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Abstract
We provide a complete picture of asymptotically minimax estimation of Lr -norms
(for any r ≥ 1) of the mean in Gaussian white noise model over Nikolskii–Besov
spaces. In this regard, we complement the work of Lepski et al. (Probab Theory
Relat Fields 113(2):221–253, 1999), who considered the cases of r = 1 (with poly-
logarithmic gap between upper and lower bounds) and r even (with asymptotically
sharp upper and lower bounds) over Hölder spaces. We additionally consider the case
of asymptotically adaptive minimax estimation and demonstrate a difference between
even and non-even r in terms of an investigator’s ability to produce asymptotically
adaptive minimax estimators without paying a penalty.
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1 Introduction

Estimation of functionals of data generating distributions is a fundamental problem in
statistics.Whereas relevant issues in finite dimensional parametricmodels are compar-
ativelywell understood [3,47], corresponding nonparametric analogues are oftenmuch
more challenging and have attracted tremendous interest over the last two decades. In
this regard, initial efforts have focused on the inference of linear and quadratic func-
tionals in Gaussian white noise and density models and have contributed immensely
to the foundations of ensuing research. We do not attempt to survey the extensive lit-
erature in this area. However, the interested reader can find a comprehensive snapshot
of the literature in [4,5,7–9,14–16,18,28,31,38,44] and the references therein.

For treatment of more general smooth functionals in Gaussian White Noise model
(for smoothnessmeasured in terms of differentiability in L2), the excellent monograph
of [38] provides detailed analyses and references of cases where efficient parametric
rate of estimation is possible. Further, in recent times, some progress has also been
made towards the understanding of more complex nonparametric functionals over
substantially more general observational models. These include causal effect func-
tionals in observational studies and mean functionals in missing data models. For
more details, we refer to [37,41,42], which considers a general recipe to yield min-
imax estimation of a large class of nonparametric functionals common in statistical
literature. However, apart from general theory of estimating linear functionals, most of
the research endeavors, at least from the point of view of optimality, have focused on
“smooth functionals” (see [42] for a more discussions on general classes of “smooth
functionals”).

In contrast, the results on the asymptotically minimax estimation of non-smooth
functionals have been comparatively sporadic ([22,29,30]). The paradigmgot an impe-
tus from the seminal papers of [35] and [10] which considered the estimating of
Lr -norms inGaussianmeanmodels. Subsequently, significant progress has beenmade
regarding inference of non-smooth functionals in discrete distribution settings ([19,25–
27,46,49]). However, even in the simpler setting of Gaussian white noise model, a
complete picture of minimax optimality for estimating integrated non-smooth func-
tionals remain unexplored. This paper is motivated by taking a step in that direction by
providing a complete description of asymptotically minimax estimation of Lr -norms
(for r ≥ 1) of the mean in Gaussian white noise model over Nikolskii–Besov spaces.
We additionally consider the case of adaptive minimax estimation and demonstrate a
difference between even and non-even r in terms of an investigator’s ability to produce
asymptotically adaptive minimax estimators without paying a penalty.

More specifically, we consider noisy observation {Y (t)}t∈[0,1] in theGaussianwhite
noise model with known variance σ 2 as

dY (t) = f (t)dt + σ√
n
dB(t), (1.1)

where f : [0, 1] → R is the unknown mean function and {B(t)}t∈[0,1] is the standard
Brownianmotion on [0, 1]. Themain goal of this paper is to consider adaptiveminimax

estimation of the Lr -norm of the mean function f (i.e. ‖ f ‖r �
(∫
[0,1] | f (t)|r dt

)1/r
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for r ≥ 1) over Nikolskii–Besov spaces Bs
p,∞(L) in L p[0, 1], p ≥ 1 of smoothness

s > 0 (defined in Sect. 2). It is worth noting here, that the specific cases of the mean
function f being uniformly bounded away from 0 is significantly easier since in that
case a natural plug-in principle yields asymptotic optimality.

As mentioned earlier, significant progress towards understanding these specific
functionals has been made in [35] and [10]. In particular, [35] considers estimation of
the Lr -norm over Hölder spaces of known smoothness and demonstrate rate optimal
minimax estimation for r even positive integers. For r = 1 their results are suboptimal
and leave a poly-logarithmic gap between the upper and lower bounds for the rate of
estimation. Moreover, for general non-even r , [35] provides no particular estimator.
Finally, their results are non-adaptive in nature and requires explicit knowledge of the
smoothness index of the underlying function class. Ourmain contribution is improving
the lower bound argument (over function spaces similar to Hölder balls) to close the
gap in non-adaptive minimax estimation of Lr -norm of the signal function. Moreover,
for general non-even r ≥ 1, the analysis extends further to demonstrate adaptive min-
imax estimators without logarithmic penalties which are typical in smooth functional
estimation problems. However, the situation is different for even integers r where our
results show that a poly-logarithmic penalty is necessary. In this effort, the funda-
mental work of [10], which considered estimating the L1-norm of the mean of an
n-dimensional multivariate Gaussian vector, serves as a major motivation. In Sect. 3
we comment more on the main motivating ideas from [10] as well as the fundamental
differences and innovations.

The main results of this paper are summarized below.

(a) We produce minimax rate optimal estimator Lr norm of the unknown mean func-
tion f in Gaussian White noise model (1.1) with known variance.

(b) For non-even r , an accompanying adaptive minimax optimal estimator is also
provided. In contrast, for even integers r , we argue along the lines of standard
results from [23,24] that at least poly-logarithmic penalty needs to be paid for
adaptation. The lower bound on this penalty is not sharp in this regard and only
serves to demonstrates the lack of adaptation without paying a price.

(c) Similar to [10], both our upper and lower bounds rely on best polynomial approx-
imations of suitable functions on the unit interval, which might be of independent
interest.

1.1 Organization

The rest of the paper is organized as follows. In Sect. 2 we discuss function spaces rel-
evant to this paper as well as best polynomial approximations of continuous functions
on compact intervals along with properties of Hermite polynomials, which are useful
ingredients in the construction of our estimators. Section 3 contains the main results
of the paper and is divided into two main subsections based on the non-even or even
nature of r while estimating ‖ f ‖r . For non-even r ≥ 1 (Sect. 3.1), we first lay down
the basic principles for r = 1 (Sect. 3.1.1) followed by the general r (Sect. 3.1.2). The
case of even r is well understood from [35] and is mostly presented here (Sect. 3.2)
for completeness and discussing issues of adaptive estimation. In Sect. 4 we discuss
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remaining issues and future directions. Proofs of the main theorems are collected in
Sect. 5 followed by proofs of several technical lemmas in Sect. 6.

1.2 Notation

In this paper, PolyK denotes the set of all polynomials over [−1, 1] with real coeffi-
cients and degree at most K . For any finite set S we denote its cardinality by |S|. For
a function defined on [0, 1], for 1 ≤ q < ∞ we let ‖h‖q := (

∫
[0,1] |h(x)|qdx)1/q

denote the Lq semi-norm of h, ‖h‖∞ := supx∈[0,1] |h(x)| the L∞ semi-norm of h.
We say h ∈ Lq [0, 1] for q ∈ [1,∞] if ‖h‖q < ∞. The results in this paper are
mostly asymptotic (in n) in nature and thus requires some standard asymptotic nota-
tions. If an and bn are two sequences of real numbers then an 	 bn (and an 
 bn)
implies that an/bn → ∞ (and an/bn → 0) as n → ∞, respectively. Similarly
an � bn (and an � bn) implies that lim inf an/bn = C for some C ∈ (0,∞] (and
lim sup an/bn = C for some C ∈ [0,∞)). Alternatively, an = o(bn) will also imply
an 
 bn and an = O(bn) will imply that lim sup an/bn = C for some C ∈ [0,∞).
Finally we comment briefly on the various constants appearing throughout the text and
proofs. Given that our primary results concern convergence rates of various estimators,
we will not emphasize the role of constants throughout and rely on fairly generic nota-
tion for such constants. In particular, for any fixed tuple v of real numbers, C(v) will
denote a positive real number which depends on elements of v only. Finally, whenever
we use the symbol � in the asymptotic sense above, the hidden positive constant C
will depend on the known parameters of the problem.

2 Function spaces and approximation

We begin with some standard definitions of function spaces [12,21] that we work
with throughout. In the study of nonparametric functional estimation problem, many
studies were devoted to the case where f is assumed to lie in a Hölder ball defined as

H(s, L) �
{
f ∈ L2[0, 1] : | f

(r)(x)− f (r)(y)|
|x − y|α ≤ L,∀x �= y ∈ [0, 1]

}
,

where s = r + α > 0 is the smoothness parameter, r ∈ N, α ∈ (0, 1]. In this paper,
we consider another function class which is close but not identical to the Hölder ball
where the dependence of the upper and lower bounds on nmatches. The r -th symmetric
difference operator Δr

h is defined as [12]

Δr
h f (x) =

r∑
k=0

(−1)r−k
(
r

k

)
f
(
x +

(
k − r

2

)
h
)

,

with the agreement that Δr
h f (x) = 0 when either x + r

2h or x − r
2h does not belong

to [0, 1]. Then the r -th order modulus of smoothness is defined as [12]
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ωr ( f , t)p = sup
0<h≤t

‖Δr
h f ‖p, (2.1)

with p ∈ [1,∞]. Now define the Besov norm of a function f as [2]

‖ f ‖Bs
p,q
= ‖ f ‖p +

⎧
⎨
⎩

[∫∞
0

(
ωr ( f ,t)p

ts

)q · dtt
] 1
q

1 ≤ q <∞
supt>0

ωr ( f ,t)p
ts q = ∞

, (2.2)

with parameters s > 0, p, q ∈ [1,∞], and r = 
s� + 1. Then the corresponding
Besov ball is defined by

Bs
p,q(L) � { f ∈ L p[0, 1] : ‖ f ‖Bs

p,q
≤ L}.

We note that the definition of Besov ball is a generalization of Hölder ball via the
relationship H(s, L ′) = Bs∞,∞(L) for non-integer s. Moreover, by the monotonicity
of L p norms on [0, 1], we have Bs

p,q(L) ⊇ Bs
p′,q(L) for p ≤ p′. As a result, for

1 ≤ p <∞,Bs
p,∞(L) ⊇ Bs∞,∞(L) is a function class slightly larger than the Hölder

ball H(s, L ′). In this paper we work with Bs
p,∞(L) for s ≥ 0, p ≥ 1. These spaces

are related to Nikolskii–spaces (see [39] for relevant embeddings) and hence we shall
refer them to as Nikolskii–Besov spaces throughout.

Polynomial approximations of continuous functions on compact intervals around
the origin plays an important role in this paper. To introduce the basic ideas, consider
the following best degree-K polynomial approximation of |μ|r on [−1, 1]:

K∑
k=0

g(r)
K ,kμ

k � arg min
Q∈PolyK

max
μ∈[−1,1] |Q(μ)− |μ|r |.

In order to estimate such polynomials based on a sample X ∼ N (μ, 1), we will
need the notion of Hermite polynomials. In particular, the Hermite polynomial of
degree k defined by

Hk(x) � (−1)k exp( x
2

2
) · dk

dxk

[
exp

(
− x2

2

)]
. (2.3)

The properties of the Hermite polynomials in the context of estimating moments of
Gaussian random variables will be important for us and are summarized in Lemma
6.1.

3 Main results

We divide our main results in two subsections based on the non-even or even nature of
r . In particular, the construction of our estimator changes according to this distinction
of r . However, before we go into the details of these constructions, we need a few
definitions.
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Consider the kernel projection fh(x) of f (x) defined as

fh(x) =
∫ 1

0
f (u) · 1

h
KM

(
x − u

h

)
du, x ∈ [0, 1], (3.1)

where KM (·) is a kernelwhichmaps all polynomials of degree atmostM to themselves,
and

∫ 1
0 |KM (u)|M+1du <∞. The choice ofM will be clear from the statements of the

main results in Sect. 3. We assume that KM is supported on [− 1
2 ,

1
2 ], and the boundary

of fh(x) (i.e., x ∈ [0, h/2] or x ∈ [1 − h/2, 1]) is handled using the same way
as [35].

The corresponding unbiased kernel estimator of fh(x) defined as

f̃h(x) =
∫ 1

0

1

h
KM

(
x − u

h

)
dY (u)

admits a usual decomposition into deterministic and stochastic components as
follows:

f̃h(x) = fh(x)+ λhξh(x). (3.2)

Above

λh =
√
E

(∫ 1

0

1

h
KM

(
x − u

h

)
· σ√

n
dB(u)

)2

= σ‖KM‖2√
nh

,

ξh(x) = 1

hλh

∫ 1

0
KM

(
x − u

h

)
· σ√

n
dB(u). (3.3)

Clearly ξh(x) ∼ N (0, 1) and randomvariables ξh(x) and ξh(y) are independent when
|x − y| > h.

The reason for introducing the kernel projection estimator is simple and standard
in nonparametric statistics. In particular, for a suitable chosen bandwidth h, ‖ fh −
f ‖r is small, and it suffices to consider estimation of ‖ fh‖r based on the Gaussian
model (3.2). Indeed, a crucial part is to estimate | fh(x)|r . Whereas, for r an even
positive integer, this task is relatively simpler [35], the case of non-even r poses a
more subtle problem due to non-differentiability of the function u �→ |u|r near the
origin. Consequently, for such cases, recent techniques for estimating non-smooth
functionals needs to employed.

3.1 Non-even r

In this case, the construction depends on the best polynomial approximation of the
function u �→ |u|r over the interval [−1, 1] and borrows heavily from a recent line
of work by [10,19,26,49]. The general principle of the construction goes along the
following heuristic steps.
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– Approximate f by a kernel projection fh (as in (3.1)) and consider estimating
‖ fh‖r instead at a cost of incurring a truncation bias.

– A “large value” of the kernel estimator | f̃h(x)| (referred to as “smooth regime”
hereafter) gives indication of a corresponding “large value” of | fh(x)| and a plug-in
type estimator for | fh(x)|r is reasonable.

– A relatively “small value” of | f̃h(x)| (referred to as “non-smooth regime”hereafter)
gives indication of a correspondingly “small value” of | fh(x)| and a plug-in type
estimator for | fh(x)|r is no-longer reasonable owing to the non-differentiable
nature of the absolute function near the origin. In this case, similar to [10,19,26,49],
an estimator based on the best polynomial approximation of the function u �→ |u|r
is employed.

