝑣 ∈ 𝑉 s.t. visited𝑣 = false and where, for each

vertex 𝑣 ′ s.t. (𝑣 ′, 𝑣) ∈ 𝐸, 𝑣 ′ is in some set in front
10 Find 𝑉 𝐹

1 , 𝑉 𝐹
2 , ... ∈ front where each 𝑉 𝐹

𝑗
contains a 𝑣 ′ s.t.

(𝑣 ′, 𝑣) ∈ 𝐸
11 visited𝑣 ← true
12 𝑉 𝐹 ← {𝑉 𝐹

1 ,𝑉 𝐹
2 , ...}

13 𝑉 𝐹
𝑣 ← (∪𝑗𝑉 𝐹

𝑗
) − {𝑣 ′ if there does not exist an edge from

𝑣 ′ to an unvisited node}
14 front← front −𝑉 𝐹 +𝑉 𝐹

𝑣 + {𝑣}
15 for 𝜌 ∈ P do
16 Compute and record F (𝑉 𝐹

𝑣 , 𝜌) as in Equation (2)
17 end
18 end

implementation and the resulting physical matrix implementation
that produced the optimal cost.

6 OPTIMIZING GENERAL DAGS
The algorithm to compute𝐺∗ for DAGs is more involved. Consider
the graph associated with the computation of the matrix O:

T1 ← S × T; T2 ← T1 × U
O← ((R × T1) + T2) + (T2 × V)

T2 is used in multiple places, and so we no longer have a DAG.
Modern back-propagation algorithms have this structure.

When two vertices 𝑣1 and 𝑣2 in a graph are descended from the
same vertex 𝑣 , we wish to avoid optimizing and executing𝐺𝑣 twice.
For example, both the matrices T2 and O depend on intermediate
matrix T1. Therefore, T1 should be computed once and re-used.

Thus, when two vertices 𝑣1 and 𝑣2 share the same ancestor 𝑣 , the
optimal costs F (𝑣1, 𝜌1) and F (𝑣2, 𝜌2) cannot be computed indepen-
dently, as this implicitly assumes that we are computing all of 𝐺𝑣1
and then all of𝐺𝑣2 separately, and not re-using the sub-computation
𝐺𝑣 . Thus, we need to generalize the algorithm to allow for sharing.

6.1 Optimizing Costs Along a Frontier
To extend our algorithm to general DAGs, we first define the notion
of a frontier. A frontier is simply a cut of the input graph 𝐺 , into
an optimized portion, and an unoptimized portion that has not yet
been processed. The set of vertices that have one or more of their
out-edges cut are said to be “along the frontier”.

Our algorithmwill begin with an initial frontier that separates all
of the source vertices from the rest of the graph—the source vertices
are already “optimized”, because we are given the physical matrix

Figure 3: Moving the frontier as vertices aremoved from the
un-optimized set to the optimized set. The set of equivalence
classes along the current frontier is shown via blue shading.

implementation for each source vertex as input. Then, our algorithm
will iteratively move one vertex from the set of unoptimized vertices
to the set of optimized vertices, and update F as it does so. This
progression is depicted in Figure 3. Once all of the vertices have
been optimized, the algorithm is done.

As in the algorithm for tree-like graphs, we will maintain the
optimal cost as a function F , and define a recurrence that allows
us to compute F by looking at the optimal way to perform sub-
computations. However, there is a key difference. At all times during
the execution of the algorithm, as the frontier moves through the
graph, we must maintain the optimal cost not on a per-vertex basis,
but jointly, for sets of vertices on the frontier that share ancestors.
Again, the intuition here is that two vertices that share the same
ancestor cannot be considered independently, as we want them to
share common sub-computations.

At all times during the execution of the algorithm, the set of
vertices along the current frontier are partitioned into equivalence
classes 𝑉𝐹 = {𝑉 𝐹

1 ,𝑉 𝐹
2 ,𝑉 𝐹

3 , ...} so that if two vertices 𝑣1 and 𝑣2 ∈ 𝑉𝐹
have a common ancestor in 𝐺 , then they must be in the same
equivalence class. The partitioning of vertices along the frontier
into equivalence classes is depicted in Figure 3.1 F is now no longer
defined over all vertices, but rather over each equivalence class that
has appeared along a frontier at some time during the optimization.

For equivalence class 𝑉 , let p ∈ P |𝑉 | be a list of physical matrix
organizations, where p𝑣 for 𝑣 ∈ 𝑉 refers to the physical matrix
organization resulting from the execution of vertex 𝑣 . (Note that
in the remainder of this section, we will use the convention that
when we have a vector or list of candidate physical matrix imple-
mentations or matrix transformations, we subscript with the vertex
to obtain the implementation/transformation associated with that

1To perform the partitioning, we create an undirected graph𝐺′ whose set of vertices is
the set of vertices along the current frontier; two vertices 𝑣1 and 𝑣2 in𝐺′ are connected
if they share an ancestor in𝐺 . Then, two vertices along the frontier are in the same
equivalence class if and only if they are reachable from one another in𝐺′.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1228

vertex). Then, F (𝑉 , p) refers to the minimum cost to compute ev-
ery vertex in 𝑉 , subject to the constraint that the output physical
matrix organizations are exactly as specified by p.

6.2 Moving the Frontier Forward
Our generalization of the algorithm for tree-shaped graphs operates
by iteratively picking a vertex 𝑣 that is in the unoptimized portion of
the graph, but whose input edges are only in the optimized portion
of the graph. This vertex is then added to the the optimized portion
of the graph, and F and the frontier are updated. As depicted in
Figure 3, moving 𝑣 from the unoptimized to the optimized portion
changes the set of vertices along the current frontier.

