Experimental Landau-Zener Tunneling (LZT) for Wave Redirection in Nonlinear
Waveguides
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We present an acoustic analog of the Landau-Zener Tunneling (LZT) quantum mechanical effect
and apply it for irreversible wave redirection in weakly coupled nonlinear waveguides under impulse
excitation. Due to nonlinearity, LZT-induced wave redirection is passively self-tunable with energy,
being realized only in a certain energy band, that can be precisely predicted by theoretical models.
Apart from the macroscale experimental validation of the classical quantum LZT effect, the findings
apply to a broad class of acoustical systems with nonlinearity, disorder, and weak coupling.
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I. INTRODUCTION

Landau-Zener Tunneling (LZT) denotes non-adiabatic
energy tunneling in a quantum mechanical system, across
an energy gap between two anti-crossed energy levels
[1, 2]. LZT has been observed in various fields, includ-
ing semiconductor superlattices [3, 4], optical fields [5, 6],
Bose-Einstein condensates [7, 8], ultrasonic superlattices
[9], phononic crystals [10, 11] and surface elastic waves
[12]. The common feature in these applications is the in-
triguing irreversible resonance-induced energy transition
between two states under external stimulation or pertur-
bation. Perhaps the simplest analog of quantum LZT
in classical mechanics is in two weakly coupled, identical
pendulums; when one of the pendulum lengths slowly
varies there occurs irreversible energy transfer between
the pendulums due to parametric resonance [13, 14].

Here we provide experimental validation of a
macroscale LZT analog in space for a system of two
weakly coupled and disordered nonlinear waveguides un-
der impulsive excitation. Recently, it was theoretically
shown [15, 16] that LZT can yield to wave redirection
in this system. Specifically, a symmetry-breaking vari-
ation of the spatial stiffness distribution in one of the
waveguides induces LZT in space, resulting in irreversible
breather redirection from the directly excited waveguide
to the other. A break of symmetry was necessary for
LZT, as in its absence wave localization [17-19] or recur-
rent wave exchanges [17-20] were realized. Analysis re-
duced the nonlinear acoustics of the coupled waveguides
to a model of coupled oscillators with time-varying stiff-
ness, enabling crossing eigenfrequencies in the time and

J

resonance capture [16]. Moreover, due to nonlinearity the
LZT-based wave redirection proved to be self-tunable to
the intensity of the impulse and was realized only within
a certain energy band; otherwise wave localization oc-
curred [16].

Apart from the experimental demonstration of a
macroscale analog in space of LZT, we confirm the ef-
ficacy of passive wave redirection in a system of im-
pulsively excited acoustic waveguides with nonlinearity,
weak coupling and spatial disorder. In addition, we high-
light the self-tunability of LZT-based wave redirection to
input energy, rendering the acoustical system passively
self-adaptive to the external stimulant. Our experiments
corroborate previous theoretical predictions and enable
tunable-with-energy acoustic systems with inherent ca-
pacity for wave redirection.

II. LZT IN THE REDUCED-ORDER MODEL
(ROM)

The ROM of FIG. 1(a) consists of two waveguides, each
with n = 7 unit-cells. We refer to the waveguide whose
first unit-cell is subjected to an ideal impulse as “excited
waveguide” — with unit-cells E1-E7, and to the other as
“absorbing waveguide” — with unit-cells A1-A7. Each
unit-cell is composed of a linearly grounded oscillator,
coupled by essentially (i.e., non-linearizable) nonlinear
springs to its adjacent unit-cells in the same waveguide,
and by weak linear springs to the corresponding unit-cell
in the other waveguide. The equations of motion are,

mi1 + et + kg1 + ke(z1 — y1) + ce(F1 — 1) + cn(d1 — &2) + kni|v1 — 22|° @1 — 22) = F(¢) (1a)
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with yo def Y1, T8 def z7, and yg def y7, which denote the
free boundary conditions of the boundary cells A1, E7
and A7; the boundary cell E1 is the one that is excited by
the impulse F'(t) = I6(t), where §(t) is Dirac’s function
and [ is the intensity of the impulse. Moreover, assuming
zero initial conditions the applied impulse is equivalent
to the initial condition #,(0+) = I/m for unit-cell E1.
In (1), m denotes mass, and kg1 and kgo the stiffnesses
of the softer and stiffer linear groundings, respectively.
The first unit-cell of the excited waveguide, and all unit-
cells of the absorbing one possess softer grounding stiff-
nesses, kg1 < kg2, breaking the symmetry. Also, c41 and
cg2 are the viscous damping coefficients of the soft and
stiff groundings, respectively, whereas damping in the lin-
ear couplers is neglected, c¢. ~ 0 [21]. Lastly, k., 3,
and c,; are the stiffness coefficient, exponent, and linear
damping coefficient of the nonlinear intra-waveguide cou-
pling, respectively, and k. the stiffness of the linear inter-
waveguide coupling. These were estimated by experimen-
tal system identification [21] and are given in TABLE I
Listed values and respective bracketed values (where ap-
plicable) are the mean and standard deviations of the
identified parameters, respectively; otherwise, listed val-
ues are typical identified parameters.

