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Abstract—Inkjet-printing as an on-the-go, inexpensive, and
green method of creating instant flexible sensors and
circuits will not proliferate until reliable device fabrication
is possible outside the research environment. Shortfalls
exist due to non-uniform fabrication/curing, environmental
humidity/temperature influence, and uncontrollable deposition
conditions, particularly in low-production setups. Electrical
non-uniformity and variations from low-quality prints made by
a minimally produced inkjet-printed sensor may be overcome by
training a machine learning model to interpret the variabilities
and output a high-confidence prediction of the signal. In this
report, an inkjet-printed tactile sensor is modeled to simulate
generate a rich data-set for training and testing an echo state
network. The end goal of the reported work is to attach the echo
state network to the imperfect, on-the-go, inkjet-printed sensor
as an edge computing device, transforming the unreliable data
into a more stable readout. In this way, the sensor design may be
printed using any suitable inkjet-printer with minimal production
effort and still extract reliable data. This enables inkjet-printers
to be used at home by those in isolated/restrictive settings, poor
communities, resource starved environments, or by enthusiasts.
Applications include biometric, environmental, electro-chemical
and -mechanical sensing, and the concept may be extended to
inkjet-printed circuits for signal stabilization.

Index Terms—inKjet printed tactile sensor, biosensor, reservoir
computing, MATLAB simulation

I. INTRODUCTION

The widespread availability and usage of 3D-printing
opened opportunities for fabrication settings away from the
rescarch domain, in homes, workshops, and remote/isolated
places like upon the ISS [1]. Additionally, increased
demand has brought about competition, lowered prices
and improved support both technically and within newly
formed communities of enthusiasts. Inkjet-printing (ITP) using
nanoparticle inks has the potential to proliferate in the same
manner as 3D printing. While ITP is a well-established ink
deposition method, the introduction of metal, semiconducting,
insulator, and other exotic nanoparticle inks has revitalized
their usefulness.

Recent market trends show increased demand of printed
electronics for smart and connected devices, and a rise in the
demand for energy-efficient, thin, cost-effective and flexible
consumer electronics [2]. Inkjet-printing is the most popular
method of additive manufacturing, requiring no etching,
hazardous wastes, and often results in biodegradable devices,
making it environmentally friendly [3], [4]. Flexible sensors,
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Fig. 1: The ESN architecture is shown. A signal is input to
the trained neural network and the predicted output dataset is
visualized (far right). The shaded arcas establish the scope of
this report.

circuits and electrical routing can instantly be printed by 1JP,
and when combined with a 3D-printer, custom-made and fully
packaged clectronics can be fabricated within hours [5].

Unfortunately, inkjet-printing has several shortfalls that
restrict its ability to grow in the same manner as 3D
printing, including lagging industry response to demand,
substantial amount of resources needed to fabricate reliable
prints, limited commercially-available inks and lacking printer
support. Previous research on this topic has indicated that
variabilitiecs from fabrication, curing, and the environment
cause electrical parameters hard to control. Mitigating those
variabilities is important to improve sensor function and data
quality for the minimal ITP process as described in Section II.

An approach to overcoming the existing pitfalls is with the
support of machine learning (ML) methods to pseudo-calibrate
the sensors such that their low-quality data is transformed
to a high-confidence classification or time-series prediction.
The proposed ML method to handle IJP sensors in this
report is called reservoir computing (RC), created by H.
Jaeger [6] and W. Maass [7] in 2001 and 2002, respectively.
The RC architecture (shown in Fig. 1) is robust against
noise and highly adaptable to work with non-conventional
sensors like the IJP sensor described in this report (refer to
Section II). The benefits of having the IJP sensor connected
to the edge computing machine include real-time low-level
processing for time-series prediction, reduced sensor noise
and variability, extended sensor lifetime, minimized power and
memory requirements, and the high-volume data throughput of



the collective wireless sensor network (WSN) is reduced. Only
a few papers have considered post-processing of IIP sensors
as a means of data quality improvement [5], [8]-[10], and
fewer consider the RC network (RCN) as an edge computing
framework for in sifu sensor data quality enhancement and
volume reduction. With these motivations, a path is proposed
that seeks to promote the proliferation of “on-the-go” IJP
microfabrication setups.

