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Abstract In freshwater ecosystems, phosphorus
(P) is often considered a growth-limiting nutrient.
The use of fertilizers on agricultural fields has led to
runoff-driven increases in P availability in streams,
and the subsequent eutrophication of downstream
ecosystems. Isolated storms and periodic streambed
dredging are examples of two common disturbances
that contribute dissolved and particulate P to agricul-
tural streams, which can be quantified as soluble
reactive P (SRP) using the molybdate-blue method on
filtered water samples, or total P (TP) measured using
digestions on unfiltered water reflecting all forms of P.
While SRP is often considered an approximation of
bioavailable P (BAP), research has shown that this is
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not always the case. Current methods used to estimate
BAP do not account for the role of biology (e.g.,
NaOH extractions) or require specialized platforms
(e.g., algal bioassays). Here, in addition to routine
analysis of SRP and TP, we used a novel yeast-based
bioassay with unfiltered sample water to estimate BAP
concentrations during two storms (top 80% and >
95% flow quantiles), and downstream of a reach
where management-associated dredging disturbed the
streambed. We found that the BAP concentrations
were often greater than SRP, suggesting that SRP is
not fully representative of P bioavailability. The SRP
concentrations were similarly elevated during the two
storms, but remained consistently low during
streambed disturbance. In contrast, turbidity and TP
were elevated during all events. The BAP concentra-
tions were significantly related to turbidity during all
disturbance events, but with TP only during storms.
The novel yeast assay suggests that BAP export can
exceed SRP, particularly when streams are not in
equilibrium, such as the rising limb of storms or during
active dredging.
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Introduction

Phosphorus (P) is a growth-limiting nutrient for
aquatic plants, algae, and microbes in many freshwater
environments (Schindler and Fee 1974; Paerl et al.
2016). Excess P, from organic and inorganic fertilizers
applied to farmland, can be mobilized in soils, enter
adjacent waterways, and result in the eutrophication of
downstream water bodies, leading to excessive algal
growth and economic and ecological damage (Micha-
lak et al. 2013; Rabalais and Turner 2019). The
majority of annual P export from streams and ditches
in the agricultural Midwest occurs during the top 50%
of flows (Royer et al. 2006), when dissolved or
particulate P moves from fields to adjacent streams,
often through subsurface tile drains (Vidon and
Cuadra 2011; King et al. 2015; Williams et al.
2016). Overland flow-induced erosion also results in
the export of excess P (Ellison and Brett 2006;
Brennan et al. 2017), especially if that occurs after
fertilizer application (Gentry et al. 2007). As storms
are expected to increase in frequency and volume
under a changing climate in the Midwestern US,
particularly during winter and spring, increased P
export and eutrophication events are likely to become
more common and severe in the future (Michalak et al.
2013).

Other types of human-induced disturbance can alter
streambeds, resulting in the increased export of P even
at baseflow conditions. For example, dredging is a
common management practice used to maintain
effective drainage in many low-gradient agricultural
streams, which also prevents flooding in surrounding
fields, and maintains crop productivity. Research
characterizing the short and long-term impacts of
dredging on dissolved and particulate nutrient export
is limited, and the existing studies provide conflicting
evidence. These studies have concluded that dredging
does not affect streambed P retention (Macrae et al.
2003), or that dredged reaches can be P sinks (Smith
and Huang 2010; Oldenborg and Steinman 2019) or P
sources to the water column (Smith et al. 2006).
Therefore, there is a need to document the impact of
dredging on both dissolved and particulate P export to
inform drainage management practices in the agricul-
tural Midwest.

In aquatic systems, P concentrations are often
measured either as soluble reactive P (SRP) or total P
(TP). Soluble reactive P is operationally defined as the
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amount of dissolved P that reacts with molybdate in a
filtered sample (Murphy and Riley 1962), and is
assumed to approximate orthophosphate, which is
readily assimilated by aquatic organisms (Wetzel
2001; Cembella et al. 1982; Karl 2000). Thus, SRP
typically serves as a proxy for bioavailable P (BAP;
Wetzel 2001; Reynolds and Davies 2001). However, it
has been noted that BAP is likely higher than SRP due
to other forms of bioavailable P not captured by the
operational definition of SRP, such as many organic
substances (e.g., DNA, RNA; Li and Brett 2013) and P
sorbed to particles (Pacini and Gichter 1999). In
contrast, TP is likely an overestimate of BAP, given
that unfiltered samples contain particles with recalci-
trant or bound P that is biologically unavailable (Li
and Brett 2013).

Many researchers have sought methods to measure
the true BAP available in freshwater environments
(Bostrom et al. 1988), including incubations with
algae (Li and Brett 2013) or bacterioplankton (Jansson
et al. 2012), chemical extractions using NaOH (De
Pinto et al. 1986; Pionke and Kunishi 1992; Lottig and
Stanley 2007), and with qPCR (Yang et al. 2018).
These approaches have been successful in estimating
BAP concentrations and identified when and where
SRP is not a good proxy for BAP (Hudson et al. 2000;
Jansson et al. 2012; Li and Brett 2015), but these
methods are often costly and time-consuming (Mo-
hamed et al. 2019).