For no spatial disorder, there are recurrent propagating
breather exchanges [22] in the two waveguides, in a non-
linear beat phenomenon. With spatial disorder added,
this evolves to irreversible breather redirection from the
excited to the absorbing waveguide due to LZT [16]. This
is shown by assuming a regime of irreversible breather
redirection and introducing the variables:

7 7
U:Zﬂ%‘; v:Zyi. (2)
i=1 i=1

Omitting damping, summing equations (1), and applying
(2), the following linear system is obtained,

mil+ kg (t)u + ke(u —v) =0, (3a)

miv + kg1v + ke(v —u) =0, (3b)

where v and v denote the excited and absorbing “effec-
tive oscillators,” respectively. The symmetry-breaking
time-varying stiffness k,g(t) in (3a) reflects the change
in the effective grounding stiffness as the breather prop-
agates within the excited waveguide [15, 16], and con-
verts the spatial disorder in (1) and temporal disorder
in (3). Note that, initially the grounding stiffness of the
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excited effective oscillator is equal to the uniform ground-
ing stiffnesses of the unit cells of the absorbing waveguide,
kgr(t) — kg1, whereas it subsequently increases to the
value kg (t) — kg2 with increasing time. Therefore, the
coupled effective oscillators (3a) and (3b) have two dis-
tinct time-dependent eigenstates; these eigenstates en-
able an initial 1:1 resonance capture between the two
effective oscillators, and a subsequent escape from reso-
nance capture as time progresses. The time scales govern-
ing the resonance capture and escape are governed by the
weak coupling k. < min{kg1, kg2} and the strong spatial
stiffness disorder k. < |kg2 — kg1|. Based on these obser-
vations a three-stage model was created in [16] to analyt-
ically approximate the evolution of kyz(t); in that model
kqgr(t) equals kg at the first stage, it linearly increases
to kg2 at the second stage, and then remains equal to kg2
at the third stage. It is the second (non-adiabatic) stage
that governs the irreversible energy transfer between the
excited and absorbing effective oscillators. Indeed, due
to the assumed weak coupling the dynamics of the effec-
tive system (3a) and (3b) exhibits fast-slow time scale
separation in its transient dynamics [16], with the slow
dynamics at the (critical) second stage being governed
by Weber’s equation, and yielding LZT and irreversible
energy transfer. In turn, this analysis proves LZT wave
redirection in the original nonlinear waveguides (1) for
weak inter-waveguide coupling, strong stiffness disorder,
and weak viscous dissipation. From TABLE I, our sys-
tem parameters satisfy these requirements.

Note that LZT-based wave redirection is also realized
when the nonlinear intra-waveguide coupling springs are
replaced by linear ones (after all, LZT is a linear quantum
effect). However, the nonlinearity enables self-tunability
of wave redirection to input energy. To show this tunabil-
ity, the mean (or typical) listed parameters of TABLE I
are used to simulate the ROM (1) for varying initial ve-
locities #1(0+) of E1. The contour plot of FIG. 1(c)
depicts energy penetration in the two waveguides, i.e.,
the maximum normalized energy of each unit-cell of the
waveguides for the entire simulation. There are three
different regimes for the acoustics distinguished by the
intensity of the impulse. In the low energy (LE) regime
(for initial velocities 41(04) < ~ 0.1 m/s, the input en-
ergy is mainly localized in E1 and A1. In the LE regime
the nonlinear springs are not engaged due to low oscil-
lation amplitudes, therefore, recurring energy exchanges
between E1 and A1 due to 1:1 resonance dominate the
acoustics in a local beat phenomenon. In the intermedi-
ate energy (IE) regime, LZT breather redirection occurs
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FIG. 1. Theoretical study of macroscale Landau-Zener Tunneling (LZT) in space: (a) Schematic of the reduced-order-model
(ROM), (b) force-displacement relations for the stiffnesses used, (c) energy penetration in the 14 unit-cell ROM (see Table I for
parameters) for varying initial velocity imposed on unit-cell E1; this is represented by contour levels of maximum normalized
energy (with respect to input energy) of each unit-cell, with three distinct penetration regimes detected, namely, low energy
(LE — point L), intermediate energy (IE — point M), and high energy (HE — point H).

