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ABSTRACT

The main purpose of this paper is to illustrate the application of
causal inference method to administrative data and the challenges
of such application. We illustrate by applying Bayesian networks
method to 311 data from Miami-Dade County, Florida (USA). The
311 centers provide non-emergency services to residents. The 311
data are large and granular. We aim to explore the equity issues and
biases that might exist in this particular type of service requests.
As a case study, the relationship between population characteris-
tics (independent variables) and request volume and completion
time (dependent variables) is examined to identify the disparities, if
any, from the observational data. The empirical analysis shows that
there are no biases in services provided to any specific demographic,
socioeconomic, or geographical groups. However, the administra-
tive data do have various challenges for inferring causality due to
missing or impure data, inadequacy, and latent confounders. The
precautions of applying causal techniques to analyzing administra-
tive data like 311 are discussed.
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1 INTRODUCTION

Innovations in e-governance have enabled citizens and government
agencies to join forces in improving the quality of services and
citizen satisfaction. The 311 contact centers are examples of such
innovative systems. The 311 centers are organizations within local
governments to field non-emergency service requests. They were
enabled by a 1997 Federal Communications Commission policy to
reduce the volume of non-emergency calls to 911 centers. The 311
centers have become a hub for local services, fielding both informa-
tion and service requests from residents. A citizen can report issue,
complaints, or requests for services related to local government.
Examples of such service requests include: tree trimming request
on a blocked sidewalk, broken stoplight, trash pickup requests, and
many more depending on the locality. The requests can be made via
mobile apps, social media, online chats, emails and text messages.
The service requests are routed to the relevant department through
a 311 Customer Relationship Management (311/CRM) system. The
data recorded through the 311 CRM system are quite large and
granular, which include details about each service request call’s
characteristics (e.g. location, time, etc.). As the 311 centers gained
popularity over the years, more than 100 cities have implemented
them ( [42]). With open data movement, many cities have made
their 311 data public (Open 311) in an effort toward greater trans-
parency. The 311 data are thus big administrative data sets from
local governments. Analysis of the 311 data is useful for policy
makers and analysts to gain insights into the nature and demand
for services in the local governments.

The purpose of this paper is to apply causal inference methods
to the 311 administrative data to gain further policy insights into
how local governments respond to service requests, how engaging
a particular community is, and to examine if government service
provision is uniform across different demographic, socio-economic,
and geographical characteristics. With the ever-growing publicly
available administrative data like the 311, it is now feasible to seek
answers from the data rather than relying on citizen surveys. The
availability of public data has also enabled application of sophisti-
cated models to better understand the causal factors for designing
better policies that are effective for a community. In order to make
new policy decisions, or figure out the effectiveness of existing poli-
cies, it is important to understand the underlying causal community
characteristics. Extracting the key characteristics from administra-
tive data provides useful information to policy makers.


https://doi.org/10.1145/3463677.3463717
https://doi.org/10.1145/3463677.3463717

DG.0’21, June 9-11, 2021, Omaha, NE, USA

The ability to infer causal relationships between variables in a
system is an important scientific endeavor. Whereas traditional re-
gression models establish correlations, recent advances in machine
learning approaches have enabled us to develop causal explanatory
models. The causal Bayesian network (BN) is one such powerful
model, which is easy to understand and reasonably interpretable.
BNs are probabilistic frameworks, which are useful for establish-
ing generic causality and captures more complex, and often, more
insightful relationships between variables than a traditional model.
The most important characteristic of BNs is that they provide a way
to distinguish between direct and indirect dependencies from the
observations [41]. The theory of Bayesian networks (BNs) provides
the foundation for us to explore such dependencies. Moreover, these
models can simultaneously represent statistically significant knowl-
edge (learned from data) and domain expertise, therefore being the
intuitive choice for our causal analysis instead of regression anal-
ysis. BNs have been applied successfully in many different fields,
such as, gene expressions analysis [15, 36, 49], medical services
[4, 29], risk assessment and safety systems [5, 6, 25], epidemiology
[16, 18, 31, 34], social sciences [20, 33], econometrics [26, 43].