In this study, we compared the impacts of storms
and baseflow streambed disturbance (i.e., dredging) on
SRP, BAP, and TP concentrations and export in an
agricultural stream (Shatto Ditch, IN). To estimate
BAP concentrations, we tested the utility of a simple
yeast-based bioassay on freshwater samples (Shep-
herd et al. 2021). We chose yeast because they grow to
levels linearly related to low concentrations of a
limiting nutrient (Saldanha et al. 2004), they are robust
to environmental perturbations (e.g., pH, temperature,
and light), and they are resistant to herbicides and
insecticides that may be found in agricultural streams
(Ravishankar et al. 2020). Unlike algae, yeast have
relatively fast incubation times (i.e., days to complete
an assay for yeast as compared to weeks for algae), and
they behave consistently and predictably in culture
systems (Botstein and Fink 2011). Furthermore, this
bioassay does not require the use of hazardous or toxic
chemicals unlike analyses for SRP and TP.
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We used this approach to measure BAP concentra-
tions, along with SRP and TP, from grab samples
collected during three disturbances: (1) a small rain
event (discharge, Q = top 80% of flows), (2) down-
stream of a reach being actively dredged, and (3)
above and below the dredged reach during a rain-on-
snow event (Q =top 10% of flows) that occurred
7 months after dredging. We compare the concentra-
tion and export of different operational definitions of P
during each of these disturbances and their relation-
ships with each other, as well as with stream turbidity.
We predicted that SRP < BAP < TP in most samples,
with more variation among P operational definitions
when disturbance pushes the system out of equilibrium
(e.g., during the rising limb of storms or active
dredging), and less variation when the stream is
returning to or in equilibrium (e.g., the falling limb of
storms or when dredging ceases). With this work, we
highlight the importance of understanding how dif-
ferent operational measurements of P, particularly
BAP, vary with different aspects of stream
disturbance.

Methods
Study site

We conducted this study in the Shatto Ditch Water-
shed (SDW), a 13.5 km® agricultural watershed in
north-central Indiana (Fig. 1). Land use in the water-
shed is > 85% row crop agriculture, in corn/soybean
rotation, and there is one poultry feedlot operation
located within the watershed boundaries. Winter cover
crops (primarily annual and cereal ryegrass) have been
planted during the fallow period on 62-69% of the
croppable acres since October 2013 (Hanrahan et al.
2018). The stream is approximately 2 m wide at the
watershed outlet and has a flashy discharge regime that
varies seasonally, with discharge (Q) ranging from 10
t0 3800 L s~! (median Q = 70 L s ). The data in this
study were collected as a part of a long-term project
that has supported bi-weekly grab sampling for water
chemistry since 2008 (Mahl et al. 2015; Hanrahan
et al. 2018) and a recent evaluation of sediment P
dynamics (Trentman et al. 2020). Continuous dis-
charge (15-min intervals) at the watershed outlet were
recorded using a USGS gaging station (gage#
03331224), rainfall was measured at 5-min intervals

using a tipping-bucket rain gage (Onset; model:
S-RGA-MO002) deployed in the watershed, and esti-
mates of snowfall and snow-water equivalents were
obtained from the local National Weather Service
Office (North Webster, IN).

Targeted water sampling

We conducted targeted, high-frequency sampling
during three watershed disturbance events where we
anticipated elevated export of elevated export of P
from either the terrestrial landscape or stream sedi-
ments. The events include a small storm (i.e., low
precipitation), a large storm (i.e., high precipitation),
and streambed disturbance associated with dredging;
all events took place within a single year (Fig. 2). For
each event, we used a ISCO Automated Water
Sampler (3700; Teledyne, Lincoln, NE) to collect
stream water into clean 1L plastic bottles at event-
specific timed intervals, and we programmed the
samplers to rinse the sample tube once before and after
collecting each sample. From each bottle, we collected
filtered (Type A/E glass fiber filter; Pall, Ann Arbor,
MI) and unfiltered samples in 50 mL centrifuge tubes,
which were frozen for later laboratory analyses for
SRP, BAP, and TP. We inverted each bottle multiple
times to ensure that the sample was well-mixed before
aliquoting for individual analysis. We also measured
the turbidity of a 15 mL aliquot of each bottle using a
calibrated portable turbidimeter (2100Q; Hach, Love-
land, CO). The longitudinal location of the sampler
varied slightly (up to ~ 400 m) depending on the
type of event sampled (Fig. 1).