Let 𝑉 𝐹
𝑣 denote the equivalence class in the new version of the

frontier that contains 𝑣 , and let 𝑉 𝐹 = {𝑉 𝐹
1 ,𝑉 𝐹

2 ,𝑉 𝐹
3 , ...} denote the

equivalence classes in the partitioning in the current version of the
frontier. Further, let𝑉 arg = {𝑣arg1 , 𝑣

arg
2 , ...} denote the set of vertices

that have an out-edge to 𝑣 . Consider only the equivalence classes in
𝑉 𝐹 which have a non-empty intersection with 𝑉 𝐹

𝑣 ∪𝑉 arg; assume
that the total number of vertices in these equivalence classes is 𝑛.

The key question is: How do we update F in response to the
update of the set of vertices along the frontier?

For the equivalence class 𝑉 𝑣
𝐹
in the new version of the frontier

that contains 𝑣 , and a candidate set p of associated, physical matrix
organizations, we have the following variant on Equation (1):

F (𝑉 𝐹
𝑣 , p) =

argmin {𝑖 ∈ I, pin ∈ P𝑛, pout ∈ P𝑛, t ∈ T |𝑉arg |}
∞ if 𝑖 .𝑎 ≠ 𝑣 .𝑎

∞ if 𝑖 .𝑓 (𝑣arg1 .𝑚, pout
𝑣
arg
1
, 𝑣

arg
2 .𝑚, pout

𝑣
arg
2
, ...) ≠ p𝑣

𝑖 .𝑐 (𝑣arg1 .𝑚, pout
𝑣
arg
1
, 𝑣

arg
2 .𝑚, pout

𝑣
arg
2
, ...) otherwise

+

∑
𝑉={𝑣1,𝑣2,...}∈𝑉 𝐹

0 if 𝑉 ∩ (𝑉 arg ∪𝑉 𝐹
𝑣) = ∅

∞ if ∃𝑣 ∈ (𝑉 −𝑉 arg)
s.t. pin𝑣 ≠ pout𝑣 or pin𝑣 ≠ p𝑣

∞ if ∃𝑣 ∈ (𝑉 ∩𝑉 arg)
s.t. t𝑣 .𝑓 (𝑣 .𝑚, pin𝑣) ≠ pout𝑣

F (𝑉 , ⟨pin𝑣1 , p
in
𝑣2 , ...⟩)+∑

𝑣∈𝑉∩𝑉 arg t𝑣 .𝑐 (𝑣 .𝑚, pin𝑣) otherwise
(2)

This recurrence mirrors Equation (1). To compute F (𝑉 𝐹
𝑣 , p), we

need to figure out how to minimize the sum of the two terms:

(1) The cost to execute some atomic computation implementa-
tion 𝑖 of 𝑣 .𝑎 (the atomic computation associated with 𝑣) that
produces the physical matrix implementation p𝑣 ; and

(2) The cost to transform each matrix associated with a node in
𝑉 arg to the physical matrix implementation required by 𝑖 .

Those terms are both represented in Equation (2). In addition, there
are a number of constraints on any potential solution, that are also
represented in Equation (2), including:

(1) Whenwe choose an atomic computation implementation, we
must also be able to choose a transformation that produces

the correct physical matrix implementation for that atomic
computation implementation; and

(2) For any vertex 𝑣 ′ in 𝑉 𝐹
𝑣 aside from 𝑣 , the computation of

𝑣 does not affect the physical matrix implementation for
𝑣 ′; thus, we must choose a subcomputation that produces
exactly the physical matrix implementation p𝑣′ .

Dynamic Programming. The dynamic programming algorithm
to compute the minimum cost for general DAGs with the frontier
notation is given as Algorithm 4.

6.3 Algorithm Efficiency
We now compare efficiency of the algorithms of Sections 4, 5 and 6.

Let 𝑛 be the maximum number of inputs/outputs to any vertex.
The brute-force algorithm (Algorithm 2) iterates through |I | |𝑉 |
different combinations of atomic computation implementations.
Each of those combinations requires that we execute lines 10 to 16
of Algorithm 2. The cost of these lines can be estimated as 𝑂 (𝑛2).
Thus, the total cost is 𝑂 (𝑛2 |I | |𝑉 |). This algorithm is very space
efficient as it only ever stores (a) the current graph as it iterates
through all possible graphs, and (b) the best graph obtained so far.

Now, consider the dynamic programming algorithm given as
Algorithm 3. For a vertex 𝑣 , the way we implement the loop of line
10 of Algorithm 3 is to check, for each of the atomic computation
implementations available to the vertex, the best way to provide
each of the required input types. If the output physical matrix
implementation type is 𝜌 , check if it gives us the best F (𝑣, 𝜌) value;
if so, update F . In general, for atomic computation implementation,
this requires that for each of the maximum of 𝑛 inputs to 𝑣 , and
consider up to P different physical implementations for each. Thus,
the loop of line 10 requires time 𝑂 (𝑛 |P | |I|). For the entire graph,
the time complexity overall is𝑂 (𝑛 |P | |I| |𝑉 |). The space complexity
of a straightforward implementation that never “forgets” entries in
F that will not be used in the future is 𝑂 (|P||𝑉 |).