We focus on applying the BN to 311 data from one local govern-
ment: Miami-Dade County in the United States. The County was
among the early implementers of a 311 call center in the country.
The County’s 311 system is operational for all of the unincorporated
part of the county (i.e. those areas which have not been incorpo-
rated as a city) and most of the incorporated municipalities. For
example, the City of Miami, which is located within the County,
is also served by the 311 center. Our selection of the County to
illustrate the causal model is appropriate since the 311 system is
multi-jurisdictional and is among the large well established systems
in the country. The 311 center has fielded over 200,000 calls every
year in the last five years.

The rest of the paper is structured as follows. Section 2 provides
a background of the paper, highlighting the recent related literature.
Section 3 outlines the fundamental aspects of Bayesian Networks.
Section 4 shows the application of BN to the Miami-Dade 311 cen-
ter data. Section 5 highlights the challenges of applying the BN
framework. The Section 6 concludes with the major lessons from
the study.

2 BACKGROUND

Local governments (such as cities, counties, school districts etc.)
provide direct public services. They are closest to the residents in
the jurisdiction to field any inquiries and request for services. Tra-
ditionally, residents could request these services only by contacting
the appropriate local government agency or department. For ex-
ample, a resident would need to call the public works department
directly to report a pothole. Often, residents would not know which
agency should be contacted for obtaining a service. Consequently,
the local government services would be available to residents who
have the means and the contacts to local government agencies.
Inequities in local government services (such as street maintenance,
lighting, trash pickup, etc.) have been well documented. Wealthy ar-
eas get better services as they have better political contacts. Citizen
engagement and satisfaction measures were lopsided substantially
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with the inequitable distribution of government services [45]. Stud-
ies show that the citizens’ perceptions and satisfaction toward their
government are correlated with accessibility of public services.

With the advent of 311 call centers, any person can call the
local government for a service. The person does not need to know
which agency fulfills a particular service, and how to contact the
agency. The service request is routed at the back end of the 311
CRM system to the appropriate department or jurisdiction. The 311
centers thus arguably democratize the access to local government
services, whereby anybody could request services directly without
having the luxury of prior political contact. Residents could make
the service requests through multiple methods-over the phone,
online (through an app or website), or social media. Although the
311 expands residents’ access to local government agencies through
a one-stop method, residents would have to be actually aware of
the 311 system’s existence and make the call. Thus, the empirical
question of who calls the 311 center and whether the calls are
equitable across different demographic, socio-economic groups, and
geographical areas remains an empirical question. On the flip side,
another important question is that of how equitably the government
agencies provide the services. Even though wealthy and low-income
areas may make the service requests, there could be inequities in
fulfilling the requests (and their efficiency in doing so) between
wealthy and poorer areas for various reasons.

A key underlying assumption in the above empirical questions
is that the demographic, socio-economic, and geographical factors
drive the service requests and their fulfilment. That is, there is a
causal assumption of the factors which drive the service requests
and their performance of how efficiently the requests are complied
with. The problem with such an assumption is that we do not know
the direction of causality. Although not the classical chicken-egg
problem of which came first, there are inherent problems with
assuming the causal directions. We would also need to be beware of
reverse causality. The causal assumptions are especially problematic
for policy-making in social science since these assumptions drive
how future investments are made and which groups and areas
should be prioritized for obtaining public services.

The above discussion leads to two crucial research questions.
The first question is: Are the service requests equitably distributed
through demographic groups, socio-economic levels, and geograph-
ical areas? This is a question from the demand side, looking at
who makes the 311 service requests. The second question is: Are
the service requests equitably fulfilled across the groups? This is
a question from the perspective of the local government agencies
that oversee the service requests. Extant studies have investigated
facets of these questions using traditional qualitative and quantita-
tive methods [7-9, 12]. Some of the studies performed hypothesis
testing using survey data [8, 12]. One of these papers examines
these effects on a wide range of responses, from evacuation timing
and emotional support to housing and job conditions and plans
to return to pre-storm communities, using survey data from over
1200 Hurricane Katrina survivors. The findings show significant
ethnic and socioeconomic disparities. In [7], the authors look at
service requests made to the City of Boston over the course of a
year (2010-2011) and use geospatial analysis and regression analysis
to look at potential inequities in service requests based on race, ed-
ucation, and income. The results show that there is no concern that
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311 systems (non-emergency call centers) would favor one ethnic
group over another. They included race/ethnicity, median income,
education, home ownership, and the population as independent
variables. A 15-city review of 311 systems (non-emergency service
requests made by city residents) found no systemic disparities in
how cities respond that would suggest a bias toward minorities
and lower-income residents including the independent variables
like income, race/ethnicity, and education [9]. The results are not
consistent in all of 15 cities, with some showing no bias and oth-
ers showing it. Based on in-depth interviews with Philadelphia
City government officials and managers responsible for creating
and operating the 311 center, Nam [30] and Hartmann et all. [19],
argue that the program is resulting in a more efficient, effective,
transparent, and collaborative city government.