The first event occurred in April 5-7, 2017 during a
small storm (hereafter “storm 1”; Fig. 2), where we
collected hourly samples through the peak of the
hydrograph. The second event occurred immediately
downstream of a reach that was being dredged to
remove stream sediments in order to increase the
streambed slope and velocity (hereafter “streambed
disturbance”), which took place prior to the construc-
tion of small floodplains (i.e., a two-stage ditch; ~ 3
m on each side of the stream) along a 2 km stretch of
the stream. The contractors first dredged a section of
the reach (~ 200 m), then returned to the beginning
of that section to construct the adjacent floodplain, and
this process was repeated in ~ 200 m sections, with
the contractors moving sequentially upstream each
day. We sampled during the first three days of activity
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Fig. 1 Map of the Shatto Ditch Watershed and the stationary
location for each high frequency sampling event. The inset
shows the sampling location for storm 1 and storm 2-B. The
sampling location for storm 2-A was located at the top of the
dredged reach and is on the map. The streamed disturbance took
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Fig.2 The hydrograph of daily discharge and precipitation over
the 12 months bracketing the three high-frequency sampling
events
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place over three days, with the disturbance taking place over a
new 200 m section of the stream each day (represented in the
inset). The pictures represent a peak flow during storm 1,
b active dredging during the streambed disturbance, and c¢ the
rising limb of storm 2

and captured periods of both active streambed dredg-
ing and while lateral floodplains were being con-
structed. We placed the ISCO sampler at the base of
the dredged reach throughout, to monitor what was
exported from that reach, with the activity during this
disturbance often beginning early in the morning and
stopping in the afternoon, coincident with the work-
day. The stream turbidity stabilized near baseline
within a few hours after dredging was completed.
Dredging of the first section began on July 31,2017,
and due to logistical constraints, we were only able to
initiate sampling during the first round of floodplain
construction. We set the ISCO to sample every
20-60 min (depending on activity), and the type of
activity (either dredging or floodplain construction)
was documented. During the streambed disturbance,
70% of sample collection occurred during active
dredging and 30% of samples were collected during
floodplain construction. On Day 1, dredging occurred
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first, followed by two hours of floodplain construction,
and five hours of dredging. On Day 2, floodplain
construction occurred first for three hours, followed by
dredging for four hours. On Day 3, dredging occurred
first for an hour, followed by two hours of floodplain
construction, and another three hours of dredging.

The third event was a rain-on-snow precipitation
event (hereafter “storm 2”) that occurred in February
2018 (Fig. 2), resulting in historic flooding in the
region and the largest documented Q recorded in
12 years at the SDW. We collected samples at two
sites, above (Storm 2-A) and below (Storm 2-B) the
2 km dredged reach (Fig. 1). We estimated Q at Storm
2-B using area-weighting with the downstream USGS
gage. On February 18, 2018, temperatures rose above
freezing, initiating snowmelt on the landscape, which
was then followed by two periods of rainfall (to-
tal = 11.7 cm) over two days, and resulted in two
discharge peaks. We began collecting samples at
1-3 h intervals on the morning of February 19, 2019,
collecting three samples before the onset of rainfall,
but after snowmelt. We stopped sampling for 20 h
beginning on February 20 (rising limb of the second
peak) due to safety concerns that the stream would
overflow its banks and damage sampling equipment.
We resumed sampling again at noon February 21 after
the stream began to recede, and we stopped sampling
for this event after five days, before the stream fully
returned to baseflow but capturing the bulk of the
storm and its falling limb.

Nutrient measurements

We measured SRP from filtered samples using the
molybdate-blue ascorbic acid method and a Lachat
Quickchem Analyzer (Hach Company, Loveland CO;
method = 10-115-01-1-Q). We measured TP on unfil-
tered samples using an in-line UV persulfate digester
on a Lachat Quickchem Analyzer (method = 10-115-
01-3-E). For TP, we used sodium pyrophosphate,
sodium tripolyphosphate, and trimethyl phosphate
check standards to determine digest efficiency; recov-
ery efficiencies were typically between 70 and 95%.

BAP yeast assay
We estimated BAP on a subset of samples using a

yeast assay (hereafter “bioassay”) based on a method
developed by Shepherd et al. (2021). We had

originally intended to analyze all the available sam-
ples; however, this effort was curtailed due to lab
shutdown associated with the SARS-CoV-2 pan-
demic. We selected samples across the hydrograph
of the larger storm, with more focus on when the
hydrograph was changing, and across all days of the
dredging event. Given this, we believe the subset of
BAP samples provided here are representative of the
full dataset. The bioassay works by incubating
cultured P-starved yeast with unfiltered sample water
and media that ensures P-limitation of the yeast. After
a 4-day incubation, we measured the abundance of
yeast using absorbance (corrected for background
turbidity), and estimated the BAP of the samples by
comparing the observed yeast densities to those
obtained from a standard curve of yeast incubated in
media containing known amounts of KH,POj,.

