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ABSTRACT 

Machine learning has enhanced the abilities of neuroscientists to interpret information collected 

through EEG, fMRI, and MEG data. With these powerful techniques comes the danger of 

overfitting of hyperparameters which can render results invalid. We refer to this problem as ‘over-

hyping’ and show that it is pernicious despite commonly used precautions. Over-hyping occurs 

when analysis decisions are made after observing analysis outcomes and can produce results that 

are partially or even completely spurious. It is commonly assumed that cross-validation is an 

effective protection against overfitting or overhyping, but this is not actually true.  In this article, 

we show that spurious result can be obtained on random data by modifying hyperparameters in 
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seemingly innocuous ways, despite the use of cross-validation. We recommend a number of 

techniques for limiting over-hyping, such as lock boxes, blind analyses, pre-registrations, and 

nested cross-validation. These techniques, are common in other fields that use machine learning, 

including computer science and physics. Adopting similar safeguards is critical for ensuring the 

robustness of machine-learning techniques in the neurosciences. 
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INTRODUCTION 

Computers have revolutionized approaches to data analysis in psychology and neuroscience, 

effectively allowing one to interpret not only the neural correlates of cognitive processes, but also 

the information content that is represented in the brain through the use of machine learning. 

However, with these new and powerful tools come new dangers. Machine learning algorithms 

allow a pattern classifier to weave many subtle threads of information together to detect hidden 

subtle patterns in a massive data set, e.g. to determine from MEG data whether someone is 

currently viewing a building or an animal (Cichy, Pantavis & Oliva 2014). However, these pattern 

classifiers are essentially black boxes to their human operators, as they create complex mappings 

between features and outputs that exceed one’s ability to comprehend. This lack of 

interpretability can be especially pernicious when combined with the dangers of 

overfitting, which is a problem inherent to all fitting algorithms, see Table 1 and (Poldrack 

et al 2020). Specifically, interpretability enables the plausibility with which a classification 

or prediction is arrived at to be assessed against prior understanding and theory. 

Consequently, when using “black-box” machine learning (i.e. algorithms where the 

internal parameters are essentially uninterpretable by humans), one can unintentionally 

create a classifier that does very well on a specific data set, but poorly on other data sets, 

with no way to critique or judge the plausibility of the solution found by the algorithm.  
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Consequently, when using such algorithms, one can unintentionally create a classifier that does 

very well on a specific data set, but does poorly on other data sets, which is called overfitting in 

the machine learning literature (See Table 1).  

The issue of overfitting is related to another topic that is frequently discussed in the scientific 

literature, which is researcher degrees of freedom (e.g. Simmons, Nelson & Simonsohn 2011).  

This term reflects the fact that choices made during analysis can erroneously inflate findings of 

statistical significance by eliminating options that produce non-significant results. A parallel issue 

exists in machine learning, but with additional layers of  complexity that can obscure the influence 

of choices made by the researcher on the analysis outcome. For example, techniques such as cross-

validation (i.e. tools for reducing overfitting, see Table 1) are often thought to insulate the analysis 

from the statistical inflation provided by degrees of freedom in the analysis, but it will be shown 

here that this is not the case.   

ProblemsIssues associated with analysis overfitting are by no means new to science: High-energy 

physics has had a number of high-profile false discoveries, some of which were the result of 

overfitting an analysis to a particular data set. Related difficulties have been argued to have arisen 

during the search for gravitational-waves (Creswell et al, 2017; New Scientist, 2018). For accounts 

of some of these in the light of current experimental practice, see Harrison (2002) and Dorigo 

(2015).Indeed, because of several high-profile false discoveries, high-energy physics has already 

gone through a replicability crisis, and has had to rearrange its methods to deal with the 

consequences. A classic case, which was a big wake-up call for the field, was the so-called split-

A2 from Chikovani et al. (1967). Had this effect been genuine, it would have engendered a 

theoretical revolution, but when more data became available, the effect disappeared; see Harrison 

(2002) for a recent view. It appeared that inappropriate selection of data was the culprit. For 

accounts of some of these in the light of current experimental practice, see Harrison (2002) and 

Dorigo (2015).   
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 The similarities between data analysis in high-energy physics and modern neuroscience are 

striking: both fields have enormous quantities of data that need to be reduced to discover signals 

of interest. As such, it is useful and common to apply cuts to the data, i.e. to restrict analysis to 

certain regions of interest (ROI), as is common to the analysis of fMRI and EEG data. Because the 

purpose of the cuts is to enhance a signal of interest, there is a danger that the choice of a cut made 

on the basis of the data being analyzed (and on the basis of the desired result) may create apparent 

signal where none actually exists, much like in aforementioned case from physics. Furthermore, 

when making measurements in high-energy physics and neuroscience, complicated apparatuses 

are often used, and analyses typically contain an extremely sophisticated set of software 

algorithms. Optimization (i.e. making choices to increase effectiveness), and debugging of the 

complex analysis chain pipelines for both neuroscience and physics data sets requireshas further 

potential for creating an apparent measurement of a non-existent effect. Making these cuts and 

other analysis optimizations require many decisions that are often necessary to process the data, 

and yet present grave dangers to the generalizability of the results, such that the results will not 

replicate on a separate data set. 

To prevent such cases, the high-energy physics community has adopted several conventions and 

methods in the analysis and interpretation of data. For example, blind analysis refers to a technique 

in which analysis optimization occurs without consulting the dependent variable of interest (e.g. 

Klein & Roodman 2005). Since the optimization algorithm is blind to the result of interest, 

researcher degrees of freedom will be unable to artificially inflate estimates of statistical 

significance. Unlike physics, while related issues have been discussed in the literature 

(Kriegeskorte et al 2009; Button 2019; Brooks et al 2017), the neuroscience field has not yet fully 

responded to the dangers of over-hyping when complex analyses are used, which increases the 

potential of false findings and presents a major barrier to the replicability of the literature. At the 

end of this paper, we will discuss several preventative solutions, including blind analysis. 

As mentioned above overfitting is the optimization of an analysis such that performance improves 

on the data being evaluated but remains constant or degrades on other similar data. This ‘other’ 

data can be referred to as out-of-sample, meaning that it is outside of the data that was used to train 

and evaluate the classifier. In other words, if one were to develop a machine learning approach on 

one data set and then apply the same algorithm to a second set of data drawn from the same 
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distribution, performance might be much worse than on the original set of data. This is a severe 

problem, because models that cannot generalize to out-of-sample data have little to say about brain 

function in general: Their results are valid only on the data set used to configure the classifier, are 

tuned to the specific pattern of noise in the data, and are unlikely to be replicated on any other set. 

One of the earlier and more startling examples of overfitting was performed by Freedman (1983), 

where he showed—with high statistical significance—that a regression model could be used to 

find a strong relationship between independent random variables drawn from a standard normal 

distribution (which have no real relationship whatsoever). 

To better understand the principles of this conundrum, we rely on a commonly used distinction 

between parameters and hyperparameters. In the context of machine learning, we use the term 

parameter to refer to aspects of the analysis that are directly driven by the data through a training 

algorithm. For example when training a support-vector-machine (or SVM, a commonly used 

classifier in machine learning), the training algorithm uses the data to adjust a set of parameters 

which allow that classifier to learn how specific patterns of brain activity predict specific 

dependent variables.  Hyperparameters, on the other hand, refer to aspects of an analysis that are 

configured (often by manual selection) to improve the outcome of the training process (see Table 

1). In neuroscience hyperparameters will include, but are not necessarily limited to the following: 

artifact rejection criteria, feature selection (i.e. electrodes or ROIs in the brain), filter settings, 

control parameters of classifiers (e.g. choice of kernels, setting of regularisation parameters), and 

even choice of classifier (e.g. SVM vs. random forests vs naïve Bayes). These are settings and 

choices that could, at least in principle, apply across a class of data sets.  

In this context, we propose the term over-hyping as a specific case of (typically unintentional) 

overfitting through adjustment of analysis hyperparameters to improve the results for a specific 

data set and then the same results cannot be obtained on another data set with the same 

hyperparameters. We suggest that over-hyping is a fairly widespread and poorly understood 

problem in the neurosciences, particularly because the field utilizes relatively expensive and time 

consuming data collection practices (unlike the field of machine-vision, for example). 

a thorough understanding of the error introduced through over-hyping is crucial, since this error is 

easy to commit yet difficult to detect. Furthermore, while there has been a lot of discussion of 

problems of circularity and inflated effects in neuroscience analyses (e.g. Kriegeskorte, Simmons, 
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Bellgowan & Baker 2009; Vul, Harris, Winkielman & Pashler 2009; Eklund, Nichols, Anderson 

& Knutsson 2015; Brooks, Zoumpoulaki & Bowman, 2017), machine learning algorithms are so 

effective that they provide dangers above and beyond those that have been discussed. Optimization 

of hyperparameters  is a common practice in the machine learning literature (Bouthillier & 

Varoquaux 2020) and it is difficult to determine how the data were treated during the optimization 

process. Importantly, as will be demonstrated below, the technique of cross-validation, often 

employed as a safeguard against overfitting, is not entirely effective at ensuring generalizability. 

We suspect that the incidence of accidental overfitting errors in the literature could be substantial 

already, and may increase as machine learning methods increase in popularity.  