– The final estimator integrates over this two regimes of | f̃h(x)| followed by an
optimal choice of h to trade off squared bias and variance.

Below we make the program laid down above more concrete and refer readers to
[19,26] for a detailed discussion of the general principle of estimating non-smooth
functionals. The same procedure also works for estimating other non-smooth nonpara-
metric functionals, e.g., the differential entropy [20]. It turns out that the treatment for
r = 1 is easier, more transparent and slightly different than general non-even r > 1.
Consequently, we will present the case for r = 1 first for the sake of clarity followed
by the more general case.

Any candidate estimator below will be defined by the parameter tuple (h, c1, c2, ε)
where h is the bandwidth of the kernel projection (3.1) and (c1, c2, ε) are constants
depending on the known parameters of the problem (i.e. the variance σ 2 and radius
of Besov balls L) to be specified later. More specifically, c1 will be chosen as large
as possible whereas c2 and ε will be desirably small. In general we suppress the
dependence of our estimators on (c1, c2, ε). However, our adaptive estimator makes
a data driven choice of the bandwidth h. Therefore we index our estimator by this
bandwidth, namely, Th .

3.1.1 r = 1

We follow the general principle laid down above. Recall that {g(1)
K ,k}Kk=0 are the coef-

ficients of the best polynomial approximation of u �→ |u| of degree K on [−1, 1] and
Hk is the Hermite polynomial of degree k. With this in mind, the construction of our
estimator Th for every bandwidth h can be described the following steps.

(I) Using the sample splitting technique for theBrownianmotion [38] to obtain two
independent observations f̃h,1(x) and f̃h,2(x) for any x ∈ [0, 1]. This reduces
the effective sample size n by half and for simplicity of notation we redefine
n/2 as n.

(II) For any x define an estimator of | fh(x)| as

Th(x) = | f̃h,1(x)|1(| f̃h,2(x)| ≥ c1λh
√
ln n)+ P̃( f̃h,1(x))1(| f̃h,2(x)| < c1λh

√
ln n),
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where

P̃(u) = min{max{P(u),−n2ελh}, n2ελh}, with

P(u) =
K∑

k=0
g(1)
K ,k

(
2c1λh

√
ln n
)1−k · λkh Hk

(
u

λh

)
,

where K = �c2 ln n�.
(III) Finally, an estimator for ‖ f ‖1 is defined as

Th � min

{
L,max

{
0,
∫ 1

0
Th(x)dx

}}
.

The following Theorem describes the mean squared error of estimating ‖ f ‖1 by
Th over Bs

p,∞(L).

Theorem 3.1 Choose M > �s� and consider the corresponding kernel projection fh
based on KM defined by 3.1. Suppose (h, c1, c2, ε) satisfy 4c21 ≥ c2, c2 ln n ≥ 1, c1 >

8, 7c2 ln 2 < ε ∈ (0, 1). Then for any p ∈ [1,∞], we have
(

sup
f ∈Bs

p,∞(L)

E f (Th − ‖ f ‖1)2
) 1

2

≤ C

(
hs + 1√

nh ln n
+ 1

n(1−ε)/2

)
,

for a constant C > 0 depending on s, p, L, σ .

As an immediate consequence of Theorem 3.1, by choosing ε > 0 sufficiently
small (i.e., choose a small c2) and by setting

h � (n ln n)−
1

2s+1 ,

we have the following result.

Corollary 3.1 Under the assumptions of Theorem 3.1, for h � (n ln n)−
1

2s+1 we have

(
sup

f ∈Bs
p,∞(L)

E f (Th − ‖ f ‖1)2
) 1

2

≤ C(n ln n)−
s

2s+1 ,

for a constant C > 0 depending on s, p, L, σ .

The same asymptotic upper bound was demonstrated with a different estimator by
[35]. However, their results were over Hölder Balls corresponding to p = ∞ and
require a uniform upper bound on ‖ f ‖∞ for all f . In contrast, we do not require any
such knowledge of upper bound and produce results for any p ∈ [1,∞]. Moreover,
the next theorem shows that our results are rate optimal in terms of matching lower
bounds for any 1 ≤ p <∞.
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Theorem 3.2 For any 1 ≤ p <∞, we have

(
inf
T̂

sup
f ∈Bs

p,∞(L)

E f

(
T̂ − ‖ f ‖1

)2)
1
2

≥ C ′(n ln n)−
s

2s+1 ,

for a constant C ′ > 0 depending on s, p, L, σ and where the infimum above is taken
over all measurable maps of {Y (t)}t∈[0,1].

Corollary 3.1 along with Theorem 3.2 provide a complete picture of the minimax
rate of estimation of ‖ f ‖1 over Bs

p,∞(L) for any 1 ≤ p < ∞. We remark that our
lower bound proof does not provide matching results for p = ∞, and thus the gap in
the exact framework considered by [35] remains. However, our result provides strong
moral evidence that upper bound of Theorem 2.1 of [35] is rate optimal and it is the
lower bound that stands to be improved.

3.1.2 r > 1, non-even

For r > 1 not an even integer, the general philosophy of the construction of a candidate
estimator Th is similar to the case of r = 1 in Sect. 3.1.1 and follows in three steps
as before. However, the simple plug-in principle employed in the smooth regime (i.e.,
when | f̃h(x)| is large) incurs significant bias. As a consequence, Step II of the con-
struction needs to be modified based on the following heuristics of Taylor expansion.
The reason why we require r to be non-even is that the function u �→ |u|r is not an
analytical function in this case.

Using the notation from Sect. 3.1.1, the heuristic Taylor expansion gives

fh(x)
r ≈

R∑
k=0

r(r − 1) · · · (r − k + 1)

k! ( f̃h,1(x))
r−k( fh(x)− f̃h,1(x))

k, (3.4)

where we choose R = 
2r� to reduce the approximation error of (3.4) to a desired
order (cf. Lemma 6.14). Based on this approximate Taylor expansion, the right hand
side of (3.4) is a natural candidate estimator for fh(x)r . However, such an estimator
is infeasible due to its dependence on unknown fh(x). Consequently, we replace
( fh(x)− f̃h,1(x))k in (3.4) by an unbiased estimator constructed as follows: let f̃h,2(x)
be an independent copy of f̃h,1(x) obtained via the sample splitting technique of the
Brownion motion [38]. Then Lemma 6.1 gives

E f̃h,2

⎡
⎣

k∑
j=0

(
k

j

)
λ
j
h Hj

(
f̃h,2(x)

λh

)
(− f̃h,1(x))

k− j

⎤
⎦ =

k∑
j=0

(
k

j

)
fh(x)

j (− f̃h,1(x))
k− j

= ( fh(x)− f̃h,1(x))
k,

i.e., the estimator inside the expectation is an unbiased estimator of ( fh(x)− f̃h,1(x))k .
With the above intuition and notation in mind, the construction of our estimator Th

for every bandwidth h can be described the following steps.
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(I) Using the sample splitting technique for the Brownian motion [38] to obtain three
independent observations f̃h,1(x), f̃h,2(x) and f̃h,3(x) for any x ∈ [0, 1]. Redefine
n/3 as n for simplicity.

(II) For any x ∈ [0, 1] define an estimator of | fh(x)|r as

Th(x) = P̃r ( f̃h,1(x))1(| f̃h,3(x)| ≤ c1λh
√
ln n)

+ Sλh ( f̃h,1(x), f̃h,2(x))1( f̃h,3(x) > c1λh
√
ln n)

+ Sλh (− f̃h,1(x),− f̃h,2(x))1( f̃h,3(x) < −c1λh
√
ln n),

where

Sλh (u, v) =
R∑

k=0

r(r − 1) · · · (r − k + 1)

k! ur−k ·
⎛
⎝

k∑
j=0

(
k

j

)
λ
j
h Hj

(
v

λh

)
(−u)k− j

⎞
⎠

· 1
(
u ≥ c1

4
λh
√
ln n
)

, (3.5)

and

P̃r (t) = min{max{Pr (t),−λrhn
2ε}, λrhn2ε}, with

Pr (t) =
K∑

k=0
g(r)
K ,k

(
2c1λh

√
ln n
)r−k · λkh Hk(

t

λh
),

where K = �c2 ln n�, Hk is the Hermite polynomial of degree k and {g(r)
K ,k}Kk=0 is

the coefficient of the best polynomial approximation of u → |u|r on [−1, 1].
(III) Finally, the overall estimator for ‖ f ‖r is

Th � min

⎧⎨
⎩L,

(
max

{
0,
∫ 1

0
Th(x)dx

}) 1
r

⎫⎬
⎭ .

The following Theorem describes the optimal mean squared error of estimating
‖ f ‖r by Th over Bs

p,∞(L).

Theorem 3.3 Let r > 1 be non-even and p ∈ [r ,∞]. Choose M > �s� and consider
the corresponding kernel projection fh based on KM defined by (3.1). Suppose that
(h, c1, c2, ε) satisfy c21 ≥ 16, c2 ln n ≥ 1, 4c21 ≥ c2, 7c2 ln 2 < ε ∈ (0, 1) and

h = (n ln n)−
1

2s+1 . Then

(
sup

f ∈Bs
p,∞(L)

E f (Th − ‖ f ‖r )2
) 1

2

≤ C(n ln n)−
s

2s+1 ,

for a constant C > 0 depending on s, p, r , L, σ .
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The next theorem shows that the upper bounds in Theorem 3.3 are rate optimal in
terms of matching lower bounds for any 1 ≤ p <∞.

Theorem 3.4 For any non-even r > 1 and r ≤ p <∞,

(
inf
T̂

sup
f ∈Bs

p,∞(L)

E f

(
T̂ − ‖ f ‖r

)2)
1
2

≥ C ′(n ln n)−
s

2s+1 ,

for a constant C ′ > 0 depending on s, p, r , L, σ and where the infimum above is
taken over all measurable maps of {Y (t)}t∈[0,1].

Theorem 3.3 along with Theorem 3.4 provides a complete picture of the minimax
rate of estimation of ‖ f ‖r over Bs

p,∞(L) for any non-even r > 1 and r ≤ p < ∞.
This is a generalization of the result in [35].

3.1.3 Adaptive estimation

It is worth noting that the choice of h in Corollary 3.1 and Theorem 3.3 depends
explicitly on the smoothness index s. Consequently, the resulting rate of estimation by
Th is non-adaptive over different possibilities of smoothness.However, the experienced
reader will notice the structure of errors in Theorem 3.1 for a general Th indicates a
possible data driven adaptive choice of bandwidth h. In particular, a Lepski type
argument [32–34,36] is standard in such situations and turns out to be sufficient for
our purpose when r = 1. The similar construction for general non-even integer r > 1
is more subtle due to the unavailability of a transparent error analysis as in Theorem
3.1. Consequently, we describe the adaptive procedure slightly more generally below–
without specifically alluding to the case of r = 1.

Let r ≥ 1 be non-even, and s ∈ (0, smax] for some given 0 < smax < ∞ and
consider adaptive estimation of ‖ f ‖r over ∪s∈(0,smax]Bs

p,∞(L) with a known L . The
knowledge of smax will be necessary for construction of kernels providing optimal
approximations in Nikolskii–Besov spaces. Given access to an upper bound Lmax,
our construction of the adaptive estimator can also adapt to the scaling parameter L ,
by noting that the construction of Th does not require the knowledge of L (except
for the final truncation step, where L can be replaced by Lmax without affecting the
multiplicative constants in Theorems 3.1 and 3.3). However, since the dependence
of the minimax risk on L is not the main focus of this paper, we assume that L is
known and do not elaborate on the adaptation to L . In this framework, a Lepski type
construction for an adaptive estimator can be achieved as follows.

(I) Let

H = [hmin, hmax] ∩
{
1,

1

2
,
1

3
, . . .

}
,

where hmin = (n ln n)−1, hmax = (n ln n)
− 1

2smax+1 .
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(II) Define the data-driven bandwidth

ĥ � max

{
h ∈H : (Th − Th′)

2 ≤ C∗
λ2h

ln n
, ∀h′ ∈H , h′ ≤ h

}
. (3.6)

(III) The final estimator is T̂ = Tĥ .

Our next theorem justifies the adaptive nature of T̂ .

Theorem 3.5 Let r ≥ 1 be non-even and p ∈ [r ,∞]. Choose M > �smax�
and consider the corresponding kernel projection fh based on KM defined by
(3.1). If 4rε(2smax + 1) < 1 and the constant C∗ is large enough (depending on
(p, r , smax, c1, c2, σ, L, KM )),

(
sup

f ∈Bs
p,∞(L)

E f

(
T̂ − ‖ f ‖r

)2)
1
2

≤ C(n ln n)−
s

2s+1 ,

for a constant C > 0 depending on s, smax, p, r , L, σ, c1, ε,C∗.

Theorem3.5 shows the existence of an adaptiveminimax estimator for‖ f ‖r without
any penalty on the minimax rate. One of the main challenges in the proof of Theorem
3.5 is to demonstrate desired tail bounds of {Th}h∈H , for the candidate estimators in
{Th}h∈H rely on truncatedHermite polynomials of high degrees evaluated at Gaussian
random variables.

3.2 Even r

The case of non-adaptive minimax estimation of ‖ f ‖r for r an even positive integer
can be obtained by methods described in [35]. Although their results were obtained
over the Hölder Balls, the case of Nikolskii–Besov type spaces that we consider are
very similar due to the same nature of approximation error of f by fh . However, for
the sake of exposition and completeness, we provide the details here again.

The crux of the construction on the fact that for r an even positive integer, the
function u �→ |u|r = ur is analytic. Consequently, it is possible to construct
unbiased estimator of μr based on samples from X ∼ N (μ, σ 2). In particular,
if X ∼ N (μ, σ 2) then arguing as Lemma 4.4 of [35], E ((X + iσξ)r |X), with
ξ ∼ N (0, 1) independent of X , is an unbiased estimator ofμr . As a result, a sequence
estimator for ‖ f ‖r indexed by bandwidth h can now be constructed in the following
steps.

(I) Approximate f by a kernel projection fh(x) (as in (3.1)) and consider estimating
‖ fh‖r instead at a cost of incurring a truncation bias.

(II) Fix ξ ∼ N (0, 1) independent of B(t). For every x ∈ [0, 1] estimate fh(x)r by
Th(x) � Eξ [( f̃h(x)+ iλξ)r ].