The yeast used in this bioassay was Saccharomyces
cerevisiae strain DBY10148, a strain adapted to
growth in continuous culture systems (Saldanha
et al. 2004). Before the assay, we depleted the internal
P stores of the cells by growing the yeast in P-limiting
media (see below) for four days at 30 °C, until they
reached saturation, at which point they were stored at
4 °C until the assay. To initiate each bioassay, we
added 100 pL of each sample, in triplicate, to a 96 well
plate, not using wells along the edge of the plate to
avoid edge-related artifacts during absorbance mea-
surements. Instead, we filled outer wells with double
deionized water and antibiotics (ampicillin and
kanamycin) to prevent microbial activity in the water,
which could contaminate the samples. We then added
100 pL of a mixture containing the P-limited media
and P-starved yeast to each sample well; the P-limited
media contained sufficient concentrations of micronu-
trients (Ca, Na, Mg, K, S), glucose, ammonium, trace
metals, and vitamins to ensure that P would be the only
growth-limiting factor, and antibiotics were included
to prevent the growth of bacteria. We created our
standard curve on a separate plate, adding increasing
amounts of KH,PO, with medium and yeast (total
volume = 200 pL), and then we stored the plates in an
incubator at 30 °C for four days. On the fourth day, we
thawed a previously aliquoted subset of each sample
and added it to adjacent wells in triplicate with media
as above, to correct each sample for background
turbidity. We transferred the plate to a plate reader that
was set to 30 °C and shook the samples in an orbital
formation for 1 min, at 807 cycles per minute, in order
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to mix and suspend the yeast in each sample well. We
then immediately measured the absorbance of yeast at
600 nm, and we determined BAP concentration (pg
L™") by comparing the background-corrected absor-
bance value for each sample to the standard curve. For
additional details, see Shepherd et al. (2021)

Results
Stream hydrology during disturbances

Storm 1 had relatively dry antecedent precipitation
conditions with minimal 7-day antecedent rainfall, no
7-day antecedent snowfall, and no snowpack before
the onset of the storm (Table 1). There was a single
discharge peak with Q increasing from 280 L s~ ' to a
peak of 720 L s™', while the average Q across the
sampling period was 310 L s~' (Fig. 3). For the
streambed disturbance, there was no rainfall in the
previous 7-days, nor during the sampling period
(Table 1), and Q averaged 180 L s™', declining by
60 L s~' over the 3-day sampling period (Fig. 4).
Storm 2 had higher 7-day antecedent rainfall than
storm 1, and 2.5-5 cm of snow-water equivalent on
the landscape, before storm onset (Table 1), and was
larger than storm 1 based on bulk precipitation and
streamflow. At Storm 2-A, Q peaked at 900 L s 'and
1700 L s~' during the first and second peaks,
respectively (Fig. 5a). At Storm 2-B, Q peaked at
1780 and 3650 L s~ for the first and second peaks,
respectively (Fig. 5b), and average Q during the
sampling period was nearly sixfold higher than during
storm 1.

Table 1 Precipitation conditions before each disturbance.
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Fig. 3 Precipitation, phosphorus concentrations (SRP and TP),
and turbidity during storm 1 in April 2017. The hydrograph is in
the background

P concentrations and turbidity during disturbances

The peak SRP concentration during storm 1 was
224 pg L' and was lower than peak TP (286 pgL™";
Fig. 3). The average SRP concentration during storm 1
was 95 pug L™ compared to the average TP concen-
tration of 143 pg L™". Finally, maximum turbidity for
storm 1 was 48 NTUs, and turbidity averaged 27
NTUs across the sampling period (Fig. 3).

Storm 1 Dredge Storm 2
7-day antecedent rainfall (cm) 0.06 0 0.72
7-day antecedent snow-water equivalent (cm) 0 0 0.52
Estimated snow water equivalent on fields (cm) 0 0 2.5-5
Bulk rain (cm) 1.6 0 114
Average rain intensity (cm/hr) 0.06 0 0.20
Maximum rain intensity (cm/hr) 0.16 0 0.99

Average and maximum intensity were calculated between the first and last measurable precipitation during the storm
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Fig. 4 Phosphorus (SRP, BAP, and TP) concentrations and
turbidity during the streambed disturbance for day 1 (a), day 2
(b), and day 3 (c). The sections in grey represent active

For the streambed disturbance, SRP concentrations
were relatively low, and concentrations did not change
significantly between dredging and floodplain con-
struction periods, although the average SRP concen-
trations decreased from day 1 to day 3 (Fig. 4). The
average TP concentrations were generally an order of
magnitude higher than SRP, but, like SRP, decreased
from day 1 to day 3 (Fig. 4). On each day, water
column turbidity was higher during dredging activities
than during floodplain construction, and in contrast to
SRP and TP, the average turbidity increased from day
1 to day 3 (Fig. 4).

Using our yeast-based assay for BAP (Shepherd
et al. 2021), we estimated BAP concentrations on a
subset of samples from the streambed disturbance, and
observed that BAP concentrations were variable on
day 1, ranging between 13 and 179 pg L™". On days 2
and 3, BAP concentrations were typically higher
during dredging and lower during floodplain construc-
tion (Fig. 4). Like turbidity, the average BAP con-
centration increased with each consecutive day
(Fig. 4). The BAP concentrations were generally
closer to the TP values than the SRP values, although,
on the final day of sampling, BAP was generally
greater than TP.

dredging, while the sections in white represent floodplain
construction. The daily average discharge is in the top left corner

For storm 2, SRP concentration at peak flow at
storm 2-A was 320 pg L™' for the first peak and
163 ug L™" before the second peak (Fig. 5a), while at
storm 2-B, SRP concentration at peak flow was 238 for
the first peak and 155 pug L™" before the second peak
(Fig. 5b). The average SRP concentrations were
similar at sites storm 2-A and storm 2-B (209 vs
206 ug L', respectively), but the average SRP
concentration at storm 2-B was twofold higher during
storm 2 (i.e., top 10% of flows) compared to storm 1
(i.e., top 80% of flows). The TP concentrations during
peak flow at storm 2-A were nearly threefold lower
than the peak concentration of storm 2-B (Fig. 5). The
average TP concentrations at storm 2-A were lower
than at storm 2-B (364 vs 425 ug L™, respectively),
while the average TP concentration at storm 2-B was
threefold higher during storm 2 compared to storm 1.
The turbidity at peak flow at storm 2-A was five-fold
lower than peak flow at storm 2-B (Fig. 5). The
average turbidity at storm 2-A was lower than at storm
2-B (493 vs 88 NTUs, respectively), while the average
turbidity at storm 2-B was 20-fold higher during storm
2 than storm 1.