Overfitting is the optimization of a model on a given data set such that performance improves on 

the data being evaluated but remains constant or degrades on other similar data. This ‘other’ data 

can be referred to as out-of-sample, meaning that it is outside of the data that was used to train and 

evaluate the classifier. In other words, if one were to develop a machine learning approach on one 

data set and then apply the same algorithm to a second set of data drawn from the same distribution, 

performance might be much worse than on the original set of data. This is a severe problem, 

because models that cannot generalize to out-of-sample data have little to say about brain function 

in general: Their results are valid only on the data set used to configure the classifier, are tuned to 

the specific pattern of noise in the data, and are unlikely to be replicated on any other set. One of 

the earlier and more startling examples of overfitting was performed by Freedman (1983), where 

he showed—with high statistical significance—that a regression model could be used to find a 

strong relationship between independent random variables drawn from a standard normal 

distribution (which have no real relationship whatsoever). 

To prevent such cases, the high-energy physics community has adopted several conventions and 

methods in the analysis and interpretation of data. Of these changes, the one that is most relevant 

to over-hyping is called blind analysis, referring to a technique in which analysis optimization 

occurs without consulting the dependent variable of interest (e.g. Klein & Roodman 2005). Since 

the optimization algorithm is blind to the result of interest, over-hyping is at least difficult, if not 

impossible. At the end of this paper, we will discuss several preventative solutions, including blind 

analysis. Unlike physics, while related issues have been discussed in the literature (Kriegeskorte 

et al 2009; Brooks et al 2017), the neuroscience field has not yet fully responded to the dangers of 
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over-hyping when complex analyses are used, which increases the potential of false findings and 

ON THE SAME DATA SET 

In the neuroscience literature and also in machine learning more generally, a method that is 

typically employed to prevent overfitting is cross-validation, in which data are repeatedly 

partitioned into two non-overlapping subsets. In each iteration, classifiers are trained on one set 

and tested on the other and the results of multiple iterations are averaged together.  

There are many varieties of cross-validation, such as K-fold, in which the data are divided into K 

equal subsets (or “folds”) and the train/testing process is repeated once for each of the subsets.  In 

each repetition, the designated subset is used for testing while the remaining subsets are combined 

together to form a training set. Thus for a 10 fold cross-validation scheme, ten separate classifiers 

are trained, each trained on 90% of the data, and tested on 10%.  The results are then computed as 

the average accuracy of the 10 classifiers on the test set.  The accuracy scores from the training 

sets are not used, as these scores are likely to reflect some amount of overfitting.   

Other approaches to cross-validation are similar. Stratified sampling can be used to ensure that 

each subset of the data has an equal proportion of samples from each class of data (e.g. hit vs miss 

trials) before the K folds are defined.  Leave-One-Out methods break up the data into subsets such 

that each subset corresponds to one group of trials (e.g. one subject) such that the classifier is 

trained for subsets excluding each such group in turn.  Thus for a data set with 20 subjects, twenty 

classifiers would be trained, one excluding the data from each subject in turn and then tested on 

the excluded subject (but see Varoquaux et al. 2017 for a discussion of the increased likelihood 

for unstable accuracy estimates from leave-one-out techniques) 

Regardless of which specific form of cross-validation is used, the principle of cross validation is 

that Bbecause the training and testing sets are disjoint in each iteration, the average performance 

on the test sets can be is believed to provide taken as an unbiased estimate of classifier performance 

on out-of-sample data. However, this is only true as long as one important restriction is obeyed: 

After performing cross-validation, the decisions regarding the analysis chain pipeline used to 

classify the data must not be modified made to obtain higher performance on that same data. 

Reusing the same data to optimize analysis parameters can induce over-hyping, even if cross-

validation is used at each iteration.  
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The reason that over-hyping can occur despite cross-validation is that all data sets are composed 

of a combination of signal and noise. The signal is the portion of the data containing the useful 

information that one would like the machine learning classifier to discover, while the noise 

includes other sources of variability. However, when an analysis is optimized on a given data set 

after viewing the results, the choice of hyperparameters can be influenced by how the noise 

affected the classification accuracy. Consequently, while the optimization improves classification 

accuracy on this data set, performance may remain constant or even worsen on a completely 

distinct set of data, because (in a statistical sense) its noise is not shared with the data driving the 

optimization (Figure 1). In other words, the analysis would not replicate at the same level of 

significance on a distinct dataset even if the sampling conditions and the analysis were identical.  

The possibility that cross-validation does not prevent over-hyping, is well known in the machine 

learning and machine vision communities (Domingos 2012), which are taking increasing care to 

avoid the problem. For example, machine-learning competitions on websites such as Kaggle.com 

provide contestants with sample data on which to optimize their models. However  Tthe final 

evaluation of the contestants is performed on a different data set that is either held as confidential 

 
Figure 1. An example of how over-hyping can be induced by modifying hyperparameters after 

evaluating a system through cross-validation. The feedback loop allowing hyperparameters to be 

adjusted after viewing the results provides a route for analysis decisions to be made in response 

to the noise in the data set, despite the separation of data into training/testing sets. 
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by the sponsoring organization, or is released only a few days before the end of the competition 

(i.e. the “held out” data set). Contestants who access the data more often than the rules permit are 

disqualified, their organizations can be barred from future competitions and in one recent high-

profile case a lead scientist was fired (Markoff 2015).  

In writing this paper, we share the experience of our colleagues in the physics and computer 

science disciplines so as to encourage more rigorous standards of machine learning before a 

replicability crisis in neuroscience machine learning unfolds. It is not our intent to call out specific 

examples of bad practice in the literature, although in our informal survey of the neuroscience 

classification literature it was rarely the case that appropriate precautions had been documented 

(i.e. some variety of blind, nested cross-validation or lock box analysis, which will be described 

below). Without these precautions it is impossible to determine from a paper’s methods whether 

overfitting of hyperparameters occurred. This is concerning because overhypingit is unlike the 

problem of double-dipping (Kriegeskorte, Simmons, Belgowan & Baker 2009; Button 2019), 

which is more clearly discernible from the methods. Double-dipping refers to the practice of 

selecting a subset of data based on particular values in the data (i.e. picking a highly active set of 

voxels), and then running a statistical analysis on that same subset. The greater difficulty in 

identifying cases of over-hyping is that it would have occurred during the optimization of the 

analysis, and these steps are typically omitted from the methods. Another issue that we observe in 

the literature is inconsistent terminology, which makes it harder to understand exactly what was 

done (e.g. Ng (1997) and Varoquaux et al.  (2017) use incompatible definitions of ‘test set’). To 

help clarify terminology, we offer a table describing common terms and descriptions of what they 

are typically taken to mean (Table 1). We suggest a new term, the Lock box, which refers to a set 

of data that is held-out from the optimization process for verification and should not be consulted 

until the method’s hyperparameters have been completely determined. The term hoeld-out data set 

is sometimes taken to mean this, but that term is also used inconsistently and is easy to misinterpret 

as a test-set in its most common usage.  The term lock box more clearly indicates the importance 

of holding the data in an inaccessible reserve. More will be said about this below. Next, we provide 

clear examples of over-hyping despite use of cross-validation using a sample of EEG data recorded 

from our own lab. We use real data instead of simulated data, to ensure that the noise reflects the 

genuine variability typically found in similar datasets.  
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The first example shown here is a one-shot hyperparameter adjustment, in which 40 variations of 

machine classification are tested using cross-validation on a set of randomly scrambled data (i.e. 

data in which there is no signal). By taking the most favorable result from these 40 variations from 

each of a large number of iterations (we intended to run 1000 simulations in total but ended up 

with 1038 and include them all for the sake of transparency), we evaluate whether how often a 

spurious result can be obtained by making a single hyperparameter choice despite cross-validation. 

The one-shot analysis hyperparameter adjustment was often able to reveal a spurious shows a 

significant classification effect using conventional temporal-generalization analyses that are 

currently favored by the EEG classification community (e.g. King & Dehaene 2014, Cichy et al., 

2014). The illusory effect obtained by over-hyping, though small, would provide erroneous 

evidence of target discrimination in the EEG data over long periods of time, which is commonly 

taken as evidence that a neural correlate of working memory has been measured. A comparison to 

a lock box data set (i.e. data that were not consulted during analysis optimization) reveals that there 

is no reliable classification of target presence by this chosen set of hyperparameters, which is the 

expected outcome from a randomly shuffling of labels on the data set. 

In the second example, we show a more extreme case of overhyping. Hyperparameters were 

iteratively optimized to eliminate some features of the data set through a genetic algorithm using 

cross-validation at each step. This process is analoagous to recursive feature elimination (RFE), a 

commonly used technique in analysis optimization. Performance was compared to lock box data 

that were set aside and not used in the genetic algorithm's fitness function. Performance was shown 

to improve on the data on which the classifiers were optimized, but not on the lock box data. Note 

that highly robust over-hyping was obtained, despite the use of cross-validation. The obtained 

results, presented below, demonstrate that classifiers can easily be over-hyped to obtain 

performance that will not generalize to set-aside or out-of-sample data.  