(III) Estimate ‖ fh‖r =
∫ 1
0 f rh (x)dx by

∫ 1
0 Th(x)dx .
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(IV) Finally, an estimator for ‖ f ‖r is defined as

Th �
(
max

{
0,
∫ 1

0
Th(x)dx

})1/r

.

Note that the construction changes from the construction of estimators when r is
non-zero only in the definition of Th(x) and indeed this is due to the ability to produce
estimate of analytic functions of Gaussian means. The following theorem describes
the optimal mean squared error of estimating ‖ f ‖r by Th over Bs

p,∞(L).

Theorem 3.6 Let 2 ≤ r ≤ p and r be even. Choose M > �s� and consider the
corresponding kernel projection fh based on KM in (3.1). Letting h = n−1/(2s+1−1/r),

(
sup

f ∈Bs
p,∞(L)

E f (Th − ‖ f ‖r )2
) 1

2

≤ Cn−
s

2s+1−1/r ,

for a constant C > 0 depending on s, p, r , L, σ .

Recall from Sect. 2 that the approximation error ‖ f − fh‖r is always bounded
by C(L, KM )hs for any f ∈ Bs

p,∞(L). Hence, the proof of Theorem 3.6 can be
obtained verbatim from the proof of Theorem 2.3 of [35] and is hence omitted. In
fact, proof of the lower bound in Theorem 2.3 of [35] implies that the proposed
Th with h = n−1/(2s+1−1/r) is in fact asymptotically minimax rate optimal over
any Bs

p,∞(L) as well. Therefore, as before, it remains to explore adaptive minimax
estimation over a collection of smoothness classes. In this regard, once can argue
along the lines of standard results from [23,24], that unlike non-even r , adaptation
over a range of smoothness indices is not possible without paying a poly-logarithmic
penalty. In particular, consider testing H0 : f ≡ 0 vs H1 : f ∈ Bs

r ,∞(L), ‖ f ‖r ≥ ρn
with s varying over a range of values [smin, smax] ⊆ (0,∞). Whereas the minimax
testing rate of separation for ρn with known s equals n−s/(2s+1−1/r) (See [23] and
proof of [11, Theorem 3.4 (b)] for details), i.e., the minimax rate of estimation of
‖ f ‖r , the adaptation over [smin, smax] needs an additional penalty for ρn which equals
(ln ln n)C(r ,s) for a constant C(r , s) > 0 depending on r and s. The proof of this
additional poly-logarithmic penalty is proved for r = 2 in [43] (see also proof of [17,
Theorem 8.1.1]). The proof of this additional penalty needed for adaptive hypothesis
testing builds on the usual second moment method type lower bound argument for
non-adaptive testing and involves putting an additional uniform prior on a suitably
discretized subset [smin, smax]. Using similar ideas, the proof of a required penalty
for adaptation for general even r -can be obtained by combining proof technique of
[11, Theorem 3.4 (b)] for non-adaptive testing and adaptive lower bound arguments
as in [17,43]. The details are omitted and we simply comment on the implications
of the result. Indeed, such a poly-logarithmic penalty needed for adaptive hypothesis
testing in Lr -norm, yields a penalty for adaptive estimation of ‖ f ‖r over Bs

r ,∞(L).
We believe that this poly-logarithmic penalty is not sharp for adaptive estimation of
‖ f ‖r norms for even r and only serves to demonstrates the lack of adaptation without
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paying a price. In particular, we have shown elsewhere that a careful application of
Lepski’s method along with an involved computation of all central moments of Th can
yield a penalty which behaves (ln n)C

′(r ,s) for a constant C ′(r , s) > 0 depending on
r and s. In future work, we plan to explore the exact nature of this poly-logarithmic
penalty necessary for adaptation. Finally, careful readers will notice that, although the
poly-logarithmic penalty on adaptive hypothesis testing is ubiquitous for any r , the
result is interesting to us only for even values of r , since otherwise the minimax rate
of estimation of ‖ f ‖r is strictly slower than minimax rate of testing in Lr -norm.

4 Discussion and open problems

In this paper we complement the results in [35] to provide a complete picture of
asymptoticallyminimax estimation of Lr -norm of themean in aGaussianWhiteNoise
model. Unlike [35], our results are rate optimal from both perspectives of upper and
lower bounds. In this effort, best polynomial approximation of non-smooth functions
plays a major role and might be of independent interest.

Several interesting questions remain open as challenging future directions. In partic-
ular, closing the lower bound gap over Hölder spaces, the actual premise considered
by [35], is definitely a question of interest. Understanding the sharp nature of the
penalty required for adaptive estimation of ‖ f ‖r when r is even is another question
that remain unanswered. We plan to study these issues in detail in future work.

5 Proof of main results

5.1 Proof of Theorem 3.1

The proof of the Theorem hinges on the following lemma, the derivation of which can
be found in Sect. 6. To state the lemma, consider

ξ(X , Y ) � P̃(X)1(|Y | < c1λh
√
ln n)+ |X |1(|Y | ≥ c1λh

√
ln n)

used for estimating μ with independent X , Y ∼ N (μ, λ2h) and λh defined by (3.3).

Lemma 5.1 Under the assumptions of Theorem 3.1, for any fixed μ, k ≥ 2, and
c1 >

√
8k, we have that there exists constants C1 (depending on (c1, c2, ε, KM )) and

C2 (depending on (c1, c2, ε, KM , k)) such that

|Eξ(X , Y )− |μ|| ≤ C1√
nh ln n

,

E|ξ(X , Y )− E(ξ(X , Y ))|k ≤ C2

(
λhn

2ε
)k

.

Note that Lemma 5.1 yields bounds on all even central moments of ξ(X , Y ), a result
that will be helpful in subsequent proof of adaptation. For now, we will only use the
result for k = 2 which corresponds to bound on the variance of ξ(X , Y ).
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Coming back to the proof of Theorem 3.1, note that there are three types of errors:

1. Approximation error incurred by replacing ‖ f ‖1 with ‖ fh‖1;
2. The bias of

∫ 1
0 Th(x)dx in estimating ‖ fh‖1;

3. The variance of
∫ 1
0 Th(x)dx in estimating ‖ fh‖1.

We bound these errors separately. For the approximation error, by an alternative
characterization of Besov balls [21], for f ∈ Bs

p,∞(L) we have that for a constant C0
depending on L and KM ,

‖ f − fh‖p ≤ C0h
s, ∀h > 0.

As a result, the approximation error is upper bounded by

|‖ f ‖1 − ‖ fh‖1| ≤ ‖ fh − f ‖1 ≤ ‖ fh − f ‖p ≤ C0h
s .

Secondly we upper bound the bias. By Lemma 5.1, there exists a constant C1
(depending on (c1, c2, ε, KM )) such that

∣∣∣∣E
∫ 1

0
Th(x)dx − ‖ fh‖1

∣∣∣∣ ≤
∫ 1

0
|ETh(x)− fh(x)|dx

≤
∫ 1

0

C1√
nh ln n

dx = C1√
nh ln n

.

Finally we upper bound the variance of Th . Note that Th(x) and Th(y) are inde-
pendent as long as |x − y| > h. Therefore by Lemma 5.1, there exists a constant C2
(depending on (c1, c2, ε, KM )) such that

Var
(∫ 1

0
Th(x)dx

)
=
∫ 1

0

∫ 1

0
Cov(Th(x), Th(y))dxdy

=
∫∫

|x−y|≤h
Cov(Th(x), Th(y))dxdy

≤
∫∫

|x−y|≤h
Var(Th(x))+ Var(Th(y))

2
dxdy

= 2h
∫ 1

0
Var(Th(x))dx

≤ C2h
∫ 1

0

1

n1−εh
dx

= C2

n1−ε
.

Note that 0 ≤ ‖ f ‖1 ≤ L for any f ∈ Bs
p,∞(L), and consequently

|Th − ‖ f ‖1| ≤
∣∣∣∣
∫ 1

0
Th(x)dx − ‖ f ‖1

∣∣∣∣ .
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In summary, for any f ∈ Bs
p,∞(L), by triangle inequality we have

(
E (Th − ‖ f ‖1)2

) 1
2 ≤

(
E

(∫ 1

0
Th(x)dx − ‖ f ‖1

)2
) 1

2

≤ √3

(
|‖ f ‖1 − ‖ fh‖1| +

∣∣∣∣E
∫ 1

0
Th(x)dx − ‖ fh‖1

∣∣∣∣

+
√
Var
(∫ 1

0
Th(x)dx

)⎞
⎠

≤ C∗
(
hs + 1√

nh ln n
+ 1

n(1−ε)/2

)
,

where C∗ is a constant depending on (c1, c2, σ, ε, L, KM ) which in turn satisfies the
conditions of Theorem 3.1. This completes the proof of the theorem.

5.2 Proof of Theorem 3.3

The proof of the Theorem hinges on the following lemma.

Lemma 5.2 Under the conditions of Theorem 3.3, the following hold for all x ∈
[0, 1], k ≥ 2, c1 >

√
8k, and constants C1 (depending on (c1, c2, ε, σ, KM )) and C2

(depending on (c1, c2, ε, σ, KM , k)).

|ETh(x)− | fh(x)|r | ≤ C1(nh ln n)−
r
2 ,

E|Th(x)− ETh(x)|k ≤ C2
n2kε

(nh)
k
2

(
| fh(x)|(r−1)k + (nh)−

(r−1)k
2

)
.

We postpone the proof of the lemma to Sect. 6 and complete the proof of Theorem
3.3 assuming its validity.

As is in the case of L1 norm estimation, there are three types of error incurred by
our estimator Th , i.e., the approximation error, the bias and the variance. We analyze
these errors separately.

For the approximation error, by the property of Besov spaces [21] we know that
there exists a constant C0 depending on L and KM such that for all f ∈ Bs

p,∞(L) the
kernel approximation error satisfies ‖ f − fh‖p ≤ C0hs . Hence, by the monotonicity
of L p norms on [0, 1] and r ≤ p, we know that

|‖ f ‖r − ‖ fh‖r | ≤ ‖ f − fh‖r ≤ ‖ f − fh‖p ≤ C0h
s . (5.1)

where C0 > 0 is some universal constant which only depends on radius L and the
kernel KM .

For the bias and the variance, we look at the bias and variance ofΦh =
∫ 1
0 Th(x)dx ,

which is the estimator for ‖ fh‖rr . Similar to the proof of Theorem 3.1, one can show
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using Lemma 5.2 that for C1 (depending on (c1, c2, ε, σ, KM )) and C2 (depending on
(c1, c2, ε, σ, KM ))

|EΦh − ‖ fh‖rr | ≤ C1(nh ln n)−
r
2 ,

Var(Φh) ≤ h ·
∫ 1

0

C2

n1−εh

(
| fh(x)|2r−2 + 1

(nh)r−1

)
dx

= C2

n1−ε

(
‖ fh‖2r−22r−2 +

1

(nh)r−1

)
. (5.2)

For the estimation performance of our final estimator Th , first note that ‖ f ‖p ≤ L
implies

|Th − ‖ f ‖r | ≤ |max{0, Φh} 1r − ‖ f ‖r |.

Set h = (n ln n)−
1

2s+1 , and ε > 0 sufficiently small satisfying the conditions of
Theorem 3.3. We then divide our analysis into two cases.

First suppose that ‖ f ‖r ≤ 2C0hs , with C0 defined in (5.1). Then ‖ fh‖r ≤ ‖ f ‖r +
‖ f − fh‖r ≤ 3C0hs , and by the bias bound of Φh in (5.2), |EΦh | ≤ C3hsr for a
constant C3 depending on (C0,C1, r , s). Hence, by Lemma 6.6,

(
E(Th − ‖ f ‖r )2

) 1
2

≤
(
E(max{0, Φh}

1
r − ‖ f ‖r )2

) 1
2

≤ 2

(√
E[max{0, Φh}

2
r ] + ‖ f ‖r

)

≤ 2(EΦ2
h )

1
2r + 2C0h

s

≤ 2|EΦh |
1
r + 2(Var(Φh))

1
2r + 2C0h

s

≤ 2(C
1
r
3 + C0)h

s + 2

[
C2

n1−ε

(
‖ fh‖2r−22r−2 +

1

(nh)r−1
)] 1

2r
(by (5.2))

≤ 2(C
1
r
3 + C0)h

s + 2

[
C2

n1−ε

(
C(r , KM )h−1+1/r‖ f ‖r−1r ‖ fh‖r−1r

+ 1
(nh)r−1

)] 1
2r

(by Lemma 6.6)

≤ C4

⎡
⎣hs +

(
h−1+1/r · h2s(r−1)

n1−ε

) 1
2r

+
(

1

n1−ε(nh)r−1
) 1

2r

⎤
⎦ ≤ 3C4h

s , (5.3)

where C4 is a constant depending on C0,C1,C2,C3, r , KM , s.
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Second suppose that ‖ f ‖r > 2C0hs , then ‖ fh‖r ≥ ‖ f ‖r − ‖ f − fh‖r > C0hs .
Using |ar − br | ≥ br−1|a − b| for any a, b ≥ 0 and r ≥ 1, we have

|Th − ‖ f ‖r | ≤ |Th − ‖ fh‖r | + C0h
s

≤ |T
r
h − ‖ fh‖rr |
‖ fh‖r−1r

+ C0h
s

≤ |Φh − ‖ fh‖rr |
(C0hs)r−1

+ C0h
s = C1−r

0 h(1−r)s |Φh − ‖ fh‖rr | + C0h
s .

As a result, by triangle inequality we have

(
E(Th − ‖ f ‖r )2

) 1
2 ≤ C1−r

0 h(1−r)s (
E(Φh − ‖ f ‖rr )2

) 1
2 + C0h

s

≤ C1−r
0 h(1−r)s |EΦh − ‖ fh‖rr | + C1−r

0 h(1−r)s√Var(Φh)+ C0h
s

≤ C4

[
h(1−r)s · hsr + h(1−r)s√nε−1h−1+1/r h2s(r−1)

+h(1−r)s√nε−1(nh)−(r−1) + hs

]
≤ C5h

s,

(5.4)

where the second inequality in the above display follows similar to before by equation
(5.2) and Lemma 6.6withC4 being a constant depending onC0,C1,C2,C3, r , KM , s.
Combining inequalities (5.3) and (5.4) completes the proof of Theorem 3.3.