The scope of this paper is creating the dataset for training
and testing the RCN, which involves simulation and analysis
of the sensor’s metrics. Future works will entail training
and testing the RCN, but does not lie within this report.
The RCN in Fig. 1 depicts a standard echo state network
(ESN). The reservoir is a recurrent neural network of leaky
integrator neurons, which acts to transform the linear data
into a high-dimensional state space where read-out neurons
are trained to understand the reservoir states. The output of the
RCN is a classification of the pattern touched on the IJP tactile
sensor. In this paper, a minimally produced inkjet-printed
tactile sensor is introduced in Section II, explored for metrics
in Section 11, and is then modeled in MATLLAB and analyzed
in Section IV. Lastly, Section V summarizes the report and
establishes plans for future work.

II. MINIMAL PROCESS IJP SENSOR

Inkjet-printed pressure [11], touch [12], and proximity [13]
sensors exist that are formed from only silver nanoparticle ink.
Our research group has studied an IIP pressure sensor that
uses a semiconductive nanoparticle sensitive to piezoelectric
variations [14], [15]. Adaptations from that design allowed for
a tactile (touch) sensor that only uses the silver nanoparticle
ink, the fabrication of which will be shown here after
establishing the basics to the process.

A. Basic IJP Fabrication Requirements and Process

The most minimal IJP microfabrication setup requires an
office-quality inkjet printer with proper nozzle head size for
the nanoparticle inks (est. $300), refillable ink cartridges
(est. $10 per set), nanoparticle inks (est. $130 to $380 per
bottle), flexible polymer substrate such as thermally resistant
photopaper or polyethylene terephthalate (PET) film (est. $20
per pack), a curing method such as an oven or hot-plate
(est. $20), and any editing program like CAD software,
Visio, Microsoft Publisher/Paint, or other free programs.
All of these form a starting budget of less than $500
when considering a setup with only silver nanoparticle ink.
The entire micro-fabrication sctup takes up an area of
approximately 3 square feet, making it compatible for usage
in compact areas.

The basic IJP process follows four steps: (1) the patterns
are designed on an editing program, (2) nanoparticle inks
are filled into the refillable cartridges, (3) the pattern is
printed layer-by-layer, and (4) the print is thermally cured
for sintering and continuous bulk formation. This process
varies in research settings to include involved and expensive
processes/equipment such as plasma and gas treatment,
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Fig. 2. (a) The TP tactile sensor pattern is shown with
its electrical equivalent overlayed. The nodes have different
channel widths as a method of distinguishing them. (b) The
plot shows the sensor’s response when four of the 16 nodes
are pressed, demonstrating that current Iy through Ry is the
sum of the nodes.
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non-1JP deposition (e.g. gravure, screen, flexographic printing,
etc.), spin-coating, magnetron sputtering, slot-die coding,
precise parameter control (e.g. ink layer thickness, cartridge
temperature, nozzle head size, etc.), usage of novel materials,
and many other custom processes and techniques [16]. In the
large majority of reports, the inkjet printer used is the Dimatix
Materials Printer (DMP), which is extremely expensive and not
reasonable for minimal setups. Thus, the minimal setup was
used to fabricate the tactile sensor.

B. IJP Tuctile Sensor Fabrication

The IIP sensor of Fig. 2 was printed, cured and tested in
the Biolnspired Integrated Circuits (BIC) laboratory at the
University of Alabama, Birmingham. The silver nanoparticle
ink is from Mitzubishi Paper Mills Inc. (model NBSII-MUO1).
The ink was printed onto glossy photo-paper substrate using
a Brother MFC-15910DW inkjet printer. After printing, the
sensor cured on a hotplate at 160 °C for 15 minutes [17]. The
cost per sensor is approximately $0.09, and is a representation
of the sensors expected from microfabrication setups in
limited environments. Tests were performed using a Keithley
2604B Dual SourceMeter, MATLAB and the NI ELVIS II+
prototyping board. The power supply, Vpp, was 5V for all
tests, making power output on the order of micro-Watts
(10-%). Power could also be reduced to 3.3V for usage with
MiCrOprocessors.

III. SENSOR BEHAVIOR AND METRICS FOR MODELING

The sensor of Fig. 2 is an adaptation to a previously studied
pattern [14], [15]. There, it was found that the non-uniform
fabrication and uneven curing caused c¢ach node to have
slightly different channel resistances. Since the nodes have
a distinctive property, the ESN will have a better chance
of identifying the pressed node pattern. To enhance and
control this effect, the design in Fig. 2 was made to have
increasing channel widths among the nodes, forming a gradient
of channel resistances as depicted in Fig. 3. The values are then
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Fig. 3: Channel resistances between nodes is made to be a
gradient by having the channel width increase from node to
node, distinguishing them for classification. The values are
stored in an array that becomes an input feature to the ESN.
Resistances are in mega-Ohms (MQ).

stored in an array and will later be used as a input feature for
the ESN. In the MATLAB program where this sensor is being
simulated, an array of channel resistances is generated for each
simulated sample by applying uniformly distributed Gaussian
noise to empirically gathered channel resistances.

