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Under a theory of event representations that defines events as dynamic changes in objects across both 

time and space, as in the proposal of Intersecting Object Histories (Altmann & Ekves, 2019), the 

encoding of changes in state is a fundamental first step in building richer representations of events. In 

other words, there is an inherent dynamic that is captured by our knowledge of events. In the present 

study, we evaluated the degree to which this dynamic was inferable from just the linguistic signal, 

without access to visual, sensory, and embodied experience, using recurrent neural networks (RNNs). 

Recent literature exploring RNNs has largely focused on syntactic and semantic knowledge. We extend 

this domain of investigation to representations of events within RNNs. In three studies, we find 

preliminary evidence that RNNs capture, in their internal representations, the extent to which objects 

change states; for example, that chopping an onion changes the onion by more than just peeling the 

onion. Moreover, the temporal relationship between state changes is encoded to some extent. We found 

RNNs are sensitive to how chopping an onion and then weighing it, or first weighing it, entails the onion 

that is being weighed being in a different state depending on the adverb. Our final study explored what 

factors influence the propagation of these rudimentary event representations forward into subsequent 

sentences. We conclude that while there is much still to be learned about the abilities of RNNs 

(especially in respect of the extent to which they encode objects as specific tokens), we still do not know 

what are the equivalent representational dynamics in humans. That is, we take the perspective that the 

exploration of computational models points us to important questions about the nature of the human 

mind. 
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INTRODUCTION 

 

Semantic space is all around us. Contemporary approaches to 

semantic memory, both its computer and human instantiations, 

have converged on the idea that semantic knowledge – the 

knowledge we have of the world around us and the things it 

contains – is organized in such a way as to encode similarity 

between concepts along multiple dimensions (e.g. Yee, Jones, & 

McRae, 2018). LSA (Landauer & Dumais, 1997) and HAL (Lund 

& Burgess, 1996) were conceptually simple approaches to 

generating such similarity spaces by computer. More recently, a 

number of additional approaches to generating semantic similarity 

spaces have evolved (see also Perconti & Plebe, 2020), including 

word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2018), 
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ELMo (Peters, Neumann, Iyyer, Gardner, Clark, Lee, & 

Zettlemoyer, 2018), BERT (Devlin, Chang, Lee, & Toutanova, 

2018), and ERNIE 2.0 (Sun, Wang, Li, Feng, Tian, Wu, & Wang, 

2020). Each of these is based on the same underlying principle as 

govern LSA and HAL – their internal representation of a word, 

after learning, is a reflection of the contexts in which it occurred 

and the other words with which it co-occurred in those contexts 

(for now we gloss over the fact that some models reflect contextual 

co-occurrences as representations abstracted across individual co-

occurrences, while no longer encoding those individual co-

occurrences – e.g. LSA, while other kinds of model can reflect 

contextual co-occurrences not only as abstracted representations 

but also as representations that maintain those individual co-

occurrences – e.g. BERT). These models underpin almost all 

practical AI (Artificial Intelligence) approaches to NLP (natural 

language processing). And while the implementations vary in 

respect of the (deep learning) technologies they require, they all 

capture that same underlying principle – words that are 

experienced in similar contexts will have similar meanings and 

will thus be “closer” in semantic space than words occurring in 

more dissimilar contexts. However, there are important differences 

between these models: After learning, HAL, LSA, and word2vec 
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return the same representation for a word regardless of the actual 

context in which that word might subsequently occur. 

Contemporary models of semantic memory, on the other hand, 

propose that concepts are dynamic – the knowledge we access 

about any given concept depends on the context in which we 

access that knowledge – as defined, for example, by task demands, 

the broader situation in which the knowledge is accessed, or the 

idiosyncratic experience of the individual accessing the concept 

(e.g. Yee & Thompson-Schill, 2016; Mirkovic & Altmann, 2019). 

BERT, ELMo, and ERNIE 2.0 do return different word 

representations (word embeddings or vectors that constitute a 

mapping from word form to semantic space) depending on the 

context, but while they might provide useful insights into the 

information that a semantic space might ideally (or in practice) 

encode, they are not intended as, and nor are they, psychologically 

plausible models of (human) natural language processing (and 

specifically, natural language learning).  

Our focus here is not on semantic space per se but on 

representation (or its equivalent in a dynamical system – see 

below). Equally, our focus is not on lexical representation but on 

event representation. We shall describe a number of “simulations” 

with Recurrent Neural Networks (RNNs: similar to Elman’s 

Simple Recurrent Network (SRN: Elman, 1990) but with more 

than one hidden layer) using Long Short-Term Memory units 

(LSTMS – see below). These essentially scale up the insights that 

Elman reported with respect to emergent representations of 

syntactic and semantic dependencies (Elman, 1990, 1993). Below, 

we apply some of these insights to learned representations of 

discourse and event dependencies, in networks with vocabularies 

in the tens of thousands. Our aim is not to build a better NLP 

device, but to better understand the possible (and probable) 

encoding of event structure in the human mind. We return in the 

General Discussion to the relationship between RNNs and models 

such as ELMo (essentially a bidirectional RNN) and BERT. 

Below, we explore whether RNNs can develop sensitivity to 

the essential content of event representations (Studies 1 and 2 

below), and the factors that may influence the propagation of both 

linguistically relevant and event relevant representations through 

time and context (Study 3). Our goal is not to evaluate whether 

RNNs or some other computational model are the model that best 

fits human behavior, but instead to try to understand how a 

possible mechanism for acquiring and processing event 

representations (recurrence) may relate to human behavior. For 

example, it may be the case that simple exposure to language 

and/or corresponding variation in the external world is sufficient 

to enable the emergence of event-relevant behaviors. At issue is: 

how? As outlined below, our results call for deeper understanding 

of how humans maintain (and change) linguistic representations 

while processing language, using similar techniques to the 

computational approach we outline below (in Study 3). 

 

Event Representation 

 

We follow Altmann & Ekves (2019) in assuming that an 

event occurs when, minimally, an object changes state across time. 

On this approach, event representations are grounded in 

representations of object histories – the distinct states of an object 

across time. If a knife cuts through an onion, both the knife and the 

onion change state (albeit in different ways) – both the knife and 

the onion can be considered as trajectories through space and time 

whose intersection defines the event in respect of its participants 

and the changes in state they endure. Altmann & Ekves (2019) 

referred to this as the Intersecting Object Histories account of 

event representation (the “IOH”).  

The IOH makes certain assumptions about the 

“computational substrate” that are based on properties of SRNs 

originally observed by Elman (and see Altmann & Mirkovic, 2009, 

for fuller discussion of these, and their relevance for sentence 

processing and event representation). The representation of a 

sentence – the linguistic realization of an event – is, in the SRN, a 

trajectory across time (afforded by recurrence through time), with 

different sentence types having different trajectories that 

nonetheless reflect similarity in structure. These trajectories also 

reflect the constraints acquired through learning on how, at each 

point in the trajectory, the trajectory may continue. We can 

therefore operationalize representation in Elman’s networks not 

simply as activation patterns across the hidden layers, but as 

constraints on which patterns can follow which other patterns.  

At issue for present purposes, is whether, and how, a system 

based on a recurrent architecture like the SRN might acquire event-

relevant structure. At a minimum, and following the approach 

described above in relation to the IOH, we contend that it would 

need to track individual entities across sentences (similar in some 

respects to tracking entities across events or situations), and to 

track changes to those entities as a consequence of the events they 

participate in. 

 

Keeping track of discourse entities across sentence boundaries 

 

Early work on the influence of inter-sentential discourse 

dependencies on subsequent (linguistic) behaviors concerned the 

influence of context on ambiguity resolution (Tyler and Marslen-

Wilson, 1977; Crain & Steedman, 1986; Altmann & Steedman, 

1988). In one such study (Spivey-Knowlton, Trueswell, & 

Tanenhaus, 1993), the presence of more than one possible 

antecedent in an earlier sentence (e.g. “Two knights were attacking 

a dragon … the dragon killed one of the knights”) impacted on 

behaviors in a later sentence (e.g. beginning “The knight killed…”) 

– Altmann & Steedman’s Principle of Referential Support 

(Altmann & Steedman, 1988) predicted that a simple noun phrase 

which failed to pick out the intended referent (“The knight killed”) 

would be interpreted as the first noun phrase in a complex noun 

phrase construction (“The knight killed by the dragon fell to the 

ground with a thud”). Thus, depending on the referential context, 

syntactic ambiguities (“killed” as a main verb or as a past participle 

in a reduced relative clause) will be resolved one way or another. 

Crucially, this requires that information about entities introduced 

earlier on (the knights) is propagated forwards, from one sentence 

to the next (the basis for anaphoric dependencies across sentences). 

Could an RNN learn to use referential context to resolve syntactic 

ambiguities of this kind? 