Open311 has allowed for new opportunities to gain insights from
the observations quantitatively [27]. Open 311 is a standardized
protocol which allows for commensurate measurement of 311 ser-
vice requests across different cities. Predictive models have been
applied to extract useful insights from 311 data [17, 23, 46-48] of
different cities, i.e., New York City, Chicago, Philadelphia, etc. These
models present analytical frameworks to study overall or particular
requests to help better resource allocation and reduce the response
time. These studies have shed light on the key features that affect
the different types of requests. Different approaches have also been
applied to improve service quality in terms of responsiveness at
the time of disasters [28, 50]. Elliott et al.’s study of responses after
Hurricane Katrina revealed strong biases in providing services by
government[12]. Xu et al’s study of 311 service requests after Hur-
ricane Michael in the City of Tallahassee, Florida, also show similar
biases. To date, however, we are not aware of any study that has
applied causal learning algorithms to administrative data like 311.
The application is important to understand the causal factors that
can have substantive policy impacts on how resources should be
allocated based on residents’ service requests.

It is in the above context that we are taking advantage of recent
advances in machine learning to apply causal learning algorithms
to the 311 administrative data set. Since this is among the first
such studies to apply the causal methods, this paper is exploratory
in nature. Our aim is to examine the extent to which the causal
methods are applicable to administrative data like 311 for inferring
causal relationships in a substantive way. In this process, we also
highlight the challenges that arose in the application of causal
methods to the administrative data. As we explain in more detail
below, we chose the Bayesian networks method to understand the
causal relations.

3 CAUSAL METHOD: BAYESIAN NETWORK

Bayesian Networks (BNs), a class of Probabilistic Graphical Models
(PGMs) [22, 32], can be represented as a Directed Acyclic Graph
(DAG) along with a conditional probability table. The DAG is de-
noted by G = (V, A), where V is a set of nodes (or vertices) and A is
a set of directed edges connecting one node to another. Each node
in V represents a random variable from a set X = {X;,i = 1,...,n}.
A directed edge A between two nodes reflects a dependency be-
tween them. If (v;,vj) is a directed edge in G, then v; is said to
be a parent of vj. The conditional probability table describes the
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marginal distribution of a node v; given the joint distribution of its
parents. Each random variable, X; follows a probability distribution
P(X;), which may be discrete or continuous. The Bayesian network
describes the relationships between these distributions. The joint
probability distribution, P(X) is the product of all the probability
distributions for each random variable, X;. The local probability
distributions, P(X;), satisfy the Markov property , which states that
every random variable X; is dependent only on its parents (i.e., set
of vertices where there exists a directed edge from those to the

node) [24]:

n

P(X) = ]_[ P(X;|Parents(X;)) 1)

i=1
The above joint probability distribution can be simplified if the BN
can be made sparser by eliminating edges. In particular, if two vari-
ables are independent or conditionally independent (conditioned
on other variables) of each other, then the corresponding edge can
be eliminated. Note that if all the variables are independent of each
other, then the joint probability distribution is simply the product
of the individual distributions, reflecting an empty BN. Also, note
that BNs are acyclic since the structure would fail to generate a

cause-effect relationship if the cycles are allowed in the network.

The task of fitting a BN is called a “model learning”. It involves

two steps [38, 39] as follows:

e Structure learning: learning the structure of the network
from the data;

e Parameter learning: estimation of the local probability dis-
tribution implied by the structure learned.