Again, we measured BAP on a subset of available
samples from storm 2-B and concentrations ranged

@ Springer



Biogeochemistry

0.3
0.2 1
0.1
0.0 s s

Precip. (cm)

1600 {| —@— SRP
—&— BAP

1400 {|—a—TP
— Discharge

1200 -

1000 -
800 -
600 -
400 -
200 -

0

P(ugL™)

4500 1 _o_ Turbidty
4000 {| — Discharge

3500 -
3000
2500 -
2000 - ~

Turbidity (NTU)

1000 { [
500 : ®
0

1500 | [ ——

L 3500
L 3000
. [ 2500 "o
) =L
F2000 g
©
L 1500 g
L 1000 ©
L 500
0
° mel - 3500
r - 3000
‘ f‘ \Jl‘ ~ S —
e el L2500 @
\‘ 7 =)
. | F2000 g
d [ ©
N - 1500 §
le e
| L
e 1000
- 500
M ‘M
. )

2119 2/20 2/21 2/22 2/23 2/24 2/25 2/262/19 2/20 2/21 2/22 2/23 2/24 2/25 2/26

Fig. 5 Precipitation, phosphorus concentrations (SRP, BAP, and TP), and turbidity during storm 2 in Feb 2018 for above (a) and below
(b) the dredged reach (referred to as storm 2-A and storm 2-B, respectively in the text). The hydrograph is in the background

between 81 pg L' measured after the first peak and
617 ug L™" on the last available sample before the
second peak (Fig. 5b). The BAP concentrations were
closer to the SRP values than the TP values at the onset
of sample collection and during the falling limb of the
storm, while BAP was closer to TP during the highest
period of rainfall and increases in discharge. The
average BAP concentration for all samples was
274 ug L'

Storm hysteresis patterns of P species and turbidity
For both storms, all P species and turbidity exhibited
clockwise hysteresis (Fig. 6), as indicated by higher

measurements on the rising limb than the falling limb
of the storm hydrograph. During storm 1, the

@ Springer

hysteresis patterns between SRP, TP, and turbidity
were similar in shape, but with higher overall
concentrations of TP compared to SRP (Fig. 5a).
Also, SRP and TP concentrations returned to near pre-
storm (i.e., background) values despite Q being double
background flows, while turbidity remained higher
than pre-storm values at the end of sampling (Fig. 6a).
During the rising limb of storm 2, at both sites, the
increase in TP was much larger than the increase in
SRP (Figs. 6b, c¢), and at storm 2-B, BAP increased
during the rising limb with values between SRP and
TP (Fig. 6¢). During the falling limb of storm 2, SRP
and TP were still higher than pre-storm values when
sampling ended at site 2-A, while turbidity had
returned to pre-storm values. At storm 2-B during
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Fig. 6 Hysteresis graphs relating P concentrations (SRP, BAP,
and TP) and turbidity with discharge during storm 1 (a), and
storm 2 above (b) and storm 2 below (c) the dredged reach. The
gray arrows represent the general hysteresis pattern, and lighter

the falling limb, all P species and turbidity returned to
pre-storm values by the end of sampling (Fig. 6b, c).

Mass loss of P species during storms

We calculated the yield for each P species exported
during each storm (i.e., kg exported per hectare of
drainage area), as well as P export (by species) during
each day of the streambed disturbance, by interpolat-
ing loads between each sample (Table 2). During
storm 1, both SRP and TP loss was highest on the
rising limb, and lower on the falling limb; total SRP
and TP yield was 0.025 kg ha~" and 0.037 kg ha™"',
respectively, and the proportion of SRP to TP yield
was 69%. During the streambed disturbance, total SRP
export was 0.3 kg compared to BAP = 2.0 kg and
TP = 1.9 kg (Table 2), thus slightly more P was
exported in bioavailable form than was characterized
by TP, and the proportion of SRP to TP loss was 16%.
During storm 2, SRP and TP yields were 1.2 and 1.5
times lower at storm 2-A than at storm 2-B. Total SRP
and TP yields at storm 2-B were 0.42 kg ha~' and
0.91 kg ha™', respectively, which were eightfold and
15-fold higher than for storm 1, and the BAP yield at
storm 2-B was 0.47 kg ha™'. Finally, the total yield

and darker colors represent samples collected earlier and later in
the hydrograph. In panel C we show a subset of the data across
the hydrograph in order to better identify hysteresis trends

ratios were SRP:BAP = 89%, BAP:TP = 51%, while
SRP:TP = 46%, which was very similar to storm 1.
Finally, most of the mass loss for all P species
occurred during the falling limb at both sites storm 2-A
and storm 2-B (Table 2).