To explore this, Davis and Schijndel (2020) trained RNNs 

with LSTMs on an 80 million word subset of Wikipedia. SRNs 

have relatively short memories – long-distance dependencies are 

difficult for an SRN to learn because the hidden layer gets more 

and more information added to it on each successive time-step, and 

resolving information from the more distant past gets 

progressively harder (this is an over-simplification, but the 

intuition will suffice). LSTMs (Hochreiter & Schmidhuber, 1997) 

are units that overcome this by maintaining information across 

successive time-steps (they each have a dynamic memory that the 

network learns to modify, update, and draw from depending on the 

current word and the preceding context; they learn to balance the 

need to propagate information forward in time with the need to 
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modify or even forget that information). During training, the 

networks (each with different random initializations) had to predict 

each successive word in the corpus given the preceding words 

(Elman’s 1990 prediction task). After training, each network was 

tested on the 16 actual stimuli from Spivey-Knowlton et al. (1993). 

Surprisal (Hale, 2001) was calculated at the phrase verb+by 

(“killed by” in the example above). Surprisal was lower for the 

networks when the preceding context contained two referents than 

when it contained one (“A knight and his squire were attacking a 

dragon”). Similar patterns were observed for main verb / reduced 

relative ambiguities when embedded not in referential contexts but 

in temporally supporting contexts (Trueswell & Tanenhaus, 1991). 

There were no such differences in surprisal for networks trained 

on versions of the corpus in which the order of sentences was 

scrambled (thereby breaking any inter-sentential dependencies). It 

would appear, then, that RNNs with LSTMs can, at least to an 

extent (see below), track discourse entities across sentence 

boundaries and if necessary resolve referential ambiguities in order 

to establish continuity of reference. Or at least, like humans, they 

behave as if this is what they do. 

 

Representational content: Tracking object states across events 

 

While impressive, the Davis and Schijndel (2020) 

demonstration does not tell us the nature of the information that 

was propagated across the context-sentence pairings. Surprisal 

tells us about lexical expectations, but it does not tell us about the 

internal representational content that the models propagated across 

each sentence and which presumably was the causal antecedent of 

these expectations. Encoding event representations requires the 

encoding not only of information about the entities themselves, but 

also about the states they pass through as events unfold. If a chef 

chops an onion and then weighs it, the thing being weighed is 

chopped. If the chef chops an onion but first weighs it, the thing 

being weighed is not chopped. In these cases, the object 

representation that propagates through the second clause 

(beginning “and then” or “but first”) should reflect the event-

related changes to the onion that occurred in the first clause, 

depending on the temporal adverbial. Importantly, the state that the 

onion is in depends on which onion is referred to in the second 

clause: Chopping an onion and then weighing another onion 

means that the thing being weighed is (most likely) not a chopped 

onion. These different scenarios (both the real-world scenarios and 

their linguistic equivalents) exemplify what we mean by 

propagating a representation forward in time and reflecting 

whatever changes in state it undergoes as it transitions from one 

event (chopping) to another (weighing). Could an RNN 

spontaneously develop the appropriate representational 

generalizations just through exposure to a large but otherwise 

arbitrarily chosen language corpus? 

Within a semantic similarity space typical of a model such as 

LSA, different objects (concepts) occupy different parts of the 

space. But they do not occupy single points, they occupy regions 

of space, with different points within the region reflecting different 

contextual dependencies associated with the different states of the 

object. The concept corresponding to the object “onion” is a region 

of space that includes yellow, white, and red onions, peeled onions, 

chopped onions, and fried onions (for related discussion see 

Solomon, Medaglia, & Thompson-Schill, 2019). In principle, then, 

an RNN should be able to develop emergent categories (i.e. 

regions of space) that are structured in such a way as to capture the 

contextual dependencies between verbs such as “chop” and nouns 

such as “onion” that specify the distinct states (points in the space) 

that should be activated as a sentence such as “chop the onion” 

unfolds. More interesting is whether the network can then 

propagate the appropriate states (the appropriate representational 

content) across multiple sentences such that when “weigh the 

onion” is encountered, the onion is still at that same point in space 

(albeit displaced slightly by the weighing). Importantly, distance 

within the region of space, between one point and another, could 

in principle reflect the degree of change that the object undergoes 

as it is displaced in the space (as modulated by the verb) – 

chopping the onion might displace that particular onion within the 

onion region by more than peeling the onion, reflecting more 

movement along the different featural dimensions along which the 

onion changes: The more change, the more movement, and the 

greater the distance. But how could a network learn, from 

linguistic input alone, the relevant featural dimensions along 

which objects change as they participate in events? While featural 

dimensions may emerge as an abstraction over the network's 

hidden unit activations (c.f. Elman, 1993), what the network is 

exposed to is more akin to affordances (e.g., Gibson, 1979; 

Glenberg, 1997), albeit in the linguistic domain. A sentence 

describing an event in which an onion is chopped is unlikely to be 

followed by a sentence in which that same onion is then peeled. So 

given that the RNNs are in the business of predicting upcoming 

input, event descriptions constrain what upcoming descriptions are 

afforded by the current input (reflecting the real world affordances 

that accompany events across time). Whether RNNs can develop 

sensitivity to affordances of these kinds is the basis for the studies 

to which we now turn.   

 

Preview of the studies and main results 

 

In all three studies we adopted the same computational 

architecture as in Davis & Schijndel (2020). Study 1 was 

motivated by Hindy, Altmann, Kalenik, & Thompson-Schill 

(2012), who collected degree-of-change ratings for the sentence 

pairs that they used in an fMRI study of object-state change. 

Participants had been instructed to read sentences such as “The 

chef will chop the onion” or “The man will choose the bagel” and 

to rate on a 7-point scale by how much the thing that was acted 

upon in the sentence changed relative to how it had been before it 

was acted upon. Inspired by Representational Similarity Analyses 

(RSA, Kriegeskorte, Mur, & Bandettini, 2008) we compare the 

activation patterns across the hidden layers at the end of each 

sentence to the activation patterns that resulted from presenting to 

the networks the indefinite form of the noun referenced at the end 

of the sentence (e.g. “an onion” or “a bagel” for the two examples 

above). We found that the network’s unfolding representations (as 

indexed by the similarity to this baseline; see Supplemental 

Material A) correlated with the degree-of-change ratings in human 

participants asked to judge the exact same sentences. 

In Study 2 we asked whether the representation of the target 

object at the end of the sentence would propagate appropriately 

into a second sentence. We contrasted matched pairs of two-

sentence sequences such as “The chef will chop the onion. Then, 

she will weigh the onion” and “The chef will chop the onion. First, 

she will weigh the onion”. In the THEN condition, the onion at the 

end of the second sentence is chopped – it should be dissimilar to 

a prototypical onion (indexed by the activation pattern due to just 

the word “onion”). In the FIRST condition, the onion at the end of 

the second sentence is being referenced in its prior unchopped 

state, and so should be more similar to a prototypical onion 
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(relative to the observed similarity in the THEN condition). This 

is exactly what we found in our similarity analyses. And when we 

replaced “the onion” at the end of the second sentence in the THEN 

condition with “another onion”, the networks, like people 

(Solomon, Hindy, Altmann, & Thompson-Schill, 2015) treated 

this onion as a more prototypical onion. 

Whereas Study 2 explored how representations of the object 

undergoing change propagate through the sentences, Study 3 

explored how representations of the sentential subject likewise 

propagate. This more exploratory study used similarity through 

time to track the representation of the sentential subject through to 

the end of the first sentence and into both the second and a third. 

We found, unsurprisingly, that the sentential subject does 

propagate through the sentences, but that its representation 

changes dynamically as a function of other input and its 

perturbation of the network's activation state. We interpret these 

dynamics as reflecting the extent to which the linguistic input 

places constraints on what states the network, as a dynamical 

system, can move into next. We now turn to the studies in detail 

before discussing the implications of these results for our 

understanding of both network, and human, behavior. 

 

STUDIES 

 

Neural Networks 

 

We followed the architectural details in Davis and van 

Schijndel (2020). Specifically, we trained RNNs with LSTM 

hidden units using a language modeling objective (i.e. predicting 

the next word; as in Elman, 1990).1 The models had two LSTM 

layers with 400 hidden units each, 400-dimensional word 

embeddings, a dropout rate of 0.2 and batchsize 20. They were 

trained for 40 epochs (with early stopping) using PyTorch. To 

disassociate effects of training data, we trained two sets of models 

on different data. The first (Wikipedia models; N=25) was trained 

on approximately 103 million tokens of preprocessed Wikipedia 

text taken from verified higher quality articles (Wikitext-103; 

Merity, Xiong, Bradbury, & Socher, 2016). The other set of 

models (Web models; N=25) was trained on approximately 100 

million tokens of web data taken from URL links in “higher 

quality” reddit posts, which crucially excluded all Wikipedia data 

(OpenWebTextCorpus; Gokaslan and Cohen, 2019).2 Sentence 

length was similar across the two corpora (18 and 17, respectively) 

although there was greater variance in the Web corpus (standard 

deviations: 15 and 22 respectively). Each of the models was 

initialized with a different set of connection weights. The 

vocabularies of the models were constrained to the top 50K most 

frequent words in their respective training corpora. Words were 

represented using one-hot encodings (that is, 49,999 bits "off" and 

one bit "on") for the input, and the output at each time step was a 

probability distribution for the next word ranging over the 

vocabulary.  

 

 

 
1 The mean perplexity for the Wikipedia models on the 
validation data for Wikitext-103 was 40.6 with a standard 
deviation of 2.05, and for the Web models using a held out 
validation set of 10 million tokens of web data the mean 
perplexity was 64.53 with a standard deviation of 0.73. 