TABLE I. Parameters of the ROM (1).

kni (N/m?) 8
2.3 x 10% 2.902

m (kg)
0.0245

kg1 (N/m)
470.25 [30.35]

kg2 (N/m)
1813.2 [39.3]

ke (N/m)
121.17 [8.30]

cg1 (N's/m)
0.0219 [0.007]

cg2 (N's/m)
0.0359 [0.0154]

¢ni (N's/m)
0.0161

from the excited to the absorbing waveguide through 1:1
resonance between E1 and A1, and the model of effec-
tive oscillators (3) holds. In the high energy (HE) regime
(for ©1(04+) > ~ 0.25 m/s), intermittent localization in
E1 and wave redirection occur, and much less energy is
transmitted to the absorbing waveguide. In this regime,
the nonlinearity significantly increases the oscillation fre-
quency of E1, preventing sustained 1:1 resonance be-
tween E1 and A1l. There is a clear boundary between
the IE (LZT) and LE regimes, but not between the IE
and HE regimes; this is due to viscous damping which
perturbs the wave localization in E1, yielding complex
transition effects at high energies. From FIG. 1(c), LZT
irreversible breather redirection from the excited to the
absorbing waveguide can be realized only in the IE band,
where it is robust to variations in impulse and system pa-
rameters. Lastly, we note that the nonlinear asymmetric
waveguides of FIG. 1(a) support non-reciprocal acoustics,
mainly in the LZT IE regime [16, 22, 23].

III. EXPERIMENTAL OBSERVATIONS

Guided by the ROM (1), we fabricated an experimen-
tal fixture of coupled nonlinear waveguides as in FIG.
2. Each unit-cell is made of a U-shaped aluminum block
mass grounded by a pair of thin (< 130 wm) copper-
beryllium flexure springs with small intrinsic dissipative
capacities [24], cf. FIG. 2(b). Within the desired range
of oscillation amplitudes, these flexures act as the lin-
ear grounding springs of the ROM. The softer (k,1) and
stiffer (kg2) grounding springs of the ROM are realized by
modifying the widths of the leaves of the flexures. Within
the same waveguide, each unit-cell is coupled to its ad-

jacent ones by two thin 100 um diameter music wires
(cf. FIG. 2) acting as the nonlinear coupling springs of
the ROM. Indeed, a straight, initially un-tensioned thin
wire, under transverse deformations at its center exhibits
essentially nonlinear (non-linearizable) stiffness restoring
force approximately of the third order [25], cf. FIG. 1(b);
however, acceptable small linear stiffness components are
achieved experimentally, by minimizing the unavoidable
bending effects and pre-tensions of the wires by means
of large length-to-diameter wire ratios and our system-
atic assembly protocol [21]. Lastly, thick 1 mm diam-
eter spring-steel wires of 10 cm length are clamped be-
tween corresponding unit-cells of both waveguides (FIG.
2) to realize the weak linear inter-waveguide coupling
stiffnesses k., cf. FIG. 1.

Accelerometers are used to measure the response of
each unit-cell [21]. The measured time series are postpro-
cessed to obtain the energy results of FIG. 3 and 4. Re-
garding the actuation of the excited waveguide, the unit-
cell E1 is manually forced by a PCB® miniature modal
impact hammer. The duration of the impulse is measured
as ~ 2 us, i.e., much smaller than the linearized natural
period of the unit-cell (~ 40 ps); hence, the experimental
impulse meets the computational assumption. Three dif-
ferent impulse intensities are considered, denoted by the
three points L, M, and H in FIG. 1(c). The correspon-
dence with the simulation is based on the ROM (1) with
F(t) being the experimentally measured impulse. The
data from the impact hammer and the 14 accelerometers
is recorded via an m + p VibPlot® dynamic analyzer.
Before studying the acoustics, the stiffness and damp-
ing parameters of each unit-cell are estimated by system-
identification experiments (details are provided in [21]).
The estimated parameter variations between unit cells
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FIG. 2. Experimental fixture of the nonlinear coupled waveg-
uides with 14 unit-cells: (a) Top view with the last 4 unit-cells
replaced by schematics for visualization, and (b) isometric
(left) and schematic (right) views of unit-cell A2 connected
with A1 and A3; each unit-cell is composed of a U-shaped
aluminum block mass (yellow) grounded via a pair of flexure
leaves (green), with intra-waveguide nonlinear coupling be-
ing realized by thin wires (red), and inter-waveguide linear
coupling by thick wires (orange).

due to manufacturing and assembly are small (cf. TA-
BLE I), allowing us to use mean values to simulate the
experiments.

FIG. 3 depicts the spatiotemporal evolution of normal-
ized instantaneous energy in the experimental fixture and
simulated ROM at the three excitation levels, while FIG.
4 shows the corresponding normalized instantaneous en-
ergy envelopes quantifying the energy partition in time
between waveguides. The normalizations are with re-
spect to the maximum energy attained [21]. At point L
— FIG. 3(a), the impulsive energy gets localized in the
leading unit-cells E1 and A1, being continuously and
recurrently exchanged between them; this confirms the
energy penetration plot in FIG. 1(c). The localization is
due to the low impulse, yielding negligibly small nonlin-
ear intra-waveguide coupling. This is noted in FIG. 4(a)
with recurrent, complete energy exchanges between E1
and A1l. Note the good agreement between experiment
and simulation.

