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Abstract—In this paper, we propose a machine learning process
for clustering large-scale social Internet-of-things (SIoT) devices
into several groups of related devices sharing strong relations. To
this end, we generate undirected weighted graphs based on the
historical dataset of IoT devices and their social relations. Using
the adjacency matrices of these graphs and the IoT devices’
features, we embed the graphs’ nodes using a Graph Neural
Network (GNN) to obtain numerical vector representations of
the IoT devices. The vector representation does not only reflect
the characteristics of the device but also its relations with its
peers. The obtained node embeddings are then fed to a conven-
tional unsupervised learning algorithm to determine the clusters
accordingly. We showcase the obtained IoT groups using two
well-known clustering algorithms, specifically the K-means and
the density-based algorithm for discovering clusters (DBSCAN).
Finally, we compare the performances of the proposed GNN-
based clustering approach in terms of coverage and modularity
to those of the deterministic Louvain community detection
algorithm applied solely on the graphs created from the different
relations. It is shown that the framework achieves promising
preliminary results in clustering large-scale IoT systems.

Index Terms—Internet of Things (IoT), clustering, deep learn-
ing, graph neural networks.

I. INTRODUCTION

Internet-of-things (IoT) becomes essential in a variety of

civil, public, and military applications, which makes their

complexity and size perpetually increasing [1]. The grow-

ing number of connected devices requires advanced forms

of collaboration to exploit their heterogeneity and improve

their services effectively. The Social Internet-of-things (SIoT)

concept has been emerged by allowing IoT devices to establish

their own social networks [2]. The paradigm aims to aid the

smart objects to establish and maintain relations with their

peers. The relationships in the network are not exclusive to

machine-to-machine but can be extended between the users of

the SIoT system, such as machine-to-human or even human-to-

human relations. The social relations help assure trustworthi-

ness between devices as the basis to share resources or collab-

orate on different services such as the share of computational

needs. In fact, the relations between IoT devices may reflect

their ownership, location, or past collaboration. However,

understanding the structure of such complex and ubiquitous

networks composed of diverse communicating nodes remains a

challenging task. Novel data and graph analysis techniques can
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Fig. 1: Data and network analytic architecture of IoT system.

constitute an appealing solution to discern the SIoT network

patterns and correlations among IoT devices [3].

Machine learning techniques can be used for this purpose

to help in designing predictive analytics’ techniques for SIoT

networks and make well-informed decisions accordingly. For

example, data analytics can help process, understand, and

enhance the data generated by the devices [4]. It can also

help understand the structure of IoT systems using unsuper-

vised machine learning approaches such as classification and

clustering methods to group IoT 1) infrastructures, e.g., by

clustering devices to reduce the complexity of the vast IoT

network or 2) services, e.g., by assigning IoT devices to

tasks/services [4]. For example, the study of [5] employed

machine learning to identify suspicious network activities by

analyzing the transmission paths between the nodes. Another

example is presented in [6] where clustering algorithms are

used as a first stage to reduce the complexity of a dynamic

network of IoT devices.

In this paper, we develop a novel clustering approach based

on Graph Neural Network (GNN), a deep learning algorithm,

to discern SIoT structure. We aim to embed the features of

devices as well as their connections from a real-world dataset

using GNN and then apply an unsupervised learning algorithm

to determine clusters of IoT devices sharing strong social

relations. Results of GNN-based clustering are compared to

the deterministic community detection approach, namely the

Louvain method [7]. In Fig. 1, we illustrate a general SIoT

data analytic framework where graph analysis and machine

learning techniques are used to perceive the structure of SIoT

system and the relations among its nodes. The IoT devices

connect through a cloud gateway to exchange necessary data

such as the location and specification of the devices. From this

information and other IoT devices’ features, graphs modeling

the different social relations between the devices can be es-
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Fig. 2: Graph Neural Network and clustering framework of SIoT devices.

tablished. GNN and unsupervised learning techniques are then

employed to determine the clusters of devices sharing strong

social relations, which can help better understand the structure

of the network and use this extra level of knowledge for more

effective service discovery or mobile crowdsourcing tasks.

