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ABSTRACT

Machine learning has enhanced the abilities of neuroscientists to interpret information collected
through EEG, fMRI, and MEG data. With these powerful techniques comes the danger of
overfitting of hyperparameters which can render results invalid. We refer to this problem as ‘over-
hyping’ and show that it is pernicious despite commonly used precautions. Over-hyping occurs
when analysis decisions are made after observing analysis outcomes and can produce results that
are partially or even completely spurious. It is commonly assumed that cross-validation is an
effective protection against overfitting or overhyping, but this is not actually true. In this article,

we show that spurious result can be obtained on random data by modifying hyperparameters in
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seemingly innocuous ways, despite the use of cross-validation. We recommend a number of
techniques for limiting over-hyping, such as lock boxes, blind analyses, pre-registrations, and
nested cross-validation. These techniques, are common in other fields that use machine learning,
including computer science and physics. Adopting similar safeguards is critical for ensuring the

robustness of machine-learning techniques in the neurosciences.
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INTRODUCTION

Computers have revolutionized approaches to data analysis in psychology and neuroscience,
effectively allowing one to interpret not only the neural correlates of cognitive processes, but also
the information content that is represented in the brain through the use of machine learning.
However, with these new and powerful tools come new dangers. Machine learning algorithms
allow a pattern classifier to weave many subtle threads of information together to detect hidden
subtle patterns—in—a—assive—data—set, e.g. to determine from MEG data whether someone is
currently viewing a building or an animal (Cichy, Pantavis & Oliva 2014). However, these pattern
classifiers are essentially black boxes to their human operators, as they create complex mappings
between features and outputs that exceed one’s ability to comprehend. [This lack of

interpretability can be especially pernicious when combined with the dangers of

overfitting, which is a problem inherent to all fitting algorithms, see Table 1 and (Poldrack

et al 2020). Specifically, interpretability enables the plausibility with which a classification

or prediction is arrived at to be assessed against prior understanding and theory.

Consequently, when using “black-box” machine learning (i.e. algorithms where the

internal parameters are essentially uninterpretable by humans), one can unintentionally

create a classifier that does very well on a specific data set, but poorly on other data sets,

with no way to critique or judge the plausibility of the solution found by the algorithm.
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Consequently, when using such algorithms, one can unintentionally create a classifier that does

very well on a specific data set, but does poorly on other data sets, which is called overfitting in

the machine learning literature (See Table 1).

The issue of overfitting is related to another topic that is frequently discussed in the scientific

literature, which is researcher degrees of freedom (e.g. Simmons, Nelson & Simonsohn 2011).

This term reflects the fact that choices made during analysis can erroneously inflate findings of

statistical significance by eliminating options that produce non-significant results. A parallel issue

exists in machine learning, but with additional layers of complexity that can obscure the influence

of choices made by the researcher on the analysis outcome. For example, techniques such as cross-

validation (i.e. tools for reducing overfitting, see Table 1) are often thought to insulate the analysis

from the statistical inflation provided by degrees of freedom in the analysis, but it will be shown

here that this is not the case.

Problemslssues associated with analysis overfitting are by no means new to science: High-energy
physics has had a number of high-profile false discoveries, some of which were the result of

overfitting an analysis to a particular data set. Related difficulties have been argued to have arisen
during the search for gravitational-waves (Creswell et al, 2017; New Scientist, 2018). Eoraccounts

£2015).Indeed, because of several high-profile false discoveries, high-energy physics has already

gone through a replicability crisis, and has had to rearrange its methods to deal with the

consequences. A classic case, which was a big wake-up call for the field, was the so-called split-

A2 from Chikovani et al. (1967). Had this effect been genuine, it would have engendered a

theoretical revolution, but when more data became available, the effect disappeared; see Harrison

(2002) for a recent view. It appeared that inappropriate selection of data was the culprit. For

accounts of some of these in the light of current experimental practice, see Harrison (2002) and

Dorigo (2015).




The similarities between data analysis in high-energy physics and modern neuroscience are
striking: both fields have enormous quantities of data that need to be reduced to discover signals
of interest. As such, it is useful and common to apply cuts to the data, i.e. to restrict analysis to
certain regions of interest (ROI), as is common to the analysis of f{MRI and EEG data. Because the
purpose of the cuts is to enhance a signal of interest, there is a danger that the choice of a cut made
on the basis of the data being analyzed (and on the basis of the desired result) may create apparent
signal where none actually exists, much like in aforementioned case from physics. Furthermore,
when making measurements in high-energy physics and neuroscience, complicated apparatuses
are often used, and analyses typically contain an extremely sophisticated set of software
algorithms. Optimization (i.e. making choices to increase effectiveness), and debugging of the

complex analysis ehain-pipelines for both neuroscience and physics data sets requireshas—further

i require many decisions that are often necessary to

and vet present grave dangers to the generalizability of the results, such that the results will not

replicate on a separate data set.

To prevent such cases, the high-energy physics community has adopted several conventions and

methods in the analysis and interpretation of data. For example, blind analysis refers to a technique

in which analysis optimization occurs without consulting the dependent variable of interest (e.g.

Klein & Roodman 2005). Since the optimization algorithm is blind to the result of interest,

researcher degrees of freedom will be unable to artificially inflate estimates of statistical

significance. Unlike physics, while related issues have been discussed in the literature
(Kriegeskorte et al 2009; Button 2019; Brooks et al 2017), the neuroscience field has not yet fully

responded to the dangers of over-hyping when complex analyses are used, which increases the

potential of false findings and presents a major barrier to the replicability of the literature. At the

end of this paper, we will discuss several preventative solutions, including blind analysis.

As mentioned above overfitting is the optimization of an analysis such that performance improves

on the data being evaluated but remains constant or degrades on other similar data. This ‘other’
data can be referred to as out-of-sample, meaning that it is outside of the data that was used to train
and evaluate the classifier. In other words, if one were to develop a machine learning approach on

one data set and then apply the same algorithm to a second set of data drawn from the same
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distribution, performance might be much worse than on the original set of data. This is a severe

problem, because models that cannot generalize to out-of-sample data have little to say about brain

function in general: Their results are valid only on the data set used to configure the classifier, are

tuned to the specific pattern of noise in the data, and are unlikely to be replicated on any other set.
One of the earlier and more startling examples of overfitting was performed by Freedman (1983),
where he showed—with high statistical significance—that a regression model could be used to

find a strong relationship between independent random variables drawn from a standard normal

distribution (which have no real relationship whatsoever).

To better understand the principles of this conundrum, we rely on a commonly used distinction

between parameters and hyperparameters. In the context of machine learning, we use the term
parameter to refer to aspects of the analysis that are directly driven by the data through a training
algorithm. For example when training a support-vector-machine (or SVM. a commonly used
classifier in machine learning), the training algorithm uses the data to adjust a set of parameters

which allow that classifier to learn how specific patterns of brain activity predict specific

dependent variables. Hyperparameters, on the other hand, refer to aspects of an analysis that are

configured (often by manual selection) to improve the outcome of the training process (see Table

1). In neuroscience hyperparameters will include, but are not necessarily limited to the following:

artifact rejection criteria, feature selection (i.e. electrodes or ROIs in the brain), filter settings,

control parameters of classifiers (e.g. choice of kernels, setting of regularisation parameters), and

even choice of classifier (e.g. SVM vs. random forests vs naive Bayes). These are settings and

choices that could, at least in principle, apply across a class of data sets.

In this context, we propose the term over-hyping as a specific case of (typically unintentional)

overfitting through adjustment of analysis hyperparameters to improve the results for a specific

data set and then the same results cannot be obtained on another data set with the same

hyperparameters. We suggest that over-hyping is a fairly widespread and poorly understood

problem in the neurosciences, particularly because the field utilizes relatively expensive and time

consuming data collection practices (unlike the field of machine-vision, for example).

a thorough understanding of the error introduced through over-hyping is crucial, since this error is
easy to commit yet difficult to detect. Furthermore, while there has been a lot of discussion of

problems of circularity and inflated effects in neuroscience analyses (e.g. Kriegeskorte, Simmons,
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Bellgowan & Baker 2009; Vul, Harris, Winkielman & Pashler 2009; Eklund, Nichols, Anderson
& Knutsson 2015; Brooks, Zoumpoulaki & Bowman, 2017), machine learning algorithms are so
effective that they provide dangers above and beyond those that have been discussed. Optimization
of hyperparameters_—is a common practice in the machine learning literature (Bouthillier &
Varoquaux 2020) and it is difficult to determine how the data were treated during the optimization
process. Importantly, as will be demonstrated below, the technique of cross-validation, often
employed as a safeguard against overfitting, is not entirely effective at ensuring generalizability.