Given a dataset D, if the parameters of the global distribution is
denoted by 6, the model, denoted by M, learning can be defined as
follows for the graph G:

P(M|D) = P(G,0|D) =
| ———
model learning

P(G|D) P(6|G, D)
N—— e e
structure learning parameter learning

(2)

Here our focus is on Structure learning only. The objective is to
find a network (BN) that will encode all the conditional depen-
dencies from the data. If the edges represent relationships that
are believed to be causal, we have a causal BN. Structure learning
approaches can be grouped into three broad categories: constraint-
based, score-based and hybrid. Constraint-based algorithms utilize
the probabilistic relations defined by the Markov property of BN,
based on the Inductive Causation (IC) [44] algorithm, which pro-
vides a theoretical framework to learn the BN using conditional
independence (CI) test. The algorithm might not resolve all the direc-
tional dependencies from the data; hence, may provide a partially
directed acyclic graph (PDAG) [21]. A constraint-based IC approach
was proposed by Sprites et al. to learn the BN, [40]. This approach
is better suited than score-based methods as it generates network
with fewer false positives, resulting in a conservative structure in
terms of number of edges; therefore being the intuitive choice for
our causal analysis. PC-Stable is an improved order-independent
version of IC algorithm [10, 11].

Next we briefly describe the key features of the PC-Stable al-
gorithm. The first step in learning the structure using PC-Stable
is to find the pairs of connected nodes in the network. This step
starts from a complete undirected graph and eliminates edges using
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conditional independence tests. This results in a skeleton structure.
A 3-node DAG is the smallest structure that can be causally inferred.
The basic idea is to use the Conditional Independence (CI) test to
distinguish between the three possible 3-node DAG structures [44].
Also, when the acyclic assumption is relaxed, the structure would
fail to generate a cause-effect relationship. The next step is to iden-
tify useful substructures, one of which is an important structure
called a v-structure. Depending on the conditional dependencies
among between three random variables X;, X, X, the useful sub-
structures can be categorized into three different types, as shown
in Figure 1.

e Causal chain: This describes variables that affect each other
sequentially. In a BN G, for any three nodes v;, v, v, rep-
resenting variables X;, Xj, X, if there exist edges v;, v; and
vj, Vg, and the edges are oriented as follows: v; — vj — vy,
then it is called a causal chain. This represents the case when
once Xj is known, X; and X} become independent of each
other.

e Common cause: This represents the case where two variables
are impacted by a third variable. The causal structure for
this case is as follows: v; < vj; — v}. Here, as in the case
of the causal chain, once X is known X; and X} become
independent of each other.

e Common effect: If the edges are oriented as follows: v; —
vj « v, then it is called a v-structure. The variable X is
considered to be a “common effect”. Here, X; and X are
independent of each other, but become dependent when
conditioned on Xj. This property makes the v-structure dis-
tinguishable from the other two with the help of a simple CI
test.

As mentioned above, causal chains and common causes are not
distinguishable with CI tests. As a result, we start by identifying
the v-structures and then orient the remaining edges of skeleton to
make the network acyclic and consistent. Generally, all the edges
in the graph are directed, but some algorithms leave some edges as
undirected to reflect the uncertainty in determining the direction
of the relationship.

Finally, the next step of Bayesian learning is parameter learn-
ing, where it does regression over the variables learned from the
structure and can be used for prediction. Thus, the approach used
in this paper does use regression, but only on specific subsets sug-
gested by the structure learning step. Note that standard regression
techniques do not have the ability to determine the subset of vari-
ables on which to apply regression. Our primary focus is to infer
the causal structure from the observational data and find the sub-
set of variables using Conditional Independence that affects the
dependent variables from a set of independent variables.

4 CAUSAL INFERENCE

4.1 Dataset

4.1.1 311 dataset. For the analytics presented here, we downloaded
the data from Miami-Dade County’s open data portal [2]. The data
have been made publicly available to promote quick access and
transparency, thus enabling different case studies with the aim
of understanding the community better. The dataset includes the
service requests from 2013 to present made by the community
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member to the 311 center. The requests were made in one of many
ways i.e., through a phone call, app, or website. The breakdown
of the volumes of the different types of service requests, mainly
dominated by trash pickup requests, is shown in Figure 2.