II. PROPOSED GNN-BASED CLUSTERING FRAMEWORK

In Fig. 2, we present the different steps of our proposed

GNN-based clustering framework for social IoT systems.

Starting from a dataset of N IoT devices that includes several

features such as Device Type, User ID owner, Device Brand,

Device Mobility, Device Battery, and Device Geo-location, a

pre-processing step is executed to create multiple weighted

graphs of social relations connecting the devices. Afterwards,

a GNN algorithm is applied to embed the nodes and their

connections with numerical vector representations [8]. The

GNN approach is enhanced such as it is capable of handling

weighted graphs, i.e., the strength level of the social relations.

Finally, an unsupervised clustering algorithm is applied on the

vector presentations of the nodes to determine the different

clusters of the IoT network.

A. Social Relations and Data Pre-processing

1) Devices Relations: There are different social relations

between SIoT devices [2]. These relations are based on the

information about the devices such as ownership and geo-

graphical locations. In this study, we consider the following

three social relations:

• Co-location/co-work based relation (CLOR): This relation

is inferred from the spatial features of the devices. Therefore,

if there is a set of devices within a certain location, there

are CLOR relations between these devices. The devices can

be stationary or moving to different places. Therefore, mobile

devices can dynamically change their CLOR links with other

devices.

• Social object relation (SOR): The SOR relation is created

when two devices collaborate in a continuous or sporadic

form. The criteria for setting the links are based on the

owners’ policies. For example, if two devices are co-located

and exchange data for a certain period, then a SOR relationship

can be established between them.

• Social friendship and ownership relation (SFOR): This

relation is based on the social network of the owners and

the ownership of the devices. Thus, we create high-weight

links between devices that have common owners. The social

network of owners can be then used to establish less weighted

links among devices based on the number of friends to reach

each owner (i.e., ”friend” or ”friend of a friend”) and then

project that on the SIoT network.

All the above relations in SIoT can be modeled by undi-

rected and weighted graphs. The nodes are the devices of the

IoT system and the edges are the social relations between these

devices. The corresponding weights indicate the strength of

social relations. The graphs do not include self-looped links

on the objects.

2) Features Encoding: To ensure that the features of the

devices in the dataset are suitable for the machine learner,

we encode the categorical attributes such as Device Type,

Brand, Mobility, and Battery using a one-hot encoder in Sci-

kit pre-processing. The one-hot encoder transforms nominal

data points to integer representation with consideration to limit

the natural ordering comparing to the label encoding method.

Moreover, the categorical textual values are encoded to integer

values that will distinguish the data points, in which many

clustering algorithms can handle. For example, in device type,

there are a number of classes such as Smartphone, Smart

Fitness, Pc, Car, etc. These types will be represented in integer

values rather than a string. The resulting feature vector of each

device j of size d× 1 is denoted by Xj where j = 1, . . . , N
and d is the number of features per node.

B. Graph Neural Network Algorithm

With the increase of computational power, many problems

are represented by graphs. There is an emergence of adopting

neural networks for graph classification, in general. The GNN

surpasses that with the ability to handle a graph representation

of nodes and edges to classify these nodes [9]. This allows a

better representation of the nodes and their relations by jointly

embedding their features and their relationships with other IoT

devices. The model follows a recursive neighborhood aggrega-

tion scheme, where each node aggregates feature vectors of its

neighbors to compute its new feature vector. Thus, the node is

represented by its transformed feature vector, which captures

the structural information within its neighborhood and uses the

nodes’ different attributes as latent feature representations to

enhance the learned representation. Given the weight matrix

A of a social relation graph of n nodes, we first normalize it

to obtain the matrix Ã as follows:

Ã = D̂
− 1

2 ÂD̂
− 1

2 , (1)

where Â = A + I and D̂ is a diagonal matrix such that

D̂ii =
∑

j Âij and I is the diagonal matrix. The formula

given in (4) adds self-loops to the graph and normalizes each

row of the emerging matrix A. This normalization addresses
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numerical instabilities which may lead to exploding/vanishing
gradients when used in a deep neural network model. Our
GNN model consists of two message passing hidden layers,
where the first hidden layer has h1 = 64 units and the second
hidden layer has h2 = 32 units such as:

Zt = f(ÃZt−1W t), (2)
where Ã is the normalized weight matrix of the graph given
in (1), W t is a matrix of trainable weights at layer t such as
W 1 ∈ Rd×h1 and W 2 ∈ Rh1×h2 , f is the rectified linear
activation function (ReLU), and Zt is the learned embeddings
of the graph in the tth layer. As an initialization, Z0 = X
where X ∈ Rn×d is a matrix whose jth row contains the
feature vector Xj of the IoT node j. The two message
passing layers are followed by a fully-connected layer which
makes use of the softmax function to produce a probability
distribution over the class labels.

Generally, the GNN model can be used as node classifier for
either supervised or semi-supervised classification. But, given
the unlabeled data in our case, we tend to use the GNN model
as an embedder where we extract the feature representations
of IoT devices in a forward pass using the propagation rule.
We then label few nodes of our data and we train the model in
a semi-supervised way in order to learn better representations.
In fact, the model is trained as a classifier yet we tend to only
make use of the nodes’ hidden representations Z2 ∈ Rn×h2

that are produced from the second message passing layer. We
use fixed hyper-parameters for all the graph sizes: learning
rate equal to 10−2 and dropout rate equal to 0.5. We train the
model over 100 epochs. Finally, we feed the extracted embed-
dings to unsupervised machine learning clustering algorithm
to determine the communities and discover more clusters.

C. Clustering Algorithms
Once a vector representation for each node in a social

relation graph is determined using GNN, an unsupervised
machine learning technique can be utilized to group the IoT
devices with common features and attributes into clusters or
communities. The similar IoT devices sharing strong social
relations will be labeled in a cluster, while devices in dif-
ferent groups will have dissimilar features. In our study, we
examine two clustering algorithms, namely the K-means and
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithms.

1) K-means: It is one of the wide used unsupervised
clustering algorithms [10]. It achieves the clustering by pre-
specifying the number of clusters, K. In general, K-means
iterate to determine K virtual centroids to which it associates
the closest data points using the sum of the squared distance
separating the vectors. It converges when no further enhance-
ment is achieved. The K-means algorithm aims to choose
centroids that minimize the inertia or sum-of-squares within-
cluster criterion.

2) DBSCAN: The main objective of DBSCAN is to identify
the clusters based on the density of data points [11], where
the most similar data points are dense together and form a
distinguished group where the different clusters are separated

with less density data points. The algorithm starts with an
arbitrary point and converges when all the data points are
visited. It uses a distance threshold to decide whether a nearby
point belongs to the same cluster or not. If not, it will assigned
as a noise, which can be part to another cluster. The previous
process will be repeated over all the data points until the
density-connected cluster is achieved.

Once the clustering algorithm is run for each SIoT relation,
groups of devices sharing strong social relations are deter-
mined. The IoT devices may then cooperate together in a
trustworthy manner.

III. RESULTS & DISCUSSIONS

To examine the proposed framework, we use a data set of
real-world IoT devices from a smart city in Santander, Spain,
provided by Marche et al. [12]. The data set includes different
types of private and public devices. We select 1000, 1500,
and 2000 private devices out of 16216 devices to analyze the
possibility of the framework for scalability and applicability
in different sizes of the IoT system. Following that, the links
between the devices are established based on the various
social relations, namely CLOR, SFOR, and SOR, described
in Section II-A1.