We suspect that the incidence of accidental overfitting errors in the literature could be substantial

already, and may increase as machine learning methods increase in popularity.




ON THE SAME DATA SET

In the neuroscience literature_and also in machine learning more generally, a method that is
typically employed to prevent overfitting is cross-validation, in which data are repeatedly
partitioned into two non-overlapping subsets. In each iteration, classifiers are trained on one set

and tested on the other and the results of multiple iterations are averaged together.

There are many varieties of cross-validation, such as K-fold, in which the data are divided into K

equal subsets (or “folds”) and the train/testing process is repeated once for each of the subsets. In

each repetition, the designated subset is used for testing while the remaining subsets are combined

together to form a training set. Thus for a 10 fold cross-validation scheme, ten separate classifiers

are trained, each trained on 90% of the data, and tested on 10%. The results are then computed as

the average accuracy of the 10 classifiers on the test set. The accuracy scores from the training

sets are not used, as these scores are likely to reflect some amount of overfitting.

Other approaches to cross-validation are similar. Stratified sampling can be used to ensure that

each subset of the data has an equal proportion of samples from each class of data (e.g. hit vs miss

trials) before the K folds are defined. Leave-One-Out methods break up the data into subsets such

that each subset corresponds to one group of trials (e.g. one subject) such that the classifier is

trained for subsets excluding each such group in turn. Thus for a data set with 20 subjects, twenty

classifiers would be trained, one excluding the data from each subject in turn and then tested on

the excluded subject (but see Varoquaux et al. 2017 for a discussion of the increased likelihood

for unstable accuracy estimates from leave-one-out techniques)

Regardless of which specific form of cross-validation is used, the principle of cross validation is

that Bbecause the training and testing sets are disjoint in each iteration, the average performance
on the test sets can be s believed-to-provide-taken as an unbiased estimate of classifier performance
on out-of-sample data. However, this is only true as long as one important restriction is obeyed:
After performing cross-validation, the-decisions regarding the analysis ehain—pipeline used—to
elassify-the-data-must not be medified-made to obtain higher performance on that same data.

Reusing the same data to optimize analysis parameters can induce over-hyping, even if cross-

validation is used at each iteration.



The reason that over-hyping can occur despite cross-validation is that all data sets are composed
of a combination of signal and noise. The signal is the portion of the data containing the useful
information that one would like the machine learning classifier to discover, while the noise
includes other sources of variability. However, when an analysis is optimized on a given data set
after viewing the results, the choice of hyperparameters can be influenced by how the noise
affected the classification accuracy. Consequently, while the optimization improves classification
accuracy on this data set, performance may remain constant or even worsen on a completely
distinct set of data, because (in a statistical sense) its noise is not shared with the data driving the

optimization (Figure 1). In other words, the analysis would not replicate at the same level of

significance on a distinct dataset even if the sampling conditions and the analysis were identical.

The possibility that cross-validation does not prevent over-hyping, is well known in the machine
learning and machine vision communities (Domingos 2012), which are taking increasing care to
avoid the problem. For example, machine-learning competitions on websites such as Kaggle.com
provide contestants with sample data on which to optimize their models. However —Fthe final

evaluation of the contestants is performed on a different data set that is either held as confidential
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Figure 1. An example of how over-hyping can be induced by modifying hyperparameters after
evaluating a system through cross-validation. The feedback loop allowing hyperparameters to be
adjusted after viewing the results provides a route for analysis decisions to be made in response
to the noise in the data set, despite the separation of data into training/testing sets.



by the sponsoring organization, or is released only a few days before the end of the competition

(i.e. the “held out” data set). Contestants who access the data more often than the rules permit are

disqualified, their organizations can be barred from future competitions and in one recent high-

profile case a lead scientist was fired (Markoft 2015).

In writing this paper, we share the experience of our colleagues in the physics and computer
science disciplines so as to encourage more rigorous standards of machine learning before a
replicability crisis in neuroscience machine learning unfolds. It is not our intent to call out specific
examples of bad practice in the literature, although in our informal survey of the neuroscience
classification literature it was rarely the case that appropriate precautions had been documented
(i.e. some variety of blind, nested cross-validation or lock box-analysis, which will be described
below). Without these precautions it is impossible to determine from a paper’s methods whether
overfitting of hyperparameters occurred. This is concerning because overhypingit is unlike the

problem of double-dipping—-(Kriegeskorte, Simmons, Belgowan & Baker 2009; Button 2019),

which is more clearly discernible from the methods. Double-dipping refers to the practice of

selecting a subset of data based on particular values in the data (i.e. picking a highly active set of

voxels), and then running a statistical analysis on that same subset. The greater difficulty in

identifying cases of over-hyping is that it would have occurred during the optimization of the
analysis, and these steps are typically omitted from the methods. Another issue that we observe in
the literature is inconsistent terminology, which makes it harder to understand exactly what was

done (e.g. Ng (1997) and Varoquaux et al. (2017) use incompatible definitions of ‘test set”). To

help clarify terminology, we offer a table describing common terms and descriptions of what they
are typically taken to mean (Table 1). We suggest a new term, the Lock box, which refers to a set
of data that is held-out from the optimization process for verification and should not be consulted
until the method’s hyperparameters have been completely determined. The term hoeld-out data set
is sometimes taken to mean this, but that term is also used inconsistently and is easy to misinterpret

as a test-set in its most common usage.- The term lock box more clearly indicates the importance

of holding the data in an inaccessible reserve. More will be said about this below. Next, we provide
clear examples of over-hyping despite use of cross-validation using a sample of EEG data recorded
from our own lab. We use real data instead of simulated data, to ensure that the noise reflects the

genuine variability typically found in similar datasets.



The first example shown here is a one-shot hyperparameter adjustment, in which 40 variations of
machine classification are tested using cross-validation on a set of randomly scrambled data (i.e.
data in which there is no signal). By taking the most favorable result from these 40 variations_from
each of a large number of iterations (we—ntendedto+un-1000 simulations in total-butendedup
with-1038 and-include-themall for the sake-of transpareney); we evaluate whether-how often a

spurious result can be obtained by making a single hyperparameter choice despite cross-validation.

The one-shot analysis-hyperparameter adjustment was often able to reveal a spurious shews—a

stgnifieant—classification effect using conventional temporal-generalization analyses that are
currently favored by the EEG classification community (e.g. King & Dehaene 2014, Cichy et al.,
2014). The illusory effect obtained by over-hyping, though small, would provide erroneous
evidence of target discrimination in the EEG data over long periods of time, which is commonly
taken as evidence that a neural correlate of working memory has been measured. A comparison to
a lock box data set (i.e. data that were not consulted during analysis optimization) reveals that there
is no reliable classification of target presence by this chosen set of hyperparameters, which is the

expected outcome from a randomly shuffling of labels on the data set.

In the second example, we show a more extreme case of overhyping. Hyperparameters were
iteratively optimized to eliminate some features of the data set through a genetic algorithm using
cross-validation at each step. This process is analoagous to recursive feature elimination (RFE), a
commonly used technique in analysis optimization. Performance was compared to lock box data
that were set aside and not used in the genetic algorithm's fitness function. Performance was shown
to improve on the data on which the classifiers were optimized, but not on the lock box data. Note
that highly robust over-hyping was obtained, despite the use of cross-validation. The obtained
results, presented below, demonstrate that classifiers can easily be over-hyped to obtain

performance that will not generalize to set-aside or out-of-sample data.

METHODS

EEG METHODS

The simulations presented below were performed on EEG data, which was collected from rapid
serial visual presentation (RSVP; Experiment 3 of Callahan-Flintoft, Chen and Wyble 2018; see

supplemental for comprehensive methods). Subjects viewed a series of changing letters,
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presented bilaterally, updating at intervals of 150ms, and were tasked with reporting the one or
two digits that would appear on each trial. For this analysis, we selected the trials containing
either a single digit, or two digits presented in sequence separated by 600msand attempted to
classify for each trial, whether one or two digits had been presented. However, the trial labels
were randomly shuffled within subjects to obscure any actual effect of this manipulation. During
each trial, EEG was recorded at 32 electrode sites and according to the standard 10-20 system. It
was further bandpass filtered from 0.05 — 100 Hz, originally sampled at 500 Hz and down-
sampled offline to 125 Hz for the present analysis. For further details on pre-processing and
artifact rejection, see the EEG recordings section of experiment one in the original paper
(Callahan-Flintoft et al., 2018). The original study excluded one subject due to an insufficient
number of trials after artifact rejection. We decided to exclude an additional subject, choosing
the one with the least number of trials, in order to be able to split the data into two equal parts for
parameter optimization and lock box, detailed below. The final number of subjects was 24.
Finally, the original study divided the data based on the visual hemifield in which the target
stimulus was presented and only included trials in which correct responses were provided. We
collapsed the data across hemifields and included all trials regardless of accuracy to increase the
number of available trials per subject. Using ineerreet-all trials in this way was-is an
experimenter degree of freedom (i.e. a hyperparameter) that was adopted without eensulting

analysisresultslooking at the analysis results and thus could not have contributed to over-hyping.