METHODS 

EEG METHODS 

The simulations presented below were performed on EEG data, which was collected from rapid 

serial visual presentation (RSVP; Experiment 3 of Callahan-Flintoft, Chen and Wyble 2018; see 

supplemental for comprehensive methods). Subjects viewed a series of changing letters, 



11 

 

presented bilaterally, updating at intervals of 150ms, and were tasked with reporting the one or 

two digits that would appear on each trial. For this analysis, we selected the trials containing 

either a single digit, or two digits presented in sequence separated by 600msand attempted to 

classify for each trial, whether one or two digits had been presented. However, the trial labels 

were randomly shuffled within subjects to obscure any actual effect of this manipulation. During 

each trial, EEG was recorded at 32 electrode sites and according to the standard 10-20 system. It 

was further bandpass filtered from 0.05 – 100 Hz, originally sampled at 500 Hz and down-

sampled offline to 125 Hz for the present analysis. For further details on pre-processing and 

artifact rejection, see the EEG recordings section of experiment one in the original paper 

(Callahan-Flintoft et al., 2018). The original study excluded one subject due to an insufficient 

number of trials after artifact rejection. We decided to exclude an additional subject, choosing 

the one with the least number of trials, in order to be able to split the data into two equal parts for 

parameter optimization and lock box, detailed below. The final number of subjects was 24. 

Finally, the original study divided the data based on the visual hemifield in which the target 

stimulus was presented and only included trials in which correct responses were provided. We 

collapsed the data across hemifields and included all trials regardless of accuracy to increase the 

number of available trials per subject. Using incorrect all trials in this way was is an 

experimenter degree of freedom (i.e. a hyperparameter) that was adopted without consulting 

analysis resultslooking at the analysis results and thus could not have contributed to over-hyping. 

The complete methods from the original paper are provided in the supplemental.  

SIMULATION 1. OVERHYPING DUE TO KERNEL SELECTION DESPITE 

CROSS-VALIDATION 

The main first analysis used was a measures the property of temporal generalisation 

within an EEG signal, which determines indicates whether a classifier trained at one point in 

time relative to stimulus onset is able to classify trial categories at other time points. Such 

analyses have been used to examine whether memory representations are stable over time in 

working memory research (e.g. Dehaene & King 2014).  

We ran a series of A total of 1038 1000 independent efforts (which we will refer to as 

iterations below) to measure whether and how often a spurious effect could be obtained if one 

tested a set of 40 different classifiers on independent random shuffles of a data set.  In effect, this 
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is similar to 10381000 scientists trying to perform over-hyping on 10381000 randomly shuffled 

the same data set.  Each of the 10381000 scientists uses cross-validation on 40 different kinds of 

classifiers and then chooses their best result from the 40.  

iterations was performed. In each one the trial labels were randomly shuffled within each 

subject. This It needs to be stressed: all analyses were exclusively performed on null-data. 

Hence, any systematic improvements above chance performance must be due to over-hyping. 

Also, the dataset were was randomly split into two equal parts of 12 subjects. One set was for 

parameter optimization (PO) and the other was the lock box (LB) set. The data were reshuffled 

into new PO and LB sets approximately at the beginning of every 15 iterationsiteration to ensure 

that any effects were not subject-specific. Our temporal generalisation analyses used functions of 

the MVPA-Light toolbox (by Matthias Treder).  

For each of the 1038 1000 iterations randomized PO & LB data sets were created. 40 

configurations of hyperparameters classifiers (i.e. 40 different hyper-parameter configurations) 

were used in each iteration to generate temporal generalisation maps to determine which 

configuration had produced the most desired outcome classifying the random PO data set. The 

40 configurations were derived from 4 different classifiers: support vector machines (SVM) with 

three different kernels (linear, polynomial (order of 2); radial basis function (RBF)) and a linear 

discriminant analysis (LDA). Additionally, the extent of regularization was varied through 10 

choices for each classifier. For SVMs, the C parameter took values of 0.0001, 0.0007, 0.0059, 

0.0464, 0.03593, 2.7825, 21.5443, 166.81, 1291.5496 and 10000. The choice of C values was 

inspired by (and equal to) the search space of MVPA-Light’s default regularization search for 

SVMs. For LDA, candidate lambdas were 1, 0.88, 0.77, 0.66, 0.55, 0.44, 0.33, 0.22, 0.11 and 0. 

Temporal generalisation analyses were performed using 5-fold cross-validation. 

These 40 candidate configurations competed in each of the 1038 1000 iterations of the 

analysis, which we call PO Competition as they represent a competition between Parameter 

Optimizations. This PO competition was decided using a measure we call classification mass (C-

Mass), which was computed on group-average temporal generalization maps (i.e. averages of 5-

fold cross-validated single-subject maps). C-Mass reflects the average deflection from chance-

level classificationAUC value across the entire temporal generalization map. For each of the 

1000 iterations, the hyperparameter configurations that led to maximum C-Mass (i.e. highest 
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map-average AUC value) when classifying the PO data set waswere selected as the respective 

of the PO competition for that iteration. These winning configurations winners of this 

the degree of over-hyping by comparing them to the LB set.  

We implemented this C-Mass criterion after feedback from a reviewer. Our initial 

simulations are presented in the appendix and were based on a C-Mass variant that measured the 

extent of above- as well as below-chance AUC across the entire temporal generalization map to 

acknowledge the fact that below-chance classification in the context of EEG data can be  

meaningful (we provide a brief discussion of this in the appendix, too). Both versions of the C-

Mass analysis reveal essentially similar results and are being provided for transparency. It was 

computed by first subtracting chance-level classification (Area Under the Curve/AUC of 0.5) 

from all AUC values of a given map, then squaring these values and finally taking the average of 

the entire map1.  

For each of the 1038 iterations, hyperparameter configurations that led to maximum C-

Mass classifying the PO data set were selected as the respective winner of the PO competition. 

The winners of this competition were then used to assess the degree of over-hyping by 

comparing them to the LB set.  

We adopted a cluster-extent permutation test for our temporal generalisation maps, which 

was based on functions of the ADAM toolbox (J. Fahrenfort). We performed a first-level 

Wilcoxon signed rank test (non-parametric alternative to a t-test, preferred as distributions of 

AUCs do not meet parametric assumptions) at each pixel of the temporal generalisation map 

across single-subject maps, which resulted in a map of p-values. Neighbouring AUCs found to 

be significant for this test formed clusters and these clusters’ sizes are were subsequently tested 

against a permutation-distribution of maximum cluster-sizes under the null. Clusters were 

determined statistically significant if only 5% of permuted maximum cluster-sizes exceeded their 

size (i.e. alpha of 0.05). For a more detailed introduction of this test, see Appendix 1the 

supplementary material. 

 

SIMULATION 1. RESULTS 
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The results of these simulations revealed a systematic improvement in C-Mass by 

selection of the winning analysis. To illustrate that these effects are systematic, a comparison of 

the PO competition winners against their respective LB counterparts shows how the C-Mass 

distributions are shifted by the selection process, despite the use of cross-validation (Figure 3). 

The top panel illustrates that the average C-Mass (which is always greater than zero since it is 

the sum of squares) is greater for the winning PO than the set of LB’s. 

  

Figure 2. How overhyping manifests in temporal generalisation maps. Maps of a winning PO (panel 

A), its corresponding LB (panel B) and its worst PO, which implemented hyperparameters that led to 

minimal C-Mass, (panel C) are plotted with their main diagonal AUC vectors below. Beige areas in 

AUC time-series plots show divergence from chance-level classification (i.e. AUC of 0.5) in main 

diagonals. Classification performance was at a higher level for the winning PO compared to both other 

analyses. A family-wise error correction cluster-extent test was performed (Nichols & Holmes 2002) 

for winning PO & LB maps and only showed statistically significant AUC clusters for the PO map. 

Maps and cluster-boundaries (i.e. matrices determining statistical significance) were 2D-smoothed 

separately using a boxcar of 40 ms width. This was only done to facilitate visualization and did not 

affect any analyses, which were all computed prior to smoothing. As all three analyses decoded null-

data, any differences in classification performance must be due to the effectiveness of classifiers’ 

hyperparameters (in this case a linear SVM with a C parameter of 0.0059 an LDA classifier with a 

lambda of 1 for winning PO & LB). This is a demonstration of overhyping because these 

hyperparameters fitted the noise of the PO dataset best, which however differed in the LB dataset and 

thus led to decreased classification performance for the LB. This map triplet was manually chosen. An 

additional 9 triplets can be found in the supplementary material. 
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To illustrate that these effects are systematic, a comparison of the PO competition 

hyperparameters, as opposed to the winning set from the parameter-optimization phase, is 

approximately equal to performance on 

the LBs dataset when using the 

winning hyperparameter set, as it 

should be if the difference between PO 

and LB classification is due entirely to 

noise. This result demonstrates how a 

Lock Box provides an unbiased 

estimate of performance, as the 

resulting C-Mass is free of any 

overhyping effects.  