I is the main input feature to the ESN, with the channel
resistance vector being a second feature to help the ESN
classify the signal. Generating Is means modeling a single
node’s response, applying bounded random conditions for
signal variation, generating a pattern mask, populating a matrix
with the randomized node response and pattern mask, and
finally summing the contents of the node matrix to create the
final input signal.

A. Single Node Profile

Empirical tests show the profile of a node when it is touched
(black line of Fig. 4). The signal starts with a bias current
and when touched, current flow steeply rises, saturates and
flattens for the duration of being touched before dropping back
down to the bias current when the node is released. There is a
linear rise after the signal has saturated since thermal energy
from the finger is absorbed into the substrate, causing channel
resistance to gradually decrease and current to increase. These
basic behaviors apply to all nodes, with slight (uncontrollable)
variations existing. The profile and bounded variations were
written in the MATLLAB code. One of the randomly simulated
signals that happened to have close parameters to the tested
signal was overlayed in Fig. 4 as an example of how close the
model can be to the empirical data.

The bias current for each node is directly calculated from
its respective channel resistance vector. The steep rise in
current when the node is touched was generated with a line
of slope (numerator) proportional to the maximum current.
The saturation area where it levels off was approximated with
vy = +/x. The linear rise due to thermal transfer while the
node is touched was made to have a slope (denominator)
be proportional to the maximum current. Finally, the signal
immediately drops back to the bias current. All of these
components that form the signal were given randomness within
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Fig. 4: The node response is empirically shown along with
a simulated response from the MATLLAB program with close
parameters for comparison.

bounds expected from the actual signals. The timing of when
the node is first touched, the rise time, saturation time, and
duration of node touch were also randomly generated within
set bounds.

IV. SIMULATION, RESULTS AND ANALYSIS

After the nodes were modeled with random but bounded
variations expected from real prints, the final signal Is could
be generated. A binary pattern mask was randomly created
for each sample where 1 means that a node was touched
and 0 means it was not touched. This serves as the target
pattern (i.e. the training dataset) for each sample. Also, the
binary pattern was multipliecd with the nodes to suppress
signals from being generated when a node is not touched.
The resulting matrix contains all 16 node responses expressing
randomized target pattern. The values of each node were
then summed row-by-row to generate the signal, Is. The full
dataset is visualized in Fig. 5. The matrix has dimensions of
size(Iy) x (18) x (sample count).

The signal variability of the individual nodes and current
Is can be visualized in Fig. 6. The random variations of
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Fig. 5: The final dataset for testing and training the ESN is a
matrix with dimensions of size(I;) X (24 16) x (sample count).
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Fig. 6: The MATLAB simulation output shows the target pattern, nodal response,

randomly selected samples.

the node signals can be adjusted to within specified ranges
as more empirical data is collected. The inclusion of the
channel resistances as an input feature will give the ESN
the ability to classify which nodes were pressed. If the node
resistances were identical, the ESN would only be able to
distinguish how many nodes were pressed rather than resolving
the actual pattern. The amount of samples needed for training
will increase as the number of nodes increases. This means
that training the ESN for a 2 x2 or 3 x 3 grid array (as
opposed to the 4 x 4 array of this paper) will require less
samples and therefore less training time. If the ESN has too
high of an error rate, the random variations may be reduced
to simplify the uniqueness of input current signals. Forming
a single model from the generated datasets of this sensor
will provide a generalized pseudo-calibration technique for its
stabilized performance.

V. CONCLUSION

Inkjet printed sensors and circuits made from minimally
produced fabrication setups have certain inconsistencies that
prevent highly reliable operation. A method of overcoming
the inevitable variabilities is by using machine learning as
a method of data stabilization. The echo state network of
future works requires generation of input data to train and
test the model. This report shows an minimally produced IIP
tactile sensor printed with only silver nanoparticle ink using an
office-quality inkjet printer. The node responses were modeled
in MATLAB and then summed to generate the input signal (Is)
to the ESN. The channel resistances of the array are stored as
an input feature such that the reservoir can resolve the touched
pattern. Random binary target patterns were masked with the
nodes and set as the output (training) signal to the ESN. The
final dataset will be used to develop the ESN such that the
IJP tactile sensor, and ultimately other IJP sensors, may have
improved data stability.
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