The complete methods from the original paper are provided in the supplemental.

SIMULATION 1. OVERHYPING DUE TO KERNEL SELECTION DESPITE
CROSS-VALIDATION

The main-first analysis used-was-a measures the property of temporal generalisation

within an EEG signal, which determines-indicates whether a classifier trained at one point in
time relative to stimulus onset is able to classify trial categories at other time points. Such
analyses have been used to examine whether memory representations are stable over time in

working memory research (e.g. Dehaene & King 2014).

We ran a series of A-tetal-of1038-1000 independent efforts (which we will refer to as

iterations below) to measure whether and how often a spurious effect could be obtained if one

tested a set of 40 different classifiers on independent random shuffles of a data set. In effect, this
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is similar to $8381000 scientists trying to perform over-hyping on $838€1000 randomly shuffled

the same data set.- Each of the $6381000 scientists uses cross-validation on 40 different kinds of

classifiers and then chooses their best result from the 40.

subjeet—This-It needs to be stressed: all analyses were exclusively performed on null-data.
Hence, any systematic improvements above chance performance must be due to over-hyping.
Also, the dataset were-was randomly split into two equal parts of 12 subjects. One set was for
parameter optimization (PO) and the other was the lock box (LB) set. The data were reshuffled
into new PO and LB sets approximately-at the beginning of every 15-iteratiensiteration to ensure
that any effects were not subject-specific. Our temporal generalisation analyses used functions of

the MVPA-Light toolbox (by Matthias Treder).

For each of the +638-1000 iterations randomized PO & LB data sets were created. 40
configurations of hyperparameters-classifiers (i.e. 40 different hyper-parameter configurations)

were used in each iteration to generate temporal generalisation maps to determine which
configuration had produced the most desired outcome classifying the random PO data set. The
40 configurations were derived from 4 different classifiers: support vector machines (SVM) with
three different kernels (linear, polynomial (order of 2); radial basis function (RBF)) and a linear
discriminant analysis (LDA). Additionally, the extent of regularization was varied through 10
choices for each classifier. For SVMs, the C parameter took values of 0.0001, 0.0007, 0.0059,
0.0464, 0.03593, 2.7825, 21.5443, 166.81, 1291.5496 and 10000. The choice of C values was
inspired by (and equal to) the search space of MVPA-Light’s default regularization search for
SVMs. For LDA, candidate lambdas were 1, 0.88, 0.77, 0.66, 0.55, 0.44, 0.33, 0.22, 0.11 and 0.

Temporal generalisation analyses were performed using 5-fold cross-validation.

These 40 candidate configurations competed in each of the +038 1000 iterations of the
analysis, which we call PO Competition as they represent a competition between Parameter
Optimizations. This PO competition was decided using a measure we call classification mass (C-
Mass), which was computed on group-average temporal generalization maps (i.e. averages of 5-
fold cross-validated single-subject maps). C-Mass reflects the average deflectionfrom-chanee-
level-elassifieationAUC value across the entire temporal generalization map. For each of the

1000 iterations, the hyperparameter configurations that led to maximum C-Mass (i.e. highest
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map-average AUC value) when classifying the PO data set waswere selected as the respective

of the PO competition for that iteration. These winning configurations-winners-efthis
the degree of over-hyping by comparing them to the LB set.

We implemented this C-Mass criterion after feedback from a reviewer. Our initial

simulations are presented in the appendix and were based on a C-Mass variant that measured the

extent of above- as well as below-chance AUC across the entire temporal generalization map to

acknowledge the fact that below-chance classification in the context of EEG data can be

meaningful (we provide a brief discussion of this in the appendix, too). Both versions of the C-
Mass analysis reveal essentially similar results and are being provided for transparency. #=#as

ha alA af

We adopted a cluster-extent permutation test for our temporal generalisation maps, which

was based on functions of the ADAM toolbox (J. Fahrenfort). We performed a first-level
Wilcoxon signed rank test (non-parametric alternative to a t-test, preferred as distributions of
AUCs do not meet parametric assumptions) at each pixel of the temporal generalisation map
across single-subject maps, which resulted in a map of p-values. Neighbouring AUCs found to
be significant for this test formed clusters and these clusters’ sizes are-were subsequently tested
against a permutation-distribution of maximum cluster-sizes under the null. Clusters were
determined statistically significant if only 5% of permuted maximum cluster-sizes exceeded their
size (i.e. alpha of 0.05). For a more detailed introduction of this test, see Appendix—+tthe

supplementary material.
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The results of these simulations revealed a systematic improvement in C-Mass by

selection of the winning analysis. To illustrate that these effects are systematic, a comparison of
B.LB 1000 C.Losing PO AuC
' - 0.6

800+
600 |
400 | 0.5

200+

0.4

00 0 500 1000

-200 0 200 400 600 800 1000 -200 0 200 400 600 800 1000 -200 0 200 400 600 800 1000
Testing Time (ms)

Figure 2. How overhyping manifests in temporal generalisation maps. Maps of a winning PO (panel
A), its corresponding LB (panel B) and its worst PO, which implemented hyperparameters that led to
minimal C-Mass, (panel C) are plotted with their main diagonal AUC vectors below. Beige areas in
AUC time-series plots show divergence from chance-level classification (i.e. AUC of 0.5) in main
diagonals. Classification performance was at a higher level for the winning PO compared to both other
analyses. A family-wise error correction cluster-extent test was performed_(Nichols & Holmes 2002)
for winning PO & LB maps and only showed statistically significant AUC clusters for the PO map.
Maps and cluster-boundaries (i.e. matrices determining statistical significance) were 2D-smoothed
separately using a boxcar of 40 ms width. This was only done to facilitate visualization and did not
affect any analyses, which were all computed prior to smoothing. As all three analyses decoded null-
data, any differences in classification performance must be due to the effectiveness of classifiers’
hyperparameters (in this case atinear SV M-with-a-Cparametero£0-0059-an L DA classifier with a
lambda of 1 for winning PO & LB). This is a demonstration of overhyping because these
hyperparameters fitted the noise of the PO dataset best, which however differed in the LB dataset and
thus led to decreased classification performance for the LB. This map triplet was manually chosen. An
additional 9 triplets can be found in the supplementary material.

the PO competition winners against their respective LB counterparts shows how the C-Mass

distributions are shifted by the selection process, despite the use of cross-validation (Figure 3).

The top panel illustrates that the average C-Mass ¢which-is-alwaysoreaterthanzero-sinee-itis
the-sum-of squares)is greater for the winning PO than the set of LB’s.
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approximately equal to performance on
the LBs dataset when using the
winning hyperparameter set, as it
should be if the difference between PO
and LB classification is due entirely to
noise. This result demonstrates how a
Lock Box provides an unbiased
estimate of performance, as the
resulting C-Mass is free of any

overhyping effects.

The focus of this analysis lies
in the top panel of Figure 3: the
distributions of PO & LB C-Mass for
winning hyperparameters of the PO
competition clearly demonstrate
overhyping of classification results. If
overhyping was absent, these
distributions should sit on top of one
another. However, the PO C-Mass
distribution has a higher mean
(0-0008+--8+4098%-040.5159),
median (0-6007-70974%e-040.5150)
and larger-smaller variance (+:3977*e-
670.0001) compared to the LB C-Mass
distribution (mean: 0660367/
3.6650*e-040.4999, median:-6-66028+
F2-8H#e-040.49973, variance:
6-217%e-080.00016). The bottom panel

of Figure 2 illustrates how the within-



iteration differences in C-Mass between PO and LB were distributed. This distribution should be
centred around zero if no overhyping was observed (i.e. a given set of hyperparameters leading
to similar success in decoding between-class differences for PO as well as LB null-data). The
observed mean (0-600444-/4-4448%2-040.0161) and median (6-696394++3-9104%e-040.0152) of
implying higher C-Mass in PO maps. Permutation tests, which were based on randomly
determining the direction of subtraction between PO & LB C-Mass to generate a distribution of
aul-PO-LB C-Mass differences under the null, confirmed that both values were significantly
different from zero (p < 6.001), which provides evidence for overhyping. However, p-values
obtained from simulation analyses should be interpreted with caution, as we discuss in more

detail in the supplementary material.

