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Abstract—Ultra-Wideband has recently become a powerful 
technology that involves wireless communication, digital signal 
processing, machine learning, and even hardware design for 
ubiquitous sensing applications. This paper presents a straight 
forward signal processing method to characterize the wireless 
communication channel using the UWB pulse signal. This 
proposed method uses a narrow width based modified Hermitian 
pulse (MHP) for calculating the output signal at the receiver 
end from measured network parameters. Magnitude attenuation, 
wave shape distortion, and phase shift of the output signal 
indicate the impact of the communication channel on the 
traveling wave. A neural network-based deep learning algorithm 
uses to classify the obstacle types from the measured output signal 
using the MATLAB tool. Measurement results demonstrate the 
real scenario of channel effects on the high-frequency UWB signal 
and select a suitable modulation scheme for data encoding. It also 
helps design the receiver compensation, reconstruct the distorted 
signal, and channel access to use the MHP pulse signal for 
high-density data communication. This method can also be used 
other sensing applications such as damage localization, detection, 
displacement measurement, material identification, etc.

Index Terms—S-parameters, orthogonal pulse, composite 
pulse, communication systems, and signal processing.

I. I NTRODUCTION

Ultra-Wideband (UWB) technology has become a feasible 
and robust wireless data communication system in a wireless 
sensor network (WSN). The pulse-based UWB system is 
based on sub-nanosecond pulses with carrier or without carrier 
signal to transmit information from sensor nodes to the data 
center. Typically, UWB system modulates the sensor data by 
a narrow width pulse, and low power over a spectrum of 
frequencies ranging from 3.1 GHz to 10.5 GHz. Therefore, 
UWB technology is entirely health-risk free for wireless 
data communication in sensor networks. Due to the unique 
characteristics of UWB signals such as higher penetration 
capabilities, extremely precise ranging, resource constraint 
applications, low cost, simple hardware, and robustness to 
multi-path interference’s, UWB technology is widely used 
for non-invasive medical applications, localization, ubiquitous 
sensing, high-speed data communications, etc [1]-[3].

Many research articles have studied using short duration 
pulse signals to transmit high-speed data for WSN applications 
to extend the target detection and optimize Radar waveform 
design. Recently, a multi-order UWB pulse-based data 
encoding scheme has been proposed to transmit a large volume 
of the sensor by supporting multi-channel data within existing

bandwidth [4], [5]. A UWB based Radar sensor has been 
investigated to detect the object behind obstacles to search 
and rescue human security. A perfect and straightforward 
human detection approach based on standard deviation has 
proposed [2] to avoid computational load in a discrete Fourier 
transform. An innovative WSN based on UWB technology 
has developed for landslide monitoring of ground deformation 
where the available resources are inadequate [3]. The UWB 
based sensing system for detecting human vital sign signals 
such as respiration and heart rates behind the obstacles has 
been proposed by estimating the phase variations of received 
respiration frequency [6]. A machine learning (ML) based 
image processing technique has proposed recognizing digits 
written by hand moving through air media using multiple 
UWB Radar sensors [7], [8]. However, tremendous R & D 
efforts are required to develop the UWB system, including 
channel characterization, transceiver design, coexistence, with 
other narrowband system, etc.

Typically, the conventional pulse-based UWB system uses 
the narrow-width pulse for data communication and sensing 
applications. Different pulse generation schemes are available, 
such as Gaussian pulse, Haar function, Hermitian polynomial, 
etc [9], [10]. However, the existing pulse generation scheme 
suffers from system complexity, computational speed, power 
consumption, etc. A pulse duration of 540 ps signal generation 
scheme is developed using FPGA for human detection through 
obstacle [9]. A power-efficient and simple architecture-based 
multi-order analog pulse generation scheme has developed 
for the UWB system [11]. The MHP set has signal 
orthogonality, coexist with other applications, and suitable for 
wireless communication. Therefore, to simplify the transceiver 
architecture, an efficient pulse generation scheme requires low 
power sensor applications. In this paper, an orthogonal MHPs 
based UWB sensor using the ML technique is proposed to 
detect an obstacle in communication channels.

This paper proposes a straightforward signal processing 
method using time-frequency analysis to detect the obstacles 
when passing through it. This work is motivated by 
the scattering parameter measurements using a bench-top 
vector network analyzer (VNA) to recover the time-domain 
ultrasound signal from the frequency-domain [12]. This 
proposed method aims to classify the obstacle types based 
on their receiving time-domain signal pattern using machine 
learning algorithms. The rest of this paper is organized as
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follows: Section II and section III represents the background 
study on S-parameter based sensing method and test setup, 
measurements, and computation. Section IV describes the 
results and finally concludes the paper in section V.

