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Abstract—Inkjet-printing as an on-the-go, inexpensive, and 
green method of creating instant flexible sensors and 
circuits will not proliferate until reliable device fabrication 
is possible outside the research environment. Shortfalls 
exist due to non-uniform fabrication/curing, environmental 
humidity/temperature influence, and uncontrollable deposition 
conditions, particularly in low-production setups. Electrical 
non-uniformity and variations from low-quality prints made by 
a minimally produced inkjet-printed sensor may be overcome by 
training a machine learning model to interpret the variabilities 
and output a high-confidence prediction of the signal. In this 
report, an inkjet-printed tactile sensor is modeled to simulate 
generate a rich data-set for training and testing an echo state 
network. The end goal of the reported work is to attach the echo 
state network to the imperfect, on-the-go, inkjet-printed sensor 
as an edge computing device, transforming the unreliable data 
into a more stable readout. In this way, the sensor design may be 
printed using any suitable inkjet-printer with minimal production 
effort and still extract reliable data. This enables inkjet-printers 
to be used at home by those in isolated/restrictive settings, poor 
communities, resource starved environments, or by enthusiasts. 
Applications include biometric, environmental, electro-chemical 
and -mechanical sensing, and the concept may be extended to 
inkjet-printed circuits for signal stabilization.

Index Terms—inkjet printed tactile sensor, biosensor, reservoir 
computing, MATLAB simulation

I. I NTRODUCTION

The widespread availability and usage of 3D-printing 
opened opportunities for fabrication settings away from the 
research domain, in homes, workshops, and remote/isolated 
places like upon the ISS [1]. Additionally, increased 
demand has brought about competition, lowered prices 
and improved support both technically and within newly 
formed communities of enthusiasts. Inkjet-printing (IJP) using 
nanoparticle inks has the potential to proliferate in the same 
manner as 3D printing. While IJP is a well-established ink 
deposition method, the introduction of metal, semiconducting, 
insulator, and other exotic nanoparticle inks has revitalized 
their usefulness.

Recent market trends show increased demand of printed 
electronics for smart and connected devices, and a rise in the 
demand for energy-efficient, thin, cost-effective and flexible 
consumer electronics [2]. Inkjet-printing is the most popular 
method of additive manufacturing, requiring no etching, 
hazardous wastes, and often results in biodegradable devices, 
making it environmentally friendly [3], [4]. Flexible sensors,

Fig. 1: The ESN architecture is shown. A signal is input to 
the trained neural network and the predicted output dataset is 
visualized (far right). The shaded areas establish the scope of 
this report.

circuits and electrical routing can instantly be printed by IJP, 
and when combined with a 3D-printer, custom-made and fully 
packaged electronics can be fabricated within hours [5].

Unfortunately, inkjet-printing has several shortfalls that 
restrict its ability to grow in the same manner as 3D 
printing, including lagging industry response to demand, 
substantial amount of resources needed to fabricate reliable 
prints, limited commercially-available inks and lacking printer 
support. Previous research on this topic has indicated that 
variabilities from fabrication, curing, and the environment 
cause electrical parameters hard to control. Mitigating those 
variabilities is important to improve sensor function and data 
quality for the minimal IJP process as described in Section II.

An approach to overcoming the existing pitfalls is with the 
support of machine learning (ML) methods to pseudo-calibrate 
the sensors such that their low-quality data is transformed 
to a high-confidence classification or time-series prediction. 
The proposed ML method to handle IJP sensors in this 
report is called reservoir computing (RC), created by H. 
Jaeger [6] and W. Maass [7] in 2001 and 2002, respectively. 
The RC architecture (shown in Fig. 1) is robust against 
noise and highly adaptable to work with non-conventional 
sensors like the IJP sensor described in this report (refer to 
Section II). The benefits of having the IJP sensor connected 
to the edge computing machine include real-time low-level 
processing for time-series prediction, reduced sensor noise 
and variability, extended sensor lifetime, minimized power and 
memory requirements, and the high-volume data throughput of
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the collective wireless sensor network (WSN) is reduced. Only 
a few papers have considered post-processing of IJP sensors 
as a means of data quality improvement [5], [8]-[10], and 
fewer consider the RC network (RCN) as an edge computing 
framework for in situ sensor data quality enhancement and 
volume reduction. With these motivations, a path is proposed 
that seeks to promote the proliferation of ” on-the-go” IJP 
microfabrication setups.

The scope of this paper is creating the dataset for training 
and testing the RCN, which involves simulation and analysis 
of the sensor’s metrics. Future works will entail training 
and testing the RCN, but does not lie within this report. 
The RCN in Fig. 1 depicts a standard echo state network 
(ESN). The reservoir is a recurrent neural network of leaky 
integrator neurons, which acts to transform the linear data 
into a high-dimensional state space where read-out neurons 
are trained to understand the reservoir states. The output of the 
RCN is a classification of the pattern touched on the IJP tactile 
sensor. In this paper, a minimally produced inkjet-printed 
tactile sensor is introduced in Section II, explored for metrics 
in Section III, and is then modeled in MATLAB and analyzed 
in Section IV. Lastly, Section V summarizes the report and 
establishes plans for future work.