We further assessed how vulnerable the different classifiers were to overhyping. Across
all classifiers, the median difference in C-Mass between winning PO and LB was positive and
significantly different from zero after performing the permutation test introduced above (linear
SVM: median = 6-:600353-/3-533e-040.0146, n = 299329; polynomial SVM: median =-6-06036-+
3-58%e-040.0125, n =176189; RBF SVM: median = 6-:00024-/2.39%¢-040.0127, n =H0132;
LDA: median =-0-000462+4-618%e-040.0184, n =453350). We investigated whether overhyping
was more pronounced for certain classifiers by conducting a Kruskal-Wallis test (due to non-
normality of C-Mass values), which revealed a significant difference among the four classifier
types (%2 (3,4034996) =44-1420.07, p < 2¢7.001). Post-hoc pair-wise tests of mean rank-
differences between classifiers provided evidence that over-hyping was significantly largest
larger after LDA classification compared to all three SVM classifiers. The differences between
SVM classifiers were all non-significant (we provide ;smallestfor RBE-SVMs-and-intermediate
for-hinear- & polyneomial SVMs{detailed results of this analysis ean-be-found-in the

supplementary material).

f[nterestingly, we found that LDA and linear SVM classifiers won our PO competition
meostfrequentlyabout twice as often as polynomial and RBF SVMs. It was especially intriguing

to see a clear trend towards hyperparameter settings which generate simple classification models
(e.g. high regularization or a linear classification kernel) winning and losing our PO competition
the most. Losing the competition means that a given setting of hyperparameters led to minimal
C-Mass across all other settings in a given iteration. This rather counterintuitive finding can be

explained by an exploratory analysis we present in the supplementary material, where we also
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display histograms of hyperparameter settings winning/losing our PO competition. We show
with an additional set of simulations that C-Mass varies noticeably more after temporal
generalization with simple classification algorithms. Such analyses hence yield more extreme
values in both directions (low and high C-Mass) more often than complex classifiers, which

results in simple classifiers being more likely to win and lose our PO competition. [

SIMULATION 2. OVERHYPING BY FEATURE SELECTION DESPITE CROSS-
VALIDATION

In addition to kernel parameters, analysis optimization can involve feature selection, in which
portions of the data set are excluded from the pipeline on the grounds that they contain irrelevant
information that can reduce classifier accuracy (e.g. Deshpande et al. 2010). This method is
widely used and is included as Recursive Feature Elimination (RFE) in scikit-learn. Here, we
show that when cross-validation is the only protection against over-hyping, this method will
induce spurious findings of significant classification accuracy on randomly shuffled data when

feature selection is based on classification accuracy.

We ran a series of 16 independent efforts to measure how effectively one could overhype a data

set using feature selection via a genetic algorithm approach for feature selection. This simulation

is similar to 16 different scientists trying to perform over-hyping on 16 randomly shuffled copies

of the same data set. Each of those 16 scientists uses cross validation for several hundred

iterations, progressively improving the analysis hyperparameters at each iteration.

A fast Fourier transform (FFT) of the 64 data points (comprising 256 ms) from each EEG channel
after the first target onset were extracted from each trial. The log of the absolute value of the FFT
was computed, and spectra across all channels were summed, resulting in 64 frequency values per
trial. The classifier attempted to determine whether subjects had seen one or two targets within a
given trial based on these 64 frequency values that represented the scalp-wide power spectrum
from the 256ms time period after target onset. As above, the trial labels were randomly shuffled

prior to the analysis to remove the correspondence between data and conditions.
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A support vector machine (SVM) was used to classify the post-processed EEG data and the over-
hyping was accomplished with a genetic algorithm that adjusted weights for the 64 frequency
bands available to the classifier. The SVM was MATLAB’s fitcsvm, with an RBF kernel and

kernelscale set at 25. No additional classifiers or kernel settings were attempted for this analysis.

To demonstrate that cross-validation is inadequate protection against overhyping, the analysis was
repeated for 16 iterations. For each iteration, 15% of the data were set aside in a Lock Box (LB)
to test for over-hyping. Since the data was randomized, it was expected that performance on this
outer test set should be at 50% (chance level), while performance on the 85% of the trials that
formed the Parameter Optimization (PO) set would be elevated above chance by the last generation
of the genetic algorithm. Over-hyping on the 16 PO sets was performed using a genetic algorithm
coupled with cross-validation. For each generation of the genetic algorithm, 10 candidate feature-
weight vectors were each evaluated against a shared set of 10 random partitions of the PO dataset,
with 85% of trials in each partition used to train the SVM and 15% used for testing. At the start of
the optimization procedure, the 10 candidate weight vectors were randomly constructed with 64
values ranging from 0.95 to 1.05. During training and testing, these vectors were multiplied by the

power spectra for each trial before being provided to the SVM.

Within each PO iteration, for each of the 10 candidate feature weight vectors, the SVM
performance in terms of AUC on the 10 random partitions was averaged to compute performance
for each candidate. The best candidate was selected and then repeatedly mutated by adding 64
random numbers (range [-.05 .05]) to create 10 new candidates for the next generation of the

genetic algorithm. This process was repeated for 400 generations to optimize the analysis.

To measure over-hyping, after each generation, the best feature weight vector was also used in a
classification of the LB set for each of the 16 iterations and the results were not used to inform the
evolution of the feature-weight vector. This is a strong violation of the principle of using a lock
box but it is done here as a demonstration. In practice accessing a lock box multiple times can
itself result in overfitting, particularly if the results are used to influence analysis choices or

stopping criteria.

To measure the statistical significance of the model's classification on the parameter optimization

set, a permutation test was run after the final generation of the genetic algorithm. First, the analysis
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result was computed as the mean AUC across the ten PO partitions using the final generation of
feature-weights. Then, all condition labels for the trials (i.e. the target-type) were randomly
shuffled 1000 times, a number chosen to balance the computational costs of running 6381000
separate analyses. After each such shuffling, for each of the ten partitions, the SVM classifier was
retrained with the best final weight vector and the AUC was measured. These AUC values were
shuffled to create a null-hypothesis distribution of 1000 values.-The p-value was then computed
as the fraction of the null-hypothesis distribution that was larger than the non-permutated
classification result (i.e. the proportion of shufflings that produced a mean AUC greater than the

mean AUC on the unshuffled data).

This entire procedure was repeated independently for 16 iterations times to demonstrate the
robustness of over-hyping. In each case, the data were randomly repartitioned into a parameter
optimization set and a lock box, and the genetic algorithm was used to optimize weights for the

parameter optimization..

|

The results of overhyping by feature selection are illustrated in Figure 4, which shows that
performance improves on the parameter optimization set without corresponding changes on the
‘ lock box set-. As the labels were randomly shuffled, any performance above chance (AUC of 0.5)
in a statistical sense, would indicate overhyping. All 16 iterations of the PO set had significantly
elevated performance by the final generation of the feature-selection genetic algorithm. One of the

LB sets was significant.

DISCUSSION

This paper demonstrates the ease with which over-hyping can be induced when using machine
learning algorithms despite the use of cross-validation. The approaches used here are analogous to
optimization procedures that have been used in EEG/MEG classification such as exploring various
kernel options or discarding channels and frequency bands to improve classification performance.
Similar problems may exist with other hyperparameters, e.g. choosing time windows, or different
ways of filtering out artifacts. Moreover, the same concerns apply to any kind of large neural data

set. For example, in the case of using multi-voxel pattern-analysis (MVPA) on fMRI data,
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optimization through selection of any analysis step in the pipeline during consultation with the

data could lead to the same kinds of over-hyping that we demonstrate here.
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Figure 4. To demonstrate that models can be over-hyped using feature selection, a genetic
algorithm was used to iteratively select features to optimize performance on a randomly shuffled
EEG data set, thus performance should not deviate from chance. The optimization procedure was
run for 16 iterations, with 400 generations in each. The blue trace indicates accuracy from a cross-
validation test on the parameter optimization set, while the red shows performance on a lockbox
set. The asterisks indicate when the results of the final generation differed significantly from
chance at an alpha level of .05. All of the PO sets were significantly different from chance, while
only one of the LB sets was.

These results should not be taken to indict cross-validation as a poor methodological choice: It is
considered to be state-of-the-art by many in the machine vision and machine learning communities
for good theoretical and practical reasons (Arlot & Celisse 2010). However, our result does clearly

indicate that cross-validation does not permit heedless analysis optimization.

Importantly, the problem of over-hyping becomes more severe as the sample size reduces.

This reflects the fact that error bars are larger when samples are small (Lorca-Puls et al,
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2018), a phenomenon that has been compelling demonstrated in machine learning applied

to neuroimaging data (Flint, et al, 2019; Varoquaux, 2018). This mirrors the law of large

numbers in classical statistics, which states that there is increased error in estimates as

samples get smaller (Dekking et al, 2005). The combination of large error bars and over-

hyping means that applications of machine learning in neuroimaging are likely to be
especially vulnerable to the file-drawer effect (Lorca-Puls et al, 2018), which reflects the

fact that only analyses that generate significant effects get published, leading to potentially

very severe inflation of published accuracies and effect-sizes.