 

Study 1: RNN encoding of object-state change 

 

The first study evaluates the internal representations of RNN 

language models while processing stimuli that describe a change 

in state of an object. “Knowledge” of events under IOH requires 

“knowledge” of object trajectories -- a network that builds event 

representations should represent object affordances under different 

contexts, corresponding to the objects in a real-world event 

undergoing a change in state. Blended mangoes afford different 

interactions than do whole mangoes, with the blending causing 

changes in state that are accompanied by different sets of 

affordances. In principle, the consequences of changes in state on 

the affordances of the object (in its new state) should manifest in 

the language used to describe events and their consequences 

(changes in state would be accompanied by changes in what may 

unfold next). 

Using stimuli rated for degree-of-change (the amount an 

object was changed by an action), we evaluated whether RNNs 

encoded degree of change in a way that mapped onto human 

judgments. Sentences with corresponding human ratings were 

taken from Hindy et al. (2012) and pooled together with an 

additional set of stimuli and ratings developed by Prystauka, 

Ekves, and Altmann (in preparation). Across all our studies we 

selected the maximum number of stimuli from this original pool of 

326 stimuli that satisfied the constraints of the study (e.g. that all 

words were known to the networks, that no verb + object 

combination appeared more than once, and depending on the 

study, that the stimuli either were paired (“minimum” vs 

“substantial” change) or were drawn from the same category (e.g. 

as in Study 2 below). The resulting 145 stimulus pairs had the 

following structure: 

 

The chef will weigh the mango [minimal change implied by the 

verb] 

The chef will blend the mango [substantial change implied by the 

verb] 

 

Hindy et al. (2012) had used such pairs to show (among other 

effects) that the fMRI BOLD response elicited by such sentences 

correlated with degree-of-change ratings supplied by a separate 

group of participants. We excluded any stimulus pair that had any 

word in either sentence of the pair that was not contained within 

the models' vocabularies. This left 136 sentence pairs for the 

Wikipedia models and 140 pairs for the Web models. Ratings had 

previously been collected online with each stimulus rated by a 

minimum of 25 participants. Because the Hindy et al. ratings were 

collected in 2011, and the Prystauka et al. ratings in 2018/19, we 

recently collected new ratings for the entire set of stimuli 

(containing 326 stimuli from which the sentence pairs for this 

study were drawn) and calculated interrater reliability across the 

two sets of ratings. Reliability was extremely high (Pearson’s r 

=  .95). For the data described below it did not matter whether we 

used the original ratings, the new ratings, or the average (we report 

statistics based on the average). Each pair of stimuli constituted a 

2 This is an open source version of the training data in the popular 
language model GPT-2 (Radford et al., 2019). The code with 
which to further explore the models and recreate the results in 
the present study is available at (and the models linked from): 
https://github.com/forrestdavis/ExperimentNorming. 
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minimal pair that differed only in the verb, and consequently in the 

manner and degree of change that the entity in object position 

would undergo. The stimuli were designed so that one member of 

the pair would entail a substantial change to that entity and the 

other a minimal change (the degree-of-change ratings confirmed 

the minimal/substantial change designation). We followed Hindy 

et al., (2012) in using this same paired stimulus structure, using the 

minimal change sentence as a baseline for assessing degree-of-

change effects (both for the human ratings and for the model-

derived measure which we describe next). 

To assess the internal representations of the RNNs, we 

calculated the similarity between the hidden representation of the 

final word in each sentence (taken from the final hidden layer of 

the RNN) and the hidden representation of a baseline (see 

Supplemental Material A). The baseline for each sentence was the 

indefinite form of the relevant object (e.g., “a mango” given “the 

chef will blend the mango”); the model’s hidden representation 

after “mango” thus corresponded to the encoding of the whole 

phrase (e.g., the model’s hidden representation of “mango” 

following “a”). For complex nouns such as “swimming pool” both 

nouns were included. To quantify similarity, we took the 

normalized cosine similarity (the Pearson correlation coefficient)3 

of the two vectors corresponding to (i) the hidden representation 

after each word and (ii) the hidden representation of the baseline. 

We used this correlation coefficient as a measure of distance (i.e. 

similarity) in activation space. We predicted that RNNs with at 

least some knowledge of event structure (i.e. the consequences of 

an event for changes in the affordances/states of objects affected 

by that event) would have a graded degree of similarity between 

the baseline and the object. The baseline reflects the broadest set 

of affordances (i.e. the broadest prediction space: “A mango” 

licenses future washing, peeling, chopping, blending, freezing, etc) 

while changes in the trajectory of an object necessarily restrict 

possible affordances (“blending a mango” makes future washing, 

peeling, or chopping unlikely). Similarity between the baseline 

object and the object embedded in a particular event, then, 

corresponds to the extent to which that particular event restricts the 

affordances of the object, with lower similarity corresponding to 

greater restriction and higher similarity to less restriction (cf. “the 

chef blends the mango” vs. “the chef weighs the mango”). 

There are a number of different ways to probe the internal 

informational content of a network, including diagnostic classifiers 

(e.g. Giulanelli, Harding, Mohnert, et al., 2018) and minimal 

description length probing (Voita & Titov, 2020). We chose to use 

a more direct analog of the question that was asked of the human 

participants: By how much is an object changed after an event 

relative to how it was before the event? Our measure of 

representational similarity asked by how much the hidden unit 

activation changes after a linguistic description of an event relative 

to how it would be after a generic descriptor. Classifiers can give 

a measure of change if interpreted probabilistically (i.e. the change 

in likelihood that a pattern will be classified as belonging to a 

particular category), but the distance between two representations 

is necessarily influenced by the distances between the other 

representations on which the classifier has been trained. Cosine 

similarity is instead an absolute measure of similarity/change.  

 
3 The Pearson correlation is equivalent to normalized cosine 
similarity, making the measure invariant to the addition of a 
constant. Qualitatively similar results hold when using 
unnormalized cosine similarity (which lacks this property). The 

Statistical analyses of the relationship between model degree 

of change and human ratings were performed by calculating a 

difference score for each item pair ("substantial" change minus 

"minimal" change) and for each variable (human ratings and model 

degree of change, averaged across the 25 models). This allowed us 

to maintain the pairwise structure in the stimuli. We then computed 

the Pearson correlation coefficient r to quantify the relationship 

between the difference scores for the two variables, calculating the 

upper and lower 95% confidence intervals using the Monte Carlo 

method from Preacher (2012). For the Wikipedia models, r = -.20, 

p = .012 (95% CI: LL -.36, UL -.03); For the Web models, r = -.20, 

p = .018 (95% CI: LL -.36, UL -.03). We also used linear mixed 

effects models which confirmed the relationship between the 

network similarity measure and the human ratings (see 

Supplemental Materials B). 

Greater similarity between the object and the baseline 

correlated with lower human degree-of-change ratings. In other 

words, the model representations seem to encode information 

about the magnitude of change the object is undergoing. There is 

significant variance left unexplained by the models internal 

representations, however. That is to be expected given that these 

models are trained only on text. The networks provide a 

unidimensional measure of representational change (based only on 

experiential knowledge of the language). The human raters, on the 

other hand, likely provided a multidimensional measure of such 

change, grounded in experiential knowledge of both linguistic and 

non-linguistic origin, with the latter spread across multiple 

sensorimotoric dimensions. Thus, neither of the corpora we used 

could encode object-state changes to the degree that humans 

experience them in their daily lives, but some corpora may encode 

state change more explicitly than others (cookery books may be a 

better source of object-state change information in respect of e.g. 

chopping, peeling, or blending, for example). Nonetheless, given 

the experiential limits imposed on our networks – being exposed 

only to linguistic input and that input being impoverished in 

respect of conveying the full (real world) range of object-state 

change– it is all the more remarkable that RNNs encode event-

relevant structure to the extent that they do. We return to the 

challenges that impoverished experience presents, both for the 

networks and for understanding the nature of the network's internal 

representations, in the general discussion below. 

 

Study 2: Propagating event participants forwards, and 

backwards, in time 

 

Study 1 demonstrated that our RNNs' encoding of discourse 

entities was modulated by the verb preceding that entity. This 

modulation correlated with human ratings of the degree to which 

those objects, in real life settings, would be judged to change state 

as a consequence of the event described by the sentence. Having 

demonstrated this sensitivity to event-relevant content, in this 

second study we ask whether RNNs can propagate the appropriate 

content into a subsequent sentence. Specifically, a sentence that 

refers to a second event following or preceding, in event time, the 

event described in the first sentence. Consider the following  

 

particular implementation we used was corrcoef from numpy: 
https://numpy.org/doc/stable/reference/generated/numpy.corrco
ef.html. 
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The chef will chop the onion. Then, she will weigh the onion  

[same token, future event] 

The chef will chop the onion. First, she will weigh the onion  

[same token, past event] 

 

In principle, the onion that is weighed in the "Then" condition 

should be less similar to a generic onion (it has been chopped) than 

the onion that is weighed in the "First" condition, which should be 

more similar to a generic onion (it has not yet been chopped). We 

followed Solomon et al. (2015) in adding another condition: 

 

The chef will chop the onion. Then, she will weigh another onion 

   [different token, future event] 

The chef will chop the onion. First, she will weigh another onion 

   [different token, past event] 

 

Solomon et al. (2015) found in an fMRI experiment that sentences 

with "another onion" patterned as if this other onion had not 

undergone any change (i.e. it was a newly instantiated generic 

onion). While we anticipate that "another onion" should be more 

like a generic onion than "the onion" after "Then,…". Less clear is 

how "another onion" will pattern (in respect of its similarity to "an 

onion") after "First,…". In both cases, we would expect some 

representation of the original chopped onion to propagate 

forwards, because the pragmatics of such constructions 

(manifested in their usage) suggests that the chopped onion will be 

referred to again in the future (otherwise it would not have been 

mentioned at all). Most likely, we would see greater dissimilarity 

in the "Then" condition simply because, as event time moves 

forward, there is probably a greater likelihood that the chopped 

onion will come back into (linguistic) play, in which case the RNN 

may increase its activation, thereby decreasing the similarity of its 

internal representations to "an onion". We return below to 

discussion of the network's encoding of distinct tokens. 