Now, consider the frontier-based algorithm for general DAGs.
The key difference from the original DP algorithm is that a set of
nodes may be part of the same equivalence class, and the costs
must be considered together. Assume that each equivalence class is
bounded in size by 𝑐 . Then there are at most |P |𝑐 costs that must
be maintained in F for each equivalence class. Consider line 15 in
Algorithm 4. If our implementation of line 15 mirrors the imple-
mentation of line 10 in Algorithm 3, cost of the loop is𝑂 (𝑛 |P |𝑐 |I |).
Then the overall time complexity is𝑂 (𝑛 |P |𝑐 |I | |𝑉 |). The space com-
plexity of a straightforward implementation is 𝑂 (|P|𝑐 |𝑉 |), since
one equivalence class is created as each vertex is considered.

7 ESTIMATING COSTS
In the case of dense inputs, it is typically possible to develop simple,
analytic formulas for a number of features describing each atomic
computation implementation and physical matrix transformation.
These features include: (1) the number of floating point operations
required by the implementation, (2) the amount of network traffic
that will be generated by the implementation in the worst case2,
(3) the bytes of intermediate data that will be pushed through the

2We say, “in the worst case” because, at least in a relational implementation, the system
may choose from a set of different implementations for relational operations such as
joins, which can affect the network traffic.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1229

computation in the worst case, and (4) the number of tuples that
will be pushed through the computation in the worst case, as each
tuple tends to require a fixed overhead cost. At installation time, our
implementation runs a set of benchmark computations for which
it collects the running time, and then it uses the aforementioned
analytically-computed features along with those running times as
input into a regression that is performed for each operation. Then,
the set of learned regression models will serve as the cost function.

What about sparsity? Choosing sparse tensor/matrix implemen-
tations and operations can lead to significant time savings, but
costing such implementations presents a challenge. Floating point
operations, bytes transferred, and intermediate data bytes are af-
fected by sparsity. In our prototype implementation, the cost model
also makes into account the level of sparsity when predicting costs
(where sparsity is defined as the fraction of items in the matrix or
tensor that are non-zero). Note that the sparsity for all inputs can
easily be estimated as data are loaded.

This approach works for certain computations—especially ma-
chine learning computations including the feed-forward neural
network tested in the experimental section—where the input is
sparse, but the model is not. Operations such as matrix multiplies
between sparse data matrices and dense model matrices typically
result in dense matrices with no sparsity to exploit. This means
that all intermediate matrices/tensors are dense.

Things are more difficult given chains of operations over sparse
inputs, where intermediate results are not dense. It is not an easy
task to estimate the sparsity of intermediate results for a long
chain of sparse operations, which is necessary to cost the compute
plans considered by our model. This is analogous to the problem of
compounding statistical errors when costing relational plans [22].

One idea to handle this—left to future work—is to use our pro-
posed optimization algorithms along with a framework such as that
proposed by Sommer et al. to estimate the sparsity of all intermedi-
ate results [33] and use those estimates in the cost model. Sommer’s
MNC method showed remarkable accuracy, with relative errors
never exceeding 1.07 for a graph of six operations over six input
matrices (in Sommer’s definition of relative error, 1.0 is perfect [10]).
Of course, it is always possible that any sparsity estimator can fail.
During execution of the plan, it is easy to compute the sparsity of
each intermediate result. If the relative error in estimated sparsity
exceeds some value (say, 1.2), then execution can be halted, and the
remaining plan re-optimized. This is analogous to re-optimization
methods used in relational databases to deal with the problem of
compounding estimation errors [5, 25].

8 EXPERIMENTS
8.1 Overview
We detail several sets of experiments. The first set compares the
quality of our automatically-generated plans to human-generated
plans. The second compares the runtime of auto-generated plans
to an equivalent computation run natively on PyTorch [1] and Sys-
temDS [2] (formerly SystemML). Besides recording the optimization
times for producing the auto-generated code for the experiments
above, we added a third experiment set to specifically examine the
runtime efficiency of our proposed optimization algorithms.

Input Matrix Size Set 1 Size Set 2 Size Set 3
A 10K × 30K 50K × 1 50K × 50K
B 30K × 50K 1 × 100K 50K × 50K
C 50K × 1 100K × 30K 50K × 50K
D 1 × 50K 30K × 100K 50K × 50K
E 50K × 10K 100K × 50K 50K × 50K
F 50K × 10K 100K × 30K 50K × 50K

Figure 4: Size combinations for matrixmultiplication chain.

We implement our optimization algorithm on top of SimSQL,
which is a Hadoop-based parallel relational database [9], and on
top of PlinyCompute [41], which is a high-performance distributed
relational engine. Our implementation includes a total of 19 phys-
ical matrix implementations, 20 different physical matrix trans-
formations, 16 different atomic computations, 38 different atomic
computation implementations.

All SimSQL experiments are run onAmazon EC2r5d.2xlarge
machines with 8 cores, 68GB of RAM, and 300GB of NVMe SSD.
All PlinyCompute, PyTorch, and SystemDS experiments are run
on Amazon EC2 r5dn.2xlarge machines with 8 cores, 64GB of
RAM, and 300GB of NVMe SSD.

8.2 Quality of Observed Plans
We first detail our experiments aimed at answering the question:
Can the optimization framework described in this paper automatically
choose a set of atomic operation implementations and transformations
that outperform those chosen by heuristic, or by a human program-
mer? We consider four different computational tasks. All are run
on our SimSQL implementation; all matrices are dense.