5.3 Proof of Theorem 3.2 and Theorem 3.4

The outline for the proof of lower bounds (i.e., Theorems 3.2 and 3.4) is as follows. In
Sect. 5.3.1, we reduce the nonparametric problem to a parametric subproblem in the
Gaussian location model. The minimax lower bound for the parametric submodel is
proved by a generalized version of Le Cam’s method involving a pair of priors, also
known as the method of two fuzzy hypotheses [45]. In Sect. 5.3.2 we construct the
priors using duality to best approximation and Sect. 5.3.3 finishes the proof.

In the sequel we assume that r ≥ 1 is a fixed non-even real number.

5.3.1 Reduction to parametric submodel

Fix a smooth function g(x) vanishing outside [0, 1]with ‖g‖Bs
p,∞ = 1, and ‖g‖1 > 0.

Set

h = (n ln n)−
1

2s+1 ,

N = h−1,

and let I1, . . . , IN be the partition of the interval [0, 1] into N subintervals of length h
each (without loss of generality we assume that N is an integer), and let ti be the left
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endpoint of subinterval Ii . With a point θ = (θ1, . . . , θN ) ∈ [−√ln N ,
√
ln N ]N we

associate the function

fθ (t) = L ′
N∑
i=1

θi
√
ln N · hsg

(
t − ti
h

)
.

Lemma 5.3 If

θ ∈ Θ � [−√ln N ,
√
ln N ]N ∩

{
θ : 1

N

N∑
i=1
|θi |p ≤

(
2√
ln N

)p
}

, (5.5)

then for some constant L ′ > 0 independent of n, we have fθ (t) ∈ Bs
p,∞(L).

Proof Let s0 = 
s� + 1. Observe that

‖ fθ‖p = L ′‖g‖phs ·
√
ln N

(
1

N

N∑
i=1
|θi |p

) 1
p

,

the condition (5.5) ensures that h−s‖ fθ‖p is upper bounded by a numerical constant
proportional to L ′. By (6.10) in Lemma 6.10, this implies that there exists a constant
C0 independent of n such that ωs0( f , t

r )p ≤ C0L ′t s0 for any t ≥ h. Moreover,

‖ f (s0)
θ ‖p = L ′‖g(s0)‖phs−s0 ·

√
ln N

(
1

N

N∑
i=1
|θi |p

) 1
p

,

the condition (5.5) ensures that hs0−s‖ f (s0)
θ ‖p is upper bounded by a numerical con-

stant proportional to L ′. By (6.9) in Lemma 6.10, this implies that there exists a
constant C0 independent of n such that ωs0( f , t

r ) ≤ C0L ′t s0 for any t ≤ h. Now by
the definition of the Besov norm in (2.2), a suitable choice of the scale parameter L ′
ensures that fθ (t) ∈ Bs

p,∞(L). ��
Fix any choice of L ′ given by Lemma 5.3. Note that for any r ≥ 1, we have

‖ fθ‖r = L ′‖g‖r (n ln n)−
s

2s+1 · √ln N

(
1

N

N∑
i=1
|θi |r

) 1
r

. (5.6)

Hence, a sufficient condition for Theorem 3.2 and Theorem 3.4 is that

inf
T̂

sup
θ∈Θ

Eθ

⎛
⎜⎝T̂ −

(
1

N

N∑
i=1
|θi |r

) 1
r

⎞
⎟⎠

2

�
(

1√
ln N

)2

= 1

ln N
, (5.7)
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where the infimum is taken over all estimators T̂ which is a measurable real-valued
function of {Y (t)}t∈[0,1].

Finally, we note that by the factorization theorem, to estimate
(

1
N

∑N
i=1 |θi |r

)1/r

for θ ∈ Θ , the vector y = (y1, . . . , yN ) with

yi �
√
n

σ‖g‖2
√
h

∫

Ii
g

(
t − ti
h

)
dY (t), i = 1, . . . , N ,

constitute a sufficient statistic for the Gaussian white noise model. Note that

yi = αθi + ξi , i = 1, . . . , N , (5.8)

with θ ∈ Θ , and

α � σ−1L ′‖g‖2n1/2hs+1/2 ·
√
ln N � 1,

ξi � 1

‖g‖2
√
h

∫

Ii
g

(
t − ti
h

)
dBt .

As a result, ξ1, . . . , ξN are i.i.d. N (0, 1) random variables. Hence, we may further
assume that our observation model is

yi
ind∼ N (αθi , 1), i = 1, . . . , N , (5.9)

which is a Gaussian location model with θ ∈ Θ , and the estimator T̂ in (5.7) is a
function of (y1, . . . , yN ). Note that when r = 1, this parametric subproblem is similar
to but very different from the problem considered in [10], where the authors did not
have the second constraint in (5.5).

5.3.2 Construction of two priors

Theminimax lower bound (5.7) follows from the generalizedLeCam’smethod involv-
ing two priors, which is known as the method of two fuzzy hypotheses presented in
[45]. Suppose we observe a random vector Z ∈ (Z ,A ) which has distribution Pθ

where θ ∈ Θ . Let σ0 and σ1 be two prior distributions supported on Θ . Write Fi for
the marginal distribution of Z when the prior is σi for i = 0, 1. Let T̂ = T̂ (Z) be an
arbitrary estimator of a function T (θ) based on Z, and V (P, Q) be the total variation
distance between two probability measures P, Q on the measurable space (Z ,A ).
Concretely,

V (P, Q) � sup
A∈A

|P(A)− Q(A)| = 1

2

∫
|p − q|dν,

where p = dP
dν

, q = dQ
dν

, and ν is a dominating measure so that P 
 ν, Q 
 ν. We
have the following general minimax lower bound.
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Lemma 5.4 [45, Theorem2.15] Suppose that there exist ζ ∈ R, δ > 0, 0 ≤ β0, β1 < 1
such that

σ0(θ : T (θ) ≤ ζ − δ) ≥ 1− β0,

σ1(θ : T (θ) ≥ ζ + δ) ≥ 1− β1.

If V (F1, F0) ≤ η < 1, then

inf
T̂

sup
θ∈Θ

Pθ

(
|T̂ − T (θ)| ≥ δ

)
≥ 1− η − β0 − β1

2
,

where Fi , i = 0, 1 are the marginal distributions ofZwhen the priors are σi , i = 0, 1,
respectively.

In the remainder of this section, we aim to construct two priors μ0, μ1 supported
on [−√ln N ,

√
ln N ] such that the following conditions hold (the numerical constant

d > 0 is chosen later):

∫
t lμ1(dt) =

∫
t lμ0(dt), for all l = 0, 1, . . . , K � �d ln N�, (5.10)

∫
|t |rμ1(dt)−

∫
|t |rμ0(dt) � (ln N )−

r
2 , (5.11)

∫
|t |pμi (dt) ≤ (ln N )−

p
2 , for i = 0, 1. (5.12)

In the next section we will choose the priors σi , i = 0, 1 in Lemma 5.4 to be close to
the product measure μ⊗N

i , i = 0, 1 with each copy given above. The condition (5.10)
ensures a small total variation distance V (F1, F0) in Lemma 5.4, the condition (5.11)
ensures a large δ � (ln N )− r

2 in Lemma 5.4, and the condition (5.12) ensures that the
support of μ⊗N

i is almost supported on Θ given in (5.5).
The following result is simply the duality between the problem of best uniform

approximation and moment matching.

Lemma 5.5 For any bounded interval I ⊆ R not containing zero, integers q ≥ 0, K >

0 and continuous function f on I , let

Eq−1,K ( f ; I ) � inf{ai }
sup
x∈I

∣∣∣∣∣∣
K∑

i=−q+1
ai x

i − f (x)

∣∣∣∣∣∣

denote the best uniform approximation error of f by rational functions spanned by
{x−q+1, x−q+2, . . . , xK }. Then

2Eq−1,K ( f ; I ) = max
∫

f (t)ν1(dt)−
∫

f (t)ν0(dt),

s.t.
∫

t lν1(dt) =
∫

t lν0(dt), l = −q + 1, . . . , K ,

(5.13)

123



1264 Y. Han et al.

where the maximum is taken over pairs of probability measures ν0 and ν1 supported
on I .

Lemma 5.5 extends the duality results in [10, Lemma 1], [26, Lemma 10, Lemma
12] to rational functions. We list two possible proofs of Lemma 5.5. The first proof
relies on the Hahn–Banach theorem and the Riesz representation theorem, where the
essential argument is given in [35]. The second proof makes use of the fact that the
rational functions {x−q+1, x−q+2, . . . , xK } form a Chebyshev system in C(I ) and
therefore the Chebyshev alternation theorem holds [12, Chapter 3, Theorem 5.1], so
that the probability measures ν0 and ν1 can be explicitly constructed following the
similar lines to [49, Appendix E]. For completeness we include the second proof in
Sect. 6.4.

Here we apply this lemma to fq(t) = t−q+ r
2 and

K = �d ln N�, I =
[

1

(ln N )2
, 1

]
, q =

⌈ p
2

⌉
.

The following lemma provides a lower bound for the approximation error of fq(t).

Lemma 5.6 Fix a non-even real r ≥ 1, an integer q ≥ r/2, and some constant c > 0.
For fq(t) = t−q+ r

2 , we have

lim inf
n→∞ n−(2q−r)Eq−1,n

(
f ;
[ c

n2
, 1
])
≥ c′,

where the constant c′ > 0 only depends on c, q and r.

By Lemma 5.6 and our definitions of f , I and K , we conclude that

Eq−1,K ( f ; I ) � (ln N )2q−r .

Let ν0, ν1 be the maximizers of (5.13). We define probability measures ν̃0, ν̃1 by

ν̃i (dx) =
[
1− EX∼νi

(
1

(ln N )2q Xq

)]
δ0(dx)+

(
1

(ln N )2x

)q
νi (dx) i = 0, 1,

where δ0(·) is the delta measure at zero. It is straightforward to verify that ν̃i forms a
probability measure supported on [0, 1], and
1.
∫
t l ν̃1(dt) =

∫
t l ν̃0(dt), for all l = 0, 1, . . . , q + K ;

2.
∫
t
r
2 ν̃1(dt)−

∫
t
r
2 ν̃0(dt) � (ln N )−r ;

3.
∫
tq ν̃i (dt) = (ln N )−2q , for i = 0, 1.

Finally,we define themeasuresμ0, μ1 as follows. For i = 0, 1, let Xi follow the dis-
tribution ν̃i , the measure μi is defined as the probability distribution of εi

√
Xi · ln N ,

where εi ∼ Unif({±1}) is independent of Xi . Clearly the measures μ0, μ1 are sup-
ported on [−√ln N ,

√
ln N ], and it remains to check the conditions (5.10) to (5.12).
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For (5.10), since μi is symmetric around zero, the condition clearly holds for odd
l. For even l = 2k with 0 ≤ k ≤ K , by the first property of ν̃i we have

∫
t lμ1(dt) =

∫
(εi
√
t · ln N )2kμ1(dt) = (ln N )k

∫
tkμ1(dt)

= (ln N )k
∫

tkμ0(dt) =
∫

(εi
√
t · ln N )2kμ0(dt) =

∫
t lμ0(dt),

i.e., (5.10) holds. Similarly, the condition (5.11) is checked via

∫
|t |rμ1(dt)−

∫
|t |rμ0(dt) = (ln N )

r
2

∫
t
r
2 (ν̃1(dt)− ν̃2(dt)) � (ln N )−

r
2 .

Finally, for (5.12), first note that

∫
t2qμi (dt) = (ln N )q

∫
tq ν̃i (dt) = (ln N )−q , i = 0, 1.

Since 2q ≥ p, Hölder’s inequality yields

(∫
|t |pμi (dt)

) 1
p ≤

(∫
|t |2qμi (dt)

) 1
2q ≤ 1√

ln N
,

i.e., (5.12) holds. Hence, the construction of μ0, μ1 satisfies all conditions in (5.10) to
(5.12). This construction is partially inspired by [49]. We remark that the construction
heavily relies on the fact that p is finite, where for p = ∞, Lemma 5.6 fails and
the condition (5.12) would require that the priors μ0, μ1 be supported on a smaller
interval [− 1√

ln N
, 1√

ln N
].

5.3.3 Minimax lower bound in the parametric submodel

In this section we invoke Lemma 5.4 to finish the proof of (5.7), thereby proving
the lower bound in Theorems 3.2 and 3.4. Consider the probability measures μ0, μ1
constructed in the Sect. 5.3.2, and define

Δ =
∫
|t |rμ1(dt)−

∫
|t |rμ0(dt) � (ln N )−

r
2 .

Denote by μ⊗N
i the N -fold product of μi . Consider the following event:

Ei � {θ : θ ∈ Θ} ∩
⎧
⎨
⎩θ :

∣∣∣∣∣∣
1

N

N∑
j=1
|θ j |r − Eμi |θ |r

∣∣∣∣∣∣
≤ Δ

4

⎫
⎬
⎭ , i = 0, 1.
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By Chebyshev’s inequality it is easy to show that for i = 0, 1,

μ⊗N
i ({θ : θ /∈ Θ}) = μ⊗N

i

⎛
⎝
⎧⎨
⎩θ : 1

N

N∑
j=1
|θ j |p >

(
2√
ln N

)p
⎫⎬
⎭

⎞
⎠

≤ μ⊗N
i

⎛
⎝
⎧
⎨
⎩θ : 1

N

N∑
j=1
|θ j |p − Eμi |θ |p >

(
1√
ln N

)p
⎫
⎬
⎭

⎞
⎠

≤
(

1√
ln N

)−2p
· Var

μ⊗N
i

⎛
⎝ 1

N

N∑
j=1
|θ j |p

⎞
⎠

= 1

N

(
1√
ln N

)−2p
· Varμi (|θ |p)

≤ 1

N
(

1√
ln N

)−2p · (√ln N )2p → 0,

and

μ⊗N
i

⎛
⎝
⎧
⎨
⎩θ :

∣∣∣∣∣∣
1

N

N∑
j=1
|θ j |r − Eμi |θ |r

∣∣∣∣∣∣
>

Δ

4

⎫
⎬
⎭

⎞
⎠ ≤ 16

Δ2 Varμ⊗N
i

⎛
⎝ 1

N

N∑
j=1
|θ j |r

⎞
⎠

≤ 16

NΔ2 · (
√
ln N )2r → 0.