We selected 150 two-sentence stimuli from the original set 

described above. All stimuli included verbs that had previously 

been designated by human participants as causing "substantial 

change" (see Study 1). We selected "substantial change" items for 

this study so as to better explore the effects of the "Then/First" 

alternation (for verbs entailing minimal change, the representation 

of the changed entity would be little changed from before or after 

the event that changed it, and using such verbs would have lacked 

sensitivity). As with Study 1, we calculated the similarity between 

the hidden representation of the final word (this time at the end of 

the second sentence) and the baseline for each sentence –the 

indefinite form of the relevant object (e.g., “an onion” for the 

examples above). 

We performed a 2 (temporal adverb) x 2 (determiner) within-

subjects ANOVA (every network was given every item in all 4 

conditions), followed by planned comparisons of the contrast 

between "then…the" and "first…the". For each analysis, we 

treated networks as participants and report both by-network (F1) 

and by-item (F2) analyses. Table 1 shows the similarity values 

(Pearson's r) in each of the 4 conditions for both the Wikipedia and 

Web models. 

For the Wikipedia models there was a main effect of adverb 

("then" vs. "first": F1(1,24) = 22.4, p < .0001; F2(1,149) = 43.0, p 

< .0001 ) and of determiner "the" vs. "another": F1(1,24) = 1379.6, 

p < .0001; F2(1,149) = 1333.5, p=.000 but no interaction between 

the two (F1(1,24 = 1.8, p = .187; F2(1,149) < 1). Similarly for the 

Web models ("then" vs. "first": F1(1,24) = 49.1, p < .0001; 

 

 

Table 1. Representational similarity analysis comparing hidden 

unit activations at the end of the second sentence to the baseline. 

Values are Pearson's r (higher value means more similar), and for 

networks (n=25) trained either on the Wikipedia or the Web 

corpus.   

 

F2(1,149) = 20.1, p < .0001 ; "the" vs. "another": F1(1,24) = 

1652.3, p < .0001; F2(1,149) = 1025.4, p < .0001) although for 

these models there was a marginal interaction between adverb and 

determiner (F1(1,24) = 7.3, p = .012; F2(1,149) = 1.0, p = .316). 

For both sets of models, the "then…the" condition was less similar 

to baseline than the "first…the” condition (Wikipedia: F1(1,24) = 

22.0, p < .0001; F2(1,149) = 306.4, p < .0001; Web: F1(1,24) = 

48.1, p < .0001; F2(1,149) = 86.9, p < .0001). 

If an onion was chopped but first it was weighed, reference to 

the onion that was weighed engendered a representation that was 

more similar to a generic onion than if the onion had been chopped 

and then it had been weighed. The networks, regardless of which 

corpus they had been trained on, were sensitive to the temporal 

ordering of the events and the consequences of this ordering for 

the state of the onion (although most likely the distinct states of the 

onion are encoded in respect of the likely consequences of an event 

for what events can follow – see above). Equally, if an onion was 

chopped but then another onion was weighed, that onion was again 

more similar to a generic onion (i.e. more similar to the baseline 

“an onion”) than if it was the onion that was weighed. We return 

in the general discussion for the implications of such a result for 

whether, or how, the RNNs can be considered to have encoded the 

onion that was chopped as a specific token onion with "another 

onion" encoded as a different token. 

Perhaps surprisingly, the same “then”/”first” pattern was 

observed for “another onion” as was observed for “the onion”. 

Why should “then…another onion” be more dissimilar to the 

(presumed) generic than is “first…another onion”? They are both 

new tokens, and in some sense should be identical regardless of 

the temporal context in which they are introduced. However, and 

as we shall discuss further below, the representations we are 

probing at the end of the second sentence are not just those 

associated with reference to the onion – they reflect the entire 

representational state of the network (operationalized as the second 

hidden layer). This state will include representational content 

pertaining to the onion at the end of this second sentence but also 

pertaining to the chef from the first sentence (we explore this 

further in Study 3 below), and the onion from the first sentence. 

So if there are two instances of onion – i.e. two onion tokens – the 

representation at the end of the second sentence will contain 

information about the new token (introduced by “another onion”) 

and the original token (introduced in that first sentence, and whose 

state/affordances reflect having been chopped). We speculate that 

in the case of “first…” the state of the original token is 

“suppressed” (the affordances of a chopped onion no longer apply 

and are less active) meaning that the composite pattern will be 

more similar to a generic onion than after “then…” when the 

affordances of a chopped onion do still apply. Hence the same 

effect of temporal adverb on “another onion” as on “the onion”. 

 Wikipedia Web 

 Then… First… Then… First… 

the… .530 .535 .545 .550 

another… .700 .706 .670 .675 
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Again, we return below to this issue of how and in what way the 

RNN encodes tokens. 

If “another onion” puts the network into a state where it 

represents both this new token onion and the original token, would 

the network be able to distinguish between these two tokens? We 

believe that this may be a limitation of the networks as currently 

trained. It has been observed that there is a general recency bias in 

RNN language models (e.g., Ravfogel et al., 2019; Davis and van 

Schijndel, 2020). In our own testing, we have noted a recency bias 

for stimuli like "The chef has a small onion and a big onion. He 

chopped the small onion. Then, he chopped the ...", where rather 

than predicting “big” (as pragmatic reasoning would suggest) both 

the Wikipedia and Web-trained models had a greater preference 

for “small”. But their preferences were modulated by training 

corpus: The Wikipedia networks preferred “big” over the 

pragmatically anomalous continuation “banana”, whereas the 

Web networks surprisingly preferred “banana” over “big”. In the 

real world, of course, where language meets visual experience, that 

experience is not subject to the same recency biases that are typical 

of language. For example, as our eyes move around a scene, we 

tend not to revisit the most recently viewed entities. And when 

navigating somewhere and back again, we revisit the earlier 

location, not the more recent location. We thus believe that there 

are attentional factors in our experience of the external world 

which essentially work against the recency biases that pervade our 

experience of the linguistic world. We cannot, at this time, tell 

whether the recency bias we find in our RNNs is due to their 

specific training (i.e. reflecting a general bias in the language they 

are exposed to) or due to an architectural limitation that could be 

overcome with an attention component (Bahdanau, Cho, & 

Bengio, 2014; Vaswani, Shazeer, Parmar, et al., 2017) operating 

either over the language or over a different but parallel domain of 

experience - c.f. the relationship between linguistic and non-

linguistic domains of variation envisaged in Altmann & Mirkovic 

(2009). It is noteworthy that the language model GPT-2 (Radford, 

Wu, Child, et al., 2019), a transformer model with an attention 

mechanism, does not display a recency preference with these kinds 

of stimuli, but predicts the pragmatically expected continuations. 

On the other hand, it appears to fail with "The chef has a small 

onion and a big onion. He chopped the small orange. Then, he 

chopped the ...", where it exhibits a substantial preference for the 

continuation “big” over “small” (suggesting a structural preference 

over content). The RNNs do not do any better – they prefer the 

more recent “small” over “big”, regardless of the corpus on which 

they were trained, although the web-trained networks continue to 

prefer “banana” over “big”. 

These last (informal) data, contrasting RNNs with GPT-2, 

highlight an issue that is central to the current series of studies: 

RNNs exhibit representational properties that we believe a priori 

to be necessary precursors to the behaviors we are targeting. But 

representational space is not the same as word space. The 

representational similarity analyses reported for Studies 1 and 2 

operate over representational space, whereas the behaviors just 

described (with big and small onions) reflect operations over word 

space. GPT-2 exhibits the right behaviors in word space (insofar 

as we have started to explore them) but their correlates in 

representational space, at least in respect of object state 

affordances and trajectories through time, are relatively opaque. 

We return to GPT-2 in the General Discussion. 

A final word, in this section, on the distinction between 

representation and behavior. We can think of representations in 

RNNs as corresponding to the regions of an abstract multi-

dimensional (similarity) space that the system can move into as a 

function of where it has come from (c.f. our earlier description of 

representation in an SRN as constraints on which activation 

patterns can follow which other activation patterns). Behavior is 

what the system does when it actually traverses that space. Thus, 

we refer to network behavior not simply when, for example, 

describing its predictions in word space, but also when using 

representational similarity analyses to probe where the network is, 

in or after, its trajectory through that representational space. 