II. S-Pa r a m e t e r s  Ba s e d  Se n s i n g  M e t h o d

The electromagnetic (EM) response of a signal depends 
on the permittivity of the propagation media. Moreover, 
the high-frequency time-varying signal’s amplitude and 
phase are distorted when traveling through a linear circuit. 
Therefore, the accurate measurement of the permittivity 
and frequency-response of the time-varying signal is crucial 
for sensing and detection applications. In the non-resonant 
measurement approach, the material permittivity is calculated 
from the changes of the characteristics impedance and wave 
velocity of EM by the reflection and transmission coefficient. 
In the non-resonant measurement approach, the EM wave 
directs towards a device under test (DUT) and collects the 
reflected and transmitted signal traveling through devices [13].

A. Background on Two-port Network

S-parameters are mostly used for electrical networks and 
operated at radio and microwave frequencies to describe 
amplitude and phase distortion of a time-varying signal 
traveling through a linear network or media. Fig. 1 shows 
the electrical two-port network diagram for representing 
the S-parameters. The signal reflection and transmission 
coefficients at port 1 and port 2 represents by S n , S22, 
S21, and S12 parameters. In this diagram, ’X 1’ & ’X 2’ 
are two input signals at ports 1 & 2 and ’ Y1 ’ & ’ Y2 ’ 
are the corresponding reflected signals respectively. I f  we 
assume that each port is terminated in the reference impedance 
Zo, then the four S-parameters can be defined as a matrix 
algebraic representation. Typically, S-parameters are the 
complex function and expressed in the frequency domain.

( Y i \  = (Sri Si2\ * ( X A
1 * 2  S21 S22 X2

Xi
>

Port 1 Port 211 111111
S21

Si i  S22 

S12

11111 11Zo Zo

Fig. 1. S-parameter representation of a two-port network.

B. S-Parameter Based Computation Approach

In signal processing, an electrical signal can be represented 
by both in the time-domain and frequency-domain. Though 
the signal shows different properties in their representation; 
however, these representations are equivalent and contains all 
the information to characterize them fully. Moreover, a signal 
can be translated from time-domain (TD) to frequency-domain 
(FD) via Fourier transform and back again in TD from FD by 
inverse Fourier transform without losing any information. Fig.

Fig. 2. The functional block diagram for S-parameter based sensing approach.

2 shows the signal conversion approach and measure in the 
TD signal from S-parameters measurements. Let, X(t) in TD 
is the network input signal at the transmitter. The frequency 
spectrum, X(! ) of the input signal, can be calculated using 
a fast Fourier transform (FFT). The output Y(w) signal at 
the receiver end traveling through the communication channel 
can be calculated by multiplying with the power transmission 
coefficient S21(! ) from TX to RX. The TD signal can be 
extracted from the FD signal at the receiver by applying 
the inverse FFT to (3). The desire output results at the 
receiver can be obtained through digital signal processing 
(DSP) computation from equation (1) to (3) and implemented 
signal recognition algorithm.

X  (! ) =  FFT[X  (t )] (1)

Y (! ) =  S2 i (! ) * X (! ) (2)

Y (t) =  I F F T [Y (! )] =  I F F T [S21(! ) * X (! )] (3)

III. Te s t  Se t u p , M e a s u r e m e n t s  a n d  Co m p u t a t i o n

This section presents the MHP pulse signal generation 
scheme, test set-up for S-parameter measurements using a 
VNA, and signal processing using MATLAB Simulation tools. 
A short description of each subsection as follows:
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Fig. 3. Orthogonal MHPs (a) MHP0, (b) MHP!, (b) MHP2, and (c) MHP3.
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A. Orthogonal MHPs Set Generation

In this work, we use the multi-order orthogonal pulse 
set generator describes in [11]. This power-efficient and 
straightforward orthogonal pulse generation scheme consists 
of two first-order Hermitian polynomials that improve 
computational simplicity. It was designed for the sub-GHz 
frequency band for pulse-based UWB communications with 
a pulse width of 20 ns. The higher-order orthogonal pulse is 
generated by changing the value of n from zero to any finite 
number. This work uses the composite pulse signal consisting 
of the first four distinct zeroth, first, second, and third orders 
orthogonal pulses represents by MHP0, MHP1, MHP2, and 
MHP3, respectively, to observe the effects on time-varying 
MHPs traveling through channel obstacles.

Fig. 4. S-parameter measurements setup using a pocket VNA.

B. Vector Network Analyzers

In this work, the S-parameters are measured by a portable 
2-port VNA known as Pocket VNA. This portable VNA can 
measure DUT’s frequency response up to 4.0 GHz, and display 
measurements result in laptop or desktop computer screen 
via user interface software. Fig. 4 shows the S-parameters 
test set-up of measuring network parameters using a typical 
pocket VNA. Usually, a VNA measures the S-parameters 
of a DUT by directly measuring the components such as 
magnitude and phase variation of the signal with changing 
the range of frequencies or a single frequency. The VNA is 
calibrated using the standard calibration kits before measuring 
the S-parameters of the sample. In this work, the TX and RX 
antenna is placed in 4.0 feet distance and connect with pocket 
VNA via the calibrated co-axial cable. To initiate devices’ 
and characterize the communication channel a test sample 
DUT (i.e metal, wood, and foam) places in the middle of 
TX and RX antenna. The built-in source of VNA provides a 
stimulus signal injects into DUT and measures the frequency 
response. It derives the reflection and transmission signals 
by measuring the magnitude and phase by sweeping the 
frequencies in interest range. Once the measurement is done, 
the VNA calculates S-parameters according to the two-ports 
network’s expression and displays the results.