BAP and its relationship with SRP and TP

We compared the relationships between turbidity and
the P species (BAP, SRP, TP), analyzing the data from
storms separately from the streambed disturbance. We
found that SRP and TP were significantly related but
showed different relationships with streambed distur-
bance vs. storms (Fig. 7a). The variation in TP
concentrations was better explained by SRP concen-
trations during storms relative to the streambed
disturbance (R2 =0.51 vs 0.17, respectively), and
the TP concentrations were always higher than SRP
(Fig. 7a). The slope for the relationship between SRP
and TP was nearly double during storms compared to
the streambed disturbance event (Fig. 7a). We did not
see a significant relationship between SRP and BAP;
however, BAP was higher than SRP for the majority of
samples (Fig. 7b). The BAP was more likely to be
similar to the SRP during storms, as opposed to the
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Table 2 The total yield of

P (e ha) relative 1o cach Phase SRP (g ha™") BAP (g ha™ ") TP (g ha™")
sampling point for storms 1 Storm 1 Pre-storm 0.14 - 0.28
and 2 Rising limb 12.8 - 20.1
Peak 1.5 - 2.0
Falling limb 11.5 - 154
Total 25.8 - 37.7
Storm 2-above Pre-storm 0.3 - 0.5
Rising limb 14.0 - 30.3
Peak 1 24 - 4.6
Peak 1 falling limb 253 - 42.7
Peak 2 rising limb 12.3 - 27.6
Peak 2% 17.7 - 49.8
Falling limb 263.4 - 457.5
Total 3354 - 613.1
Storm-2 below Pre-storm 0.28 1.4 2.5
Rising limb 7.8 10.8 26.7
Peak 1 24 5.5 59
Peak 1 falling limb 32.1 29.6 50.4
Peak 2 rising limb 19.2 234 53.5
Peak 2* 76.3 156.3 269.2
The total yield is separated Falling limb 279.1 2404 503.0
into the storm periods. For Total 4174 4674 911
the streambed disturbance, Phase SRP (kg) BAP (kg) TP (kg)
Xpﬁffcf‘;ﬁafa‘lﬁhgaffagﬂVen Dredge Day 1 0.15 0.52 0.66
that the contributing area is Day 2 0.09 0.58 0.48
not important for Day 3 0.02 0.86 0.77
interpreting loads at Total 0.3 20 1.9

baseflow

streambed disturbance. The BAP concentrations were
significantly related to TP concentrations during
storms, with TP concentrations being generally higher
than BAP (Fig. 7¢). In contrast, BAP and TP were not
related during the streambed disturbance, and nearly
half of these samples had higher BAP than TP
concentrations. Finally, BAP concentrations were
significantly related to turbidity during both storms
and streambed disturbance, and turbidity explained
similar amounts of variation in BAP with both storms
and streambed disturbance (R = 0.34 vs 0.35, respec-
tively; Fig. 7d).

Discussion

The estimation of bioavailable P is critical for
understanding limits on algal productivity in
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freshwaters, especially to better understand algal
blooms in lakes and estuaries; however, current
approaches are logistically challenging or do not
accurately reflect the role of biology in extracting P
from sediments (Mohamed et al. 2019). Here, we used
a simple yeast-growth assay, with a 4-day incubation
time and minimal specialized equipment (Shepherd
et al. 2021), to examine patterns in BAP relative to
SRP and TP sampled during multiple disturbances in
an agricultural stream. We found unique P signatures
among individual storms and streambed disturbance,
suggesting that BAP availability and downstream
export can be heterogeneous. Moreover, the novel
yeast assay provides quantitative evidence that BAP
export can exceed SRP, particularly when streams are
not in equilibrium, which enhances our understanding
of BAP export during disturbances.
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P export during storms

We found that water column concentrations of SRP,
BAP, and TP behaved similarly in response to elevated
precipitation during both storm events, albeit at
different magnitudes. The BAP concentration was
similar to SRP during pre-storm samples, and higher
than SRP during periods of precipitation. In all, the
BAP:TP yield at storm 2-B was 51%, which was 5%
higher than the SRP: TP yield (at 46%). Storm runoff
from fields may contain bioavailable P not character-
ized by SRP, including highly labile P monoesters,
which have been identified as the most prominent form
of organic P entering streams from agricultural fields
(Darch et al. 2014). Furthermore, Li and Brett (2013)
found that many organic compounds (i.e., DNA, RNA,
etc.) were also bioavailable, but not represented by
measured SRP concentrations. Thus, we suggest that
our BAP assay was able to capture forms of P that are
bioavailable but not represented with estimates of
SRP.