The focus of this analysis lies 

in the top panel of Figure 3: the 

distributions of PO & LB C-Mass for 

winning hyperparameters of the PO 

competition clearly demonstrate 

overhyping of classification results. If 

overhyping was absent, these 

distributions should sit on top of one 

another. However, the PO C-Mass 

distribution has a higher mean 

(0.00081 / 8.1098*e-040.5159), 

median (0.00071, 7.0974*e-040.5150) 

and larger smaller variance (1.3977*e-

070.0001) compared to the LB C-Mass 

distribution (mean: 0.000367 / 

3.6650*e-040.4999, median: 0.000281 

/ 2.811*e-040.4997), variance: 

6.217*e-080.00016). The bottom panel 

of Figure 2 illustrates how the within-

Figure 3. C-Mass distributions of PO (blue) and LB 

(red) maps (top two panels), as well as their within-

iteration difference (bottom panel). The top panel 

shows C-Mass results for the PO & LB maps that 

incorporated winning hyperparameters from the 

parameter-optimization phase, the middle panel shows 

the distribution of LB C-Mass after choosing 

hyperparameters randomly. The coloured vertical lines 

indicate distributions’ median value and the rectangles 

surrounding these lines indicate the interquartile 

ranges. The black vertical line in the bottom panel 

indicates a PO – LB difference of zero (i.e. no 

overhyping). Note that even though LB C-Mass 

distributions correspond to simulated ‘null-

distributions’, they are not centred around zero since 

we squared AUC values during the calculation of C-

Mass. 
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iteration differences in C-Mass between PO and LB were distributed. This distribution should be 

centred around zero if no overhyping was observed (i.e. a given set of hyperparameters leading 

to similar success in decoding between-class differences for PO as well as LB null-data). The 

observed mean (0.000444 / 4.4448*e-040.0161) and median (0.000391 / 3.9104*e-040.0152) of 

implying higher C-Mass in PO maps. Permutation tests, which were based on randomly 

determining the direction of subtraction between PO & LB C-Mass to generate a distribution of 

null PO-LB C-Mass differences under the null, confirmed that both values were significantly 

different from zero (p < 0.001), which provides evidence for overhyping. However, p-values 

obtained from simulation analyses should be interpreted with caution, as we discuss in more 

detail in the supplementary material. 

We further assessed how vulnerable the different classifiers were to overhyping. Across 

all classifiers, the median difference in C-Mass between winning PO and LB was positive and 

significantly different from zero after performing the permutation test introduced above (linear 

SVM: median = 0.000353 / 3.533e-040.0146, n = 299329; polynomial SVM: median = 0.00036 / 

3.58*e-040.0125, n =176189; RBF SVM: median = 0.00024 / 2.39*e-040.0127, n =110132; 

LDA: median = 0.000462 / 4.618*e-040.0184, n =453350). We investigated whether overhyping 

was more pronounced for certain classifiers by conducting a Kruskal-Wallis test (due to non-

normality of C-Mass values), which revealed a significant difference among the four classifier 

types (² (3, 1034996) = 44.1420.07, p < 2e-7.001). Post-hoc pair-wise tests of mean rank-

differences between classifiers provided evidence that over-hyping was significantly largest 

larger after LDA classification compared to all three SVM classifiers. The differences between 

SVM classifiers were all non-significant (we provide , smallest for RBF SVMs and intermediate 

for linear & polynomial SVMs (detailed results of this analysis can be found in the 

supplementary material).  

Interestingly, we found that LDA and linear SVM classifiers won our PO competition 

most frequentlyabout twice as often as polynomial and RBF SVMs. It was especially intriguing 

to see a clear trend towards hyperparameter settings which generate simple classification models 

(e.g. high regularization or a linear classification kernel) winning and losing our PO competition 

the most. Losing the competition means that a given setting of hyperparameters led to minimal 

C-Mass across all other settings in a given iteration. This rather counterintuitive finding can be 

explained by an exploratory analysis we present in the supplementary material, where we also 
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display histograms of hyperparameter settings winning/losing our PO competition. We show 

with an additional set of simulations that C-Mass varies noticeably more after temporal 

generalization with simple classification algorithms. Such analyses hence yield more extreme 

values in both directions (low and high C-Mass) more often than complex classifiers, which 

results in simple classifiers being more likely to win and lose our PO competition.  

 

SIMULATION 2. OVERHYPING BY FEATURE SELECTION DESPITE CROSS-

VALIDATION 

 

In addition to kernel parameters, analysis optimization can involve feature selection, in which 

portions of the data set are excluded from the pipeline on the grounds that they contain irrelevant 

information that can reduce classifier accuracy (e.g. Deshpande et al. 2010). This method is 

widely used and is included as Recursive Feature Elimination (RFE) in scikit-learn. Here, we 

show that when cross-validation is the only protection against over-hyping, this method will 

induce spurious findings of significant classification accuracy on randomly shuffled data when 

feature selection is based on classification accuracy.  

We ran a series of 16 independent efforts to measure how effectively one could overhype a data 

set using feature selection via a genetic algorithm approach for feature selection. This simulation 

is similar to 16 different scientists trying to perform over-hyping on 16 randomly shuffled copies 

of the same data set.  Each of those 16 scientists uses cross validation for several hundred 

iterations, progressively improving the analysis hyperparameters at each iteration.   

A fast Fourier transform (FFT) of the 64 data points (comprising 256 ms) from each EEG channel  

after the first target onset were extracted from each trial. The log of the absolute value of the FFT 

was computed, and spectra across all channels were summed, resulting in 64 frequency values per 

trial. The classifier attempted to determine whether subjects had seen one or two targets within a 

given trial based on these 64 frequency values that represented the scalp-wide power spectrum 

from the 256ms time period after target onset. As above, the trial labels were randomly shuffled 

prior to the analysis to remove the correspondence between data and conditions.  

Commented [M N G H2]: UPDATE THIS 
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A support vector machine (SVM) was used to classify the post-processed EEG data and the over-

hyping was accomplished with a genetic algorithm that adjusted weights for the 64 frequency 

bands available to the classifier. The SVM was MATLAB’s fitcsvm, with an RBF kernel and 

kernelscale set at 25. No additional classifiers or kernel settings were attempted for this analysis. 

To demonstrate that cross-validation is inadequate protection against overhyping, the analysis was 

repeated for 16 iterations. For each iteration, 15% of the data were set aside in a Lock Box (LB) 

to test for over-hyping. Since the data was randomized, it was expected that performance on this 

outer test set should be at 50% (chance level), while performance on the 85% of the trials that 

formed the Parameter Optimization (PO) set would be elevated above chance by the last generation 

of the genetic algorithm. Over-hyping on the 16 PO sets was performed using a genetic algorithm 

coupled with cross-validation. For each generation of the genetic algorithm, 10 candidate feature-

weight vectors were each evaluated against a shared set of 10 random partitions of the PO dataset, 

with 85% of trials in each partition used to train the SVM and 15% used for testing. At the start of 

the optimization procedure, the 10 candidate weight vectors were randomly constructed with 64 

values ranging from 0.95 to 1.05. During training and testing, these vectors were multiplied by the 

power spectra for each trial before being provided to the SVM.  

Within each PO iteration, for each of the 10 candidate feature weight vectors, the SVM 

performance in terms of AUC on the 10 random partitions was averaged to compute performance 

for each candidate. The best candidate was selected and then repeatedly mutated by adding 64 

random numbers (range [-.05 .05]) to create 10 new candidates for the next generation of the 

genetic algorithm. This process was repeated for 400 generations to optimize the analysis. 

To measure over-hyping, after each generation, the best feature weight vector was also used in a 

classification of the LB set for each of the 16 iterations and the results were not used to inform the 

evolution of the feature-weight vector. This is a strong violation of the principle of using a lock 

box but it is done here as a demonstration. In practice accessing a lock box multiple times can 

itself result in overfitting, particularly if the results are used to influence analysis choices or 

stopping criteria.  

To measure the statistical significance of the model's classification on the parameter optimization 

set, a permutation test was run after the final generation of the genetic algorithm. First, the analysis 
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result was computed as the mean AUC across the ten PO partitions using the final generation of 

feature-weights. Then, all condition labels for the trials (i.e. the target-type) were randomly 

shuffled 1000 times, a number chosen to balance the computational costs of running 10381000 

separate analyses. After each such shuffling, for each of the ten partitions, the SVM classifier was 

retrained with the best final weight vector and the AUC was measured. These AUC values were 

shuffled to create a null-hypothesis distribution of 1000 values. The p-value was then computed 

as the fraction of the null-hypothesis distribution that was larger than the non-permutated 

classification result (i.e. the proportion of shufflings that produced a mean AUC greater than the 

mean AUC on the unshuffled data). 

This entire procedure was repeated independently for 16 iterations  times to demonstrate the 

robustness of over-hyping. In each case, the data were randomly repartitioned into a parameter 

optimization set and a lock box, and the genetic algorithm was used to optimize weights for the 

parameter optimization..  

SIMULATION 2. RESULTS 

The results of overhyping by feature selection are illustrated in Figure 4, which shows that 

performance improves on the parameter optimization set without corresponding changes on the 

lock box set.. As the labels were randomly shuffled, any performance above chance (AUC of 0.5) 

in a statistical sense, would indicate overhyping. All 16 iterations of the PO set had significantly 

elevated performance by the final generation of the feature-selection genetic algorithm. One of the 

LB sets was significant.  

DISCUSSION 

This paper demonstrates the ease with which over-hyping can be induced when using machine 

learning algorithms despite the use of cross-validation. The approaches used here are analogous to 

optimization procedures that have been used in EEG/MEG classification such as exploring various 

kernel options or discarding channels and frequency bands to improve classification performance. 