There are several ways in which over-hyping can be protected against, above and beyond standard
forms of cross-validation. We suggest that, in order to increase generalizability and replicability,
journals publishing data from classification analyses encourage the use of one of the approaches

listed below.

THE PRE-REGISTRATION APPROACH

In cases where there is a clearly defined analysis plan that exists before efforts are made to analyze

the data, a really good approach to minimizing over-hyping is pre-registration. Pre-registration

(Nosek, Ebersole, DeHaven, & Mellor 2018). involves submitting a complete analysis plan to an

external server that is accessible to the journal’s readership. This practice encourages the

practitioner to specify all hyper-parameters at the onset of an analysis and provides a time stamp

indicating that they have done so. This is helpful because €cross-validation does succeed in
providing an unbiased estimate of out-of-sample performance when classification results are not
used to iteratively optimize performance. Therefore, it is safe to pre-register or otherwise rigidly
specify a classification analysis before attempting it. Assomingthatitisdoneingoodfaith-—tThe
pre-registration would provide evidence that the hyperparameters were finalized prior to

attempting the analysis using previously established methods. The advantage of this approach ever
theJoek—bex—is—that all of the data can be used in the final estimate of performance. The

disadvantage is that hyperparameter optimization is not permitted, which limits the effectiveness
of the analysis. The Registered Report (Chambers, Forstmann, & Pruszynski, 2017) is another

publication format that can guard against over-hyping in a similar way as pre-registration. In this

context, an analysis plan is developed in consultation with a reviewing team before the data are
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analyzed and the article is published regardless of the outcome. This approach removes any

opportunity to overhype provided that no modifications to the analysis are performed.

THE LOCK BOX APPROACH.

Using a metaphorical data lock box makes it possible to determine whether over-hyping has
occurred. This entails setting aside an amount of data at the beginning of an analysis and not
accessing that data until the analysis protocol is clearly defined, which includes all stages of pre-
processing, artifact correction/rejection, channel or voxel selection, kernel parameter choice, and
the selection of all other hyperparameters. A close variation of this technique is already standard
practice in machine learning competitions. When submitting a candidate for such a competition,
the ultimate performance of the algorithm is evaluated on a separate set of data that is reserved

until the final stage of the test. The workflow of using a lock box is shown in Figure 5.

We suggest that, moving forward, when machine classification approaches to data analysis in

neuroscience must be developed without clear default choices for hyper-parameters or existing

software, that such approaches should-might incorporate a lock box approach, in which data are

set aside at the beginning of the development of an analysis and not assessed until the paper is
ready for submission (or equivalently, new data are collected at the end of analysis optimization).
At this point, the data in the lock box should be accessed just one time to generate an unbiased
estimate of the algorithm’s performance. This result is likely to be less favorable than the data that
were being used during optimization and should be published alongside the results from any other
analyses. At the same time, reviewers would need to be more willing to accept results that seem
less positive than they historically have, since our current understanding of generalized machine

learning accuracy is likely to be biased by current practices.

If it turns out that the results from the lock box test are unsatisfactory, a new analysis might be
attempted, but if so, the lock box should be re-loaded with new data, either collected from a new
sample or from additional data that were set aside at the beginning of the analysis (but not from a

repartitioning of the same data that had originally been used in the lock box).
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A possible alternative is to access the lock box multiple times during optimization, but to apply a
correction to any resultant statistics as a function of the number of times the lock box data was
evaluated. A method for accessing a lock box multiple times while limiting overfitting was
suggested by Dwork (2015). This method called for simultaneously evaluating a given model on
both the parameter optimization set and on the lock box, and then only revealing the performance
on the lock box to the operator if that performance was significantly different than that of the
model on the parameter optimization set. Furthermore, the performance on the lock box set would
be presented only after being summed with a Laplacian noise variable. By following this method,
the maximum error rate when generalizing to out-of-sample data can be limited by only observing
the performance on the lock box a set number of times (and halting parameter optimization once
that limit is reached). While this is an innovative method for limiting overfitting, it only sets the
maximum error rate when generalizing — To get the true error rate, a second lock box would have

to be used.
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Figure 5. Here the workflow of using a lock box is demonstrated in illustrative form. Data is first
divided into a parameter optimization set and a lock box. The model can be repeatedly tested and
hyperparameters can be iteratively modified on the parameter optimization set. After all
hyperparameter optimization and the analysis workflow is determined, the model can be tested
against the lock box data. By doing this, an unbiased estimate of overfitting can be obtained, and
an objective measure of how well this system will generalize is achieved.

Note that this lock box approach is evaluative. It does not prevent over-hyping, but allows one to
test whether it has occurred. However, the performance of the algorithm on the lock box is

guaranteed to be a non- over-hyped result if the technique was correctly used.
NESTED CROSS-VALIDATION

Another way to respond to the problem of overfitting hyperparameters is to use a generalization
of cross-validation, called nested cross-validation (Cawley & Talbot 2010; Stone 1974). Nested
CV helps to ensure that results are not specific to a given analysis configuration by showing that
the results generalize to out-of-sample data. In this approach, inner cross-validations are run within

an outer cross-validation procedure, with a different portion of the data serving as outer “hold-out
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set” on each outer iteration. Importantly, for each outer iteration, an unbiased assessment of
accuracy can be obtained by testing on this outer hold-out set. That is, the best parameters and
hyperparameters determined on each inner cross-validation, can be assessed out-of-sample on the

corresponding outer hold-out set.

Nested cross-validation can be thought of as a repeated lock box approach, in which a new box
(the hold-out set) is set aside and locked for each iteration of the inner cross-validation loop (Figure
6). Then, an overall accuracy (and indeed dispersion of accuracies) can be obtained by averaging
across the accuracies determined from the hold-out sets of each outer iteration. This will typically
be a more reliable measure of accuracy than that obtained from any individual outer iteration (i.e.
the lock box approach). However, it is critical that the outer folds are not cherry-picked to find the
best solutions, since this would constitute over-hyping. It is also important that the algorithm not
be re-run in its entirety with different parameters after viewing the results, since this again would

result in over-hyping.

An issue for nested cross-validation relative to the lockbox is that the average accuracy obtained
at the end of the procedure will be the result of multiple configurations of hyperparameters, and
thus it may be especially difficult to understand the link between the data and the accuracy. For
example, in analysis of fMRI data where the region of interest is one of the hyperparameters,
different iterations of the outer loop may converge on different regions of the brain. It would
therefore be difficult to gain insight into what brain areas are driving the classification. We give

more details of nested cross-validation in the Supplementary Material.
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Figure 6. Here the workflow of nested cross-validation is demonstrated in illustrative form. The
data set is folded into multiple combinations of hold-out set and inner optimization set. Each of
these folds is essentially similar to the lock box approach described above and can be optimized.
The final accuracy would be the average accuracy computed across all of the hold-out sets.

THE BLIND ANALYSIS APPROACH

Blind analysis can be an appropriate tool for preventing over-hyping when testing a well-defined

hypothesis. In other words, the analysis protocol is develop using real data, but with the labels of

each trial or subject obscured so that the analysis optimization process is unable to produce over-

differential-with-regard-to-the-contrast ef interest—An alternative is to use an orthogonal contrast,

where classification is done on unaltered data but usinga condition that is orthogonal to the

classification one will ultimately use (Brooks et al. 2017). Some examples of using blind analysis
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include scrambling all condition labels and then artificially adding ‘target signals’ to some trials.
The hyperparameters of the model can then be optimized to detect the signal present in the
modified data. Once the hyperparameters are locked in, the blind can be lifted (e.g. conditions
unscrambled and modifications removed), and the true results can be calculated. The advantage of
this approach is that all of the data can be used during the optimization phase, and the final
evaluation of performance can be done across all of the data instead of just the outer-box set. Note
that blind-analysis is a way to minimize over-hyping. If used in conjunction with a lock box, one
can both minimize and diagnose overfitting. The disadvantage of the blind analysis is that it
obscures accuracy on the key predicted variable, and this may prevent the development of an

effective analysis plan depending on the type of data one uses, in which case a lock box is a good

solution.

Each of these approaches is ideal for particular use cases. The simplest decision point hinges on
whether the analysis plan is already established, in which case pre-registration is clearly the best
choice. Blind analysis is suitable when hyperparameters need tuning to accommodate
unanticipated variability in the data that is orthogonal to the predictor (e.g. finding the time
window or location of a brain signal of interest). Nested cross-validation is well suited to a case
in which an automated algorithm can be used to tune hyperparameters, and the precise values of
those hyperparameters are not of interest. Finally, the Lock box, particularly when it is very
large, is best suited to a case in which the values of tunable hyperparameters are of particular

interest or the process of tuning them is done partially by hand, rather than by automation.