Representation and behavior are thus intimately intertwined 

inasmuch as tracing a trajectory – traversing the space – entails 

passing through different representational states. 

 

Study 3: Propagation dynamics 

 

In the previous studies, we investigated the degree to which 

RNNs encode object affordances in their representations both 

broadly and for specific tokens. In Study 3, we explored what 

effect emergent event representations in RNNs have on other 

participants in the event. In particular, we ask what happens to the 

representation of the sentential subject as the network encodes 

events across multiple sentences? Some representation of the 

subject must propagate forwards (a consequence of recurrence, 

and a desirable property of any model of human sentence 

processing), but what modulates the strength of that propagation? 

According to the IOH, the history of an object includes its 

intersections with other objects – in effect, that object becomes 

dynamically associated with the objects with which it has 

intersected (meaning that those associations are context-specific, 

depending on where in time and space the intersection occurred). 

But such associations can form only to the extent that the 

representation of one propagates strongly enough onto the 

representation of the other. If prior input has very little effect on 

the state of the system (i.e. it perturbs it less), the “trace” of that 

input will be weaker than that of an input that has greater effect on 

the state of the system. But similarly, if something subsequent to 

that input perturbs the system more, it may “mask” the impact of 

that earlier input. We might conceptualize this idea with the 

following analogy: a bigger splash will cause ripples to travel 

further. But the ripples due to a smaller splash may be 

overwhelmed by those caused by a subsequent bigger splash. In 

this more exploratory study, we use entropy to quantify the splash. 

Entropy is operationalized in our RNNs as the amount of 

order or disorder in the predictions that the RNN makes at each 

point in time. If only a small number of words are predicted at the 

next time-step, the system is in a state of low entropy compared to 

one in which many words are predicted. And if many words are 

predicted but one is predicted by very much more than the others, 

then that too reflects a state of low entropy. The more constraining 

the context, the more the system is perturbed (the less random the 

activation state of the system becomes), and the lower the entropy. 

In Study 3 we probed the entropy at the offset of the subject+verb 

sequence in the first sentence of a 3-sentence sequence such as 

 

The farmer will shear the sheep. Then, he will feed the sheep. Then, 

he will think about the sheep. 

 

The entropy at the offset of “shear” reflects the impact of the 

combination of that verb with its subject on what the network will 

predict might come next (henceforth, although we shall be 

referring to the entropy at that first verb, we shall simply refer to it 

as “the entropy”). A verb like “shear” is more constraining than, 
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Regardless of interpretation, the actual significance of these 

data is not in respect of what we might hope to know about 

networks, but in respect of what we do not know about the human 

brain: We do not know what the equivalent dynamic is in the human 

brain. Might recall of earlier material in a sentence similarly 

depend on entropy? Would participants better recall the farmer in 

a subsequent cued-recall task (cued with “the sheep”) if he had 

selected a sheep rather than sheared a sheep? Could we use RSA 

in a neuroimaging task to generate a continuous measure of 

“representational integrity” as we did, in computational terms, for 

Figure 1? Here, we are equating representational similarity with 

representational integrity – the more similar the representation 

after “sheep” to the representation after “farmer”, the greater the 

integrity of the representation (i.e. the less interference during 

propagation, or the stronger the association that formed between 

“farmer” and “sheep” when they first co-occurred in that first 

sentence). These are all questions for future studies. The point, 

simply, is that consideration of network dynamics lends itself 

naturally to consideration of brain dynamics. And a theme that will 

recur below is that, when it comes to such dynamics, we do not 

know even what the target behavior is in the human brain that we 

should be hoping to model. 

 

GENERAL DISCUSSION 

 

According to the IOH (Altmann & Ekves, 2019), a hallmark 

of event representation is the encoding of object-state change 

across time. In Study 1, we demonstrated that item-wise 

differences in similarity computed from the RNNs’ internal 

representations correlated with item-wise differences in human 

ratings of the degree to which an object is changed by an event it 

participates in. Study 1 thus showed that the RNNs developed an 

emergent state space that is similar, at least along some limited 

dimensions, to the representational space encoded by human 

participants. Study 2 extended these state change findings to show 

that the representation of onion introduced in the first sentence 

(“The chef chopped an onion”) propagated into the second 

sentence (“Then/First, she smelled the onion”). However, this 

propagation was modulated by the temporal adverb; when the 

onion was referenced at a point in time after the chopping, it was 

less similar to the representation engendered by the phrase “an 

onion” (the generic baseline) than when it was referenced at a point 

in time before the chopping. 

 A related hallmark of event representation – related that is, 

to the encoding of object-state change – is the distinction encoded 

in such representations of object tokens versus object types; it is 

not just any onion that is being smelled, it is the same individual 

onion (the same token) as had been chopped. The RNNs in Study 

2 were sensitive to this distinction between the same onion and 

another onion: After the chopping, smelling “another onion” 

engendered a representation that was more similar to a generic 

onion than did smelling “the onion”. The networks thus appear to 

distinguish between cases when reference is to the same token and 

cases when reference is to a different token of the same type. 

Nonetheless, we do not have direct access to the networks’ actual 

representations (as distinct from the raw activation values across 

the networks’ hidden units) – we are no more able to determine 

whether the network in fact encodes objects as tokens than we are 

able to determine whether a human participant encodes objects as 

tokens –  we return below to why there is no such direct access, 

and why, nonetheless, we believe that the RNNs did instantiate 

tokens.  

The behaviors observed in Studies 1 and 2 address just one 

aspect of an event representation; namely, object-state change. 

Study 3 was more exploratory, examining factors that might 

mediate the extent to which the object acted upon (e.g. the onion) 

becomes representationally associated with the object that acted 

upon it (the chef). Our interest here was in how properties of the 

verb (e.g., how constraining the verb was in respect of its 

predictive informativeness – how much it perturbed the system) 

might impact on the network’s ability to propagate and re-activate 

those representations as appropriate. We found that the greater the 

perturbation at the verb, the harder it was for the representations 

associated with the subject to propagate forwards and make contact 

with the representations due to the object (the onion). 

Our longer-term goal in running this study was to raise an 

issue not about network dynamics but about brain dynamics: 

Would we see the same propagation dynamics if we were to probe 

the equivalent in human participants? For example, perhaps the 

effects we observed at the final word in the 3-sentence sequence 

were unrelated to the content of the word “onion” in that position 

– i.e. unrelated to that object’s history. Would this be a “good” 

thing, or a “bad” thing? We cannot know until equivalent analyses 

of the equivalent dynamic are carried out in human participants 

(e.g. using neuroimaging data and RSA through time – see e.g. 

Choi, Marslen-Wilson, Lyu, Randall, & Tyler, 2020). Perhaps they 

would show the same dependence on the entropy of the verb in the 

first sentence that we observed in our networks. Without knowing 

what the human equivalent dynamic is, we cannot know which is 

the target behavior we should hope to explain. If nothing else, our 

RNNs have opened the door to asking such questions and to 

probing human behavior in new ways that would inform the nature 

of the dynamical properties of the brain’s encoding of the 

unfolding language. 

 

Event Representation and the Sparsity of the Input 

 

These data are by no means exhaustive – they are just a first 

step in our understanding of how RNNs can or might encode event 

representations and their corresponding dependencies, and as just 

mentioned, they open the door to future investigations of 

propagation dynamics in the human case. But while much further 

investigation is warranted, the current data, limited as they are, do 

nonetheless beg the question: What was the basis for our RNNs’ 

abilities? Surprisingly, this is not so straightforward a question. 

Even knowing what the RRN can do is far from straightforward; 

on what basis do we evaluate how the network works? Can we 

even evaluate what, in the corpus, led to the networks’ behaviors? 

One very significant challenge is captured by the following 

statistic: The word sequence “chop the onion” appears just once in 

the whole of Wikipedia. And “weigh the onion” appears … not at 

all. In fact, for the Wikipedia corpus, 94% of the 290 verb+object 

combinations did not appear in the corpus on which the networks 

were trained; for the WEB corpus this figure was 89%. The extent 

of this sparsity within the corpus poses a major challenge for 

understanding the causal mechanisms through which the networks 

acquired, encoded, and deployed the knowledge that contributed 

to their event-relevant performance. In the context of such sparsity, 

how could the networks, even in principle, learn that chopping an 

onion changes that onion by more than weighing it? 

The answer to this last question is related to the question 

“What do categories, as encoded in semantic memory, offer the 

cognitive system?” The traditional answer is: “generalization”. In 

the present context this means that it should not matter that “chop 
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the onion” is effectively absent from the corpus. What matters is 

that “chop” and “onion” appear separately many thousands of 

times and, perhaps critically, that “onion” frequently co-occurs 

with “garlic”, “carrot”, “mushroom”, and other choppable things. 