Each request record contains key information regarding the
type of request, timestamp, and exact GPS location from where the
requests were made. This data was combined with the TIGER/Line
files and shapefiles from the U.S. Census Bureau for the county,
thus associating each request with the the geographic entity codes
(GEOIDs) at two different geographical granularity levels, i.e., block
group and Census tract. The dataset has the Zip code level. We
also us the timestamp to calculate the service completion time
(number of days taken to complete servicing a request since its
initiation). We exclude the observation for which either the request
was never closed or the completion time was negative (suggesting
a recording error on the timestamp). The services requested were
divided into four broad types: requests, complaints, issues, and
others, based on a keyword search on the issue type. We focused
our analysis on the records labeled as “Requests”. Records labeled
as “complaints” or “issues” typically have longer completion times.
Then, we aggregated the total number of requests and the average
completion time for each geographic unit. There were 520 and 1, 595
entries in the dataset for the most recent year. Requests aggregated
at the Zip Code level were excluded from further analysis since
the number of different zip codes in Miami-Dade was too small for
worthwhile analytics (79 entries for the latest year).

4.1.2  Census dataset. The 311 dataset does not contain the identity
of the person who requested the services. As a result, we combined
the geocoded data with the available demographic information for
the geographical unit. The demographic information is collected
from the 5-year estimates of the American Community Survey
(ACS). We conducted analyses of the data at both the Census tract
and the block group level to understand the relationships between
the measured variables. For this purpose, we included the percent-
age of the demographic and socioeconomic condition variables from
ACS for the year 2013-2019. The average completion time and total
request volume (aggregated at the appropriate geographic unit)
were used as the target variables. The independent variables con-
sidered for this purpose were housing conditions (owner-occupied
vs rentals, single unit vs multiple units), race (black vs white), eth-
nicity (Hispanic vs non-Hispanic), gender distribution (male vs
female), and economic condition (unemployed vs employed and be-
low poverty vs above poverty). The details of the nine independent
and dependent variables are described in Table 2.

Note that for each type, only one variable was retained. For ex-
ample, female population was retained for gender, since the male
population would be the remainder. Inclusion of both variables
introduced extraneous correlations into the network, making infer-
encing more error-prone and noisy. As another example, the total
population is mostly composed of black and white populations.

4.2 Signed Bayesian Network

To generate the Signed Causal Bayesian Network (sBN) [35], we
follow a two-step approach. First, we apply the PC-stable algo-
rithm, a constraint-based BN learning approach from the bnlearn
R package [37]. This generates an inferred causal network. All
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Figure 1: Causal structures among three nodes.

Table 1: Miami-Dade county 311 data description

No. of records

Avg. Completion Time

Block group Census tract Zip code
Total requests 860,254 (41.15%) 6.82 7.10 8.60
Total complaints 133,035 (6.36%) 8.57 8.99 9.43
Total issues 110,023 (5.26%) 14.15 14.78 15.32
Others 986,736 (47.2%) 24.02 25.31 27.60
Total 2,090,177 13.29 18.40 18.95
Table 2: Target and independent variable’s statistics
Variable name Block group Census tract Zip code
Mean SD Mean SD Mean SD
Volume 114 111 293 309 1627 1853
Completion Time 6.82 5.34 6.55 5.97 8.60 7.69
Owner-occupied units 0.57  0.26 | 0.59 0.23 0.52  0.20
One unit 0.59 0.35 0.49 0.32 0.47 0.29
Female population 0.51  0.06 | 051 0.04 | 051 0.04
Black population 020 028 | 019 026 | 017 0.21
Hispanic population 0.62 0.28 | 0.64 0.26 056  0.25
Unemployed population 042  0.11 | 042  0.09 | 044  0.07
Poor population [3] 0.15 0.12 | 016 0.10 | 0.14  0.08

the variables are represented as nodes in the network, and each
edge is believed to represent a causal dependency. As suggested
by Sazal et al. [35], we augment the edges of the network with the
help of a co-occurrence network (CoNs) [13]. In CoNs, the edges are
colored using the Pearson correlation coefficient between the vari-
ables. Green (red) colored edge means the correlation between the
variable represented by the endpoints is positive (negative, resp.).
Finally, the weights of the edges are determined by the bootstrap
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strength score [14]. This counts the fraction of times the edge ap-
pears in the network out of 100 runs. This augmented network is
called Signed Bayesian Network (sBN).