Regardless of which approach one takes, it seems crucial that more transparency should be
applied to documenting how data is treated through the entire process of developing a pipeline.
For example pilot tests of an analysis can lead to overhyping if they inform the search range of
hyperparameter optimization prior to partitioning data into different sets. In such cases, being
transparent can highlight the points where leakage of information into the (hyperparameter

dependent) pipeline may have occurred.
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SAFE VERSUS EFFECTIVE USE OF MACHINE LEARNING

Optimal use of machine learning in neuroscience requires that it be used both safely (i.e. without
over-hyping such that the results can be trusted) and effectively (i.e. the classifier is
appropriately tuned to discriminating signal). In the terminology of machine learning, safe
largely corresponds to minimizing variance, while effective largely corresponds to reducing bias
Geman, Bienenstock, & Doursat (1992). The methods described above help to ensure safety, but
do not necessarily provide effective solutions, since the avoidance of over-hyping is often
obtained by limiting the amount of analysis optimization that is allowed. When data is easy to
obtain, this limitation is not as severe, since analysis chains can be repeatedly adjusted, and
tested against new data. However data in the neurosciences is often expensive and time
consuming to collect. Unfortunately, this means that one often has to choose between analyses
that are highly optimized but over-hyped, or weakly optimized and not over-hyped. The best path
forward is to make use of expertise when it is available, such that good decisions are made up

front, and ideally even pre-registered prior to viewing the results of analysis on critical data.

CONCLUSION

The biggest danger of data science is that the methods are powerful enough to find apparent signal
in noise, and thus the likelihood of data over-hyping is substantial. Furthermore, analysis pipelines
are complex, which makes it difficult to clearly understand the possibilities for leakage between
optimization and evaluation stages that can lead to over-hyping. Our results illustrate how easily
this can occur despite the use of cross-validation. Moreover, it can be difficult to detect over-
hyping without having an abundance of data, which can be costly to collect. However, as
reproducibility is a cornerstone of scientific research, it is vital that methods of assessing and
assuring generalizability be used. By setting aside an amount of data that is not accessed until the
absolute completion of model modification (i.e. a lock box), one can obtain an unbiased estimate
of the generalizability of one’s system and of how much over-hyping has occurred. Alternatively,
blind analysis methods, good faith pre-registrations of the analysis parameters and nested cross-
validation reduce the possibility of overfitting. Conversely, using any method that allows one to
check performance on the same data repeatedly without independent data that has not been
consulted can induce over-hyping, inflating false positive rates and damaging replicability.

Devoting more attention to these dangers at this point, when machine learning approaches in
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neuroscience are relatively nascent, will allow us to improve the state of science before

inappropriate methods become standardized.
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TABLES

Table 1. The terminology used in this and other papers are defined in this table.

Term Definition

Machine Learning Machine learning is the use of semi-automated fitting algorithms to discern
patterns in data. Typically, machine learning algorithms are trained with
labeled data from two or more classes, and are then used to predict which
class a new and unlabeled data item belongs to. Examples of machine
learning algorithms are support vector machine (SVM) classifiers, random

forest models, and naive Bayes classifiers.

33



Cross-Validation

A technique commonly used to evaluate classification performance that
repeatedly divides the data into two subsets (each division is a fold), one
of which is used to train a classifier, the other being used to test it.
Performance is taken as the average across all folds. See the supplemental

for a more thorough description.

Training and Testing sets

These terms generally refer to the two subsets of data used during cross-
validation. However, the term test-set is sometimes used to refer to data
that has been set-aside for later evaluation. We advise against that usage

for the sake of consistency.

Nested Cross-Validation

Nested cross-validation is a generalization of cross-validation in which the
data are now partitioned into N outer sets/ folds. Each of these folds
provides an outer hold-out set, and an inner set, on one outer cycle. On
each such outer cycle, cross-validation is performed on the inner set. The
benefit of the nested approach is that is provides a reliable assessment of
overfitting of hyperparameters. See the supplemental for a more thorough

description.

Lock box We introduce the term lock box to mean a subset of data that are removed
from the analysis pipeline at the very start of optimization and not
accessed until all hyperparameter adjustments and training have been
completed.

Hyperparameter Hyperparameters are a kind of parameter whose values are adjusted either

by hand or by algorithms to improve model performance (e.g. weights of
electrodes, regions of interest, SVM model kernel functions, classification
model types). They are distinct from other parameters, whose values are
set during classifier training (e.g. the linear function that results from
training a least squares model or the classification function that results

from training a Support Vector Machine classifier).
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Supplementary Material
We present more detailed descriptions of cross-validation procedures.

Cross-validation: Cross-validation procedures are defined according to the number of folds they
employ. For example, in 10 fold cross-validation, the data are randomly divided into 10 equal sized
portions, and a 10 iteration procedure is performed. In each iteration, a different one of the 10
portions is used as the test set, with the remaining 9 unioned together to provide a training set. An
accuracy is thereby obtained for each iteration, which critically, is “out-of-sample” with respect to
that iteration, since the test set is disjoint from the training set. The results of each iteration (here
10) are then averaged, to provide an overall accuracy. The procedure has the advantage that even
though an out-of-sample test is performed, all data points appear at one instant in a test set,
ensuring that an accurate assessment of overall classification accuracy (which is averaged across
all iterations) is obtained. Additionally, an assessment of the confidence one should have in the
overall accuracy can be obtained from the dispersion of the accuracies generated across cross-
validation iterations. As demonstrated in this paper, a single execution of cross-validation is an
effective and safe way to fit parameters, but if the entire procedure is run multiple times to fit

hyperparameters, it has the potential to overfit.

Nested Cross-validation: This is a procedure in which cross-validations are nested within cross-
validations. A typical approach would be to nest a cross-validation that provides an out-of-sample
test of the fitting of parameters, inside a cross-validation that provides an out-of-sample test of the
fitting of hyperparameters. Critically, the procedure enables out-of-sample tests at both levels, i.e.
inner test sets are out-of-sample re. the setting of parameters, while the outer test/ hold-out sets are
out-of-sample re. the choice of hyperparameters. Effectively, the outer-level test/ hold-out set
really acts like a lock box, but specific to a particular outer iteration. In this way, each data point
contributes to a hold-out set at some instance. Accordingly, one obtains a better estimate of overall
out-of-sample accuracy, since multiple hold-out set accuracies are calculated and averaged, rather
than a single one, as would be the case with a single (fixed) lock box and one level of cross-
validation. Additionally, one obtains a measure of confidence of hold-out accuracies by

considering the dispersion of such accuracies across the outer folds of the procedure. It is critical
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that accuracy from all of the outer loops is averaged together however. One cannot select the most

favorable result without overhyping.

Figure S1 presents a typical nested cross-validation scheme. Importantly, as just discussed, with
such a procedure, one can fit hyperparameters as well as parameters. For example, if there were
four Support Vector Machine kernels that one wanted to select between, one would run each of
the three outer iterations shown in figure S1 four times, e.g. outer 1, 4 times (giving 4 x 2 = 8 runs
for that outer iteration). One would then have an inner cross-validation accuracy for each kernel
on each outer iteration, i.e. 4 for each outer iteration, with each of these 4 being obtained by

averaging across the accuracies obtained on the corresponding two inner iterations.