Hence, by the union bound, we have

μ⊗N
i (Ec

i ) ≤ μ⊗N
i ({θ : θ /∈ Θ})+μ⊗N

i

⎛
⎝
⎧⎨
⎩θ :

∣∣∣∣∣∣
1

N

N∑
j=1
|θ j |r − Eμi |θ |r

∣∣∣∣∣∣
>

Δ

4

⎫⎬
⎭

⎞
⎠→ 0

for any i = 0, 1.
Now we are ready to apply Lemma 5.4 to

T (θ) =
(
1

N

N∑
i=1
|θi |r

) 1
r

,

ζ =
(
E

μ⊗N
1
[T (θ)r ] + E

μ⊗N
0
[T (θ)r ]

2

) 1
r

,

and let the prior σi be the conditional distribution of μ⊗N
i conditioning on Ei , i.e.,

σi (·) = μS
i (· ∩ Ei )

μS
i (Ei )

, i = 0, 1.
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By definition of Ei , the measure σi is a valid prior on Θ . Moreover, under σ1 we
have

T (θ)r − ζ r ≥ Δ

4
.

By definition of E1 and Θ , under σ1 we have

T (θ) =
(
1

N

N∑
i=1
|θi |r

) 1
r

≤
(
1

N

N∑
i=1
|θi |p

) 1
p

≤ 2√
ln N

,

ζ ≤ 1

2

(∫
|t |rμ1(dt)

) 1
r + 1

2

(∫
|t |rμ0(dt)

) 1
r

≤ 1

2

(∫
|t |pμ1(dt)

) 1
p + 1

2

(∫
|t |pμ0(dt)

) 1
p ≤ 1√

ln N
.

Hence, using the inequality ar − br ≤ r(ar−1 + br−1)(a − b) for any a ≥ b > 0 and
r ≥ 1, the previous inequalities yield that under σ1,

T (θ)− ζ ≥ [T (θ)]r − ζ r

r([T (θ)]r−1 + ζ r−1)
� Δ

(ln N )− r−1
2

� 1√
ln N

.

Similarly, under σ0 we have T (θ)− ζ � − 1√
ln N

, hence in Lemma 5.4 we can set

δ � 1√
ln N

,

so that β0 = β1 = 0.
Now denote by F0, F1 the marginal distributions of Z based on priors σ0, σ1, and

the counterparts G0,G1 based on priors μ⊗N
0 , μ⊗N

1 . By the data-processing property
of the total variation distance, we have

V (Fi ,Gi ) ≤ V (σi , μ
⊗N
i ) = μ⊗N

i (Ec
i )→ 0, i = 0, 1.

Moreover, [10] shows that the χ2 distance between G0 and G1 is upper bounded as

χ2(G0,G1) ≤
(
1+ e3α

2 ln N/2
(

αe ln N

d ln N

)d ln N
)N

− 1.

Hence, for choosing d > 0 large enough, χ2(G0,G1) is upper bounded by a universal
constant C . Now by Lemma 6.8, we have

V (G0,G1) ≤ 1− 1

2
exp(−C).
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In summary, the triangle inequality for total variation distance yields

V (F0, F1) ≤ V (F0,G0)+ V (G0,G1)+ V (G1, F1)→ 1− 1

2
exp(−C) < 1,

and Lemma 5.4 together with Markov’s inequality yields

inf
T̂

sup
θ∈Θ

Eθ

⎛
⎜⎝T̂ −

(
1

N

N∑
i=1
|θi |r

) 1
r

⎞
⎟⎠

2

� δ2 · inf
T̂

sup
θ∈Θ

P

(
|T̂ − T (θ)| ≥ δ

)

� 1

ln N
· 1
4
exp(−C) � 1

ln N
,

which is (5.7), as desired.

5.4 Proof of Theorem 3.5

For s ∈ [0, smax] define the ideal bandwidth h∗ : [0, smax] →H by

h∗(s) � 1⌊
(n ln n)

1
2s+1
⌋ .

Then

E

(
T̂ − ‖ f ‖r

)2

= E

[(
T̂ − ‖ f ‖r

)2
1
(
ĥ ≥ h∗(s)

)]
+ E

[(
T̂ − ‖ f ‖r

)2
1
(
ĥ < h∗(s)

)]

= I+ II.

First note that

I ≤ 2
{
E

[(
Th∗(s) − ‖ f ‖r

)2]+ E

[(
Tĥ − Th∗(s)

)2
1
(
ĥ ≥ h∗(s)

)]}

≤ 2

{
C0(n ln n)−

2s
2s+1 + C∗

λ2h∗(s)
ln n

}
≤ C∗0 (n ln n)−

2s
2s+1 , (5.14)

where the last line follows from the definitions of h∗(s) and ĥ respectively, and C0 is
a constant that depends on (c1, c2, ε, smax, σ, L).
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To upper bound II, we have

II = E

[(
T̂ − ‖ f ‖r

)2
1
(
ĥ < h∗(s)

)]
≤ L2 · P(ĥ < h∗(s))

≤ L2 ·
∑

h<h∗(s):h∈H
P

(
|Th − Th∗(s)| > λh

√
C∗
ln n

)
, (5.15)

where the first inequality is due to that T̂ , ‖ f ‖r ∈ [0, L], and the second inequality
follows from the fact that h∗(s) is not a feasible condidate in (3.6). Let

γn(h) � λh

√
C∗
ln n

,

below we reduce the control of P
(|Th − Th∗(s)| > γn(h)

)
to suitable controls over

E

∣∣∣∣
∫ 1

0
(Th(x)− ETh(x))dx

∣∣∣∣
k

for some k to be chosen a large enough constant depending on the tuple (smax, r , σ, p).
Consequently, in the following lemmawe demonstrate the desired control over central
moments of

∫ 1
0 Th(x)dx for every h ∈H .

Lemma 5.7 Let f ∈ Bs
p,∞(L) and r ≥ 1 be non-even. Then, under the assumptions

of Theorem 3.5, for any h ∈H and integer k ≥ 2,

E

∣∣∣∣
∫ 1

0
(Th(x)− ETh(x))dx

∣∣∣∣
k

≤ C(r , k, c1, σ )n2kε
(

λkrh (hk−1 + h
k
2 )

+λkh(h
k−1‖ fh‖k(r−1)k(r−1) + h

k
2 ‖ fh‖k(r−1)2(r−1))

)
,

where C(r , k, c1, σ ) is a constant depending on (r , k, c1, σ ).

By Lemma 6.6 and h ∈ [0, 1], the following corollary is immediate.

Corollary 5.1 Under the assumptions of Theorem 3.5, for any h ∈ H and integer
k ≥ 2,

E

∣∣∣∣
∫ 1

0
(Th(x)− ETh(x))dx

∣∣∣∣
k

≤ C ′(r , k, c1, σ )n2kε
(

λkrh h
k
2 + λkh(h

k−1
r ‖ f ‖(k−1)(r−1)r ‖ fh‖r−1r

+h k
2r ‖ f ‖k(r−1)/2r ‖ fh‖k(r−1)/2r

)
,

where C ′(r , k, c1, σ ) is a constant depending on (r , k, c1, σ ).
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We defer the proof of Lemma 5.7 to Sect. 6 and complete the proof of Theorem 3.5
assuming its validity. Recall that ‖ f − fh‖r ≤ C1hs for some C1 = C1(s, r , L, KM )

for any f ∈ Bs
p,∞(L).We divide the subsequent analysis into two cases. First consider

the case when ‖ fh‖r ≤ C1√
nh ln n

, then

P
(|Th − Th∗(s)| > γn(h)

) ≤ P

(
Th >

γn(h)

2

)
+ P

(
Th∗(s) >

γn(h)

2

)

≤ P

(
Th >

γn(h)

2

)
+ P

(
Th∗(s) >

γn(h∗(s))
2

)
. (5.16)

where the last inequality uses the monotone decreasing nature of h �→ γn(h). By (5.2)
and the triangle inequality, we have

∫ 1

0
ETh(x)dx ≤ ‖ fh‖rr +

∣∣∣∣
∫ 1

0
ETh(x)dx − ‖ fh‖rr

∣∣∣∣ ≤ C2(nh ln n)−
r
2 ,

where C2 > 0 is a constant depending on (c1, c2, r ,C1). Choosing C∗ large enough
such that

(
γn(h)

4

)r
≥ C2(nh ln n)−

r
2 ,

for any k ≥ 2 we have

P

(
Th >

γn(h)

2

)
≤ P

(∫ 1

0
Th(x)dx >

(
γn(h)

2

)r)

≤ P

(∫ 1

0
Th(x)dx − E

(∫ 1

0
Th(x)dx

)

>

(
γn(h)

2

)r
− C2(nh ln n)−

r
2

)

≤ P

(∣∣∣∣
∫ 1

0
Th(x)dx − E

(∫ 1

0
Th(x)dx

)∣∣∣∣ >
(

γn(h)

4

)r)

≤
4rkE

∣∣∣∫ 10 Th(x)dx − E

(∫ 1
0 Th(x)dx

)∣∣∣
k

(γn(h))kr
.

However, note that

‖ f ‖r ≤ ‖ f − fh‖r + ‖ fh‖r ≤ C1h
s + C1√

nh ln n
≤ C3γn(h),
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where C3 is a constant depending on (C1,C∗), Corollary 5.1 yields

E

∣∣∣∣
∫ 1

0
(Th(x)− ETh(x))dx

∣∣∣∣
k

≤ C4n
2kε
[
λkrh h

k
2 + λkhh

k−1
r γn(h)k(r−1) + λkhh

k
2r γn(h)k(r−1)

]

≤ C5n
2kε(ln n)

k
2 · h k

2r γn(h)kr ,

where C4,C5 are constants depending on (r , k, c1, σ,C1,C3,C∗). Consequently, we
have shown that for any h ≤ h∗(s),

P(|Th − Th∗(s)| > γn(h)) ≤ 4krC5n
2kε(ln n)

k
2 · h k

2r . (5.17)

Next consider the case when ‖ fh‖r > C1√
nh ln n

. Note that

|‖ fh∗(s)‖r − ‖ fh‖r | ≤ ‖ fh∗(s) − f ‖r + ‖ fh − f ‖r ≤ 2C1(h
∗(s))r ,

thus if C∗ is large enough such that γn(h) ≥ 6C1(h∗(s))r , triangle inequality yields

P
(|Th − Th∗(s)| > γn(h)

)

≤ P

(
|Th − ‖ fh‖r | > γn(h)

3

)
+ P

(
|Th∗(s) − ‖ fh∗(s)‖r | > γn(h)

3

)
. (5.18)

In this case, once again using |ar − br | ≥ br−1|a − b| for any a, b ≥ 0 and r ≥ 1,

|Th − ‖ fh‖r | ≤ |T
r
h − ‖ fh‖rr |
‖ fh‖r−1r

≤ |
∫ 1
0 Th(x)dx − ‖ fh‖rr |

‖ fh‖r−1r
, (5.19)

where the last inequality follows from 0 ≤ ‖ fh‖r ≤ L . Fix any h ≤ h∗(s), (5.19)
yields

P

(
|Th − ‖ fh‖r | > γn(h)

3

)

≤ P

(∣∣∣∣
∫ 1

0
Th(x)dx − ‖ fh‖rr

∣∣∣∣ >
γn(h)

3
‖ fh‖r−1r

)

≤ P

(∣∣∣∣
∫ 1

0
Th(x)dx − E

(∫ 1

0
Th(x)dx

)∣∣∣∣ >
γn(h)

3
‖ fh‖r−1r − C2(nh ln n)−

r
2

)
,

where in the last line we have used (5.2) again. Choosing C∗ large enough so that

γn(h)

3
‖ fh‖r−1r − C2(nh ln n)−

r
2 ≥ γn(h)

6
‖ fh‖r−1r ,
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which is possible due to the assumption ‖ fh‖r ≥ C1√
nh ln n

, and noting that

‖ f ‖r ≤ ‖ fh‖r + ‖ f − fh‖r ≤ C1√
nh ln n

+ C1h
s ≤ 2‖ fh‖r ,

Corollary 5.1 yields that for integer k ≥ 2,

P

(
|Th − ‖ fh‖r | > γn(h)

3

)

≤
(

6

γn(h)‖ fh‖r−1r

)k

· E
∣∣∣∣
∫ 1

0
Th(x)dx − E

(∫ 1

0
Th(x)dx

)∣∣∣∣
k

≤ C6

γn(h)k‖ fh‖k(r−1)r

· n2kε
(
λkrh h

k
2 + λkhh

k
2r ‖ fh‖k(r−1)

)

≤ C7n
2kε(ln n)

k
2 ·
(
h

k
2

(
λh

‖ fh‖r
)k(r−1)

+ h
k
2r

)

≤ C8n
2kε(ln n)

kr
2 · h k

2r , (5.20)

where C6,C7,C8 are constants depending on (r , k, c1, σ, KM ,C1,C∗), and the last
step follows from our assumption that ‖ fh‖r ≥ C1√

nh ln n
.

Combining (5.17), (5.18) and (5.20) we get that for any h ≤ h∗(s), r ≤ p, integer
k ≥ 2,

sup
f ∈Bs

p,∞(L)

P
(|Th − Th∗(s)| > γn(h)

) ≤ max{C5,C8}n2kε(ln n)
kr
2 · h k

2r , (5.21)

given that the constantC∗ is large enough. Note that h ≤ h∗(s) ≤ (n ln n)
− 1

2smax+1 , the
inequality (5.21) yields that as long as 4rε(2smax + 1) < 1, choosing k large enough
will give

sup
f ∈Bs

p,∞(L)

P
(|Th − Th∗(s)| > γn(h)

) ≤ C9

n3
. (5.22)

Plugging the previous tail bound into (5.15), we arrive at

II ≤ C9L2|H |
n3

≤ C9L2h−1min

n3
= C9L

2 · ln n
n2

≤ C10(n ln n)−
2s

2s+1 ,

and thereby complete the proof. ��

6 Technical Lemmas

In this section we collect some necessary technical lemmas necessary to prove the
main results of this paper. We begin with a collection of lemmas available in literature
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which will serve as necessary tools to prove the other technical lemmas involved in
the arguments laid down in Sect. 5.

Lemma 6.1 [10] For Hermite polynomial Hk(x) of order k, if X ∼ N (μ, 1), we have

E[Hk(X)] = μk .

Moreover, if |μ| ≤ M and k ≤ M2, we have

E[H2
k (X)] ≤ (2M2)k .