Similar problems may exist with other hyperparameters, e.g. choosing time windows, or different 

ways of filtering out artifacts. Moreover, the same concerns apply to any kind of large neural data 

set. For example, in the case of using multi-voxel pattern-analysis (MVPA) on fMRI data, 



20 

 

optimization through selection of any analysis step in the pipeline during consultation with the 

data could lead to the same kinds of over-hyping that we demonstrate here.  

These results should not be taken to indict cross-validation as a poor methodological choice: It is 

considered to be state-of-the-art by many in the machine vision and machine learning communities 

for good theoretical and practical reasons (Arlot & Celisse 2010). However, our result does clearly 

indicate that cross-validation does not permit heedless analysis optimization. 

Importantly, the problem of over-hyping becomes more severe as the sample size reduces. 

This reflects the fact that error bars are larger when samples are small (Lorca-Puls et al, 

 

Figure 4. To demonstrate that models can be over-hyped using feature selection, a genetic 

algorithm was used to iteratively select features to optimize performance on a randomly shuffled 

EEG data set, thus performance should not deviate from chance. The optimization procedure was 

run for 16 iterations, with 400 generations in each. The blue trace indicates accuracy from a cross-

validation test on the parameter optimization set, while the red shows performance on a lockbox 

set. The asterisks indicate when the results of the final generation differed significantly from 

chance at an alpha level of .05. All of the PO sets were significantly different from chance, while 

only one of the LB sets was.  

 

**
* * *

***
*

* * *
*

*
***

A
U

C

Generation Generation Generation Generation

A
U

C
A

U
C

A
U

C



21 

 

2018), a phenomenon that has been compelling demonstrated in machine learning applied 

to neuroimaging data (Flint, et al, 2019; Varoquaux, 2018). This mirrors the law of large 

numbers in classical statistics, which states that there is increased error in estimates as 

samples get smaller (Dekking et al, 2005). The combination of large error bars and over-

hyping means that applications of machine learning in neuroimaging are likely to be 

especially vulnerable to the file-drawer effect (Lorca-Puls et al, 2018), which reflects the 

fact that only analyses that generate significant effects get published, leading to potentially 

very severe inflation of published accuracies and effect-sizes. 

There are several ways in which over-hyping can be protected against, above and beyond standard 

forms of cross-validation. We suggest that, in order to increase generalizability and replicability, 

journals publishing data from classification analyses encourage the use of one of the approaches 

listed below.  

THE PRE-REGISTRATION APPROACH 

In cases where there is a clearly defined analysis plan that exists before efforts are made to analyze 

the data, a really good approach to minimizing over-hyping is pre-registration. Pre-registration 

(Nosek, Ebersole, DeHaven, & Mellor 2018). involves submitting a complete analysis plan to an 

external server that is accessible to the journal’s readership.  This practice encourages the 

practitioner to specify all hyper-parameters at the onset of an analysis and provides a time stamp 

indicating that they have done so.  This is helpful because Ccross-validation does succeed in 

providing an unbiased estimate of out-of-sample performance when classification results are not 

used to iteratively optimize performance. Therefore, it is safe to pre-register or otherwise rigidly 

specify a classification analysis before attempting it. Assuming that it is done in good faith, tThe 

pre-registration would provide evidence that the hyperparameters were finalized prior to 

attempting the analysis using previously established methods. The advantage of this approach over 

the lock box is that all of the data can be used in the final estimate of performance. The 

disadvantage is that hyperparameter optimization is not permitted, which limits the effectiveness 

of the analysis. The Registered Report (Chambers, Forstmann, & Pruszynski, 2017) is another 

publication format that can guard against over-hyping in a similar way as pre-registration.  In this 

context, an analysis plan is developed in consultation with a reviewing team before the data are 



22 

 

analyzed and the article is published regardless of the outcome. This approach removes any 

opportunity to overhype provided that no modifications to the analysis are performed.   

 

THE LOCK BOX APPROACH. 

Using a metaphorical data lock box makes it possible to determine whether over-hyping has 

occurred. This entails setting aside an amount of data at the beginning of an analysis and not 

accessing that data until the analysis protocol is clearly defined, which includes all stages of pre-

processing, artifact correction/rejection, channel or voxel selection, kernel parameter choice, and 

the selection of all other hyperparameters. A close variation of this technique is already standard 

practice in machine learning competitions. When submitting a candidate for such a competition, 

the ultimate performance of the algorithm is evaluated on a separate set of data that is reserved 

until the final stage of the test. The workflow of using a lock box is shown in Figure 5.  

We suggest that, moving forward, when machine classification approaches to data analysis in 

neuroscience must be developed without clear default choices for hyper-parameters or existing 

software, that such approaches should might incorporate a lock box approach, in which data are 

set aside at the beginning of the development of an analysis and not assessed until the paper is 

ready for submission (or equivalently, new data are collected at the end of analysis optimization). 

At this point, the data in the lock box should be accessed just one time to generate an unbiased 

estimate of the algorithm’s performance. This result is likely to be less favorable than the data that 

were being used during optimization and should be published alongside the results from any other 

analyses. At the same time, reviewers would need to be more willing to accept results that seem 

less positive than they historically have, since our current understanding of generalized machine 

learning accuracy is likely to be biased by current practices.  

If it turns out that the results from the lock box test are unsatisfactory, a new analysis might be 

attempted, but if so, the lock box should be re-loaded with new data, either collected from a new 

sample or from additional data that were set aside at the beginning of the analysis (but not from a 

repartitioning of the same data that had originally been used in the lock box).  
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A possible alternative is to access the lock box multiple times during optimization, but to apply a 

correction to any resultant statistics as a function of the number of times the lock box data was 

evaluated. A method for accessing a lock box multiple times while limiting overfitting was 

suggested by Dwork (2015). This method called for simultaneously evaluating a given model on 

both the parameter optimization set and on the lock box, and then only revealing the performance 

on the lock box to the operator if that performance was significantly different than that of the 

model on the parameter optimization set. Furthermore, the performance on the lock box set would 

be presented only after being summed with a Laplacian noise variable. By following this method, 

the maximum error rate when generalizing to out-of-sample data can be limited by only observing 

the performance on the lock box a set number of times (and halting parameter optimization once 

that limit is reached). While this is an innovative method for limiting overfitting, it only sets the 

maximum error rate when generalizing – To get the true error rate, a second lock box would have 

to be used. 
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Note that this lock box approach is evaluative. It does not prevent over-hyping, but allows one to 

test whether it has occurred. However, the performance of the algorithm on the lock box is 

guaranteed to be a non- over-hyped result if the technique was correctly used. 

NESTED CROSS-VALIDATION 

Another way to respond to the problem of overfitting hyperparameters is to use a generalization 

of cross-validation, called nested cross-validation (Cawley & Talbot 2010; Stone 1974). Nested 

CV helps to ensure that results are not specific to a given analysis configuration by showing that 

the results generalize to out-of-sample data. In this approach, inner cross-validations are run within 

an outer cross-validation procedure, with a different portion of the data serving as outer “hold-out 

 

Figure 5. Here the workflow of using a lock box is demonstrated in illustrative form. Data is first 

divided into a parameter optimization set and a lock box. The model can be repeatedly tested and 

hyperparameters can be iteratively modified on the parameter optimization set. After all 

hyperparameter optimization and the analysis workflow is determined, the model can be tested 

against the lock box data. By doing this, an unbiased estimate of overfitting can be obtained, and 

an objective measure of how well this system will generalize is achieved. 
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set” on each outer iteration. Importantly, for each outer iteration, an unbiased assessment of 

accuracy can be obtained by testing on this outer hold-out set. That is, the best parameters and 

hyperparameters determined on each inner cross-validation, can be assessed out-of-sample on the 

corresponding outer hold-out set. 

Nested cross-validation can be thought of as a repeated lock box approach, in which a new box 

(the hold-out set) is set aside and locked for each iteration of the inner cross-validation loop (Figure 

6). Then, an overall accuracy (and indeed dispersion of accuracies) can be obtained by averaging 

across the accuracies determined from the hold-out sets of each outer iteration. This will typically 

be a more reliable measure of accuracy than that obtained from any individual outer iteration (i.e. 

the lock box approach). However, it is critical that the outer folds are not cherry-picked to find the 

best solutions, since this would constitute over-hyping. It is also important that the algorithm not 

be re-run in its entirety with different parameters after viewing the results, since this again would 

result in over-hyping.  

An issue for nested cross-validation relative to the lockbox is that the average accuracy obtained 

at the end of the procedure will be the result of multiple configurations of hyperparameters, and 

thus it may be especially difficult to understand the link between the data and the accuracy. For 

example, in analysis of fMRI data where the region of interest is one of the hyperparameters, 

different iterations of the outer loop may converge on different regions of the brain. It would 

therefore be difficult to gain insight into what brain areas are driving the classification. We give 

more details of nested cross-validation in the Supplementary Material. 
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THE BLIND ANALYSIS APPROACH 

Blind analysis can be an appropriate tool for preventing over-hyping when testing a well-defined 

hypothesis. In other words, the analysis protocol is develop using real data, but with the labels of 

each trial or subject obscured so that the analysis optimization process is unable to produce over-

hyping. Under a blind analysis scheme, the input data is modified in a reversible way to prevent 

the optimization process from inadvertently becoming tuned to noise patterns in the data that are 

differential with regard to the contrast of interest. An alternative is to use an orthogonal contrast, 

where classification is done on unaltered data but usinga condition that is orthogonal to the 

classification one will ultimately use (Brooks et al. 2017). Some examples of using blind analysis 

 

Figure 6. Here the workflow of nested cross-validation is demonstrated in illustrative form. The 

data set is folded into multiple combinations of hold-out set and inner optimization set. Each of 

these folds is essentially similar to the lock box approach described above and can be optimized. 