One can then take the best kernel of the 4 tested, with its trained parameters, and test it out-of-
sample on the hold-out set for that outer iteration. The hold-out set accuracies obtained from each
outer iteration can then be averaged, to give a fair accuracy for the entire fitting — choice of kernel
and fitting under each kernel. However, selectively reporting the best of those four kernels and

ignoring the other three would constitute overhyping.
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Nested Cross Validation: 2 within 3

HO Train Test
Cuter 1 —

HO Test Train

Train HO Test
Outer 2 —

Test HO Train

Train Test HO
Outer 3 —

Test Train HO

Figure S1: A 2 within 3 Nested Cross-validation, where the outer cross-validation loop involves a
different Hold-Out (HO) set for each of its three iterations. The remainder of the data provides a
parameter optimization set for each outer iteration, which is subjected to two fold (i.e. split-half)

cross-validation.
Cluster-Extent Permutation Test of Temporal Generalisation Maps

To family-wise error (FWE) correct our temporal generalization maps we performed the following
procedure. For each group map, we first subtracted chance-level AUC (i.e. 0.5) from all its
underlying single-subject temporal generalisation maps. Each position (pixel) of the single-subject

maps was then tested separately against a median of zero across subjects using a tweone-tailed

Wilcoxon signed-rank test (i.e. being greater than zero). This yielded a map of p-values, which

was subsequently used to form clusters if (at least 8-pixel) neighboring AUCs had p-values smaller

than or equal to 0.05-and—were—of-thesamepolarity. Pelarityin—this—context-means—that—we
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to determine which of the clusters were statistically significant compared to a null distribution

(Nichols & Holmes 2002 ; Pernet, Latinus, Nichols,& Rousselet 2014), =

We computed a total of 10000 permutations for this test. For each permutation, we performed a
sign-swap at the level of single-subject maps to simulate the null. Specifically, instead of
subtracting chance-level AUC (0.5) from all single-subject maps, as described above, we now
randomly determine, with equal likelihoods and for each single-subject map separately whether
0.5 was subtracted from it (map — 0.5) or whether the whole map was subtracted from 0.5 (0.5 —
map). We again perform tweone-tailed Wilcoxon signed-rank tests at each pixel of our permuted
single-subject maps, get maps of p-values and form clusters, as described before. After recording
all clusters’ sizes, we determine the biggest cluster acress—beth-pelarities(abeve—and-below-
chanee)-and store its size in a distribution. Repeating this process 10000 times results in a
distribution of 1000 maximum cluster-sizes under the null against which our observed clusters
arewere tested. Observed clusters were assigned p-values as the proportion of maximum (or

biggest) clusters under the null found to be equal to or larger than them.

This procedure was always performed separately for each group map tested (meaning permuted
distributions of maximum cluster-sizes were never used more than once). We also restricted the
tested area to be from approximately 100 milliseconds onwards to resemble real-life usage of this
test. It should be noted that this does not change the statistics in any way, because tests of maximum
statistics are automatically correcting for family-wise errors (FWE) as long as one is adopting the
same approach (e.g. restricting the area) for the observed and the (permuted) null data (in this case

temporal generalisation maps).

Degree of over-hyping across different classifiers assessed with Kruskal-Wallis Test

The Kruskal-wallisWallis test is a non-parametric alternative to a one-way ANOVA, which we
used for assessing the degree of over-hyping across different classifiers because eurthe C-Mass
distributionss did not meet parametric assumptions. It was computed on classifier-separate C-

Mass difference distributions between PO and LB (compare bottom panel of Figure 3). It hence
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tested the null hypothesis that the PO — LB C-Mass differences of our four groups (i.e.
classifiers) originated from the same distribution. This null hypothesis was rejected (y? (3,
1034996) = 44-1420.07, p < 2e7.001), as can be seen in the ANOVA Table below (Figure S2;
panel A). Following up on this result, we further tested pair-wise mean-rank differences between
classifiers using Tukey’s honest significant difference criterion to correct for multiple
comparisons. The results of these tests are provided in Figure S2 panels B & C and showed that:
1) LDA had a significantly higher mean rank than all other classifiers (i.e. most over-hyping); 2)
across SVMs, all differences were non-significant, but linear RBE-SVMs had the highest &

signifieantly lower-mean rank, followed by -than-all-otherelassifiers-(i-e—least ever-hyping)-and
3y -hnearas-wel-as-pebynemial-polynomial and RFB SVMs.-had-mederate-meanranks—which

ara on n m e haon DA aVal oo han RRE’c K no 10N a differen
2 Y a £ d B oY O £ a y—€

each-other- These results thus provide evidence that the-degree-ef-over-hyping ean—vary
substantially-aeross-elassifiersis especially problematic for LDA classification.
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2.0000 4,0000 -35.5516 32.1708 59.8931 0.6138
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Figure S2: Results of Kruskal-Wallis test conducted on PO — LB C-Mass distributions to assess
the degree of over-hyping between our four classifiers. Panel A shows the ANOVA table, which
indicates a significant main effect of classifier. Panel B plots the rank distributions for each
classifier, which indicates that mean ranks (i.e. degree of over-hyping) of LDA > linear SVMs >/
polynomial SVMs SVMs-> RBF SVM. This-iseconfirmed-in-Panel C;-whieh shows the results of
statistically testing all pair-wise mean-rank differences. Five—Three out of six tests yielded
significant p-values after correcting for multiple comparisons using Tukey’s honest significant
difference criterion, indicating that the extent of overhyping was significantly larger for LDA
classifiers compared to all SVM ones. Only-the-econtrast-of-linearvs—polynomial- SVMs-had-a

Interpreting p-values in the context of simulations

P-values can become uninformative in the context of simulations, where very large simulated
samples can be run. As discussed in Friston (2012), the fallacy of classical inference states that
once the sample size is sufficiently large, p-values become trivial as the smallest effects suffice
for significance. To be more precise, for a two-sided test, there is a sample size N for any non-
zero experimental effect, no matter how small, that will make the p-value significant. We
nonetheless chose a large sample size because, in contrast to p-values, standardised measures of
effect size become more accurate with increasing sample size. This was recently illustrated in a

neuropsychology context (Lorca-Puls et al., 2018, especially figures 4 & 5).

C-Mass variance differences across different classifiers

We ran an additional set of simulations for this analysis, which was very similar to the
one introduced in the “Overhyping due to kernel selection despite cross-validation” section of
the main paper. We used the same dataset and shuffled class-labels randomly to simulate null-
data. However, we did not group subjects into two groups of Parameter Optimization and Lock
Box, but instead ran all combinations of hyperparameters (the same ones as introduced in the

paper) in each of 1000 iterations on the data of all 24 subjects. To reiterate, this involved, for
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each iteration and configuration of hyperparameters, running a temporal generalization analysis
on a given subject’s (null) dataset and then averaging all 24 single-subject maps to generate
group-level maps. This therefore resulted in a total of 40000 group-level temporal generalization
maps (1000 iterations * 40 hyperparameter configurations). We computed C-Mass as the average
AUC value across the entire group-level temporal generalization mapdeflectionfrom-chanee-

level-elassifieationof a-givensroup-map, as explained in detail in the paper. Figure S4A displays
boxplots of these 40000 C-Mass values, which iHustrates-indicates that, after SVM classification,

C-Mass varies more after adopting simple elassifieation-algerithmsmodels (e-g-i.e. due to a high

degree of regularization), even though the median C-Mass value is comparable across

hyperparameter-different settings. Note that the degree of regularization decreases from left to
right in the figure and models hence become increasingly complex. Fhis-means-thattemporat

such-algorithms-are-moreikely-to-yield more-extreme C-Mass-values—We further present in
Figure S4B how this-dynamiedifferent hyperparameters were distributed-manifested-in in our PO

competition. The notion that simpler classification models lead to an increase in C-Mass variance

is hinted at in these distributions, too. Strikingly, it seems to be the case that simple models (i.e.

an LDA or linear SVM classifier, as well as small C-values in SVM classification) tend to win

and lose the PO competition more frequently (the latter implying minimal C-Mass within a given

iteration across all other hyperparameter settings). Naturally, exploratory observations like we

present here need to be interpreted with caution. However, it is suggestive of a particular risk of

overhyping when adopting more simple classifiers, such as the commonly used LDA and linear

SVM algorithms and hence could be a valuable topic for further investigation. -where-the
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A. C-Mass boxplots
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B. Hyperparameters' success in the PO competition

LDA lambdas (blue) &

CIESSIfleI_'S o5 SVM C values (orange)
o
£
=
£ 0.1
0
02— ‘ ;
. 1 o015 |
5 3
= 0.1 B
© o
X 0.05 L=
S
ol ; | . o]
02— T T
o
£
7] 0.1
o
i
. > < - A )
X & @ & P &P 2 g g0 P
¥ & & FFFFF F & F S
I S R L G
& Wt At @ o e P e
a0 o o° oY o Q'?’ Q- \,\\

o
Regularization (Lambda / C)

Figure S3: Panel A shows boxplots of C-Mass for all hyperparameter configurations. Red
horizontal lines indicate the medians. Note that this-analysis-the analysis of Figure S3A did not
involve splitting subjects into PO and LB groups. Panel B displays proportions of hyperparameters

selected after winning (top row) or losing (bottom row) the PO competition_of the analysis

presented in the Simulations 1 section of the paper. The middle row corresponds to randomly

selected hyperparameters, which were applied to the LB independent of the PO competition. The
left column depicts distributions of classification models (blue = LDA, orange = different SVMs)
and the right column shows how regularization parameters (lambda (blue) for LDA and C (orange)
for SVM classifiers) were distributed. Note that regularization decreases from left to right in both

panels (classification models become increasingly complex).
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Nine additional and randomly chosen temporal generalization plots for further illustration

of over-hyping

Figure-S4+5-Figure 2 of the main body illustrates just one of the +838-1000 results that was

we show 9 additional samples from this distribution of +9381000. These were selected at

with bias neither towards significance of clusters, nor C-MASSMass. Eive-Three of the nine

selected at random have significant clusters in the Winning PO.
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Figure S4: Nine additional temporal generalization map-triplets showing over-hyping as
demonstrated in Figure 2. These nine candidates were selected randomly and correspond to
iteration numbers +29;-994,1002,231.164,1008,-504,-83-and-84698, 127, 279, 547, 633, 815,
906, 914 and 958 (in the order plotted above) of our PO competition. Panels A, B and C show the

winning PO, the (winning) LB and the losing PO maps, respectively. Plotting conventions follow
those of Figure 2. Temporal generalization maps and permutation tests’ cluster-boundaries were

again smoothed only to improve visualization and did not affect any analysis whatsoever.