So long as nearby semantic space encodes something as affording 

chopping, and so long as that space, or the semantic space 

associated with chopping4, encodes the class of state change that 

constitutes being chopped (e.g. the class of change that is common 

across the chopping of onions, carrots, logs, text, etc), or encodes 

a space of consequent actions, the novel combination of chopping 

and onions can be interpreted. Thus, “onion” would, in lieu of 

actual experience, inherit properties of other objects in nearby 

semantic space. This inheritance is due to constraints on where (in 

state space) the system can move next as a function of were (in 

state space) it has come from. These constraints do not reflect 

simple context-independent co-occurrence statistics (c.f. LSA) but 

rather reflect accumulated experience of context-dependent 

trajectories through state space (c.f. SRNs). Hence, if sparsity in 

the corpus is accompanied by an appropriate category structure 

across the semantic space (defined through proximity in the 

similarity space), novel combinations of verbs and objects, or in 

real-world terms, of actions and participants in those actions, can 

be interpreted through such inheritance. 

 

Trajectories and their Propagation through Time 

 

Novel combinations of verbs and the discourse entities that 

participate in the actions denoted by those verbs constitute novel 

trajectories through state space. However, an unintended 

interpretation of such a statement is that these trajectories are 

independently realized within the networks’ internal states, like 

veins running through the network’s body, albeit across time. 

However, in the recurrent architecture we envisaged in Altmann & 

Ekves (2019), and certainly within the RNNs employed here, there 

are no such independently realizable trajectories (beyond some 

theoretical abstraction). Rather, the entire state of the 

representational substrate (which may or may not coincide with the 

entire network) is in flux; an individual trajectory is the 

manifestation in that substrate of information that evolves through 

time, distributed across the entire representational substrate both 

in network space (hidden unit activation space) and time (c.f. 

“neural manifolds”, although these are generally associated with 

subsets of the entire neural substrate; e.g. Gallego, Perich, Naufel, 

et al., 2018). These are not veins that can be stripped from the 

network’s body. And this makes a causal interpretation of the 

network’s behavior (i.e. what internal “representations” drive 

those behaviors, and what from their experience drove the 

emergence of those representations) particularly challenging (see 

e.g. Tabor, Cho, & Szkudlarek, 2013, and references contained 

therein, for related discussion). How, for example, can we possibly 

know if the network has a representation corresponding to a 

specific token object? But equally, and in the scientifically-

mandated absence of intuition, how can we possibly know if a 

human participant has a representation corresponding to a specific 

token object? What behavior would we expect to observe under 

what conditions? And imagine that our RNNs exhibited the 

equivalent behavior… should we interpret the RNN’s behavior 

 
4 According to the IOH, representations of actions are emergent 
properties of the representational system; to the extent that 
classes of objects change states in analogous ways, the analogy 
can emerge as a category across those changed states. Use of the 

differently from how we interpret the human participant’s? The 

answer to this last question is, of course, “no”. Or rather, “no” is 

the answer to the related question “should we interpret the human 

participant’s behavior differently from how we interpret the 

network’s?” 

The key behavior that we believe underlies our RNNs’ ability 

to capture key aspects of event representation is the propagation 

and modification of object representations forwards in time (that 

is, forwards through the sentence – we established in Study 2 that 

the networks exhibited some sensitivity to the linguistic time travel 

afforded by temporal adverbs). This directionality matters. It is 

common to assume that, in the case of referential dependencies, a 

subsequent anaphor or referring expression refers back in time to 

some specific token discourse entity introduced previously. 

Equally, it is common to assume, in the terms of a recurrent 

architecture, that the current state of the network contains echoes 

of its past states, and that the current input can cue retrieval of 

information from those past states (c.f. cue-based retrieval 

approaches to sentence processing; e.g. Lewis, Vasishth, & Van 

Dyke, 2006). An alternative assumption is that in cases of 

anaphora or other referential dependency, the antecedents (the 

knights from the Davis & Schijndel (2020) study, or the 

chef/farmer from our own studies reported here) are propagated 

forward across the sentences such that the antecedent to a 

subsequent expression such as “the chef” or “she” is not an 

antecedent at all (in its literal sense), but a concurrent component 

of the network’s internal representation. In discussing the likely 

workings of our networks, we use the concept of propagation 

forward in time, rather than retrieval from backwards in time, as 

this more accurately reflects the underlying computational 

mechanism (as instantiated in the LSTMs). It is not the case that, 

for example, a “representation” is put in a metaphorical box where 

it remains, static, until retrieved at some later time, or that the 

representation is carried forward in time on the crest of a predictive 

wave, remaining unchanged for the duration of the wave on which 

it travels (c.f. models of human memory based on cue-based 

retrieval, which argue that what is retrieved is reconstructed from 

the context at the time of retrieval and that, in essence, it is 

impossible to access/retrieve the same representation twice; e.g. 

Roediger, 2001). As representations carry forward, they change 

with the network as the network itself changes state dynamically 

through time. Whatever representation is initially activated on-the-

fly changes as more of the sentence accrues. The chopping, the 

onion, the smelling… these each impact on the chef as each 

sentence unfolds word-by-word. 

While it is an inherent property of recurrence in the RNN that 

information can propagate forward in time, how did our RNNs 

learn to propagate the right information forward (right in the sense 

of enabling the observed behaviors), modulating it to reflect the 

exigencies of the (described) event?  RNNs are constrained to be 

forward looking – they predict upcoming input on the basis of prior 

input, with no access to the right context (i.e. the input that would 

come after the target item to be predicted). This is distinct from 

models such as word2vec (Mikolov et al., 2018), BERT (Devlin et 

al., 2018) or ELMo (Peters et al., 2018). For many instances of 

syntactic or sense disambiguation, the right context is completely 

disambiguating (cf. “The knight killed by the dragon fell to the 

same label, e.g. “chop”, to refer to these analogous changes 
would encourage such emergence. 
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ground” vs. “The knight killed the dragon which fell to the ground” 

or “I went to the bank to get my money” vs. “I went to the bank of 

the river”). But without access to the right context, learning to 

propagate from the left, using e.g. referential dependencies to 

inform the resolution of ambiguities to the right, can contribute to 

reducing the prediction error through correctly predicting how an 

ambiguity should resolve, or through correctly predicting what 

kinds of actions might be referred to next given the new state of a 

propagated object. We conjecture that, to the extent that the left 

context can contribute to reducing error during training, the 

propagation of object representations as trajectories through time 

and object-state space is an emergent feature of forwards 

prediction (left-to-right predictive contingencies) in a recurrent or 

equivalent architecture.  

Although this has still to be systematically tested (see 

Ettinger, 2020, for evidence suggesting that BERT lacks event 

knowledge; and Tran, Vusazza, & Monz, 2018, and Abnar, 

Dehghani, & Zuidema, 2020, for further elucidation of the role of 

recurrence within NLP), we did briefly explore whether the results 

reported here (Study 1) are unique to the RNN’s architecture. 

Models such as word2vec, which return the same word embedding 

regardless of context, will not be able to model the contextual 

dependencies on which our data rest. But what of BERT, ELMo, 

or the more recent GPT-2 (Radford et al., 2019)? We in fact tested 

all three of these models (different pre-trained and open-sourced 

instantiations that differed in training set and parameters; see 

Supplemental Materials D) and found that each could model the 

data from Study 1 – that is, they had developed hidden-layer 

representations that, across the range of sentences used in that 

study, predicted human ratings of change in state. We used seven 

variants of BERT, each with 12 hidden layers. Treating each as a 

participant (i.e. for each item, averaging across all seven models – 

equivalent to our analytic procedure in Study 1 above), the first 

hidden layer was sensitive to degree-of-change (i.e. a statistically 

significant correlation to the human ratings; r = -.16, p = .049, 95% 

CI: LL -.32, UL -.001). We had just a single instantiation of GPT-

2 and therefore analyzed each of its 48 hidden layers separately. 

Six of these were sensitive to degree-of-change (i.e. we found 

statistically significant correlations to the human ratings); -.21 < r 

< -.17). We note, however, that these statistical analyses of BERT 

and GPT-2 would not reach statistical significance if corrected for 

multiple comparisons (reflecting multiple correlations, at each of 

their 12 and 48 layers respectively). The four different 

instantiations of ELMo, treated as participants, were also sensitive 

to degree-of-change (r = -.18, p = .033, 95% CI: LL -.33, UL -.01). 

None of this is surprising, given our original premise that degree-

of-change manifests in the language models as differences in 

linguistic affordances – i.e. differences in the contexts that can 

follow the critical event descriptions. It is noteworthy that both 

BERT and ELMo take into account the context following a 

word/sentence when developing their internal embeddings – it 

would be surprising if these models were not sensitive to 

rightwards contextual contingencies.  

This last observation begs the question: Why invest all this 

(theoretical and practical) effort in RNNs rather than these more 

powerful and widely-used models? Our emphasis throughout this 

work has been on the propagation of representations, updated as 

they travel from left to right through a sentence or series of 

sentences to reflect changes afforded by the events described in 

those sentences. Models such as BERT and ELMo are 

bidirectional – they simultaneously apply left and right context to 

the processing of each word, and it is not possible to assess their 

performance on left-to-right word-by-word incremental changes in 

representation without fundamentally deviating from how they are 

trained. Whereas left-to-right incremental processing is a given for 

human speech processing, NLP models operating over text (and 

even over speech) have the luxury during training (and after) of 

not being limited to left-to-right incrementation. Study 3, for 

example, is beyond the reach of BERT and ELMo because, except 

for the very final instantiation of “the sheep” at the end of the third 

sentence, the representation of each word is given by both its left 

and right context. These are not models of incremental processing. 