All P species exhibited clockwise hysteresis, which
means that P concentrations were lower as precipita-
tion ceased and flow receded and is representative of a
quick transfer of P to the water column with the onset
of precipitation (Williams 1989). Clockwise hystere-
sis patterns seem to be common in agricultural streams
in the SRP and TP range we observed (House and
Warwick 1998; Bowes et al. 2005; Outram et al.
2016), but we note that anticlockwise hysteresis have
been documented, particularly during the fallow
season (Sadeghi et al. 2017; Bender et al. 2018). The
clockwise hysteresis patterns in the SDW could
indicate that soil P sources are exhausted, leading to
lower P on the falling limb, but this seems unlikely
given that Mehlich-III P concentrations in the SDW
soils are consistently high (¥= 170 mg kg™ '; J. Tank,
unpublished data). The higher SRP concentrations
during the rising limb could be explained by the quick
delivery of dissolved P to the stream through subsur-
face tile drains; which has been observed in tile drains
of SDW (M. Trentman, unpublished data) and other
tile drain studies (Gentry et al. 2007; Vidon et al.
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2012). Likewise, the disturbance and scouring of
stream sediments during storms could lead to imme-
diate movement of sediments and particulate P to the
water column (Outram et al. 2016), especially after the
stream bed has been recently disturbed. This situation
likely occurred during storm 2, where turbidity and TP
increased disproportionately relative to SRP, as high-
lighted by comparing sites above and below the
dredged reach. Overall, our data suggest that elevated
P export during the two storms in SDW was limited to
periods of precipitation and increased flows.

Average SRP concentrations were similar between
storm 1 and storm 2, despite higher average TP
concentrations and turbidity during storm 2, which
was contrary to the prediction that SRP concentrations
would increase with increasing storm size (Sharpley
et al. 2008). However, others have noted that during
storms, there is increased potential for the sorption of
dissolved P to available Fe in suspended sediments
(Pacini and Géchter 1999; Rosenberg and Schroth
2017), and we note that turbidity at Storm 2-B > 4500
NTUs, reflecting an abundance of suspended solids in
the water column. There is some indication that P
sorbed to particles are bioavailable (Pacini and
Gichter 1999), which is likely captured by the BAP
measurements at Storm 2-B. Storm driven sediment
loads may have sorbed added dissolved P resulting in
“buffered” SRP concentrations during the larger
storm.

Overall, our data suggest that storms may export
more BAP than is estimated with SRP, particularly
during the rising limb of the hydrograph. High-
frequency estimates of BAP during storms are uncom-
mon in the literature (but see Pacini and Géchter
1999), indicating that our data provide important
context to improving understanding of storm-induced
BAP transport to downstream waters. The measure-
ment of BAP export during extreme storms is vital
given that these events can often make up a majority of
annual P export (Royer et al. 2006). Moreover,
extreme events will be especially important given
the anticipated effects of a changing climate, where
precipitation amounts and intensity are expected to
increase, including the increased likelihood of extreme
events resulting from rain-on-snow (Easterling et al.
2017; Musselman et al. 2018).
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P export during streambed disturbance

Dredging of streambed sediments represents an
extreme form of disturbance that can have significant
negative effects on stream biota (Zawal et al. 2016;
Dabkowski et al. 2016; Baczyk et al. 2018), but the
effects on sediment biogeochemistry are variable
(Smith et al. 2006; Smith and Huang 2010; Oldenborg
and Steinman 2019). Here, we found that the impacts
of dredging increased the downstream transport of
unique forms of P compared to that transported during
storms. This is likely because the form and type of
sediment P below the sediment—water interface differ
significantly from those of sediments eroded from
surrounding fields (Noll et al. 2009; Audette et al.
2018). The proportion of BAP (relative to TP) was
higher during the dredging event than during storm 2,
which may be explained by stream sediments dis-
turbed by dredging having a higher proportion of
bioavailable P as compared to those from runoff
during storms. Consistent with these observations,
Logan et al. (1979) found that the proportion of BAP
(as assessed by chemical extraction) in stream sedi-
ments in Western Ohio and Michigan streams was as
high as 89%, perhaps due to the buildup of P bound to
organic matter in anoxic sediments trapped below the
sediment water interface. Moreover, lab assays have
also shown that revealing buried (and anoxic) sedi-
ments, that are organic rich, and exposing them to oxic
conditions increased phosphatase activity and stimu-
lated mineralization rates (Parsons et al. 2017).
Stream sediments can be dissolved P sinks, storing
P deep below the sediment—water interface (Withers
and Jarvie 2008; Casillas-Ituarte et al. 2020). Previous
studies have measured P in stream sediment profiles
and noted the presence of a ‘geochemical cap’ that
forms just below the sediment—water interface, pre-
venting the release of stored P back to the water
column (Jarvie et al. 2008; Burns et al. 2015). One
might expect that removing this layer via dredging
would lead to increased dissolved P entering the water
column (House 2003; Palmer-Felgate et al. 2009), yet
we observed minimal release of SRP during the
disturbance event in SDW, compared to increases in
BAP and TP during dredging. Furthermore, average
daily SRP concentrations declined to near baseflow
concentrations by day 3 of activity, and as the active
dredging moved away from the sampling point. A
potential explanation for this observation is that the
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SRP may have sorbed to suspended particles (House
2003; Rosenberg and Schroth 2017), which would be
removed during the SRP-associated filtration step. In
contrast, average BAP concentration and turbidity was
highest on day 3. Declines in SRP and increases in
BAP may be linked given that some sorbed P may be
bioavailable (Pacini and Géchter 1999).