Lemma 6.2 [1,48] For any r > 0, the best polynomial approximation error of |x |r on
[−1, 1] satisfies

inf
Q∈Polyn

sup
x∈[−1,1]

|Q(x)− |x |r | ≤ βr

nr
,

where βr > 0 is a universal constant depending on r only. Moreover, for n large
enough, we can choose β1 to be the Bernstein constant β∗ = 0.280169499.

Lemma 6.3 [6] For X ∼ N (μ, σ 2), we have

P(|X − μ| ≥ tσ) ≤ exp

(
− t2

2

)
.

Lemma 6.4 Let X ∼ N (μ, σ 2) with μ > cσ
√
ln n, where c > 0, n ≥ 2. Then for

any α ∈ R and any integer k ≥ 2, we have

E

∣∣∣∣∣1
(
X ≥ cσ

√
ln n

2

)
· Xα

∣∣∣∣∣ ≤ Dαμα,

E

∣∣∣∣∣1
(
X ≥ cσ

√
ln n

2

)
· Xα − E

(
1(X ≥ cσ

√
ln n

2
) · Xα

)∣∣∣∣∣
k

≤ Dα,kσ
kμ(α−1)k,

where Dα, Dα,k > 0 are universal constants depending on α, k and c only.

Proof Throughout the proof we use the asymptotic notation � to denote universal
constants depending only on (α, c, k).

For the first inequality, define

E1 �
{
X : cσ

√
ln n

2
≤ X <

μ

2

}
,

E2 �
{
X : μ

2
≤ X ≤ 2μ

}
, and

E3 � {X : X > 2μ}.

By Lemma 6.3 and the triangle inequality, we have
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E

∣∣∣∣∣1
(
X ≥ cσ

√
ln n

2

)
· Xα

∣∣∣∣∣ ≤
3∑

i=1
E|1(Ei ) · Xα |

≤ max

{(
cσ
√
ln n

2

)α

,
(μ

2

)α} · P(E1)+max
{(μ

2

)α
, (2μ)α

}
+ E|Xα1(X ≥ 2μ)|

� ((σ
√
ln n)α + μα) · exp

(
− μ2

8σ 2

)
+ μα + E|Xα1(X ≥ 2μ)|.

For the last term, note that Xα ≤ (1 + 2α)(X − μ)α holds for any α ∈ R when
X ≥ 2μ, and

E[(X − μ)2α1(X − μ ≥ cσ)] � σ 2α

by the scaling property of the Gaussian random variable X −μ ∼ N (0, σ 2). Hence,
by Lemma 6.3 and Cauchy–Schwartz,

E|Xα1(X ≥ 2μ)| � E|(X − μ)α1(X ≥ 2μ)|
≤ E

1/2|X2α1(X ≥ 2μ)| · P1/2(X ≥ 2μ)

≤ E
1/2|(X − μ)2α1(X − μ ≥ cσ)| exp

(
− μ2

4σ 2

)
� σα exp

(
− μ2

4σ 2

)
.

Combining the previous inequalities, we arrive at

E

∣∣∣∣∣1
(
X ≥ cσ

√
ln n

2

)
· Xα

∣∣∣∣∣ � (σα+ (σ
√
ln n)α+μα) · exp

(
− μ2

8σ 2

)
+μα. (6.1)

If α ≥ 0, the desired inequality follows from σα � (σ
√
ln n)α � μα and

exp(− μ2

8σ 2 ) ≤ 1. For α < 0, the facts

(σ
√
ln n)α � σα, exp

(
− μ2

8σ 2

)
≤ 1,

σα

μα
exp

(
− μ2

8σ 2

)
≤ max

t≥c√ln n
t−αe−t2/8 � 1

complete the proof of the desired inequality.
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As for the second inequality, we first show the following chain of inequalities:

E

∣∣∣∣∣1
(
X ≥ cσ

√
ln n

2

)
· Xα − μα

∣∣∣∣∣
k

� E

∣∣∣∣∣1
(
X ≥ cσ

√
ln n

2

)
· (Xα − μα)

∣∣∣∣∣
k

+ μkα
P

(
X <

cσ
√
ln n

2

)
(6.2)

�
3∑

i=1
E[1(Ei ) · |Xα − μα|k] + μkα exp

(
− μ2

8σ 2

)
(6.3)

� E[1(E2) · |Xα − μα|k] + (μkα + (σ
√
ln n)kα) exp

(
− μ2

8σ 2

)
(6.4)

� E[1(E2) · |Xα − μα|k] + σ kμ(α−1)k (6.5)

� sup
ξ∈[μ/2,2μ]

|ξ |k(α−1)E[1(E2) · |X − μ|k] + σ kμ(α−1)k (6.6)

� σ kμ(α−1)k . (6.7)

We elaborate on the inequalities (6.2) to (6.7) here:

1. Inequality (6.2) follows from the triangle inequality |a+ b|k ≤ 2k−1(|a|k + |b|k);
2. Inequality (6.3) follows from Lemma 6.3 and cσ

√
ln n ≤ μ;

3. Inequality (6.4) follows from dealing with events E1 and E3 separately. For all α ∈
R, the condition cσ

√
ln n/2 ≤ X ≤ μ/2 implies that |Xα − μα| � (σ

√
ln n)α +

μα . Hence, by Lemma 6.3,

E[1(E1) · |Xα − μα|k] � P(E1) · ((σ
√
ln n)α + μα)k

� (μkα + (σ
√
ln n)kα) exp

(
− μ2

8σ 2

)
.

As for the event E3, if α ≤ 0 we have |Xα−μα| ≤ μα when X ≥ 2μ, and Lemma
6.3 gives

E[1(E3) · |Xα − μα|k] ≤ μkα
P(E3) ≤ μkα exp

(
− μ2

2σ 2

)
.

If α > 0, the condition X ≥ 2μ ensures that

|Xα − μα| ≤ Xα ≤ 2α(X − μ)α,
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and thus Lemma 6.3 with Cauchy–Schwartz yields

E[1(E3)|Xα − μα|k] � E[1(E3)(X − μ)kα]
≤ P

1/2(E3) · E1/2[(X − μ)2kα]

� σ kα exp

(
− μ2

4σ 2

)
� μkα exp

(
− μ2

4σ 2

)
,

where the last step is due to the assumption σ � μ;
4. If α ≥ 0, inequality (6.5) follows from (σ

√
ln n)kα � μkα and

μk

σ k
· exp

(
− μ2

8σ 2

)
≤ max

t≥c√ln n
tke−t2/8 � 1

for any integer k ≥ 2. If α < 0, the desired inequality follows from

μkα + (σ
√
ln n)kα � σ kα

and
μk(1−α)

σ k(1−α)
· exp

(
− μ2

8σ 2

)
≤ max

t≥c√ln n
tk(1−α)e−t2/8 � 1

for any integer k ≥ 2;
5. Inequality (6.6) follows from Xα − μα = αξα−1(X − μ) with some ξ lying

between X and μ, as well as the definition of E2;
6. Inequality (6.7) follows from E|X − μ|k � σ k for X ∼ N (μ, σ 2).

Now observe that for any random variable Y and integer k ≥ 2, by the triangle
inequality and Jensen’s inequality, the following inequality

E|Y − EY |k ≤ 2k−1
(
E|Y − c|k + |EY − c|k

)

≤ 2k−1
(
E|Y − c|k + E|Y − c|k

)

= 2kE|Y − c|k

holds for any c ∈ R. Hence, a combination of the previous two inequalities concludes
the proof of the upper bound on k-th central moment. ��
Lemma 6.5 [40, Thm. E] Let pn(x) = ∑n

ν=0 aνxν be a polynomial of degree at
most n such that |pn(x)| ≤ 1 for x ∈ [−1, 1]. Then, |an−2μ| is bounded above by
the modulus of the corresponding coefficient of Tn for μ = 0, 1, . . . , 
n/2�, and
|an−1−2μ| is bounded above by the modulus of the corresponding coefficient of Tn−1
for μ = 0, 1, . . . , 
(n − 1)/2�. Here Tn(x) is the n-th Chebyshev polynomials of the
first kind.
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Lemma 6.6 Let f and fh be defined in Sect. 3, and let r ≥ 1 and k > 1 be integers.
There exists some universal constant c depending only on r , k and the kernel K such
that

‖ fh‖k(r−1)k(r−1) ≤ ch(k−1)(−1+1/r)‖ f ‖(k−1)(r−1)r ‖ fh‖r−1r .

Proof The proof follows from the proof of [35, Lemma 4.4] and is hence omitted. ��
Lemma 6.7 Suppose 1(A) is an indicator random variable independent of X and Y
and let Z = X1(A)+ Y1(Ac). Then

Var(Z) = Var(X)P(A)+ Var(Y )P(Ac)+ (EX − EY )2P(A)P(Ac).

In general for any integer k ≥ 2,

E|Z − EZ |k ≤ 2k−1
(
E|X − EX |kP(A)+ E|Y − EY |kP(Ac)+ |EX − EY |kP(A)P(Ac)

)
.

Proof The identity for Var(Z) follows from [10, Lemma 4]. For general k, by taking
the expectation with respect to 1(A) first, we have

E|Z − EZ |k = E|X1(A)+ Y1(Ac)− E(X1(A)+ Y1(Ac))|k
= P(A)E|X − EX · P(A)− EY · P(Ac)|k
+ P(Ac)E|Y − EX · P(A)− EY · P(Ac)|k .

By triangle inequality,

E|X − EX · P(A)− EY · P(Ac)|k = E|(X − EX)+ (EX − EY )P(Ac)|k

≤ 2k−1
(
E|X − EX |k + |EX − EY |kP(Ac)k

)
,

and thus

E|Z − EZ |k ≤ P(A) · 2k−1(E|X − EX |k + P(Ac)k |EX − EY |k)
+ P(Ac) · 2k−1(E|Y − EY |k + P(A)k |EX − EY |k)
≤ 2k−1

(
E|X − EX |kP(A)+ E|Y − EY |kP(Ac)+ |EX − EY |kP(A)P(Ac)

)
,

where the last step uses P(A)k−1 + P(Ac)k−1 ≤ P(A)+ P(Ac) = 1 for k ≥ 2. ��
Lemma 6.8 [45] The total variation distance and the chi-squared distance are related
via the following inequality:

V (P, Q) ≤ 1− 1

2
exp(−χ2(P, Q)).
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Lemma 6.9 [21, Theorem C.2] Let q ≥ 2 and let X1, . . . , Xn be independent random
variables such that E(Xi ) = 0 and E|Xi |q <∞.

E

(∣∣∣∣∣
n∑

i=1
Xi

∣∣∣∣∣
q)
≤ C(q)

⎡
⎣

n∑
i=1

E|Xi |q +
(

n∑
i=1

E|Xi |2
)q/2

⎤
⎦ .

Finally, Lemma 6.10 presents the equivalence between Peetre’s K -functional and
modulus of smoothness on R. For p ∈ [1,∞] and r ∈ N, the Peetre’s K -functional
for f defined on R is defined as

Kr ( f , t
r )p � inf

g
‖ f − g‖p + tr‖g(r)‖p,

where the infimum is taken over all functions g defined on R such that the derivative
g(r−1) is locally absolutely continuous. Also recall the definition of the modulus of
smoothness ωr ( f , t)p in (2.1).

Lemma 6.10 For any p ∈ [1,∞] and r ∈ N, there exist universal constants M =
M(r , p) and t0 = t0(r , p) such that for any 0 < t < t0 and f defined on R,

M−1Kr ( f , t
r )p ≤ ωr ( f , t)p ≤ MKr ( f , t

r )p. (6.8)

Furthermore,
ωr ( f , t)p ≤ Mtr‖ f (r)‖p, 0 < t < t0, (6.9)

and
ωr ( f , t)p ≤ 2r‖ f ‖p, t > 0. (6.10)

Proof The first inequality (6.8) is due to [12, Chapter 6, Theorem 2.4]. For the other
inequalities, (6.9) follows from (6.8) by choosing g = f , and (6.10) follows from the
definition (2.1) and the triangle inequality. ��

6.1 Proof of Lemma 5.1

The proof of Lemma 5.1 follows in turn from sequence of lemmas. We first consider
the case where | fh(x)| is small for which the next lemma is crucial.

Lemma 6.11 Let |μ| ≤ 2c1λh
√
ln n, and X ∼ N (μ, λ2h). Then for c2 ln n ≥ 1, 4c21 ≥

c2, the bias and variance of P(X) in estimating |μ| can be upper bounded as

|EP(X)− |μ|| ≤ 2c1β1

c2
· λh√

ln n
,

Var(P(X)) ≤ 27c2 ln n+4c21c22λ2h(ln n)3,

where the constant β1 appears in Lemma 6.2.
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Proof By Lemma 6.1 we know that

EP(X) =
K∑

k=0
gK ,k(2c1λh

√
ln n)1−k · μk .

By Lemma 6.2, we have

sup
x∈[−1,1]

∣∣∣∣∣
K∑

k=0
gK ,k x

k − |x |
∣∣∣∣∣ ≤

β1

K
.

By a variable substitution x �→ μ

2c1λh
√
ln n

, we obtain

sup
|μ|≤2c1λh

√
ln n

∣∣∣∣∣
K∑

k=0
gK ,k(2c1λh

√
ln n)1−k · μk − |μ|

∣∣∣∣∣ ≤
β1

K
· 2c1λh

√
ln n.

Hence, the bias of P(X) is upper bounded by

|EP(X)− |μ|| ≤ β1

K
· 2c1λh

√
ln n = 2c1β1

c2
· λh√

ln n
,

as desired.
As for the variance, first Lemma 6.5 tells us

|gK ,k | ≤ 23K , k = 0, 1, . . . , K .

Hence, with the help of Lemma 6.1, we know that

Var(P(X)) ≤ E[P(X)2]

≤ (K + 1)
K∑

k=0
|gK ,k |2(2c1λh

√
ln n)2(1−k) · λ2kh E

[
Hk

(
X

λh

)2
]

≤ 26K+1K
K∑

k=0
(2c1λh

√
ln n)2(1−k) · λ2kh [2(2c1

√
ln n)2]k

≤ 27K+3K
K∑

k=0
c21λ

2
h ln n

≤ 27K+4c21K 2λ2h ln n,

where we have used the fact that k ≤ K ≤ (2c1
√
ln n)2. ��

The next lemma is useful to analyze the plug-in approach where fh(x) is large. The
key observation in this regime is that the plug-in approach is almost unbiased due to
the measure concentration property of Gaussian distribution.
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Lemma 6.12 Let |μ| ≥ c1
2 λh

√
ln n, X ∼ N (μ, λ2h), and k ≥ 2 be any integer. Then

|E|X | − |μ|| ≤ 4λh
c1
√
ln n

· n−c21/8,
E||X | − E|X ||k ≤ C(c1, k)λ

k
h,

where C(c1, k) is a universal constant depending on k and c1 only. In particular, when
k = 2, we have

Var(|X |) ≤ C(c1, 2)λ
2
h .