To assess the quality of the different clustering results,
we use two of the standard cluster quality metrics in our
study: modularity and coverage. Graph modularity analyzes
the presence of each intra-cluster edge of the graph with the
probability that that edge would exist in a random graph. It is
expressed as follows:

Q =
1

2m

∑
vw

(
Avw − kvkw

2m

)
δ(cvcw), (3)

where δ is the Kronecker delta, it equals to one if cu and
cv belong to the same community and 0 otherwise, ku is the
degree of node u, m is the number of edges in the graph, and
Avw is the element located at row v and column w of the
adjacency matrix A.

As for coverage metric, it compares the fraction of intra-
cluster edges in the graph to the total number of edges in the
graph. It is given by:

Cov =

∑
i,j Aijδ(Si, Sj)∑

i,j Aij

, (4)

where Si is the cluster to which node i is assigned. Coverage
falls in the range 0 to 1, and 1 is the highest score that indicates
that a graph topology is well-clustered.

In Fig. 3, we illustrate the clustering results of applying al-
gorithms K-means, DBSCAN, and Louvain for the evaluation
metrics, modularity, and coverage. We compare the obtained
results to one of the deterministic Louvain algorithms. Each
sub-figure presents one of three graphs; CLOR, SOR, and
SFOR, with three different IoT networks, scale 1000, 1500,
and 2000 nodes. The K-means is executed using the elbow
method to determine the best number of clusters. However, we
notice that K-means present lower performance when directly
applied to the node embeddings of the GNN model, shown in
Fig. 3 as red bars. In fact, K-means aims to choose centroids
that minimize the inertia, which is not a normalized metric.
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Fig. 3: Modularity score and coverage presented for the K-

means, DBSCAN, and Louvain community detection algo-

rithms with three different social network connectivity scales

(1000, 1500, and 2000).

We know that lower values are better, and zero is optimal.

But, in very high-dimensional spaces, Euclidean distances

tend to become inflated (this is an instance of the so-called

“curse of dimensionality”). We run a dimensionality reduction

algorithm, i.e., t-distributed Stochastic Neighbor Embedding

(T-SNE), before K-means clustering, which alleviates this

problem, speeds up the computations and presents a visual-

ization method in the 2-dimensional space for the clusters.

With DBSCAN, we notice that some nodes are detected

as outliers. Therefore, we assign to each of those nodes

a new cluster. We observe that the K-means gives well-

separated clusters but tends to restrict the number of the groups

comparing to DBSCAN. We also notice that both K-means

and DBSCAN clustering of the GNN embeddings outperform

Louvain community detection mainly for the SFOR network

in all scales and the SOR network in large size (2000 nodes).

Despite its performance with the CLOR network comparing

to the two other methods, the Louvain algorithm tends to

restrict the discovered communities to two clusters for the

three different scales.

In Table I, where a comparison based on the numbers of

clusters obtained for each relation with different networks

TABLE I: Obtained number of clusters

CLOR SFOR SOR
No. Devices K-means DBSCAN Louvain K-means DBSCAN Louvain K-means DBSCAN Louvain

1000 4 19 2 5 47 9 5 50 18
1500 7 105 2 11 181 12 7 73 18
2000 8 551 2 15 247 14 10 228 25

sizes. The number of clusters for DBSCAN tends to be

higher than the other methods for all the networks. This

characteristic remains the same even when we do not consider

the outliers as separated clusters. Finally, the whole process

from the embedding and clustering to the dimension reduction

is relatively fast compared to the Louvain method, which is

an advantage when applying our approach to a vast network

of devices.

IV. CONCLUSION

In this study, we proposed a novel GNN-based clustering

approach for SIoT devices having different social relations. For

a real-world dataset, we embedded the features of the nodes

as well as their social relations using GNN and then, fed the

obtained vector representations to a conventional clustering

algorithm to determine communities of socially connected

IoT devices. The process allows fast conversions of complex

IoT systems into structured groups of devices that can be

exploited to enhance the discovery and object identification for

various IoT applications. We notice that different clustering

algorithms, case by case, can outperform other community

detection methods for certain metrics such as modularity

and coverage, which represents a promising result to further

examine several machine learners.
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