Initial C-Mass variant and analyses of simulations 1

HIn our initial simulations, C-Mass measured the extent of above- as well as below-chance

classification across a temporal generalization map and was computed by first subtracting
chance-level classification (Area-Underthe Curve/AUC of 0.5) from all AUC values of a given

map, then squaring these values and finally taking the average of the entire map®. We squared

AUC values after subtracting them from chance-level because of a unique and interesting

implication of below chance-level (or mis-) classification in temporal generalisation plots.

Misclassification can imply that the whole-brain pattern difference between classes measured at

testing time y resemble those that were present at training time X, but were of the opposite

polarity, which leads to classifiers making more mistakes than they would by chance. Therefore,

one can argue that below-chance classification performance in the context of EEG-data is not
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necessarily meaningless. To illustrate, we present an example map-triplet (similar to Figure 2),

which shows larger below-chance classification in the PO than in the LB in Figure S5. In these

analyses, we also adopted a two-tailed variant of the cluster-extent permutation test introduced

above, in which above- as well as below-chance AUC-clusters could be formed, hence the

statistically significant below-chance cluster in the map of Figure SSA. Furthermore, a pattern of
systematic over-hyping due to kernel selection similar to that presented in figure 3 was found for

our initial analyses, too, as is shown in figure S6.
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Figure S5. Analog of figure 2 for an example map-triplet of our initial C-Mass analysis, which

shows an increase in below-chance classification in the PO compared to the LB dataset.
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Figure S6. Analog of figure 3 for the initial C-Mass measure, which assessed above- as well as
below-chance classification. A similar pattern of over-hyping due to kernel selection was
observed. It is noticeable that these C-Mass distributions are strikingly different in shape and
property compared to those we present in the main paper. This is due to the fact that our initial
C-Mass values were all very close to zero.

Methods from Callahan-Flintoft et al. 2018, Experiment 3

These are the methods used for collecting the EEG data set from Experiment 3 of Callahan-
Flintoft et al 2018. These data were used in all of the analysis here.
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Participants. Data from 26 subjects were collected for the first experiment. All subjects
volunteered from the Pennsylvania State University psychology subject pool for this study.
Participants all had normal or corrected-to-normal vision and were between the ages of 18 and
23 years old. Informed consent was obtained for each participant prior to each study in
accordance with the IRB office of Penn State. Subjects were excluded for having too few usable
trials per condition (threshold: 15) after discarding trials for inaccurate responses and EEG

artifacts, leaving 25 subjects usable for analysis.

Stimuli & Apparatus. Participants sat in an electrically shielded room, 91cm away from the
computer which had a 46cm CRT (1024 x 768, 60 Hz refresh rate). Stimuli were black
(RGB([0,0,0]) alphanumeric characters in size 55 Arial font (1.26°x 0.63° of visual angle),
presented on a grey background using MATLAB 2012 with Psychophysics Toolbox-3 extension
(Brainard, 1997). Subjects looked for digit targets presented among a bilateral stream letters. The
digits used as orthographic targets were: 2,3,4,5,6,7,8,9. Distractors and feature targets were
drawn from the following collection of letters: A,B,C,D,E.F,G,H,J,K,L,N,P,Q,R,T,U,V,X,Y.
Letters that resembled digits, such as 'O', ‘S’, ‘Z’ and 'I', were excluded as well as wider letters

such as 'M' and 'W'. Target identities were randomly selected on each trial.

Procedure. On every trial participants were presented with two RSVP streams placed three
degrees from a fixation cross, which remained throughout the trial (Figure 5). Both streams were
updated simultaneously with a 150ms stimulus onset asynchrony (SOA) and no inter-stimulus-
interval. Note that this SOA is slightly longer than that used in Tan & Wyble (2015). This
change was implemented to increase accuracy, since analyses could only be done on trials in
which subjects reported both targets successfully. Seven or eight distractors in each stream were
presented before target onset and eight distractor pairs were presented afterwards. This number
of pre- and post- target distractors was used in all experiments except Experiment 2. Every trial
had one or two targets, the second of which (T2) always appeared in the same stream at a
varying lag. No stimulus was repeated for at least two sequential frames. At the end of the trial,
the fixation cross was replaced with either a period or a comma for 150ms. Two practice trials

were used within the instruction block to demonstrate the task.

Four conditions were used to test what duration between targets is required to elicit a second

N2pc. Participants were either presented with only one target (Single), two sequential targets, the
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second immediately after the first (Lag 1), two targets with one frame of distractors in between
(Lag 2), or two targets with three frames of distractors in between (Lag 4). There were 280 trials
distributed equally across the four conditions, intermixed within a single block. After every 20

trials, participants were given a self-paced break.

Instructions and responses. Participants were told that every trial would contain one or two
targets that they would have to report, in the correct order, using the keyboard. They were also
told that on some trials they would have to report which symbol had replaced the fixation cross.
At the end of each trial, participants were asked for the first and second target, with the option of
pressing Enter if they did not know it. On a third of trials participants were also asked to report
the symbol (dot or comma) that appeared at fixation. This was done in order to encourage
participants to remain engaged, with their eyes on fixation, for the entire trial and not just until
the target(s) appeared. This technique was used to discourage eye movements but the actual
elimination of trials with eye movements was done with EEG measures described below.
Feedback was provided by showing the participants what targets in order were shown as well as

what punctuation had replaced the fixation cross (dot or comma).

Participants were excluded from both behavioral and EEG analysis if they had fewer than 15
usable trials in any condition. Trials were considered usable if participants accurately reported
the identity of all targets present, regardless of the order, and if the trial passed the EEG
exclusion criteria described below. The average number of usable trials per condition was M =
33 (SE=1.7), M =38 (SE=1.8), M =35 (SE = 2.6), M = 42 (SE = 2.3) for Feat, Ortho, Feat-
Feat, and Ortho-Ortho, respectively.

EEG Recordings. The same EEG system was used to collect data for all of the experiments
presented here. A 32-channel sintered Ag/AgCl1 electrode array mounted in an elastic cap
according to the 10-20 system (FP1, FP2, F3, F4, FZ, F4, F8, FT7, FT8, FC3, FC4, FCz, T3, T4,
C3, C4, Cz, TP7, TP8, CP3, CP4, CPz, T5, T6, P3, P4, Pz, O1, 02, and Oz) (QuikCap,
Neuroscan Inc.) was used, with the tip of the nose used for a reference. The amplifier was a

Neuroscan Synamps with a band pass filter of 0.05-100 Hz and a sampling rate of 500 Hz. The
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data was reduced offline to 250 Hz. Prior to the start of the experiment, the impedance for all
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Figure S65. Paradigm for Experiment 3 of Callahan-Flintoft et al. (2018). Participants were
presented with 2 RSVP streams. There were 7 or 8 frames of distractors (150ms SOA) prior
to target presentation and 8 frames of distractors presented afterwards. Targets were black
digits among black letter distractors. T2 was presented either at lag-1, 2, or 4.

electrodes was lowered to 5 kQ or less. VEOG and HEOG electrodes were placed on the lower
and upper orbital ridge of the left eye as well as the outer canthus of each eye respectively. All
ERPs were time locked to the first target onset and a three second epoch (1 second prior to T1
onset, two seconds post) was used for each trial. Baseline activity from a window -200ms to Oms
relative to T1 onset was subtracted from each trial. If the average difference between HEOL and
HEOR electrodes in a moving 32ms time window exceeded 201V, the trial was judged as having
contained a horizontal eye movement and was rejected. If the difference between VEOU and
VEOL electrodes increases more than 100uV, the trials were marked as having contained a blink
and was rejected. Additionally, if any channel exceeded an absolute value of 100uV during the
epoched window, that trial was rejected. All artifact rejection and EEG analysis was performed
with a combination of custom MATLAB 2012 script and EEGLab 13.3.2b functions (Delorme &
Makeig, 2004).
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