Proof By symmetry we can assume that μ ≥ c1
2 λh

√
ln n, then the bias can be written

as
|E|X | − μ| = |E|X | − EX | = 2E|X |1(X ≤ 0).

With the help of the Gaussian tail bound (Lemma 6.3), we have

|E|X | − μ| = 2
∫ 0

−∞
P(X ≤ t)dt

= 2
∫ 0

−∞
P

(
X − μ

λh
≤ t − μ

λh

)
dt

≤ 2
∫ 0

−∞
exp

(
− (t − μ)2

2λ2h

)
dt

≤ 2λ2h
μ

∫ 0

−∞
μ− t

λ2h
exp

(
− (t − μ)2

2λ2h

)
dt

= 2λ2h
μ

exp

(
− μ2

2λ2h

)
≤ 4λh

c1
√
ln n

· n−c21/8,

which completes the proof of the bias bound.
As for the k-th central moment, we have

E||X | − E|X ||k

≤ 3k−1
(
E||X | − X |k + E|X − μ|k + |E|X | − μ|k

)

≤ 3k−1
(
2kE|X |k1(X ≤ 0)+ λkh(k − 1)!! +

(
4λh

c1
√
ln n

· n−c21/8
)k
)
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wherewe have used the previous bias bound for the last term.Using the same technique
as before,

E|X |k1(X ≤ 0) = k
∫ 0

−∞
|t |k−1P(X ≤ t)dt

≤ k
∫ 0

−∞
|t |k−1 exp

(
− (t − μ)2

2λ2h

)
dt

≤ kλkh

∫ 0

−∞
1

λh

(
μ− t

λh

)k−1
exp

(
− (t − μ)2

2λ2h

)
dt

= kλkh ·
√
2πE

(
Zk−11

(
Z ≥ c1

2

√
ln n
))

≤ Cλkhn
−c21/16,

where Z = μ−X
λh

∼ N (0, 1) is a standard normal random variable, the constant C
depends on c1 and k, and the last inequality is due to Cauchy–Schwartz

E

(
Zk−11

(
Z ≥ c1

2

√
ln n
))
≤ E

1/2(Z2k−2)P1/2
(
Z ≥ c1

2

√
ln n
)

and Lemma 6.3. Hence the k-th central moment bound is proved. ��
Proof of Lemma 5.1 Throughout the proof, for any two sequences an, bn , we will use
the notation an � bn whenever | anbn | is upper bounded by a universal constant which
only depends on c1, c2, k.

Note that X , Y are independent, Lemma 6.7 can be employed here to establish
upper bounds on kth central moments of ξ(X , Y ). We distinguish into three cases:

1. Case I: |μ| ≤ c1
2 λh

√
ln n. By Lemma 6.11 and Markov’s inequality,

|EP̃(X)− |μ|| ≤ |EP(X)− |μ|| + E|P(X)− P̃(X)|
= |EP(X)− |μ|| + E|P(X)1(|P(X)| ≥ n2ελh)|

� λh√
ln n

+ E|P(X)|2
n2ελh

� λh√
ln n

+ λh

nε
. (6.11)

Hence,

|Eξ(X , Y )− |μ||
≤ |EP̃(X)− |μ|| + (E|P̃(X)| + E|X |) · P(|Y | ≥ c1λh

√
ln n)

≤ |EP̃(X)− |μ|| + (n2ελh + |μ| + λh) · P
(∣∣∣∣

Y − μ

λh

∣∣∣∣ ≥
c1
2

√
ln n

)

� λh√
ln n

+ λh

nε
+ (n2ελh + c1

2
λh
√
ln n + λh) · n−c21/8 � λh√

ln n
,

where
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(a) the first inequality follows from the triangle inequality;
(b) the second inequality follows from E|X | ≤ μ+ E|X − μ| ≤ μ+ λh ;
(c) the third inequality follows from (6.11), the assumption |μ| ≤ c1

2 λh
√
ln n and

Lemma 6.3;
(d) the last inequality follows from c1 >

√
8k.

As for the k-th central moment, Lemma 6.7 yields

E|ξ(X , Y )− Eξ(X , Y )|k
� E|P̃(X)− EP̃(X)|k + (E||X | − E|X ||k + |EP̃(X)− E|X ||k)
· P(|Y | ≥ c1λh

√
ln n)

� E|P̃(X)|k +
(
λkh + (n2ελh + |μ| + λh)

k
)
· n−c21/8 � (λhn

2ε)k,

where the second inequality follows from the triangle inequality, Lemma 6.12 and
|EP̃(X)− E|X || ≤ |EP̃(X)| + |μ| + E|X − μ| ≤ n2ελh + |μ| + λh .

2. Case II: c1
2 λh

√
ln n < |μ| < 2c1λh

√
ln n. For the bias bound, we employ the

triangle inequality, (6.11) and Lemma 6.12 to obtain

|Eξ(X , Y )− |μ|| ≤ |EP̃(X)− |μ|| + |E|X | − |μ||
� λh√

ln n
+ λh

nε
+ λh

ln n
· n−c21/8 � λh√

ln n
.

As for the k-th central moment, by Lemma 6.7 we have

E|ξ(X , Y )− Eξ(X , Y )|k
� E|P̃(X)− EP̃(X)|k + E||X | − E|X ||k + |EP̃(X)− E|X ||k
� E|P̃(X)|k + E||X | − E|X ||k + |EP̃(X)− |μ||k + |E|X | − |μ||k

� (λhn
2ε)k + λkh +

(
λh√
ln n

+ λh

nε

)k

+
(

λh√
ln n

· n−c21/8
)k

� (λhn
2ε)k,

where the third inequality follows from Lemma 6.12 and (6.11).
3. Case III: |μ| ≥ 2c1λh

√
ln n. By Lemma 6.12 and Lemma 6.3, the bias bound is

given by

|Eξ(X , Y )− |μ|| ≤ |E|X | − |μ|| + (E|X | + E|P̃(X)|) · P(|Y | ≤ c1λh
√
ln n)

≤ |E|X | − |μ|| + (E|X | + E|P̃(X)|) · P
(∣∣∣∣

Y − μ

λh

∣∣∣∣ ≥
|μ|
2λh

)

� λh√
ln n

· n−c21/8 + (|μ| + λh + λhn
2ε) · exp(− μ2

8λ2h
) � λh√

ln n
,
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where the last inequality follows from c1 >
√
8k and

sup
|μ|≥2c1λh

√
ln n

|μ| exp
(
− μ2

8λ2h

)
� 1

n
.

By Lemmas 6.3, 6.7 and 6.12, the k-th central moment can be upper bounded as

E|ξ(X , Y )− Eξ(X , Y )|k
� E(|X | − E|X |)k + (E|P̃(X)− EP̃(X)|k + |E|X | − EP̃(X)|k)
· P(|Y | ≤ c1λh

√
ln n)

� λkh + ((λhn
2ε)k + (|μ| + λh + λhn

2ε)k) · exp
(
− μ2

8λ2h

)
� λkh,

where again the last step follows from taking supremum over |μ| ≥ 2c1λh
√
ln n.

Combining these three cases completes the proof of the lemma. ��

6.2 Proof of Lemma 5.2

The proof of Lemma 5.2 follows in turn from sequence of lemmas. We first consider
the case where | fh(x)| is small for which the next lemma is crucial.

Lemma 6.13 Let |μ| ≤ 2c1λh
√
ln n, and X ∼ N (μ, λ2h). Then for c2 ln n ≥ 1, 4c21 ≥

c2, the bias and variance of Pr (X) in estimating |μ|r can be upper bounded as

|EPr (X)− |μ|r | ≤ βr ·
(

2c1λh
c2
√
ln n

)r
,

Var(Pr (X)) ≤ 27c2 ln n+2c22(ln n)2 · (2c1λh
√
ln n)2r ,

where the constant βr appears in Lemma 6.2.

Proof By Lemma 6.1 we know that

EPr (X) =
K∑

k=0
g(r)
K ,k(2c1λh

√
ln n)r−k · μk .

By Lemma 6.2, we have

sup
x∈[−1,1]

∣∣∣∣∣
K∑

k=0
g(r)
K ,k x

k − |x |r
∣∣∣∣∣ ≤

βr

K r
.
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By a variable substitution x �→ μ

2c1λh
√
ln n

, we obtain

sup
|μ|≤2c1λh

√
ln n

∣∣∣∣∣
K∑

k=0
g(r)
K ,k(2c1λh

√
ln n)r−k · μk − |μ|r

∣∣∣∣∣ ≤ βr ·
(
2c1λh

√
ln n

K

)r

.

Hence, the bias of Pr (X) is upper bounded by

|EPr (X)− |μ|r | ≤ βr ·
(
2c1λh

√
ln n

K

)r

= βr ·
(

2c1λh
c2
√
ln n

)r
,

as desired.
As for the variance, first Lemma 6.5 tells us

|gK ,k | ≤ 23K , k = 0, 1, . . . , K .

Hence, with the help of Lemma 6.1, we know that

Var(Pr (X)) ≤ E[Pr (X)2]

≤ (K + 1)
K∑

k=0
|g(r)

K ,k |2(2c1λh
√
ln n)2(r−k) · λ2kh E

[
Hk(

X

λh
)2
]

≤ 26K+1K
K∑

k=0
(2c1λh

√
ln n)2(r−k) · λ2kh [2(2c1

√
ln n)2]k

≤ 27K+1K
K∑

k=0
(2c1λh

√
ln n)2r

≤ 27K+2K 2(2c1λh
√
ln n)2r ,

where we have used the fact that k ≤ K ≤ (2c1
√
ln n)2. ��

Next we analyze the “smooth” regime where | fh(x)| is large. If fh(x) > 0, the
Taylor expansion based estimator Sλh ( f̃h,1(x), f̃h,2(x)) is analyzed in detail in the
following lemma. The analysis of the estimator Sλh (− f̃h,1(x),− f̃h,2(x)) in the case
fh(x) < 0 then follows by symmetry. Subsequently, we can take into account the
sample splitting approach, and following the same approach as of the proof of Lemma
5.1 one can complete the proof of Lemma 5.2. We omit the details.

Lemma 6.14 Let μ ≥ c1
2 λh

√
ln n, k ≥ 2 be any integer, and X1, X2 ∼ N (μ, λ2h) be

independent. The bias and k-th central moment of Sλh (X1, X2) in estimating μr can
be upper bounded as

|ESλh (X1, X2)− μr | ≤ λrh(
√
ln n)r−R−1 + (λh

√
ln n)r n−c21/32,

E|Sλh (X1, X2)− ESλh (X1, X2)|k ≤ C(r , k)λkhμ
(r−1)k,
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where C(r , k) > 0 is a universal constant depending only on r , k and c1. In particular,
for k = 2 we have

Var(Sλh (X1, X2)) ≤ C(r , 2)λ2hμ
2r−2.

Proof Throughout the proof we use the notation an � bn to show that | anbn | is upper
bounded by a universal constant which only depends on c1, k and r .

First we analyze the bias. By Lemma 6.1 and independence of X1 and X2,

ESλh (X1, X2)

= E

⎡
⎣1(X1 ≥ c1

4
λh
√
ln n) ·

R∑
k=0

ak X
r−k
1

k∑
j=0

(
k

j

)
EX2

(
λ
j
h Hj (

X2

λh
)

)
(−X1)

k− j

⎤
⎦

= E

⎡
⎣1(X1 ≥ c1

4
λh
√
ln n) ·

R∑
k=0

ak X
r−k
1

k∑
j=0

(
k

j

)
μ j (−X1)

k− j

⎤
⎦

= E

[
1(X1 ≥ c1

4
λh
√
ln n) ·

R∑
k=0

ak X
r−k
1 (μ− X1)

k

]
,

where ak � r(r−1)···(r−k+1)
k! is the Taylor coefficient. Note that by the Taylor expansion

with Lagrange remainder term, we have

μr −
R∑

k=0
ak X

r−k
1 (μ− X1)

k = aR+1ξ r−R−1(μ− X1)
R+1,

for some ξ lying between X1 and μ. In view of μ ≥ c1
2 λh

√
ln n and X1 ≥ c1

4 λh
√
ln n,

we conclude that ξ ≥ c1
4 λh

√
ln n. Hence, the triangle inequality yields

|ESλh (X1, X2)− μr |
≤ μr

P

(
X1 <

c1
4

λh
√
ln n
)

+ E

∣∣∣∣∣1
(
X1 ≥ c1

4
λh
√
ln n
)
·
(

R∑
k=0

ak X
r−k
1 (μ− X1)

k − μk

)∣∣∣∣∣

≤ μr
P

(
|X1 − μ| ≥ μ

2

)

+ sup
ξ≥ c1

4 λh
√
ln n

E|1
(
X1 ≥ c1

4
λh
√
ln n
)
· aR+1ξ r−R−1(μ− X1)

R+1|

≤ 2μr exp

(
− μ2

8λ2h

)
+
(c1
4

λh
√
ln n
)r−R−1 |aR+1| · E|μ− X1|R+1

� (λh
√
ln n)r n−c21/32 + λrh(

√
ln n)r−R−1,
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where we have used Lemma 6.3, r − R − 1 < 0 and

max
μ≥c1λh

√
ln n/2

μr exp

(
− μ2

8λ2h

)
� (λh

√
ln n)r n−c21/32,

E|X1 − μ|k ≤
√
E|X1 − μ|2k � λkh, k = 0, 1, . . . .

This proves the bias bound.
As for the k-th central moment, we may write

Sλ(X1, X2) =
R∑

�=0

�∑
j=0

b j,�ζ jη j ,

where

b j,� � r(r − 1) · · · (r − �+ 1)

�! · (−1)�− j
(

�

j

)
,

ζ j � Xr− j
1 1(X1 ≥ c1

4
λh
√
ln n),

η j � λ
j
h Hj (

X2

λh
).

By independence of X1 and X2,

Sλ(X1, X2)− E[Sλ(X1, X2)] =
R∑

�=0

�∑
j=0

b j,�[(ζ j − E[ζ j ])E[η j ] + ζ j (η j − E[η j ])].