Feed forward neural network backprop. Consider a FFNNwith
three hidden layers, relu activation functions, and a softmax output
later. We perform backprop using a dense input matrix having 104

input vectors with 6×104 features each. There are 17 possible possi-
ble labels. Besides the input and output layer, there are two hidden
layers, whose weight matrices have size 60,000 by layer_size,
layer_size by layer_size, respectively. FFNN input and
weight matrices (and the matrices for inversion and matrix-chain
mult below) are dense and generated by sampling double-precision
floating point numbers from a Normal(0, 1) distribution.

We initially evaluate three methods for computing the physical
plan for the FFNN. The first method is to auto-generate the plan
using the algorithms of this paper (note the FFNN is not a tree,
so the frontier algorithm is used). For the second method we use
the SimSQL FFNN code that was derived from the code used in a
published paper [23]. The third method is to simply tile everything
with 1K × 1K matrices. For Experiment 4, we recruit additional
programmers to create plans, as described below.

There are four experiments aimed at evaluating plan quality.

Experiment 1. On ten machines, we first perform the computation
required to compute the activations at the output layer during the
second forward pass, which means we run one forward pass, one
backpropagation, and one more forward pass, using ten machines
and a hidden layer size of 80K. This results in a very large compute
graph, with 57 vertices. Times are given in Figure 5.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1230

Experiment 2. Next, we run the FFNN computation on ten ma-
chines to compute the updated weight matrix for the second hidden
layer, which requires a forward pass and one backpropagation,
with a variety of hidden layer sizes. We try different values for
the layer_size from 10K, 40K, 80K to 160K. Times are given in
Figure 6. “Fail” means that the system crashed, typically due to too
much intermediate data.

Experiment 3. We fix the size of the hidden layer as 160K, and repeat
the computation using different numbers of machines. Times are
given in Figure 7. Again, “Fail” means that the system crashed.

Experiment 4. One of the key hypotheses behind the paper is that
it is difficult for a human programmer to choose the “correct” ma-
trix/tensor and operator implementations so that things run fast.
To evaluate that hypothesis, we compared auto-generated code
with the human-produced FFNN code from [23]. However, that is
just one human-generated computation. To better evaluate that
hypothesis, we reconsider the third work of Figure 6, and ask three
additional ML experts to produce SimSQL implementations. The
additional programmers are all PhD students working in ML, with a
correspondingly-high level of ML expertise. One works in the area
of high-performance distributed ML (distributed ML expertise is
“high”), one works in federated learning (distributed ML experience
is “medium”) and one works in ML applications (distributed ML
experience is “low”). Each was given a 21-page handbook describing
task, which included labeling 19 different operations in the com-
pute graph, as well as various rules and considerations to take into
account while labeling the operations. The resulting labelings were
translated (by us) into three different SimSQL implementations.
The first attempts by the programmers with “low” and “medium”
distributed ML experiences crashed, and we asked them to update
the labeling accordingly. Running times are given in Figure 8.

Two-level matrix inverse. A classic implementation [18] for dis-

tributed matrix inverse is to compute

[
A B
C D

]−1

=

[
Ā B̄
C̄ D̄

]
where:

Ā = A−1 + A−1B(D − CA−1B)−1CA−1,

B̄ = −A−1B(D − CA−1B)−1,

C̄ = −(D − CA−1B)−1CA−1,

D̄ = (D − CA−1B)−1 .

Since this is a two-level block-wise matrix inverse, the matrix
inverse A−1 is computed similarly. For the experiment, we set the
size of block A, B, C, and D as 10K by 10K. The input blocks of
matrix A have size 2K by 2K, 2K by 8K, 8K by 2K, and 8K by 8K,
respectively. We compare the auto-generated implementation with
a hand-generated implementation (the best possible physical im-
plementation obtained by the first author of this paper) and one
simply tiling all matrices in 1K × 1K chunks. The time to run the
matrix inversion is given in Figure 9, using ten machines.

Matrix Multiplication Chain. Consider six input matrices: A, B,
C, D, E, and F. The specific computation is:

T1 ← A × B; T2 ← C × D
O← ((T1 × E) × (T1 × T2)) × (T2 × F)

Auto-gen Hand-written All-tile
0:59:02 (01:03) 1:25:34 1:54:18

Figure 5: FFNN: forward pass, backprop, and one more for-
ward pass. Format is H:MM:SS (opt time in parens is MM:SS).

Dims Auto-gen Hand-written All-tile
10K 00:06:15 (:08) 00:10:06 00:09:01
40K 00:12:18 (:11) 00:17:58 00:18:43
80K 00:23:46 (:06) 00:42:47 00:50:23
160K 00:55:16 (:04) 02:15:01 Fail

Figure 6: FFNN: forward pass, plus backpropagation to W2.
Format is HH:MM:SS (Opt time in parens is :SS).

Num workers Auto-gen Hand-written All-tile
5 01:19:32 (:04) Fail Fail
10 00:55:16 (:04) 02:15:01 Fail
20 00:44:19 (:04) 01:19:27 01:45:50
25 00:38:19 (:05) 01:18:59 01:31:15

Figure 7: FFNN: forward pass, plus backpropagation to W2.
Format is HH:MM:SS (Opt time in parens is :SS).

Auto-gen User 1 User 2 User 3
ML expertise NA High High High
Dist. ML expertise NA Low Med High
Runtime 23:46 55:23∗ 36:02∗ 23:58

Figure 8: FFNN: forward pass, plus backprop to update W2.
Format is MM:SS. ∗Computation failed, then re-designed.