4.2.1 Block group: The first set of analyses was performed on block
level data. The variable representing the volume of requests was
categorized as low, medium, or high. The levels were determined
using a histogram of values, which suggested a trimodal distribu-
tion, as shown in Figure 3. Finally, we use the one-hot encoding for
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Figure 2: Distribution of types of service requests for Miami-
Dade county.

the three different categories. No transformation was performed
on the other target variable (completion time) since the variable
exhibited a unimodal distribution after the outliers were excluded.
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Figure 3: Request Volume histogram (Block group level);
Left: Numerical, Right: Categorical.

There were a total of 15 directed edges in the network. The edges
were augmented in terms of their color and thickness as described
earlier. The target variables had no incoming edges suggesting that
none of the variables influenced the volume or completion time.
The edge between Completion time and Low volume is undirected.
There were two undirected edges between the target and inde-
pendent variables, one between the Medium Volume and Female
population node, and another between Low volume and Owner-
occupied units. There were a total of 3 directed edges from the
target variables to independent variables. These edges do not sup-
port our intuition since, in general, we do not expect an edge from
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Figure 4: Signed Bayesian Networks for Block group data.

the target variables to the independent variables. These spurious
relationships may be caused by the presence of latent variables
(confounders) as described in Section 5. A confounder is a variable
that is either not measured or not analyzed, but connects two vari-
ables that are connected by an edge. Knowledge of confounders
can help correct the dependencies between two variables. These
spurious edges include the following edges: Low Volume — Sin-

gle Unit; High Volume — Single Unit; and High Volume — Black
Population.
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Next, we narrowed down our analysis to only include the largest
request type (i.e., Bulky trash request), since this category of request
is dominant (501,972 out of 860,254, 58% of the total requests) in the
data. As before, the nodes representing call volumes have no incom-
ing edges suggesting that none of the independent variables affect
the volume. Completion time has two incoming edges, one from
Female population and another from Hispanic population. Both
edges have negative Pearson correlation coefficients. Inspecting the
inferred regression formula at the nodes suggests that the weights
of these two edges are relatively low compared to the others in the
network. There is one undirected edge connecting two indepen-
dent variables, i.e., Poor population and Owner-occupied units, and
which cannot be supported by intuition. There are a total of 8 di-
rected edges from the target variables to independent variables that
are also likely to be spurious. These edges include the following:
Low Volume — Single Unit; Low Volume — Owner-occupied units;
High Volume — Single Unit; High Volume — Black population;
Medium Volume — Single Unit; Medium Volume — Unemployed
population. Completion time — Single unit; and Completion time
— Owner-occupied units.

Some edges are intuitive in the network, i.e., Unemployed pop-
ulation — Poor population, Single unit — Owner-occupied units,
Single unit — Poor population. It is a known fact that unemploy-
ment contributes to the increase in poverty. The other two edges
suggest that the single unit is a common cause in this network,
influencing both owner-occupied units and poverty. Usually, the
single units are owner-occupied, and it is less likely the owner will
suffer from poverty. Also, the edge from Female to Black population
is supported by the literature [1].

4.2.2  Census tract: Next, we generated the sBNs for the Census
tract level. We combined the census data with the aggregated com-
pletion time and categorized requested volume on the Census tract
level for this task. First, we analyzed the dataset of all requests.
The network generated from this set had a comparatively fewer
number of edges compared to the network from the block level.
As we aggregate larger geographic regions, the data exhibits less
diversity in terms of community characteristics. This may explain
why we find fewer interactions among the variables.

The network has no undirected edge. The target nodes have
no incoming edges. There are a total of 5 directed edges from the
target variables to independent variables that are also likely to be
spurious. These edges include the following: Low Volume — Single
Unit; Low Volume — Owner-occupied units; Low Volume — Black
population; High Volume — Single Unit; and Completion time —
Poor population.