GPT-2 does permit incremental representational propagation and 

updating. However, we observed earlier that as representations 

propagate forward through and across sentences, they change with 

each incremental step – representations are not put into a 

metaphorical box where they remain unchanged until retrieved 

some time later. GPT-2 would need to learn the dynamic that 

causes such continuous change – it is not built into the architecture 

of GPT-2 as it is in the architecture of an RNN. That is, the use of 

attention in GPT-2 affords the model the ability to query past time 

steps while ignoring intervening words (and representations). This 

may be a key distinguishing feature between models such as GPT-

2 and recurrent architectures when applied to the task of modeling 

incremental left-to-right processing, language acquisition, or even 

human memory. And while GPT-2 has met with considerable 

success in respect of modeling prediction, and its neural correlates, 

during human sentence processing (e.g. Goldstein, Zada, Buchnik, 

et al., 2020; Heilbron, Armeni, Schoffelen, et al., 2020) such 

studies do not (yet) track the representational content that changes 

in lockstep with the unfolding language and that underpins those 

behaviors. This is a further reason to understand better the nature 

of the brain’s own propagation dynamics (c.f. Study 3 above).  

With respect to the representations that our RNNs propagated 

forwards in time, we cannot with any certainty claim that these 

were object tokens, although their behavior (probed in 

representational space using similarity) suggests that, functionally 

at least, they were doing something close. But how close? Elman’s 

SRNs (Elman, 1993) operationalized tokenization as the 

distinction between different exemplars of the same lexical item 

occurring at different positions in a sentence (as in e.g. “boys who 

boys chase chase boy”). The trajectory associated with each 

instantiation constrained the network’s prediction of which words 

might plausibly come next. In his examples, lexical items were 

grounded in an interaction between their contexts across time and 

the (emergent) representations activated at each point of that time. 

In essence, each token lexical item was distinguished from each 

other on the basis of its unique trajectory through the network’s 

hidden state space (see Altmann & Ekves, 2019, for further 

discussion of tokenization). The onion in our examples propagated 

forwards from one sentence to another in a different 

representational form depending on the subject and verb with 

which it was associated in the first sentence (and, in Study 2, 

modulated by whether the onion being referred to in that second 

sentence was marked as the version after the chopping or before). 

That is, the onion had a trajectory across time that encoded both 

the specific, dynamically changing contexts in which it had 

occurred (c.f. episodic memory) and the different regions of 

semantic space associated with those contexts and its own 

representational affordances (c.f. semantic memory). And just as 

we cannot “see” in a human brain distinct representations for 

distinct token objects, so we cannot see them in the RNN – we are 

forced in both cases to infer their existence from analyses of these 

systems’ behaviors in different contexts. We do not know whether 
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the RNN individuates representations as tokens that accrue 

attributes (with each successive experience of the token) that are 

bound to that “specific” token (e.g. that specific onion as unique 

from all others), or whether it experiences each instance of a token 

as unique, with each attribute modifying that instance without a 

commitment to all instances of the token having the same identity. 

It may be impossible to distinguish between these two possibilities, 

in networks and indeed, even in humans (for discussion of the 

continuity of representational existence of tokens across 

discontinuities in perceptual experience, see Altmann & Ekves, 

2019). To the extent that the RNN encodes objects as trajectories, 

and to the extent that each trajectory is unique and has continuity 

of representational existence (through forward propagation), the 

manifestation of a word in a sentence is the manifestation of a 

token that, functionally, has a unique identity. 

 

CONCLUSIONS 

 

What have we learned from the studies we have reported here 

– that a “black box” that is relatively opaque to representational 

analysis can mimic human behavior (itself the behavior of a “black 

box”)? In fact, it is only opaque to a classical analysis that assumes 

bounded representations that can be teased apart one from the 

other. It is only opaque to an analysis that assumes a combinatorial 

semantics predicated on discrete combinations of discrete 

elements. We would claim that the propagation of 

“representations” (in quotes to reflect their non-discrete realization 

within a dynamical system) within and across sentences in our 

RNNs is combinatorial semantics (perhaps not in the sense of 

mapping onto formal semantic structures, but certainly in the sense 

of driving, and predicting, behavior – c.f. Glenberg, 1997, and 

certainly in the sense of the dynamic combination of 

representations through time to create new representations that are 

more than just the conjunction of the original). Much further work 

is required to understand the nature of the semantic space that our 

networks acquired, and to understand how that space changed 

dynamically as each sentence we gave it unfolded through time. 

But the purpose of this first set of studies was to explore whether 

RNNs can encode even the most basic properties of event 

structure, and a prerequisite for that was to explore whether they 

could predict the same behaviors that indicate that we humans 

encode event structure. In demonstrating that RNNs can indeed do 

that (for an admittedly limited set of event-relevant behaviors), we 

have identified a need to further investigate human processing: For 

example, more recent testing of the Davis and Schijndel (2020) 

networks found that for the contexts “Two knights were attacking 

a dragon” or “A knight and his squire were attacking a dragon” 

and the continuation “the dragon killed one of the knights”, the 

networks showed lower surprisal for a subsequent sentence 

starting “The knight tickled by..” when it was two knights than 

when it was a knight and his squire. The networks anticipated a 

particular structure rather than particular content (that is, even 

though the verb “tickled” is contextually anomalous, unlike 

“killed”, the networks still preferred the participle interpretation 

over the main verb interpretation). In fact, Altmann and Steedman 

(1988; fn 5 p.202) predicted that a relative clause modifier, 

regardless of content, should indeed be preferred in a two-referent 

context. And yet, to our knowledge this has never been tested – a 

prerequisite to evaluating the models’ performance on such cases 

(we also successfully modelled the influence of situational context 

on syntactic ambiguity resolution reported by Tyler & Marslen-

Wilson, 1977, using the exact same stimuli. But again, we were 

able to show that the models predicted the human behavior on the 

basis of structural (cataphoric) dependencies across clauses, and 

we do not know whether the reported human behaviors were 

similarly based on structural cues). And with respect to Study 3, 

we know of no study that has explicitly considered how the 

representation of the subject of a sentence (or the object, or any 

other discourse entity) propagates forward, moment-by-moment, 

into successive sentences that maintain discourse cohesion. We 

found that the less constraining the verb in that first sentence, the 

greater the integrity of the representation of the subject that 

propagated forward into successive sentences. We interpreted this 

result in terms of “network perturbation” – a kind of computational 

salience. The propagation dynamics we observed in that study may 

be a fundamental property of dynamical systems, or of the brain, 

or of both. Recent advances in using RSA across time in 

neuroimaging (e.g. Choi et al., 2020) suggest that equivalent 

studies with human neuroimaging may be possible – allowing 

researchers to identify if equivalent patterns emerge in the brain, 

and where. 

The answer, therefore, to where this leaves us, is that, at 

worst, consideration of the event-representational abilities of 

RNNs has opened up novel avenues of research into the human 

mind that have not, hitherto, been considered. At best, we have a 

computational tool whose analysis may enable us to ground basic 

properties of event representation in the dynamics of a 

computational machinery that acquires, encodes, and deploys 

experiential knowledge across the senses, and which most likely 

encodes events as the encoding of their consequences for how the 

language, or corresponding world, can unfold. Our claim in this 

respect is that the RNNs, once trained, are more than just a model 

of the language – the knowledge they encode is a product of the 

input and of the computational dynamics of the system. Those 

dynamics constrain the model to acquiring certain kinds of 

knowledge in certain kinds of ways, and they constrain the model 

to subsequently deploying that knowledge in particular ways. It is 

undoubtedly the case that these networks would, with further 

testing, fail more than they would succeed. But their successes thus 

far suggest avenues of research, on representational content and its 

propagation, in the computational, behavioral and neuroscientific 

domains that in fact render the future success or failure of these 

particular networks moot. 

 

 

 

 

 

 

DEDICATION 

 

Thirty years ago, Jacques Mehler asked GTMA: What have 

we learned about sentence processing in the past 10 years? The 

provocation was explicit in his prosody, a domain of language that 

was foremost on his mind at that time, having moved away from 

sentence processing research some time before (at least 10 years 

before, one would assume from that prosody). But Jacques’ 

provocation was a method. It taught those of us around him to 

think, and to identify our passions, and to use those passions to 

create our science. Jacques was a mentor whose impact 

undoubtedly contributed to the collaboration that led to the current 

work. He is missed. GTMA, October 2020. 



EVENT STRUCTURE IN TIME 

   

13  

 

References 

 

Abnar, S., Dehghani, M., & Zuidema, W. (2020). Transferring 

Inductive Biases through Knowledge Distillation. arXiv 

preprint arXiv:2006.00555.  

Altmann, G., & Steedman, M. (1988). Interaction with context 

during human sentence processing. Cognition, 30(3), 191-238. 

Altmann, G.T.M. & Ekves, Z., (2019). Events as intersecting 

object histories: A new theory of event 

representation. Psychological Review, 126(6), 817-840. doi: 

10.1037/rev0000154 

Altmann, G.T.M. and Mirkovic, J. (2009). Incrementality and 

prediction in human sentence processing. Cognitive Science, 33, 

583-609. 

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine 

translation by jointly learning to align and translate. arXiv 

preprint arXiv:1409.0473. 