We use O as the final output. We use three different size combina-
tions for the input matrices. The sizes for each combination are
provided in Figure 4. Again, we compare the auto-generated imple-
mentation with a hand-written implementation and one tiling all
matrices in 1K × 1K chunks. The time required to run the chain of
matrix multiplications is given in Figure 10.

Discussion. In every case, the auto-generated physical plans se-
lected by the optimizer beat both the hand-developed code, and
also the heuristic of simply tiling every matrix. The auto-generated
code even beat the hand-written code in Figures 5, 6 an 7, where
those hand-written code were derived from the one used for the
FFNN experiments for a published paper [23].

Note that for experiment 4, one recruited user was able to pro-
duce an implementation that nearly matched the quality of the
auto-generated implementation (Figure 8). It was likely not a coin-
cidence that this particular user is an expert in distributed machine
learning. The two recruits with less expertise produced implemen-
tations that were significantly less performant.

8.3 Comparison with Other Systems
We now detail a second set of experiments aimed at answering: Can
the algorithms of this paper auto-generate implementations that com-
pete with implementations provided by state-of-the-art systems?. In
these experiments, we use the proposed optimization algorithm to
choose the best set of formats to implement the FFNN computation
on top of PlinyCompute [41], and compare with both PyTorch [1]
and SystemDS [2] (formerly SystemML).

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1231

Auto-gen Hand-written All-tile
21:31 (:21) 28:19 34:50

Figure 9: Two-level block-wise matrix inverse. Format is
MM:SS (opt time in parens is :SS).

Input size Auto-gen Hand-written All-tile
Size Set 1 00:08:45 (:05) 00:20:22 00:21:38
Size Set 2 01:05:36 (:00) 02:26:32 01:56:15
Size Set 3 00:34:52 (:00) 01:46:20 02:02:54

Figure 10:Matrixmultiplication chain. Format isHH:MM:SS
(opt time in parens is :SS).

We perform FFNN backpropagation using the AmazonCat-14K
dataset [28, 29] with 597,540 input features and 14,588 labels. We
consider 1K and 10K batches. For PlinyCompute, the large input
data matrix is stored as column-strips with strip width 1000 (this
matrix is a 𝑏×597, 540 matrix for a batch size of 𝑏). The large matrix
connecting the inputs to the hidden layer is given to PlinyCompute
as 1000 × 1000 chunks (this matrix is a 597, 540 × ℎ matrix for a
hidden layer size of ℎ). All other input matrices are given to the
system as whole, unchunked matrices. For PyTorch, a standard,
“data parallel” implementation is used [19]; the input data matrix
is sharded into column strips so each machine gets one shard. For
SystemDS, the computations are implemented by using the linear
algebra operations provided by the system, and is configured to use
Intel MKL library [36] for BLAS [7] computations.

We run two subsets of experiments. In the first, an input batch
size of 1000 is used, and PlinyCompute is constrained to use dense
operations. A variety of cluster sizes and hidden layer sizes are
tested. Results are given in Figure 11. In the second, we use a 10K
batch size, and try three options for PlinyCompute. In the first, the
input data are stored densely and PlinyCompute is constrained so
that it cannot choose to transform the input to sparse format. In the
second, the inputs are stored densely, but the constraint is removed.
In the third, the inputs are stored sparsely. Results are in Figure 12.

Discussion. The optimized computations outperform PyTorch in
each case. For a size 1000 batch, PlinyCompute is up to 2.5 times
faster. PyTorch’s data-parallel implementation broadcasts the en-
tire model to all machines, which is problematic with such a large
model—it would be better to move the data. The optimized imple-
mentation is able to avoid this. Note that PyTorch also failed in
many of the cases, especially for the case of the larger batch size.
This is because PyTorch is unable to multiply the matrix storing
the input data with the entire matrix connecting the inputs to the
first input layer without failing.

SystemDS has performance similar to PyTorch on the smaller
batches. On the larger batch task, SystemDS’ ability to take ad-
vantage of the very sparse one-hot-encoded input allows it to out-
perform PyTorch, and it is close to matching the auto-generated
PlinyCompute performance, when the optimization algorithm’s
ability to utilize sparsity is turned off. But when the ability to choose
sparse operations is turned on, the runtime drops considerably, to
just 20% to 50% of the all-dense implementation.

Layer Size PC No Sparsity PyTorch SystemDS
Cluster with 2 workers

4000 0:23 (:04) 0:26 1:10
5000 0:28 (:03) 0:31 1:24
7000 0:53 (:03) Fail 1:36

Cluster with 5 workers
4000 0:18 (:04) 0:39 0:56
5000 0:20 (:04) 0:46 1:01
7000 0:30 (:03) Fail 0:39

Cluster with 10 workers
4000 0:20 (:04) 0:40 0:44
5000 0:22 (:03) 0:50 0:52
7000 0:25 (:04) Fail 0:34

Figure 11: FFNN forward pass plus backprop, 1K batch. For-
mat is M:SS (opt time in parens is :SS).

8.4 Optimization Runtimes
Finally, we detail a third set of experiments aimed at answering
the question: How important is the efficient dynamic programming
algorithm? Is the brute-force algorithm sufficient?. We consider three
specific computations.

Computation 1: DAG2. Consider the following matrix computation:

T1 ← A × B; T2 ← C × D
O1 ← (T1 × T2) × E; O2 ← (T1 × T2) × O1

This is a “scale 1” chain. We can construct a larger chain, called a
“scale 2” chain, by repeating the above pattern and connecting to the
first computation by replacingmatrixAwithO2, and replace matrix
C with O1 (this is “DAG2” because the two scales are connected in
two locations, creating a more complicated dependency). This can
be repeated 𝑛− 1 times to create a “scale 𝑛” chain. We use the lastly-
produced matrix as the output matrix to trigger the computation.