C. Signal Processing and Time Domain Signal Calculation

In this paper, we create a composite pulse signal 5(a) 
using orthogonal MHP0, MHP1, MHP2, and MHP3 pulses to 
observe the signal distortion after penetrating through different 
media such as free space, foam, metal, and wooden blockage. 
The low-frequency composite pulse signal modulates with

Time domain Frequency domain

Frequency (M Hz)

Fig. 5. Time domain signal generation from s-parameter measurements.

a carrier to translate the signal frequency for long-distance 
propagation. Fig. 5(b) represents the amplitude modulated 
signal with a sinusoidal carrier at 500 MHz. In signal 
processing computation, the TD input signal converts to FD 
using FFT. Fig. 5(d) and (e) presents the input signal X(w) 
and the measured S21(w) signal. Fig. 5(f) represents the output 
signal calculated from input X(w) and S-parameters S21(w) 
signal. Finally, to extract the time-varying output Y(t) uses the 
IFFT of resultants S-domain signal, Y(w). Fig. 5(e) depicts 
the time-domain output signal with the carrier frequency. To 
recover the baseband signal demodulates the output signal 
by the same carrier frequency. The channel blockage detects 
by observing the signal distortion/wave shape change from 
the measured time-varying output. The ML technique uses to 
detect the obstacle types using the previously trained data set.

IV. Re s u l t s  a n d  Di s c u s s i o n

The S-parameter measurements are taken in different cases 
by placing the channel blockage between TX and RX antenna. 
The S21 is measured by sweeping the frequencies from 
100 kHz to 1.0 GHz with 200 steps. In all cases, the 
measured S21 spectra are used to calculate the time-varying 
output signal through signal processing process describes 
in III-c. The time-frequency signal analysis is performed 
using MATLAB 2019(a) simulation package. Fig. 6 (a), (b), 
(c), and (d) shows the time-varying waveforms generated 
from S21 measurement at free-space, foam blockage, metal 
blockage, and wooden blockage, respectively. The signal 
distortion of output signal, represents the obstacle properties 
and characterize the communication channel.

In Fig. 6 depicts that, the output signal at RX is identical 
in all cases with some variations from one signal to another. 
Typically, signal distortion depends on the material properties, 
types, area, frequency, etc. In this works, the line-of-sight 
propagation is considered to observe the signal properties
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Fig. 6. Output signal calculated from measured S-parameters.

after penetrating through obstacle in communication channel. 
The dielectric constant of foam is close to free-space (1.0), 
aluminum sheet (4.5), and dry wood (2.0 to 6.0) that causes 
the signal distortion when traveling through it. Therefore, the 
output signal for free-space and foam blockage is almost same 
(Fig. 6 (a) & (b)). However, the measured time-varying signal 
for metal and wood is distorted more compared to foam and 
air (Fig. 6 (c) & (d)) due to higher dielectric constant.

Fig. 7. Time varying output signal tracking using neural network.

This work uses a convolutional neural network (CNN) to 
detect and classify the obstacle types in the communication 
path using MATLAB nntool. Fig. 7 shows the CNN test results 
of output signal tracking using an ML algorithm. In this test,
4- neural network is trained separately by multiple test data 
of each case’s time-varying output signal. Typically, in the 
same sample, the S-parameter measurement results vary due 
to environmental effect (without anechoic chamber), changing 
of obstacles position, other reflection effects etc. Therefore, 
the time-varying output signal also changes with measured
5- parameters. For accurate signal tracking, each network is 
trained by 8-different test data set and select one as a target 
output in four cases. Then the network is tested by another 
output data set of measured time-varying signal and checked

the CNN results. In Fig. 7, the solid blue and dotted red trace 
indicate the measured and target wave shape of the output 
signal using the CNN test. The measured signal is tracked 
correctly, the target output signal for each sample. Therefore, 
the ML computation simplifies the time-varying output signal 
detection process and classify the obstacles accurately.

V. Co n c l u s i o n

A straightforward signal processing method is presented 
in this paper to measure the time-domain signal based 
on S-parameters measurement. The composite pulse signal 
is generated using a power-efficient pulse set generator 
to characterize the communication channel for high-density 
data transmission using MHP pulses. The measurement 
results indicate that the proposed methods can detect the 
communication channel’s impact on the time-varying signal 
when traveling through it. The test results also differentiate the 
channel blockage types and modify transceiver architecture for 
decoding the individual pulses from composite signals. It also 
suggests a proper modulation scheme and signals compensator 
design to reconstruct the original composite signal from 
received distorted signal for MHP pulse-based wireless data 
transmission. It also can be used to detect, localize, damage 
identification, and other sensing applications.
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