The final accuracy would be the average accuracy computed across all of the hold-out sets.  
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include scrambling all condition labels and then artificially adding ‘target signals’ to some trials. 

The hyperparameters of the model can then be optimized to detect the signal present in the 

modified data. Once the hyperparameters are locked in, the blind can be lifted (e.g. conditions 

unscrambled and modifications removed), and the true results can be calculated. The advantage of 

this approach is that all of the data can be used during the optimization phase, and the final 

evaluation of performance can be done across all of the data instead of just the outer-box set. Note 

that blind-analysis is a way to minimize over-hyping. If used in conjunction with a lock box, one 

can both minimize and diagnose overfitting. The disadvantage of the blind analysis is that it 

obscures accuracy on the key predicted variable, and this may prevent the development of an 

effective analysis plan depending on the type of data one uses, in which case a lock box is a good 

solution.    

THE PRE-REGISTRATION APPROACH 

Each of these approaches is ideal for particular use cases. The simplest decision point hinges on 

whether the analysis plan is already established, in which case pre-registration is clearly the best 

choice. Blind analysis is suitable when hyperparameters need tuning to accommodate 

unanticipated variability in the data that is orthogonal to the predictor (e.g. finding the time 

window or location of a brain signal of interest). Nested cross-validation is well suited to a case 

in which an automated algorithm can be used to tune hyperparameters, and the precise values of 

those hyperparameters are not of interest. Finally, the Lock box, particularly when it is very 

large, is best suited to a case in which the values of tunable hyperparameters are of particular 

interest or the process of tuning them is done partially by hand, rather than by automation. 

Regardless of which approach one takes, it seems crucial that more transparency should be 

applied to documenting how data is treated through the entire process of developing a pipeline. 

For example pilot tests of an analysis can lead to overhyping if they inform the search range of 

hyperparameter optimization prior to partitioning data into different sets. In such cases, being 

transparent can highlight the points where leakage of information into the (hyperparameter 

dependent) pipeline may have occurred. 
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SAFE VERSUS EFFECTIVE USE OF MACHINE LEARNING 

Optimal use of machine learning in neuroscience requires that it be used both safely (i.e. without 

over-hyping  such that the results can be trusted) and effectively (i.e. the classifier is 

appropriately tuned to  discriminating signal). In the terminology of machine learning, safe 

largely corresponds to minimizing variance, while effective largely corresponds to reducing bias  

Geman, Bienenstock, & Doursat (1992). The methods described above help to ensure safety, but 

do not necessarily provide effective solutions, since the avoidance of over-hyping is often 

obtained by limiting the amount of analysis optimization that is allowed. When data is easy to 

obtain, this limitation is not as severe, since analysis chains can be repeatedly adjusted, and 

tested against new data. However data in the neurosciences is often expensive and time 

consuming to collect. Unfortunately, this means that one often has to choose between analyses 

that are highly optimized but over-hyped, or weakly optimized and not over-hyped. The best path 

forward is to make use of expertise when it is available, such that good decisions are made up 

front, and ideally even pre-registered prior to viewing the results of analysis on critical data.  

CONCLUSION 

The biggest danger of data science is that the methods are powerful enough to find apparent signal 

in noise, and thus the likelihood of data over-hyping is substantial. Furthermore, analysis pipelines 

are complex, which makes it difficult to clearly understand the possibilities for leakage between 

optimization and evaluation stages that can lead to over-hyping. Our results illustrate how easily 

this can occur despite the use of cross-validation. Moreover, it can be difficult to detect over-

hyping without having an abundance of data, which can be costly to collect. However, as 

reproducibility is a cornerstone of scientific research, it is vital that methods of assessing and 

assuring generalizability be used. By setting aside an amount of data that is not accessed until the 

absolute completion of model modification (i.e. a lock box), one can obtain an unbiased estimate 

of the generalizability of one’s system and of how much over-hyping has occurred. Alternatively, 

blind analysis methods, good faith pre-registrations of the analysis parameters and nested cross-

validation reduce the possibility of overfitting. Conversely, using any method that allows one to 

check performance on the same data repeatedly without independent data that has not been 

consulted can induce over-hyping, inflating false positive rates and damaging replicability. 

Devoting more attention to these dangers at this point, when machine learning approaches in 
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neuroscience are relatively nascent, will allow us to improve the state of science before 

inappropriate methods become standardized.  
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TABLES 

Table 1. The terminology used in this and other papers are defined in this table. 

Term Definition 

Machine Learning Machine learning is the use of semi-automated fitting algorithms to discern 

patterns in data. Typically, machine learning algorithms are trained with 

labeled data from two or more classes, and are then used to predict which 

class a new and unlabeled data item belongs to. Examples of machine 

learning algorithms are support vector machine (SVM) classifiers, random 

forest models, and naive Bayes classifiers. 
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Cross-Validation A technique commonly used to evaluate classification performance that 

repeatedly divides the data into two subsets (each division is a fold), one 

of which is used to train a classifier, the other being used to test it. 

Performance is taken as the average across all folds. See the supplemental 

for a more thorough description.  

Training and Testing sets These terms generally refer to the two subsets of data used during cross-

validation. However, the term test-set is sometimes used to refer to data 

that has been set-aside for later evaluation. We advise against that usage 

for the sake of consistency.  

Nested Cross-Validation Nested cross-validation is a generalization of cross-validation in which the 

data are now partitioned into N outer sets/ folds. Each of these folds 

provides an outer hold-out set, and an inner set, on one outer cycle. On 

each such outer cycle, cross-validation is performed on the inner set. The 

benefit of the nested approach is that is provides a reliable assessment of 

overfitting of hyperparameters. See the supplemental for a more thorough 

description. 

Lock box We introduce the term lock box to mean a subset of data that are removed 

from the analysis pipeline at the very start of optimization and not 

accessed until all hyperparameter adjustments and training have been 

completed.  

Hyperparameter Hyperparameters are a kind of parameter whose values are adjusted either 

by hand or by algorithms to improve model performance (e.g. weights of 

electrodes, regions of interest, SVM model kernel functions, classification 

model types). They are distinct from other parameters, whose values are 

set during classifier training (e.g. the linear function that results from 

training a least squares model or the classification function that results 

from training a Support Vector Machine classifier). 
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Supplementary Material 

We present more detailed descriptions of cross-validation procedures. 

Cross-validation: Cross-validation procedures are defined according to the number of folds they 

employ. For example, in 10 fold cross-validation, the data are randomly divided into 10 equal sized 

portions, and a 10 iteration procedure is performed. In each iteration, a different one of the 10 

portions is used as the test set, with the remaining 9 unioned together to provide a training set. An 

accuracy is thereby obtained for each iteration, which critically, is “out-of-sample” with respect to 

that iteration, since the test set is disjoint from the training set. The results of each iteration (here 

10) are then averaged, to provide an overall accuracy. The procedure has the advantage that even 

though an out-of-sample test is performed, all data points appear at one instant in a test set, 

ensuring that an accurate assessment of overall classification accuracy (which is averaged across 

all iterations) is obtained. Additionally, an assessment of the confidence one should have in the 

overall accuracy can be obtained from the dispersion of the accuracies generated across cross-

validation iterations. As demonstrated in this paper, a single execution of cross-validation is an 

effective and safe way to fit parameters, but if the entire procedure is run multiple times to fit 

hyperparameters, it has the potential to overfit. 

Nested Cross-validation: This is a procedure in which cross-validations are nested within cross-

validations. A typical approach would be to nest a cross-validation that provides an out-of-sample 

test of the fitting of parameters, inside a cross-validation that provides an out-of-sample test of the 

fitting of hyperparameters. Critically, the procedure enables out-of-sample tests at both levels, i.e. 

inner test sets are out-of-sample re. the setting of parameters, while the outer test/ hold-out sets are 

out-of-sample re. the choice of hyperparameters. Effectively, the outer-level test/ hold-out set 

really acts like a lock box, but specific to a particular outer iteration. In this way, each data point 

contributes to a hold-out set at some instance. Accordingly, one obtains a better estimate of overall 

out-of-sample accuracy, since multiple hold-out set accuracies are calculated and averaged, rather 

than a single one, as would be the case with a single (fixed) lock box and one level of cross-

validation. Additionally, one obtains a measure of confidence of hold-out accuracies by 

considering the dispersion of such accuracies across the outer folds of the procedure. It is critical 
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that accuracy from all of the outer loops is averaged together however. One cannot select the most 

favorable result without overhyping.  

Figure S1 presents a typical nested cross-validation scheme. Importantly, as just discussed, with 

such a procedure, one can fit hyperparameters as well as parameters. For example, if there were 

four Support Vector Machine kernels that one wanted to select between, one would run each of 

the three outer iterations shown in figure S1 four times, e.g. outer 1, 4 times (giving 4 x 2 = 8 runs 

for that outer iteration). One would then have an inner cross-validation accuracy for each kernel 

on each outer iteration, i.e. 4 for each outer iteration, with each of these 4 being obtained by 

averaging across the accuracies obtained on the corresponding two inner iterations. 