Computation 2: DAG1. We can create a computation with a simpler
dependency by connecting computations by replacing A with O2.

Computation 3: Tree. Lastly, consider the tree-shaped computation:

T1 ← A × B; T2 ← C × D
O1 ← (T1 × T2) × E; O2 ← O1 × F

We can create a “scale 𝑛” tree computation by linking together 𝑛
trees by replacing matrix A with O2.

For each of these computations, we construct tasks at a number
of different scales and compare the runtime of the brute-force op-
timization algorithm (Algorithm 2) with either the DP algorithm
(Algorithm 3) in the case of the tree computations, or the Frontier
algorithm (Algorithm 4) in the case of DAG1 and DAG2. We as-
sume all matrices are initially stored as a single tuple, with size
20, 000 × 20, 000, and we assume the computations would be run
on 10 machines. Finally, we tested three cases: all formats in the
SimSQL implementation are available; only single-matrix, strip and
block formats are available (there are a total of 16 formats in this
case), and only single-matrix and block format are available (there
are a total of 10 formats in this case). Results are given in Figure 13.
“Fail” means a runtime of greater than 30 minutes.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1232

Layer PC No PCSparse PCDense Py- System-
Size Sparsity Input Input Torch DS

Cluster with 2 workers
4000 1:34 (:05) 0:50 0:54 2:05 1:57
5000 2:47 (:05) 0:58 1:02 Fail 2:51
7000 4:24 (:05) 1:16 1:19 Fail 7:54

Cluster with 5 workers
4000 1:15 (:06) 0:23 0:27 1:16 1:15
5000 1:20 (:05) 0:26 0:32 1:30 1:30
7000 1:55 (:05) 0:35 0:38 Fail 2:49

Cluster with 10 workers
4000 0:53 (:06) 0:20 0:24 1:06 1:01
5000 1:02 (:05) 0:20 0:24 1:17 1:15
7000 1:16 (:05) 0:23 0:28 Fail 1:21

Figure 12: FFNN: forward pas plus back-prop, 10K batch. For-
mat is M:SS (opt time in parens is :SS).

DP Brute DP Brute DP Brute
Scale DAG2 DAG2 DAG1 DAG1 Tree Tree

All formats
1 00:01 26:54 00:01 27:13 00:00 25:31
2 00:08 Fail 00:01 Fail 00:01 Fail
3 00:16 Fail 00:02 Fail 00:01 Fail
4 00:23 Fail 00:03 Fail 00:02 Fail

Single/Strip/Block formats
1 00:00 24:04 00:00 23:57 00:00 19:14
2 00:06 Fail 00:02 Fail 00:00 Fail
3 00:11 Fail 00:02 Fail 00:01 Fail
4 00:15 Fail 00:03 Fail 00:01 Fail

Single/Block formats
1 00:00 00:28 00:00 00:26 00:00 00:20
2 00:00 Fail 00:00 Fail 00:00 Fail
3 00:00 Fail 00:00 Fail 00:00 Fail
4 00:02 Fail 00:00 Fail 00:00 Fail

Figure 13: Opt times formatrixmult chain. Format isMM:SS.

Discussion. The exponential-complexity brute-force algorithm is
a viable option only for the smallest compute graphs, with only a
few matrix implementations available. On the other hand, the dy-
namic programming algorithms show a linear scale-up with graph
size. Interestingly, there is a strong dependence on the complexity
of the linkage between the subgraphs used to create the overall
computation. Increasing the number of links to two increases the
running time from 3 seconds to 23 seconds for the scale 4 task.

9 RELATEDWORK
We have proposed an algorithm for globally optimizing algorithm
choices and storage formats for large-scale, distributed matrix/ten-
sor computations. While we have proposed an optimization al-
gorithm and not a new system per se, several existing systems
perform related optimizations. Notably, SystemDS (formerly Sys-
temML) [13, 17] offers many of the operator implementations that
were available to our SimSQL and PlinyCompute prototypes, and
will automatically figure out the layouts for matrices, as well as the
implementations for operations over them. Internally, SystemDS

provides two layouts for dense matrices: block matrix (stored as
1000 × 1000 blocks), and single-tuple matrix (the matrix is stored
as a single tuple). SystemDS also provides three layouts for sparse
matrices: triple-values, compressed sparse row (CSR), and a mod-
ified CSR [8]. While SystemDS was one of the pioneering efforts
in automated methods for choosing formats and operator imple-
mentations, its computation/format is optimized independently
(or it is considered within a small group of operators fused into a
compound operator), with a consideration of size, sparsity, and the
processing type (local processing or distributed processing). Unlike
the algorithms proposed in this paper, SystemDS does not attempt
to globally optimize matrix/tensor layouts, and does not integrate
the costs of transformations between the various layouts into the
optimization problem, which is the key idea in this paper.

Other systems for distributed ML or linear algebra also optimize
operator implementations and layouts, though no work we are
aware of attempts to systematically and globally optimize operator
implementations, layouts, and the transformations. MATFAST [40]
optimizes the physical implementations of matrix-based programs
for a distributed in-memory system. Cumulon [20] can automat-
ically optimize R-like programs in terms of physical implemen-
tations and hardware settings. Spartan [21] is a distributed array
framework that can automatically choose tile sizes for arrays to
maximize the data locality. DMac [39] inspects the matrix depen-
dencies between each operation in a matrix-based program, and
utilizes those dependencies to select the optimal execution strat-
egy for each operation. [26] proposes a hybrid representation with
adaptive tiles for large sparse and dense matrices, and considers
the optimization of matrix multiplication on those matrices. The
deep learning community has considered automatically choosing
the optimal tiling strategies for tensors to improve data locality and
model parallelism. Some examples are [24], [37] and [34].