Since the coefficients b j,� do not depend on μ or λh , by the triangle inequality it
suffices to prove that for any j = 0, 1, . . . , R,

A j � E[|ζ j − E[ζ j ]|k] · |E[η j ]|k � λkhμ
(r−1)k, (6.12)

Bj � E[|ζ j |k] · E[|η j − E[η j ]|k] � λkhμ
(r−1)k . (6.13)

For the first term A j , the second inequality of Lemma 6.4 with σ = λh, α = r − j
and c = c1/2 gives

E[|ζ j − E[ζ j ]|k] � λkhμ
(r− j−1)k .

Moreover, Lemma 6.1 gives E[η j ] = μ j , and therefore (6.12) holds.
For the second term Bj , we may assume that j ≥ 1 since B0 = 0. For the k-th

moment of ζ j , the first inequality of Lemma 6.4 with σ = λh, α = r− j and c = c1/2
gives E[|ζ |k] � μ(r− j)k . To upper bound the k-th central moment of η j , we express
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the j-th Hermite polynomial Hj as Hj (x) =∑ j
i=0 ai, j x i , then

η j − E[η j ] =
j∑

i=0
ai, jλ

j−i
h (Xi

2 − E[Xi
2]) =

j∑
i=1

ai, jλ
j−i
h (Xi

2 − E[Xi
2]).

Write X2 = μ+ λh Z , with Z ∼ N (0, 1). Then for i ≥ 1,

Xi
2 − EXi

2 = (μ+ λh Z)i − E(μ+ λh Z)i =
i∑

i ′=1

(
i

i ′

)
μi−i ′λi ′h (Zi ′ − E[Zi ′ ]).

Since all moments of Z are finite, the i ′-th summand has k-th moment � μ(i−i ′)kλi ′kh ,
and the triangle inequality then yields

E|Xi
2 − EXi

2|k �
i∑

i ′=1
μ(i−i ′)kλi ′kh � λkh(μ

(i−1)k + λ
(i−1)k
h ) � λkhμ

(i−1)k,

where the last inequality follows from i ≥ 1 and the assumption λh � μ. Therefore,
by a triangle inequality again,

E[|η j−E[η j ]|k] �
j∑

i=1
λ

( j−i)k
h ·E|Xi

2−EXi
2|k � λkh

j∑
i=1

λ
( j−i)k
h μ(i−1)k � λkhμ

( j−1)k .

Finally, combining the previous upper bounds yields

Bj = E[|ζ j |k] · E[|η j − E[η j ]|k] � μ(r− j)k · λkhμ( j−1)k = λkhμ
(r−1)k,

which gives (6.13). Combining (6.12) and (6.13) completes the proof of the upper
bound for the k-th central moment. ��

6.3 Proof of Lemma 5.7

For the simplicity of the proof notation, we shall assume that J = 1/h is an integer.
The more general proof follows with obvious modifications by working with 
1/h�.
We only provide the proof here for the case when J is an even integer i.e. J = 2L for
some L ≥ 1. The proof for J odd can be obtained similarly.

In particular, we consider the partition of [0, 1] into 2L consecutive subintervals
of length h each and for l = 0, 1, . . . , 2L − 1 denote the lth subinterval by Il i.e.
Il = [(l − 1)h, lh) for l = 0, . . . , 2L − 2 and I2L−1 = [(2L − 1)h, 2Lh]. Let
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I1 =⋃L−1
l=0 I2l and I2 =⋃L−1

l=0 I2l+1. Then

∫ 1

0
(Th(x)− ETh(x)) dx

=
∫

I1
(Th(x)− ETh(x)) dx +

∫

I2
(Th(x)− ETh(x)) dx

= T1 + T2.

Indeed,

E

∣∣∣∣
∫ 1

0
(Th(x)− ETh(x)) dx

∣∣∣∣
k

≤ 2k−1
(
E|T1|k + E|T2|k

)
. (6.14)

We now provide control over E|T1|k . The bound over E|T2|k is similar and combining
them shall yield the desired proof of the lemma. First note that

T1 =
L−1∑
l=0

∫ (2l+1)h

2lh
(Th(x)− ETh(x))dx =

L−1∑
l=0

ξh,l ,

where ξh,l(x) =
∫ (2l+1)h
2lh (Th(x)−ETh(x))dx are independent and zero-mean random

variables for l = 0, . . . , L − 1. Therefore, by Rosenthal’s Inequality (Lemma 6.9) we
have that

E|T1|k = E

∣∣∣∣∣
L−1∑
l=1

ξh,l

∣∣∣∣∣
k

≤ C(k)

⎡
⎣

L−1∑
l=0

E|ξh,l |k +
(
L−1∑
l=0

E|ξh,l |2
)k/2⎤

⎦ . (6.15)

Now, by Jensen’s Inequality on the interval of length h

E|ξh,l |k = E

∣∣∣∣∣
∫ (2l+1)h

2lh
(Th(x)− E(Th(x)))dx

∣∣∣∣∣
k

≤ hk
1

h

∫ (2l+1)h

2lh
E|Th(x)− E(Th(x))|kdx

≤ hk
1

h

∫ (2l+1)h

2lh
C2n

2kε
(
λkrh + λkh | fh(x)|k(r−1)

)
, (6.16)

where the last inequality follows from Lemma 5.1 (for r = 1) and Lemma 5.2 (for
r > 1) with C2 a constant depending on c1, c2, ε, σ, KM , k. Plugging in the bound
(6.16) into (6.15) and subsequently combining with (6.14) completes the proof of
Lemma 5.7.
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6.4 Proof of Lemma 5.5

Let S be the optimal value of the optimization program in (5.13), then the target
is to prove that S = 2Eq−1,K ( f ; I ). We first show that S ≤ 2Eq−1,K ( f ; I ). Let
P(x) = ∑K

k=−q+1 akxk be the best approximating rational function attaining the
approximation error Eq−1,K ( f ; I ), then for any feasible pair of probability measures
(ν0, ν1) in (5.13), the triangle inequality gives

∫
f (x)(ν1(dx)− ν0(dx)) =

∫
( f (x)− P(x))(ν1(dx)− ν0(dx))

≤
∫
| f (x)− P(x)|(ν1(dx)+ ν0(dx))

≤
∫

Eq−1,K ( f ; I )(ν1(dx)+ ν0(dx))

= 2Eq−1,K ( f ; I ).

Consequently, S ≤ 2Eq−1,K ( f ; I ). To show the other inequality, we construct the
probability measures ν0 and ν1 explicitly. Since the interval I does not contain zero,
the functions {x−q+1, x−q+2, . . . , xK } inC(I ) form a Chebyshev system [12, Section
3.3, Example 2], and the Chebyshev alternation theorem [12, Chapter 3, Theorem
5.1] shows that there exist a rational function P(x) = ∑K

k=−q+1 akxk and points

x0 < x1 < · · · < xq+K in I with f (xi ) − P(xi ) = ε · (−1)i Eq−1,K ( f ; I ) for all
i = 0, 1, . . . , q + K , and ε ∈ {±1}. Construct the signed measure ν supported on
{x0, x1, . . . , xq+K } with

ν({xi }) = c0 · xq−1i

∏
j �=i

1

xi − x j
,

where c0 ∈ R is a scaling factor such that |ν|(R) = 1 and ν({x0}) has the same sign
as ε. Recall the following identity from the Lagrange interpolation: for all x ∈ R,

q+K∑
i=0

xq+K
i

∏
j �=i

x − x j
xi − x j

= xq+K .

Hence, for each k = −q + 1, . . . , K , comparing the coefficients of xk+q−1 on both
sides gives

∫
xkν(dx) = c0 ·

q+K∑
i=0

xk+q−1i

∏
j �=i

1

xi − x j
= 0.
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Moreover, for each i = 0, 1, . . . , q + K , the difference f (xi ) − P(xi ) has the same
sign as ν({xi }), for the signs of ν({xi }) are also alternating. Therefore,

∫
f (x)ν(dx) =

∫
( f (x)− P(x))ν(dx)+

∫
P(x)ν(dx)

=
∫
| f (x)− P(x)||ν|(dx)+ 0

= Eq−1,K ( f ; I ) · |ν|(R) = Eq−1,K ( f ; I ).

Now the proof is completed by considering the Jordan decomposition of ν = ν+−ν−
and choosing ν0 = 2ν+, ν1 = 2ν−.

6.5 Proof of Lemma 5.6

We need some notions and results from approximation theory first. For functions
defined on [0, 1], define the r -th order Ditzian–Totik modulus of smoothness by [13]

ωr
ϕ( f , t)∞ � sup

0<h≤t
‖Δr

hϕ(x) f (x)‖∞,

where ϕ(x) �
√
x(1− x). This quantity is related to the polynomial approximation

error via the following lemma.

Lemma 6.15 [13] For an integer u > 0 and n > u, there exists some constant Mu

which depends on u but not on t ∈ (0, 1) nor f , such that

E0,n( f ; [0, 1]) ≤ Muω
u
ϕ

(
f ,

1

n

)

∞
,

Mu

nu

n∑
k=0

(k + 1)u−1E0,k( f ; [0, 1]) ≥ ωu
ϕ

(
f ,

1

n

)

∞
.

Take u = 1, the second inequality together with themonotonicity of E0,n( f ; [0, 1])
in n yields

E0,n( f ; [0, 1]) ≥ 1

Dn

Dn∑
k=n

E0,k( f ; [0, 1])

≥ ω1
ϕ

(
f , 1

Dn

)
∞

M1
− 1

Dn

n−1∑
k=0

E0,k( f ; [0, 1])

≥ ω1
ϕ

(
f , 1

Dn

)
∞

M1
− E0,0( f ; [0, 1])

D
,

123



On estimation of Lr -norms in Gaussian white noise models 1291

where D ≥ 1 is a universal constant to be specified later. Note that

Eq−1,n( fq; I ) = inf
a1,...,aq−1

E0,n

⎛
⎝x−q+

r
2 +

q−1∑
k=1

ak
xk
; I
⎞
⎠ ,

it suffices to obtain a lower bound independent of a1, . . . , aq−1 for the polyno-

mial approximation error E0,n(x−q+r/2 +∑q−1
k=1 akx−k; [cn−2, 1]). Define g(x) =

x−q+r/2+∑q−1
k=1 akx−k , and let g̃(x) = g(cn−2+ (1− cn−2)x) be defined on [0, 1].

We distinguish into two cases.
First we consider the case where E0,0(g̃; [0, 1]) ≤ C1n2q−r for some fixed constant

C1 > 2c−q+r/2. By the definition of ω1
ϕ( f , t)∞, there exists some universal constants

0 < A < B (which only depend on c) such that

ω1
ϕ(g̃,

1

Dn
)∞ ≥ sup

t∈[A,B]

∣∣∣∣g
(

t + 1

(Dn)2

)
− g

(
t

(Dn)2

)∣∣∣∣

= (Dn)2q−r sup
t∈[A,B]

∣∣∣∣∣∣
hq− r

2
(t)+

q−1∑
k=1

(Dn)2k−2q+r akhk(t)

∣∣∣∣∣∣

≥ (Dn)2q−r inf
b1,...,bq−1

sup
t∈[A,B]

∣∣∣∣∣∣
hq− r

2
(t)+

q−1∑
k=1

bkhk(t)

∣∣∣∣∣∣
,

where
hk(t) � (t + 1)−k − t−k .

Since r is not even, it is straightforward to verify that the functions h1, . . . , hq−1, hq− r
2

is linearly independent in the interval [A, B], we conclude that

ω1
ϕ(g̃,

1

Dn
)∞ ≥ C2(Dn)2q−r ,

where the constantC2 > 0 only depends on r , q, A, B but not on a1, . . . , aq−1. Hence,
in this case we have

E0,n(g; [cn−2, 1]) ≥ C2(Dn)2q−r

M1
− C1n2q−r

D
, (6.17)

where none of the constant depends on a1, . . . , aq−1.
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Second we consider the case where E0,0(g̃; [0, 1]) > C1n2q−r . Since 2q − r > 0,
we have

E0,0(g̃; [0, 1]) ≤ max
x∈[cn−2,1]

∣∣∣∣∣∣
x−q+r/2 +

q−1∑
k=1

akx
−k
∣∣∣∣∣∣

≤ c−q+r/2n2q−r +
q−1∑
k=1
|ak |c−kn2k

≤ 1

2
E0,0(g̃; [0, 1])+

q−1∑
k=1
|ak |c−kn2k,

and thus there exists some j ∈ {1, . . . , q − 1} such that

|a j |n2 j ≥ C3E0,0(g̃; [0, 1]),

where C3 is a numerical constant which only depends on r , q and c. Defining the
interval [A, B] as in the first case, we have

ω1
ϕ(g̃,

1

Dn
)∞ ≥ sup

t∈[A,B]

∣∣∣∣g
(

t + 1

(Dn)2

)
− g

(
t

(Dn)2

)∣∣∣∣

= |a j |(Dn)2 j sup
t∈[A,B]

∣∣∣∣∣∣
(Dn)2q−r−2 j

a j
hq− r

2
(t)+

q−1∑
k=1

(Dn)2k−2 j ak
a j

hk(t)

∣∣∣∣∣∣
≥ |a j |(Dn)2 j inf

b1,...,bq−1
sup

t∈[A,B]
|h j (t)+ b j hq− r

2
(t)+

∑
k �= j

bkhk(t)|

≥ C4|a j |(Dn)2 j

≥ C3C4D
2 j E0,0(g̃; [0, 1])

≥ C3C4E0,0(g̃; [0, 1]),

where the numerical constant C4 > 0 (which only depends on r , q, A, B but
not on a1, . . . , aq−1) again follows from the linear independence of the functions
hq− r

2
, h1, . . . , hq−1. Now in this case we have

E0,n(g; [cn−2, 1]) ≥
(
C3C4

M1
− 1

D

)
· E0,0(g̃; [0, 1])

≥ C1

(
C3C4

M1
− 1

D

)
· n2q−r , (6.18)
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where again none of the constants depends on a1, . . . , aq−1. Hence, by choosing D
large enough, by (6.17) and (6.18) we have

Eq,n(x
−q+r/2; [cn−2, 1]) = inf

a1,...,aq−1
E0,n

⎛
⎝x−q+r/2 +

q−1∑
k=1

ak
xk
; [cn−2, 1]

⎞
⎠

≥ c′n2q−r ,

which is the desired result.
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