During the three days of streambed disturbance, the
total export of BAP was slightly higher than that of TP,
driven mainly by relatively high BAP concentrations
during the final day of the streambed disturbance. We
acknowledge that these outcomes could be a result of
methodological limitations in estimating TP, as our
recovery rate was between 70 and 95% depending on
the form of P tested. Similarly, multiple studies have
shown that using persulfate digestion can underesti-
mate TP concentrations, especially in samples con-
taining mineral sediments (Syers et al. 1973; Logan
et al. 1979). Dredging, more so than storms, may
reveal relatively older sediments containing Al and Fe
minerals with increased crystalline structures (Sch-
lesinger and Bernhardt 2013), which could reduce
digestion efficiencies (Logan et al. 1979). Addition-
ally, for the BAP assay, yeast are known to acidify
their environment and excrete ethanol, which could
stimulate the breakdown of more complex forms of P
(Rossini et al. 1993), and result in an overestimate of P
that is bioavailable to other organisms (i.e., algae).
Therefore, there is some uncertainty in our estimates
of BAP and TP, which should be considered when
comparing measurement methods in this study. Future
work could evaluate how the yeast BAP assay
compares directly with algal (Li and Brett 2013) or
bacterioplankton (Jansson et al. 2012) measurements
of BAP.

Conclusions and conceptual framework

We used the data from this study to inform a
conceptual framework that describes our understand-
ing and predictions of the role of two contrasting
disturbances (storms vs dredging) on the export of
different operational definitions of P from an agricul-
tural stream based on direct comparisons of samples
from this study (e.g., Fig. 7). We acknowledge that
this conceptual framework is based on a dataset that
does not perfectly capture the range of hydrological
conditions, (e.g., limited sampling at baseflow

conditions); however, high-frequency samples of
BAP collected alongside SRP and TP measurements
are rare in the literature, so we used the available data
to conceptualize our observations and predictions.

At baseflow, when stream sediments should be in
geochemical equilibrium with overlying stream water,
it is likely that SRP, BAP, and TP are similar in
concentration and mostly bioavailable. While our data
on baseflow conditions is limited to periods before or
after disturbances, we found that the three operational
definitions of P were sometimes similar (i.e., the end
of falling limb of both storms). The amount of P in the
water column during baseflow is likely to be low and
constant, driven by the cycling of BAP in and out of
biological reservoirs or abiotic sorption sites (Wetzel
2001). During streambed disturbance, we found that
BAP and TP concentrations were elevated, likely due
to the increase in particulate P in suspended particles.
The SRP concentrations were relatively low during
this period, possibly due the sorption of dissolved P
with newly revealed particles, while BAP was rela-
tively high, possibly due to P-rich organic matter
being revealed from previously anoxic sediments.
Finally, we observed that the proportion of different P
operational definitions can vary with the storm
hydrograph, with the biggest difference in concentra-
tion of P species occurring during the rising limb and
storm peak. We suggest that BAP is likely elevated
above SRP during this period due to the presence of
bioavailable organic P in runoff. Overall, we show that
there is disturbance driven variation in the amount
BAP exported from this agricultural stream, and that
BAP was often larger than SRP, the commonly used
proxy for BAP.

While we expect that these results would be similar
in many agricultural streams, variation in benthic
stream substrate and land use in the watershed may
create conditions with different relationships between
SRP and BAP than we observed here. Specifically,
BAP measurements in streams with larger substrate
may deviate less from SRP, particularly during
streambed disturbance, given that larger substrata
typically contain lower bioavailable P (Logan et al.
1979; Pacini and Gichter 1999). The particular land
use types in the watershed may also be important,
given that the proportion of agriculture or forest in a
watershed can control the amount of bioavailable P in
stream sediments (Trentman et al. 2021), and would
likely mediate BAP concentrations during both types
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of disturbances. Finally, conservation practices, such
as the addition of cover crops during the winter-spring
fallow period, can increase P retention on the
landscape (Christopher et al. 2021), preventing P
delivery from fields to waterways. Future work
characterizing BAP in streams should include sites
with these conditions to further our understanding of
BAP export from agricultural streams.

Our results have important implications for the
management of agricultural lands and the eutrophica-
tion of sensitive freshwater ecosystems, like the US
Great Lakes. Long-term monitoring of the western
Lake Erie tributaries has indicated an increase in SRP
inputs to the lake (Jarvie et al. 2017; Koltun 2021), and
while long-term estimates of BAP entering the lake
have been measured using chemical extractions
(Baker et al. 2014), these estimates do not account
for organic forms of P that are biologically available.
The presence of organic P has been highlighted by
Shinohara et al. (2018) using NMR spectroscopy to
show that a majority of the bioavailable P entering
Lake Erie from the Grand River (a Canadian tributary
to Lake Erie dominated by agricultural land use) was
from particulate organic phosphorus. Thus, our simple
bioassay could improve characterization of bioavail-
able P entering Lake Erie, and enhance our under-
standing of the extent and timing of eutrophication
more generally.
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