Automatically selecting the best implementation for a linear al-
gebra computation is referred as autotuning in the HPC literature.
Autotuning can be supported in multiple ways. Some widely-used
autotuning HPC libraries are PHiPAC [6], ATLAS [38] and FFTW
[16]. Better abstraction is supported by other libraries such as SPI-
RAL [32] and [14]. Moreover, autotuning can also be supported in
an application level, where more complex LA computations can be
autotuned and more algorithmic choices can be explored. Examples
of such system are [4], [12] and [35].

10 CONCLUSIONS
We have proposed a framework for automatic optimization of the
physical implementation of matrices and operations over them, for
use during complex machine learning and linear algebra computa-
tions. We showed experimentally that the implementations chosen
by our optimization framework meet or exceed those chosen by
human experts, and that a system running such implementations
can beat state-of-the-art systems.

ACKNOWLEDGMENTS
Thanks to the anonymous reviewers for their insightful comments
on earlier versions of the paper. Work presented in this paper has
been supported by an NIH CTSA, award no. UL1TR003167, and by
the NSF under grant nos. 1918651, 1910803, and 2008240.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1233

REFERENCES
[1] 2017. PyTorch. http://pytorch.org. Accessed Sep 1, 2018.
[2] 2021. SystemDS. https://systemds.apache.org/. Accessed Feb 1, 2021.
[3] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine
Learning. In OSDI 16. USENIX Association, GA, 265–283.

[4] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edel-
man, and Saman Amarasinghe. 2009. PetaBricks: a language and compiler for
algorithmic choice. ACM Sigplan Notices 44, 6 (2009), 38–49.

[5] Shivnath Babu, Pedro Bizarro, and David DeWitt. 2005. Proactive Re-optimization.
In Proceedings of the 2005 ACM SIGMOD International Conference on Management
of Data (Baltimore, Maryland) (SIGMOD ’05). ACM, New York, NY, USA, 107–118.
https://doi.org/10.1145/1066157.1066171

[6] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. 1997. Opti-
mizing matrix multiply using PHiPAC: a portable, high-performance, ANSI C
coding methodology. In ACM International Conference on Supercomputing 25th
Anniversary Volume. 253–260.

[7] L Susan Blackford, Antoine Petitet, Roldan Pozo, Karin Remington, R Clint
Whaley, James Demmel, Jack Dongarra, Iain Duff, Sven Hammarling, Greg Henry,
et al. 2002. An updated set of basic linear algebra subprograms (BLAS). ACM
Trans. Math. Software 28, 2 (2002), 135–151.

[8] Matthias Boehm, Michael W Dusenberry, Deron Eriksson, Alexandre V Ev-
fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Freder-
ick R Reiss, Prithviraj Sen, Arvind C Surve, et al. 2016. Systemml: Declarative
machine learning on spark. Proceedings of the VLDB Endowment 9, 13 (2016),
1425–1436.

[9] Zhuhua Cai, Zografoula Vagena, Luis Perez, Subramanian Arumugam, Peter J
Haas, and Christopher Jermaine. 2013. Simulation of database-valued Markov
chains using SimSQL. In SIGMOD 2013. ACM, 637–648.

[10] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 2000.
Towards estimation error guarantees for distinct values. In Proceedings of the
nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. 268–279.

[11] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. 2015. MXNet: A Flexible and Efficient Machine Learning Library for
Heterogeneous Distributed Systems. arXiv preprint arXiv:1512.01274 (2015).

[12] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May
OÕReilly, and Saman Amarasinghe. 2015. Autotuning Algorithmic Choice for
Input Sensitivity. 379Ð390.

[13] Ahmed Elgohary, Matthias Boehm, Peter J Haas, Frederick R Reiss, and Berthold
Reinwald. 2016. Compressed linear algebra for large-scale machine learning.
Proceedings of the VLDB Endowment 9, 12 (2016), 960–971.

[14] Diego Fabregat-Traver and Paolo Bientinesi. 2013. Application-tailored linear
algebra algorithms: A search-based approach. The International journal of high
performance computing applications 27, 4 (2013), 426–439.

[15] Joseph Felsenstein. 1981. Evolutionary trees from DNA sequences: a maximum
likelihood approach. Journal of molecular evolution 17, 6 (1981), 368–376.

[16] Matteo Frigo and Steven G Johnson. 1998. FFTW: An adaptive software archi-
tecture for the FFT. In Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP’98 (Cat. No. 98CH36181), Vol. 3.
IEEE, 1381–1384.

[17] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Rein-
wald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar
Vaithyanathan. 2011. SystemML: Declarative machine learning on MapReduce.
In ICDE. 231–242.

[18] F.A. Graybill. 1983. Matrices with applications in statistics. Wadsworth Interna-
tional Group.

[19] W Daniel Hillis and Guy L Steele Jr. 1986. Data parallel algorithms. Commun.
ACM 29, 12 (1986), 1170–1183.

[20] Botong Huang, Shivnath Babu, and Jun Yang. 2013. Cumulon: optimizing statis-
tical data analysis in the cloud. In Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data. 1–12.