One can then take the best kernel of the 4 tested, with its trained parameters, and test it out-of-

sample on the hold-out set for that outer iteration. The hold-out set accuracies obtained from each 

outer iteration can then be averaged, to give a fair accuracy for the entire fitting – choice of kernel 

and fitting under each kernel. However, selectively reporting the best of those four kernels and 

ignoring the other three would constitute overhyping.  
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Figure S1: A 2 within 3 Nested Cross-validation, where the outer cross-validation loop involves a 

different Hold-Out (HO) set for each of its three iterations. The remainder of the data provides a 

parameter optimization set for each outer iteration, which is subjected to two fold (i.e. split-half) 

cross-validation. 

Cluster-Extent Permutation Test of Temporal Generalisation Maps 

To family-wise error (FWE) correct our temporal generalization  maps we performed the following 

procedure. For each group map, we first subtracted chance-level AUC (i.e. 0.5) from all its 

underlying single-subject temporal generalisation maps. Each position (pixel) of the single-subject 

maps was then tested separately against a median of zero across subjects using a twoone-tailed 

Wilcoxon signed-rank test (i.e. being greater than zero). This yielded a map of p-values, which 

was subsequently used to form clusters if (at least 8-pixel) neighboring AUCs had p-values smaller 

than or equal to 0.05 and were of the same polarity. Polarity in this context means that we 
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differentiated between positive (above-chance) and negative (below-chance) clusters. The unlikely 

to determine which of the clusters were statistically significant compared to a null distribution 

(Nichols & Holmes 2002 ; Pernet, Latinus, Nichols,& Rousselet 2014),   .  

We computed a total of 10000 permutations for this test. For each permutation, we performed a 

sign-swap at the level of single-subject maps to simulate the null. Specifically, instead of 

subtracting chance-level AUC (0.5) from all single-subject maps, as described above, we now 

randomly determine, with equal likelihoods and for each single-subject map separately whether 

0.5 was subtracted from it (map – 0.5) or whether the whole map was subtracted from 0.5 (0.5 – 

map). We again perform twoone-tailed Wilcoxon signed-rank tests at each pixel of our permuted 

single-subject maps, get maps of p-values and form clusters, as described before. After recording 

all clusters’ sizes, we determine the biggest cluster across both polarities (above- and below-

chance) and store its size in a distribution. Repeating this process 10000 times results in a 

distribution of 1000 maximum cluster-sizes under the null against which our observed clusters 

arewere tested. Observed clusters were assigned p-values as the proportion of maximum (or 

biggest) clusters under the null found to be equal to or larger than them.  

This procedure was always performed separately for each group map tested (meaning permuted 

distributions of maximum cluster-sizes were never used more than once). We also restricted the 

tested area to be from approximately 100 milliseconds onwards to resemble real-life usage of this 

test. It should be noted that this does not change the statistics in any way, because tests of maximum 

statistics are automatically correcting for family-wise errors (FWE) as long as one is adopting the 

same approach (e.g. restricting the area) for the observed and the (permuted) null data (in this case 

temporal generalisation maps). 

 

Degree of over-hyping across different classifiers assessed with Kruskal-Wallis Test 

The Kruskal-wallisWallis test is a non-parametric alternative to a one-way ANOVA, which we 

used for assessing the degree of over-hyping across different classifiers because our the C-Mass 

distributionss did not meet parametric assumptions. It was computed on classifier-separate C-

Mass difference distributions between PO and LB (compare bottom panel of Figure 3). It hence 
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tested the null hypothesis that the PO – LB C-Mass differences of our four groups (i.e. 

classifiers) originated from the same distribution. This null hypothesis was rejected (² (3, 

1034996) = 44.1420.07, p <  2e-7.001), as can be seen in the ANOVA Table below (Figure S2, 

panel A). Following up on this result, we further tested pair-wise mean-rank differences between 

classifiers using Tukey’s honest significant difference criterion to correct for multiple 

comparisons. The results of these tests are provided in Figure S2 panels B & C and showed that: 

1) LDA had a significantly higher mean rank than all other classifiers (i.e. most over-hyping); 2) 

across SVMs, all differences were non-significant, but linear RBF SVMs had the highest a 

significantly lower mean rank, followed by  than all other classifiers (i.e. least over-hyping) and 

3) linear as well as polynomial polynomial and RFB SVMs. had moderate mean ranks, which 

were significantly smaller than LDA’s and larger than RBF’s but not significantly different from 

each other. These results thus provide evidence that the degree of over-hyping can vary 

substantially across classifiersis especially problematic for LDA classification. 
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Figure S2: Results of Kruskal-Wallis test conducted on PO – LB C-Mass distributions to assess 

the degree of over-hyping between our four classifiers. Panel A shows the ANOVA table, which 

indicates a significant main effect of classifier. Panel B plots the rank distributions for each 

classifier, which indicates that mean ranks (i.e. degree of over-hyping) of LDA > linear SVMs >/ 

polynomial SVMs SVMs > RBF SVM. This is confirmed in Panel C, which shows the results of 

statistically testing all pair-wise mean-rank differences. Five Three out of six tests yielded 

significant p-values after correcting for multiple comparisons using Tukey’s honest significant 

difference criterion, indicating that the extent of overhyping was significantly larger for LDA 

classifiers compared to all SVM ones. Only the contrast of linear vs. polynomial SVMs had a 

statistically non-significant mean-rank difference.  

 

Interpreting p-values in the context of simulations 

P-values can become uninformative in the context of simulations, where very large simulated 

samples can be run. As discussed in Friston (2012), the fallacy of classical inference states that 

once the sample size is sufficiently large, p-values become trivial as the smallest effects suffice 

for significance. To be more precise, for a two-sided test, there is a sample size N for any non-

zero experimental effect, no matter how small, that will make the p-value significant. We 

nonetheless chose a large sample size because, in contrast to p-values, standardised measures of 

effect size become more accurate with increasing sample size. This was recently illustrated in a 

neuropsychology context (Lorca-Puls et al., 2018, especially figures 4 & 5).  

 

C-Mass variance differences across different classifiers 

We ran an additional set of simulations for this analysis, which was very similar to the 

one introduced in the “Overhyping due to kernel selection despite cross-validation” section of 

the main paper. We used the same dataset and shuffled class-labels randomly to simulate null-

data. However, we did not group subjects into two groups of Parameter Optimization and Lock 

Box, but instead ran all combinations of hyperparameters (the same ones as introduced in the 

paper) in each of 1000 iterations on the data of all 24 subjects. To reiterate, this involved, for 
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each iteration and configuration of hyperparameters, running a temporal generalization analysis 

on a given subject’s (null) dataset and then averaging all 24 single-subject maps to generate 

group-level maps. This therefore resulted in a total of 40000 group-level temporal generalization 

maps (1000 iterations * 40 hyperparameter configurations). We computed C-Mass as the average 

AUC value across the entire group-level temporal generalization mapdeflection from chance-

level classification of a given group-map, as explained in detail in the paper. Figure S4A displays 

boxplots of these 40000 C-Mass values, which illustrates indicates that, after SVM classification, 

C-Mass varies more after adopting simple classification algorithmsmodels (e.g.i.e. due to a high 

degree of regularization), even though the median C-Mass value is comparable across 

hyperparameter different settings. Note that the degree of regularization decreases from left to 

right in the figure and models hence become increasingly complex. This means that temporal 

generalization maps were more likely to be either closer to chance-level accuracy (low C-Mass) 

or further away from it (high C-Mass) after running more simple classification algorithms, as 

such algorithms are more likely to yield more extreme C-Mass values. We further present in 

Figure S4B how this dynamicdifferent hyperparameters were distributed manifested in in our PO 

competition. The notion that simpler classification models lead to an increase in C-Mass variance 

is hinted at in these distributions, too. Strikingly, it seems to be the case that simple models (i.e. 

an LDA or linear SVM classifier, as well as small C-values in SVM classification) tend to win 

and lose the PO competition more frequently (the latter implying minimal C-Mass within a given 

iteration across all other hyperparameter settings). Naturally, exploratory observations like we 

present here need to be interpreted with caution. However, it is suggestive of a particular risk of 

overhyping when adopting more simple classifiers, such as the commonly used LDA and linear 

SVM algorithms and hence could be a valuable topic for further investigation. , where the 

simpler classification models were, the more often they won and lost (the latter implying 

minimal C-Mass within a given iteration across all other hyperparameter settings). This analysis 

overall suggests that over-hyping due to the absence of appropriate precautions such as a Lock 

Box or nested cross-validation is more dangerous when adopting more simple classification 
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Figure S3: Panel A shows boxplots of C-Mass for all hyperparameter configurations. Red 

horizontal lines indicate the medians. Note that this analysis the analysis of Figure S3A did not 

involve splitting subjects into PO and LB groups. Panel B displays proportions of hyperparameters 

selected after winning (top row) or losing (bottom row) the PO competition of the analysis 

presented in the Simulations 1 section of the paper. The middle row corresponds to randomly 

selected hyperparameters, which were applied to the LB independent of the PO competition. The 

left column depicts distributions of classification models (blue = LDA, orange = different SVMs) 

and the right column shows how regularization parameters (lambda (blue) for LDA and C (orange) 

for SVM classifiers) were distributed. Note that regularization decreases from left to right in both 

panels (classification models become increasingly complex). 
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Nine additional and randomly chosen temporal generalization plots for further illustration 

of over-hyping  

Figure S4:, Figure 2 of the main body illustrates just one of the 1038 1000 results that was 

we show 9 additional samples from this distribution of 10381000. These were selected at 

with bias neither towards significance of clusters, nor C-MASSMass. Five Three of the nine 

selected at random have significant clusters in the Winning PO.  
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Figure S4: Nine additional temporal generalization map-triplets showing over-hyping as 

demonstrated in Figure 2. These nine candidates were selected randomly and correspond to 

iteration numbers 129, 994, 1002, 231, 164, 1008, 504, 83 and 84698, 127, 279, 547, 633, 815, 

906, 914 and 958 (in the order plotted above) of our PO competition. Panels A, B and C show the 

winning PO, the (winning) LB and the losing PO maps, respectively. Plotting conventions follow 

those of Figure 2. Temporal generalization maps and permutation tests’ cluster-boundaries were 

again smoothed only to improve visualization and did not affect any analysis whatsoever. 