As before, we also generated the sBNs for the largest request
group only. This network has one undirected edge between the
Black and Unemployed population. The target nodes have no in-
coming edges. There are a total of 6 directed edges from the target
variables to independent variables. These include: Low Volume
— Single Unit; Low Volume — Hispanic population; Completion
time — Hispanic population; Completion time — Owner-occupied
units; High Volume — Single Unit; and Medium Volume — Single
Unit.
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Figure 5: Signed Bayesian Networks for Census tract data.

4.3 Discussion

From the resulting networks, we find that the edges Low Volume
— Single Unit and High Volume — Single Unit are present in all
the structures. The directions are also consistent. It is unusual for
target variables to have such outgoing edges to other variables in
the network. The algorithms generating these networks are based
on heuristics and assumptions, which could lead to misleading
inferences. One of the issues with algorithms based on the CI test
is that an edge might appear between two variables if a variable
(confounder) that affects both these variables is not included in the
analysis. Therefore, there is a possibility that confounding variables
(common causes) exist for this dataset. Moreover, we cannot draw
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any conclusions from this structure, as we know that causal chain
and common cause structures are not distinguishable with the CI
test, and the direction can be misleading.

4.3.1 wv-structures. If the dataset has no hidden confounders, then
we can be most confident about the directions of the edges in v-
structures in the network. The directions of the rest of the edges
are not uniquely determined by the CI tests as explained in Section
3. Although any two edges incoming into a node may appear to
be a v-structure, they are labeled as v-structures only after they
can be confirmed using the CI test. Our analyses identified three
different v-structures, some of which appeared in more than one
of these networks.

Completion
time

Completion
time

(©)

Figure 6: v-structures in the sBNs; (a) and (b) appear in the
networks using the largest request type only (Bulky Trash),
while (c) appears in the network using all requests.

(a) The v-structure, Unemployed population — Poor population
« Single unit, suggests that the size of the unemployed
population results in a rise in the indigent population, which
makes intuitive sense. In contrast, the percentage of the
Single units in the community affects the Poor population
percentage. It is reasonable that the correlation is negative,
however the direction of the edge may be spurious. This
v-structure is only inferred from the block group data with
bulky trash pickup requests.
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(b) The v-structure, Hispanic population — Completion Time
<« Female population, is an excellent example of a target
variable identified as the “common” effect of two indepen-
dent variables. Both the Hispanic and Female population is
inferred to affect Completion time. This structure is only
present in the block group data with bulky trash pickup re-
quests. The correlation is negative for both the edges which
indicates that the Completion Time decreases with an in-
crease in the Hispanic and Female populations. Neither de-
mographic group can be considered as “minority” in the
context of Miami-Dade county (Table 2).

The v-structure, Hispanic population — Black population «
Female population, suggests that a rise in the Hispanic pop-
ulation causes the size of the Black population to decrease.
This is consistent with the data that the Hispanic population
in Miami-Dade County is predominantly white; The other
edge suggests that a rise in the female population results
in an increase in the percentage of the Black population.
This is consistent with published results from the literature
that suggest that female-Headed black families has seen an
increase in the USA over the years [1]. This structure was
inferred in all structures, using both block and Census tract
data.

(©

4.3.2  Complaints only: We also examined another type of request,
namely complaints. “Complaints” usually take longer (8.5 days on
average for block group level) than “Requests”. The results from
Figure 7 indicate that there is no effect of demographic or socioeco-
nomic status on completion time for this dataset.

This network also has the v-structure, Hispanic population —
Black population < Female population we identified in 6. The
nodes representing the target variables are disconnected from all
the others except the Low volume. Low volume is affected by both
the Owner-occupied units and Female population. One of the find-
ings is that completion time is not affected by any other variables
indicating no bias induced by community characteristics.

5 CHALLENGES WITH CAUSAL BAYESIAN
NETWORKS

The main challenges in inferring causal relationships from obser-
vational data arise from the fact that there are several assumptions
made in applying causal inferencing. Real-world observations may
not always follow those assumptions; hence, it introduces chal-
lenges in applying the method successfully.