[21] Chien-Chin Huang, Qi Chen, Zhaoguo Wang, Russell Power, Jorge Ortiz, Jinyang
Li, and Zhen Xiao. 2015. Spartan: A distributed array framework with smart tiling.
In 2015 {USENIX} Annual Technical Conference ({USENIX}{ATC} 15). 1–15.

[22] Yannis E. Ioannidis and Stavros Christodoulakis. 1991. On the Propagation of
Errors in the Size of Join Results. In Proceedings of the 1991 ACM SIGMOD Inter-
national Conference on Management of Data (Denver, Colorado, USA) (SIGMOD

’91). ACM, New York, NY, USA, 268–277. https://doi.org/10.1145/115790.115835
[23] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris Jer-

maine, and Zekai J Gao. 2019. Declarative recursive computation on an RDBMS:
or, why you should use a database for distributed machine learning. Proceedings
of the VLDB Endowment 12, 7 (2019), 822–835.

[24] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. 2018. Exploring Hidden
Dimensions in Parallelizing Convolutional Neural Networks. In Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018 (Proceedings of Machine Learning Research,
Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR, 2279–2288.

[25] Navin Kabra and David J. DeWitt. 1998. Efficient Mid-query Re-optimization of
Sub-optimal Query Execution Plans. SIGMOD Rec. 27, 2 (June 1998), 106–117.
https://doi.org/10.1145/276305.276315

[26] David Kernert, Wolfgang Lehner, and Frank Köhler. 2016. Topology-aware
optimization of big sparse matrices and matrix multiplications on main-memory
systems. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE).
IEEE, 823–834.

[27] Shangyu Luo, Zekai J Gao, Michael Gubanov, Luis L Perez, and Christopher
Jermaine. 2017. Scalable linear algebra on a relational database system. In ICDE
2017. IEEE, 523–534.

[28] Julian McAuley, Rahul Pandey, and Jure Leskovec. 2015. Inferring networks
of substitutable and complementary products. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining. 785–
794.

[29] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[30] Wes McKinney et al. 2011. pandas: a foundational Python library for data analysis
and statistics. Python for High Performance and Scientific Computing 14, 9 (2011).

[31] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[32] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M
Veloso, Bryan W Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen
Voronenko, et al. 2005. SPIRAL: Code generation for DSP transforms. Proc. IEEE
93, 2 (2005), 232–275.

[33] Johanna Sommer, Matthias Boehm, Alexandre V Evfimievski, Berthold Reinwald,
and Peter J Haas. 2019. Mnc: Structure-exploiting sparsity estimation for matrix
expressions. In Proceedings of the 2019 International Conference on Management
of Data. 1607–1623.

[34] Linghao Song, Fan Chen, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen.
2020. AccPar: Tensor Partitioning for Heterogeneous Deep Learning Accelerators.
In 2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 342–355.

[35] Michael J Voss and Rudolf Eigemann. 2001. High-level adaptive program opti-
mization with ADAPT. In Proceedings of the eighth ACM SIGPLAN symposium on
Principles and practices of parallel programming. 93–102.

[36] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing
Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance
Computing on the Intel® Xeon Phiª. Springer, 167–188.

[37] Minjie Wang, Chien-chin Huang, and Jinyang Li. 2019. Supporting very large
models using automatic dataflow graph partitioning. In Proceedings of the Four-
teenth EuroSys Conference 2019. 1–17.

[38] R Clinton Whaley and Jack J Dongarra. 1998. Automatically tuned linear algebra
software. In SC’98: Proceedings of the 1998 ACM/IEEE conference on Supercomput-
ing. IEEE, 38–38.

[39] Lele Yu, Yingxia Shao, and Bin Cui. 2015. Exploiting matrix dependency for
efficient distributed matrix computation. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 93–105.

[40] Yongyang Yu, Mingjie Tang, Walid G Aref, Qutaibah M Malluhi, Mostafa M
Abbas, and Mourad Ouzzani. 2017. In-memory distributed matrix computation
processing and optimization. In 2017 IEEE 33rd International Conference on Data
Engineering (ICDE). IEEE, 1047–1058.

[41] Jia Zou, R Matthew Barnett, Tania Lorido-Botran, Shangyu Luo, Carlos Mon-
roy, Sourav Sikdar, Kia Teymourian, Binhang Yuan, and Chris Jermaine. 2018.
PlinyCompute: A platform for high-performance, distributed, data-intensive tool
development. In Proceedings of the 2018 International Conference on Management
of Data. 1189–1204.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

1234

http://pytorch.org
https://systemds.apache.org/
https://doi.org/10.1145/1066157.1066171
https://doi.org/10.1145/115790.115835
https://doi.org/10.1145/276305.276315

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Motivating Example
	2.2 Problem Statement

	3 Matrix Types and Operations
	4 Formal Problem Definition
	4.1 Compute Graph
	4.2 Problem: Annotating a Compute Graph
	4.3 Optimizing the Annotation

	5 Optimizing Tree-Shaped Graphs
	5.1 Preliminaries
	5.2 Recursively Computing the Optimal Cost
	5.3 Dynamic Programming

	6 Optimizing General DAGs
	6.1 Optimizing Costs Along a Frontier
	6.2 Moving the Frontier Forward
	6.3 Algorithm Efficiency

	7 Estimating Costs
	8 Experiments
	8.1 Overview
	8.2 Quality of Observed Plans
	8.3 Comparison with Other Systems
	8.4 Optimization Runtimes

	9 Related Work
	10 Conclusions
	Acknowledgments
	References