Initial C-Mass variant and analyses of simulations 1 

It In our initial simulations, C-Mass measured the extent of above- as well as below-chance 

classification across a temporal generalization map and was computed by first subtracting 

chance-level classification (Area Under the Curve/AUC of 0.5) from all AUC values of a given 

map, then squaring these values and finally taking the average of the entire map2. We squared 

AUC values after subtracting them from chance-level because of a unique and interesting 

implication of below chance-level (or mis-) classification in temporal generalisation plots. 

Misclassification can imply that the whole-brain pattern difference between classes measured at 

testing time y resemble those that were present at training time x, but were of the opposite 

polarity, which leads to classifiers making more mistakes than they would by chance. Therefore, 

one can argue that below-chance classification performance in the context of EEG-data is not 
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necessarily meaningless. To illustrate, we present an example map-triplet (similar to Figure 2), 

which shows larger below-chance classification in the PO than in the LB in Figure S5. In these 

analyses, we also adopted a two-tailed variant of the cluster-extent permutation test introduced 

above, in which above- as well as below-chance AUC-clusters could be formed, hence the 

statistically significant below-chance cluster in the map of Figure S5A. Furthermore, a pattern of 

systematic over-hyping due to kernel selection similar to that presented in figure 3 was found for 

our initial analyses, too, as is shown in figure S6.  

 

Figure S5. Analog of figure 2 for an example map-triplet of our initial C-Mass analysis, which 

shows an increase in below-chance classification in the PO compared to the LB dataset.  
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Figure S6. Analog of figure 3 for the initial C-Mass measure, which assessed above- as well as 

below-chance classification. A similar pattern of over-hyping due to kernel selection was 

observed. It is noticeable that these C-Mass distributions are strikingly different in shape and 

property compared to those we present in the main paper. This is due to the fact that our initial 

C-Mass values were all very close to zero.   

 

 

Methods from Callahan-Flintoft et al. 2018, Experiment 3 

 

 

These are the methods used for collecting the EEG data set from Experiment 3 of Callahan-

Flintoft et al 2018. These data were used in all of the analysis here.  
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Participants. Data from 26 subjects were collected for the first experiment. All subjects 

volunteered from the Pennsylvania State University psychology subject pool for this study. 

Participants all had normal or corrected-to-normal vision and were between the ages of 18 and 

23 years old. Informed consent was obtained for each participant prior to each study in 

accordance with the IRB office of Penn State. Subjects were excluded for having too few usable 

trials per condition (threshold: 15) after discarding trials for inaccurate responses and EEG 

artifacts, leaving 25 subjects usable for analysis.  

Stimuli & Apparatus. Participants sat in an electrically shielded room, 91cm away from the 

computer which had a 46cm CRT (1024 x 768, 60 Hz refresh rate). Stimuli were black 

(RGB([0,0,0]) alphanumeric characters in size 55 Arial font (1.26°x 0.63° of visual angle), 

presented on a grey background using MATLAB 2012 with Psychophysics Toolbox-3 extension 

(Brainard, 1997). Subjects looked for digit targets presented among a bilateral stream letters. The 

digits used as orthographic targets were: 2,3,4,5,6,7,8,9. Distractors and feature targets were 

drawn from the following collection of letters: A,B,C,D,E,F,G,H,J,K,L,N,P,Q,R,T,U,V,X,Y. 

Letters that resembled digits, such as 'O', ‘S’, ‘Z’ and 'I', were excluded as well as wider letters 

such as 'M' and 'W'. Target identities were randomly selected on each trial. 

Procedure. On every trial participants were presented with two RSVP streams placed three 

degrees from a fixation cross, which remained throughout the trial (Figure 5). Both streams were 

updated simultaneously with a 150ms stimulus onset asynchrony (SOA) and no inter-stimulus-

interval. Note that this SOA is slightly longer than that used in Tan & Wyble (2015). This 

change was implemented to increase accuracy, since analyses could only be done on trials in 

which subjects reported both targets successfully. Seven or eight distractors in each stream were 

presented before target onset and eight distractor pairs were presented afterwards. This number 

of pre- and post- target distractors was used in all experiments except Experiment 2. Every trial 

had one or two targets, the second of which (T2) always appeared in the same stream at a 

varying lag. No stimulus was repeated for at least two sequential frames. At the end of the trial, 

the fixation cross was replaced with either a period or a comma for 150ms. Two practice trials 

were used within the instruction block to demonstrate the task. 

Four conditions were used to test what duration between targets is required to elicit a second 

N2pc. Participants were either presented with only one target (Single), two sequential targets, the 
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second immediately after the first (Lag 1), two targets with one frame of distractors in between 

(Lag 2), or two targets with three frames of distractors in between (Lag 4). There were 280 trials 

distributed equally across the four conditions, intermixed within a single block. After every 20 

trials, participants were given a self-paced break. 

Instructions and responses. Participants were told that every trial would contain one or two 

targets that they would have to report, in the correct order, using the keyboard. They were also 

told that on some trials they would have to report which symbol had replaced the fixation cross. 

At the end of each trial, participants were asked for the first and second target, with the option of 

pressing Enter if they did not know it. On a third of trials participants were also asked to report 

the symbol (dot or comma) that appeared at fixation. This was done in order to encourage 

participants to remain engaged, with their eyes on fixation, for the entire trial and not just until 

the target(s) appeared. This technique was used to discourage eye movements but the actual 

elimination of trials with eye movements was done with EEG measures described below. 

Feedback was provided by showing the participants what targets in order were shown as well as 

what punctuation had replaced the fixation cross (dot or comma).  

Participants were excluded from both behavioral and EEG analysis if they had fewer than 15 

usable trials in any condition. Trials were considered usable if participants accurately reported 

the identity of all targets present, regardless of the order, and if the trial passed the EEG 

exclusion criteria described below. The average number of usable trials per condition was M = 

33 (SE = 1.7), M = 38 (SE = 1.8), M = 35 (SE = 2.6), M = 42 (SE = 2.3) for Feat, Ortho, Feat-

Feat, and Ortho-Ortho, respectively. 

 

 

EEG Recordings. The same EEG system was used to collect data for all of the experiments 

presented here. A 32-channel sintered Ag/AgC1 electrode array mounted in an elastic cap 

according to the 10-20 system (FP1, FP2, F3, F4, FZ, F4, F8, FT7, FT8, FC3, FC4, FCz, T3, T4, 

C3, C4, Cz, TP7, TP8, CP3, CP4, CPz, T5, T6, P3, P4, Pz, O1, O2, and Oz) (QuikCap, 

Neuroscan Inc.) was used, with the tip of the nose used for a reference. The amplifier was a 

Neuroscan Synamps with a band pass filter of 0.05-100 Hz and a sampling rate of 500 Hz. The 
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data was reduced offline to 250 Hz. Prior to the start of the experiment, the impedance for all 

electrodes was lowered to 5 kΩ or less. VEOG and HEOG electrodes were placed on the lower 

and upper orbital ridge of the left eye as well as the outer canthus of each eye respectively. All 

ERPs were time locked to the first target onset and a three second epoch (1 second prior to T1 

onset, two seconds post) was used for each trial. Baseline activity from a window -200ms to 0ms 

relative to T1 onset was subtracted from each trial. If the average difference between HEOL and 

HEOR electrodes in a moving 32ms time window exceeded 20μV, the trial was judged as having 

contained a horizontal eye movement and was rejected. If the difference between VEOU and 

VEOL electrodes increases more than 100μV, the trials were marked as having contained a blink 

and was rejected. Additionally, if any channel exceeded an absolute value of 100μV during the 

epoched window, that trial was rejected. All artifact rejection and EEG analysis was performed 

with a combination of custom MATLAB 2012 script and EEGLab 13.3.2b functions (Delorme & 

Makeig, 2004).  

 

Figure S65. Paradigm for Experiment 3 of Callahan-Flintoft et al. (2018). Participants were 

presented with 2 RSVP streams. There were 7 or 8 frames of distractors (150ms SOA) prior 

to target presentation and 8 frames of distractors presented afterwards. Targets were black 

digits among black letter distractors. T2 was presented either at lag-1, 2, or 4.  