II. M i n i m a l  Pr o c e s s  IJP Se n s o r

Inkjet-printed pressure [11], touch [12], and proximity [13] 
sensors exist that are formed from only silver nanoparticle ink. 
Our research group has studied an IJP pressure sensor that 
uses a semiconductive nanoparticle sensitive to piezoelectric 
variations [14], [15]. Adaptations from that design allowed for 
a tactile (touch) sensor that only uses the silver nanoparticle 
ink, the fabrication of which w ill be shown here after 
establishing the basics to the process.

A. Basic IJP Fabrication Requirements and Process

The most minimal IJP microfabrication setup requires an 
office-quality inkjet printer with proper nozzle head size for 
the nanoparticle inks (est. $300), refillable ink cartridges 
(est. $10 per set), nanoparticle inks (est. $130 to $380 per 
bottle), flexible polymer substrate such as thermally resistant 
photopaper or polyethylene terephthalate (PET) film (est. $20 
per pack), a curing method such as an oven or hot-plate 
(est. $20), and any editing program like CAD software, 
Visio, Microsoft Publisher/Paint, or other free programs. 
A ll of these form a starting budget of less than $500 
when considering a setup with only silver nanoparticle ink. 
The entire micro-fabrication setup takes up an area of 
approximately 3 square feet, making it compatible for usage 
in compact areas.

The basic IJP process follows four steps: (1) the patterns 
are designed on an editing program, (2) nanoparticle inks 
are filled into the refillable cartridges, (3) the pattern is 
printed layer-by-layer, and (4) the print is thermally cured 
for sintering and continuous bulk formation. This process 
varies in research settings to include involved and expensive 
processes/equipment such as plasma and gas treatment,

Fig. 2: (a) The IJP tactile sensor pattern is shown with 
its electrical equivalent overlayed. The nodes have different 
channel widths as a method of distinguishing them. (b) The 
plot shows the sensor’s response when four of the 16 nodes 
are pressed, demonstrating that current IS through RS is the 
sum of the nodes.

non-IJP deposition (e.g. gravure, screen, flexographic printing, 
etc.), spin-coating, magnetron sputtering, slot-die coding, 
precise parameter control (e.g. ink layer thickness, cartridge 
temperature, nozzle head size, etc.), usage of novel materials, 
and many other custom processes and techniques [16]. In the 
large majority of reports, the inkjet printer used is the Dimatix 
Materials Printer (DMP), which is extremely expensive and not 
reasonable for minimal setups. Thus, the minimal setup was 
used to fabricate the tactile sensor.

B. IJP Tactile Sensor Fabrication

The IJP sensor of Fig. 2 was printed, cured and tested in 
the BioInspired Integrated Circuits (BIC) laboratory at the 
University of Alabama, Birmingham. The silver nanoparticle 
ink is from Mitzubishi Paper Mills Inc. (model NBSIJ-MU01). 
The ink was printed onto glossy photo-paper substrate using 
a Brother MFC-J5910DW inkjet printer. After printing, the 
sensor cured on a hotplate at 160 oC for 15 minutes [17]. The 
cost per sensor is approximately $0.09, and is a representation 
of the sensors expected from microfabrication setups in 
limited environments. Tests were performed using a Keithley 
2604B Dual SourceMeter, MATLAB and the NI ELVIS II+ 
prototyping board. The power supply, VDD, was 5V for all 
tests, making power output on the order of micro-Watts 
(10-6). Power could also be reduced to 3.3V for usage with 
microprocessors.

III. Se n s o r  Be h a v i o r  a n d  M e t r i c s  f o r  M o d e l i n g

The sensor of Fig. 2 is an adaptation to a previously studied 
pattern [14], [15]. There, it was found that the non-uniform 
fabrication and uneven curing caused each node to have 
slightly different channel resistances. Since the nodes have 
a distinctive property, the ESN will have a better chance 
of identifying the pressed node pattern. To enhance and 
control this effect, the design in Fig. 2 was made to have 
increasing channel widths among the nodes, forming a gradient 
of channel resistances as depicted in Fig. 3. The values are then
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Fig. 3: Channel resistances between nodes is made to be a 
gradient by having the channel width increase from node to 
node, distinguishing them for classification. The values are 
stored in an array that becomes an input feature to the ESN. 
Resistances are in mega-Ohms (MQ).

stored in an array and w ill later be used as a input feature for 
the ESN. In the MATLAB program where this sensor is being 
simulated, an array of channel resistances is generated for each 
simulated sample by applying uniformly distributed Gaussian 
noise to empirically gathered channel resistances.