Breather redirection due to LZT is confirmed at point
M — cf. FIG. 3(b), both experimentally and numerically.
The spatiotemporal energy evolution shows irreversible
energy transmission from the excited unit-cell E1 to the

absorbing waveguide. It is evident in the experiments
that the redirected breather reaches the end unit-cell A7,
while, the response of the excited waveguide is negligi-
ble after the second unit-cell E2. Therefore, in the LZT
regime the acoustics is reduced, in effect, to a single prop-
agating breather [22, 26] in the absorbing waveguide. In
fact, the breather redirection at this intermediate energy
level is nearly controlled by the leading unit-cells E1,
A1l and A2 [16]. In this case energy is rapidly and irre-
versibly transferred from E1 to A1, so the effective oscil-
lator model (3) is valid and provides accurate theoretical
prediction of irreversible energy transfer. Moreover, the
results in FIG. 4(b) confirm the LZT effect.

At the HE point H — cf. FIG. 3(c), there is a com-
plex state of the acoustics, as within an initial stage of
duration ~ 0.2 s the input energy is mainly localized in
E1 and E2, with a weak propagating breather released
to the absorbing waveguide. Following this stage, the
energy localization in the excited waveguide nearly ends,
and the remaining (diminished) energy is redirected to
the absorbing waveguide as a weak propagating breather.
In this case viscous damping plays an important role in
the acoustics: By dissipating a significant part of the
localized energy in the excited waveguide (at a faster
scale compared to the previous cases) it enables even-
tual 1:1 resonance between E1 and A1l [16, 27], and,
thus, breather redirection. This is confirmed both ex-
perimentally and numerically in FIG. 4(c), where up to
~ 0.2 s the input energy is mainly localized in the lead-
ing unit-cells of the excited waveguide, and then released
with time delay to the absorbing waveguide in a simi-
lar LZT scenario to point M. This, however, occurs only
after the localized energy is significantly reduced due to
viscous dissipation at a level where nonlinearity becomes
less dominant and 1:1 resonance between the unit-cells
E1 and A1 can be realized; only then, the remaining en-
ergy can be finally redirected to the absorbing waveguide.
Hence, at high energies there is still irreversible breather
redirection from the excited to the absorbing waveguide,
albeit time delayed and weaker. Model (3) is not appli-
cable here due to the initial localization in the excited
waveguide.

The good agreement at all three energy levels between
experiments and simulations in FIG. 3 proves the valid-
ity of the ROM (1) with the mean (or typical) parameter
values of TABLE I. There is some deviation between ex-
periments and simulations in the plots of FIG. 4, caused
by postprocessing errors in estimating the initial velocity
of the unit-cell E1 [21]; these errors originate from the
high “drifts” in the accelerometer measurements due to
sudden velocity jumps immediately following the applied
impulses by the impact hammer. The drift errors account
for the sudden initial energy decreases in the experimen-
tal plots of FIG. 4 — within milliseconds of the application
of the impulse to E1, and the uniformly lower experimen-
tal energies compared to the simulated ones. Apart from
this discrepancy, however, the experimental results con-
firm the three theoretically predicted response regimes,
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FIG. 3. Spatiotemporal evolution of normalized energy in the experimentally tested fixture (top) and simulated ROM (bottom)
when subjected to (a) low, (b) intermediate, and (c) high energy input — cf. FIG. 1(c).
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and more importantly, the LZT-based breather redirec-
tion in the IE regime. Lastly, the passive self-tunability
of the acoustics and the irreversible breather redirection
due to the strong stiffness nonlinearity are experimentally
proved.

IV. CONCLUSIONS

Experimental validation of a macroscale analog of
classical quantum Landau-Zener Tunneling (LZT) was
presented and applied for irreversible wave redirection in
weakly coupled and disordered nonlinear waveguides un-
der impulse excitation. The strong stiffness nonlinearity
yields passive self-tunability of the acoustics to energy,
switching between localization and wave redirection
depending on the impulse intensity. Such inherent and

passive self-tunable wave tailoring is not possible in
linear time-invariant settings. The results highlight
the efficacy of LZT-based passive wave redirection in a
broad class of acoustical systems combining nonlinearity,
disorder and weak coupling, with potential applications
in shock mitigation, solid state, ultrasonics, metamate-
rials, acoustic surface wave devices, structural logic and
optics. Finally, we note that the realization of passive
energy redirection inflicts break of acoustic reciprocity
in the considered lattices, which can have additional
applications in nonlinear acoustics.
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