5.1 Missing and impure data

The process of data acquisition process often results in incomplete
administrative datasets. Administrative datasets may contain miss-
ing data points, and may have recording errors. For example, in the
311 data, we found records whose request status has never been
closed. Other records show the closing date recorded to be prior to
the open date. Such inaccurate records (16.28% of the total) must
either be manipulated or ignored, thus reducing the number of
accurate observations available for analysis. When we exclude the
inaccurate data points, the number of total observations decreases.
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5.2 Inadequate data

The accuracy of machine learned models also depend on the quan-
tity of available data. Large amounts of good data can help develop
better models as they can better capture the underlying relation-
ships under investigation. This requirement becomes higher for
high-dimensional data.

Even though the total number of observations may be large
for some 311 datasets, a single record is not associated with the
features of the individual who requested the service; this is done to
ensure anonymity in public datasets. As a result, we consider the
community characteristics rather than metadata associated with
individuals, obtained by aggregating the data on an appropriate
geographic unit, such as a block group or a census tract. When we
aggregate the data on a geographical unit, the resulting number
of observations is reduced while the geographical location data
gets coarser. For example, when we aggregate the Zip code level
observations, the number of records becomes considerably smaller
(5-fold reduction from the Census tract level). Inadequate data
tends to produce a misleading model. Barring such fine-grained
information from the 311 data, there is a greater possibility for
biases in the data (e.g., by a small set of individuals making most of
the requests). An alternative data collection approach that collects
demographic data of each individual requester could add valuable
richness to the analysis proposed here.
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5.3 Latent confounders

Finally, there exist variables that are missing in the dataset, either
because they were not measured, or because there was no known
way to measure them, but affect the target variables by creating
incomplete models, and leading to potentially incorrect inferences.
These variables are called latent “confounders”. Structure learn-
ing models are based on the assumption that all the independent
variables affecting the target variables are present in the obser-
vation, which may not be true. In such cases, the model cannot
discover the real cause-effect relationships accurately. It is often
impossible to avoid the possibility of having unobserved variables
in the real world because they are often unknown. When the data
fails to capture the key factors of interest, the model will also be
inadequate in explaining the findings. Our analysis discovered that
Low Volume — Single Unit and High Volume — Single Unit are
recurring edges in many of the inferred networks. Intuitively, the re-
quested volume should not cause the housing conditions to change.
We can explain this edge with the help of confounding variables.
We assume that a latent variable, not included in the network, af-
fects both the requested volume and housing condition resulting
in a directed edge between them. We used a limited number of
demographic and socioeconomic information. Our analysis did not
include any information regarding the department (a specific unit
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that handles particular types of requests), infrastructure, and re-
sources. Excluding that information may result in an incomplete
model since the available resources may impact the efficiency while
also being correlated to the types of homes in that block.

Also, since the structure learning algorithms are based on heuris-
tics, more than one structurally equivalent BN can be obtained
from the same observations. Once the v-structures are identified,
the structure learning algorithm’s last step assigns the remaining
directions based on some predefined rules. These rules may still
leave some edges to be undirected. Also, the directions inferred
may be inconclusive in some cases due to ambiguity in determining
the causal chain and common cause structures. We try to overcome
this limitation with bootstrapping by generating several models,
and assigning weights to each edge.

6 CONCLUSION

The 311 administrative dataset paves the way to study the gov-
ernment’s responsiveness in providing non-emergency services
to local residents. We analyzed data from Miami-Dade county to
measure the effectiveness in terms of completion time and call
request volumes. We applied causal inference resulting in causal
Bayesian Network models, which helps to determine the demo-
graphic and socioeconomic factors that have a causal impact on the
target variables such as completion time and call request volumes.
We concluded that the results do not support demographic and
socioeconomic bias in providing non-emergency services to the
residents of Miami-Dade county only for the considered indepen-
dent variables. The case study using data from just one city cannot
ensure that data from other cities or municipalities will result in
the same conclusion. However, the findings are consistent with
extant research on 311 data from other cities. More importantly,
this paper aims to provide a framework to apply causal inference
on 311 datasets, which can be readily extended to data from other
cities or regions. Finally, we provide a discussion on the challenges
in applying the causal approach to this type of dataset.
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