IS is the main input feature to the ESN, with the channel 
resistance vector being a second feature to help the ESN 
classify the signal. Generating IS means modeling a single 
node’s response, applying bounded random conditions for 
signal variation, generating a pattern mask, populating a matrix 
with the randomized node response and pattern mask, and 
finally summing the contents of the node matrix to create the 
final input signal.

A. Single Node Profile

Empirical tests show the profile of a node when it is touched 
(black line of Fig. 4). The signal starts with a bias current 
and when touched, current flow steeply rises, saturates and 
flattens for the duration of being touched before dropping back 
down to the bias current when the node is released. There is a 
linear rise after the signal has saturated since thermal energy 
from the finger is absorbed into the substrate, causing channel 
resistance to gradually decrease and current to increase. These 
basic behaviors apply to all nodes, with slight (uncontrollable) 
variations existing. The profile and bounded variations were 
written in the MATLAB code. One of the randomly simulated 
signals that happened to have close parameters to the tested 
signal was overlayed in Fig. 4 as an example of how close the 
model can be to the empirical data.

The bias current for each node is directly calculated from 
its respective channel resistance vector. The steep rise in 
current when the node is touched was generated with a line 
of slope (numerator) proportional to the maximum current. 
The saturation area where it levels off was approximated with 
y =  a/ x . The linear rise due to thermal transfer while the 
node is touched was made to have a slope (denominator) 
be proportional to the maximum current. Finally, the signal 
immediately drops back to the bias current. A ll of these 
components that form the signal were given randomness within

Fig. 4: The node response is empirically shown along with 
a simulated response from the MATLAB program with close 
parameters for comparison.

bounds expected from the actual signals. The timing of when 
the node is first touched, the rise time, saturation time, and 
duration of node touch were also randomly generated within 
set bounds.

IV. Si m u l a t i o n , Re s u l t s  a n d  A n a l y s i s

After the nodes were modeled with random but bounded 
variations expected from real prints, the final signal IS could 
be generated. A binary pattern mask was randomly created 
for each sample where 1 means that a node was touched 
and 0 means it was not touched. This serves as the target 
pattern (i.e. the training dataset) for each sample. Also, the 
binary pattern was multiplied with the nodes to suppress 
signals from being generated when a node is not touched. 
The resulting matrix contains all 16 node responses expressing 
randomized target pattern. The values of each node were 
then summed row-by-row to generate the signal, IS. The full 
dataset is visualized in Fig. 5. The matrix has dimensions of 
size(Is) x (18) x (samplecount).

The signal variability of the individual nodes and current 
IS can be visualized in Fig. 6. The random variations of

Fig. 5: The final dataset for testing and training the ESN is a 
matrix with dimensions of size(Is) x (2 +16) x (samplecount).
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Node Outputs for Sample 32 Current Output for Sample 32

Node Outputs for Sample 47

Target Pattern for Sample 10 Node Outputs for Sample 10 Current Output for Sample 10

Target Pattern fo r Sample 19 Node Outputs for Samplo 19 Curront Output for Sample 19 Target Pattern for Sample 47 Current Output for Sample 47

Time (ms) Time (ms) Time ms) Time (ms)

Fig. 6: The MATLAB simulation output shows the target pattern, nodal response, and final signal IS (respectively) of four 
randomly selected samples.

the node signals can be adjusted to within specified ranges 
as more empirical data is collected. The inclusion of the 
channel resistances as an input feature will give the ESN 
the ability to classify which nodes were pressed. If  the node 
resistances were identical, the ESN would only be able to 
distinguish how many nodes were pressed rather than resolving 
the actual pattern. The amount of samples needed for training 
will increase as the number of nodes increases. This means 
that training the ESN for a 2 x 2 or 3 x 3 grid array (as 
opposed to the 4 x 4 array of this paper) w ill require less 
samples and therefore less training time. I f  the ESN has too 
high of an error rate, the random variations may be reduced 
to simplify the uniqueness of input current signals. Forming 
a single model from the generated datasets of this sensor 
w ill provide a generalized pseudo-calibration technique for its 
stabilized performance.

V. Co n c l u s i o n

Inkjet printed sensors and circuits made from minimally 
produced fabrication setups have certain inconsistencies that 
prevent highly reliable operation. A method of overcoming 
the inevitable variabilities is by using machine learning as 
a method of data stabilization. The echo state network of 
future works requires generation of input data to train and 
test the model. This report shows an minimally produced IJP 
tactile sensor printed with only silver nanoparticle ink using an 
office-quality inkjet printer. The node responses were modeled 
in MATLAB and then summed to generate the input signal (IS) 
to the ESN. The channel resistances of the array are stored as 
an input feature such that the reservoir can resolve the touched 
pattern. Random binary target patterns were masked with the 
nodes and set as the output (training) signal to the ESN. The 
final dataset w ill be used to develop the ESN such that the 
IJP tactile sensor, and ultimately other IJP sensors, may have 
improved data stability.
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