Choi, H. S., Marslen-Wilson, W. D., Lyu, B., Randall, B., & Tyler, 

L. K. (2020). Decoding the Real-Time Neurobiological 

Properties of Incremental Semantic Interpretation. Cerebral 

Cortex. Doi: 10.1093/cercor/bhaa222 

Crain, S., & Steedman, M. J. (1985). On not being led up the 

garden path: the use of context by the psychological parser. In 

D. Dowty, L. Karttunen, & A. Zwicky (Eds.), Natural language 

parsing: Psychological, computational, and theoretical 

perspectives. (pp. 320–358). Cambridge, UK: Cambridge 

University Press.  

Davis, F., & van Schijndel, M. (2020). Interaction with Context 

During Recurrent Neural Network Sentence Processing. 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: 

Pre-training of deep bidirectional transformers for language 

understanding. arXiv preprint arXiv:1810.04805. 

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 

14, 179–211.  

Elman, J. L. (1993). Learning and development in neural 

networks: The importance of starting small. Cognition, 48, 71– 

99.   

Ettinger, A. (2020). What BERT is not: Lessons from a new suite 

of psycholinguistic diagnostics for language models. 

Transactions of the Association for Computational Linguistics, 

8, 34-48. 

Gallego, J.A., Perich, M.G., Naufel, S.N., Ethier, C., Solla, S.A., 

& Miller, L.E. (2018). Cortical population activity within a 

preserved neural manifold underlies multiple motor 

behaviors. Nature Communications 9(4233). 

https://doi.org/10.1038/s41467-018-06560-z 

Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, 

N.F., Peters, M., Schmitz, M. & Zettlemoyer, L. (2018). 

AllenNLP: A Deep Semantic Natural Language Processing 

Platform. In Proceedings of Workshop for NLP Open Source 

Software, 1-6. 

Gibson, J. J. (1979). The ecological approach to visual perception. 

Boston, MA: Houghton-Mifflin.  

Giulianelli, M., Harding, J., Mohnert, F., Hupkes, D., & Zuidema, 

W. (2018). Under the hood: Using diagnostic classifiers to 

investigate and improve how language models track agreement 

information. arXiv preprint arXiv:1808.08079. 

Glenberg, A. M. (1997). What memory is for: Creating meaning 

in the service of action. Behavioral and Brain Sciences, 20, 41–

50. http://dx .doi.org/10.1017/S0140525X97470012  

Gokaslan, A. & Cohen, V. (2019). OpenWebTextCorpus: 

https://skylion007.github.io/OpenWebTextCorpus 

Goldstein, A., Zada, Z., Buchnik, E., Schain, M., Price, A., 

Aubrey, B., ... & Jansen, A. (2020). Thinking ahead: prediction 

in context as a keystone of language in humans and 

machines. bioRxiv. doi: 10.1101/2020.12.02.403477. 

Hale, J. (2001). A probabilistic Earley parser as a psycholinguistic 

model. In Second Meeting of the North American Chapter of the 

Association for Computational Linguistics. 

Heilbron, M., Armeni, K., Schoffelen, J. M., Hagoort, P., & de 

Lange, F. P. (2020). A hierarchy of linguistic predictions during 

natural language comprehension. bioRxiv. doi: 

10.1101/2020.12.03.410399. 

Hindy, N. C., Altmann, G. T., Kalenik, E., & Thompson-Schill, S. 

L. (2012). The effect of object state-changes on event 

processing: do objects compete with themselves? Journal of 

Neuroscience, 32(17), 5795-5803. 

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term 

memory. Neural computation, 9(8), 1735-1780. 

Kamide, Y., Altmann, G. T., & Haywood, S. L. (2003). The time-

course of prediction in incremental sentence processing: 

Evidence from anticipatory eye movements. Journal of Memory 

and language, 49(1), 133-156. 

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). 

Representational similarity analysis-connecting the branches of 

systems neuroscience. Frontiers in Systems Neuroscience, 2, 4. 

DOI=10.3389/ neuro.06.004.2008 

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato's 

problem: The latent semantic analysis theory of acquisition, 

induction, and representation of knowledge. Psychological 

Review, 104(2), 211. 

Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). 

Computational principles of working memory in sentence 

comprehension. Trends in Cognitive Sciences, 10(10), 447-454. 

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., 

Lewis, M., Zettlemoyer, L. and Stoyanov, V. (2019). RoBERTa: 

A robustly optimized BERT pretraining approach. arXiv 

preprint arXiv:1907.11692. 

Lund, K., & Burgess, C. (1996). Producing high-dimensional 

semantic spaces from lexical co-occurrence. Behavior Research 

Methods, Instruments, & Computers, 28(2), 203-208. 

Merity, S., Xiong, C., Bradbury, J., and Socher, R. (2016). 

Wikitext-103. Technical report, Salesforce. 

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. 

(2013). Distributed representations of words and phrases and 

their compositionality. In Advances in neural information 

processing systems (pp. 3111-3119). 

Mirković, J., & Altmann, G. T. (2019). Unfolding meaning in 

context: The dynamics of conceptual similarity. Cognition, 183, 

19-43. 

Nakagawa, S., Johnson, P. C., & Schielzeth, H. (2017). The 

coefficient of determination R2 and intra-class correlation 

coefficient from generalized linear mixed-effects models 

revisited and expanded. Journal of the Royal Society Interface, 

14(134), 20170213. 

Perconti, P., & Plebe, A. (2020). Deep learning and cognitive 

science. Cognition, 203, doi: 10.1016/j.cognition.2020.104365  

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., 

Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word 

representations. arXiv preprint arXiv:1802.05365. 

Preacher, K. J. (2012, November). Monte Carlo method for 

assessing correlations: An interactive tool for creating 

confidence intervals for correlation coefficients [Computer 

software]. Available from http://quantpsy.org/. 



EVENT STRUCTURE IN TIME 

 

14 

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, 

I. (2019). Language models are unsupervised multitask 

learners. OpenAI blog, 1(8), 9. 

Ravfogel, S., Goldberg, Y., & Linzen, T. (2019). Studying the 

inductive biases of RNNs with synthetic variations of natural 

languages. arXiv preprint arXiv:1903.06400. 

Roediger, H. L. (2001). Psychology of reconstructive 

memory. International Encyclopedia of the Social & Behavioral 

Sciences, 12844-12849. 

Solomon, S. H., Hindy, N. C., Altmann, G. T., & Thompson-

Schill, S. L. (2015). Competition between mutually exclusive 

object states in event comprehension. Journal of Cognitive 

Neuroscience, 27(12), 2324-2338. 

Solomon, S. H., Medaglia, J. D., & Thompson-Schill, S. L. (2019). 

Implementing a concept network model. Behavior research 

methods, 51(4), 1717-1736. 

Spivey-Knowlton, M. J., Trueswell, J. C., & Tanenhaus, M. K. 

(1993). Context effects in syntactic ambiguity resolution: 

Discourse and semantic influences in parsing reduced relative 

clauses. Canadian Journal of Experimental Psychology/Revue 

Canadienne de Psychologie Experimentale, 47(2), 276.  

Sun, Y., Wang, S., Li, Y. K., Feng, S., Tian, H., Wu, H., & Wang, 

H. (2020). ERNIE 2.0: A Continual Pre-Training Framework 

for Language Understanding. In AAAI (pp. 8968-8975). 

Tabor, W., Cho, P. W., & Szkudlarek, E. (2013). Fractal analysis 

illuminates the form of connectionist structural 

gradualness. Topics in Cognitive Science, 5(3), 634-667. 

Tran, K., Bisazza, A., & Monz, C. (2018). The importance of being 

recurrent for modeling hierarchical structure. In Proceedings of 

the 2018 Conference on Empirical Methods in Natural 

Language Processing, 4731-4736. 

Trueswell, J. C., & Tanenhaus, M. K. (1991). Tense, temporal 

context and syntactic ambiguity resolution. Language and 

Cognitive Processes, 6(4), 303-338. 

Tyler, L. K., & Marslen-Wilson, W. D. (1977). The on-line effects 

of semantic context on syntactic processing. Journal of Verbal 

Learning and Verbal Behavior, 16(6), 683-692. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., 

Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is 

all you need. In Advances in neural information processing 

systems (pp. 5998-6008). 

Voita, E., & Titov, I. (2020). Information-Theoretic Probing with 

Minimum Description Length. arXiv preprint 

arXiv:2003.12298. 

Warstadt, A., Zhang, Y., Li, H.S., Liu, H. and Bowman, S.R. 

(2020). Learning which features matter: Roberta acquires a 

preference for linguistic generalizations (eventually). In  

Proceedings of the 2020 Conference on Empirical Methods in 

Natural Language Processing, 217-235. 

Wolf, T., Chaumond, J., Debut, L., Sanh, V., Delangue, C., Moi, 

A., Cistac, P., Funtowicz, M., Davison, J., Shleifer, S. and Louf, 

R. (2020). Transformers: State-of-the-art natural language 

processing. In Proceedings of the 2020 Conference on 

Empirical Methods in Natural Language Processing: System 

Demonstrations, 38-45. 

Yee, E., & Thompson-Schill, S. L. (2016). Putting concepts into 

context. Psychonomic Bulletin & Review, 23(4), 1015-1027. 

Yee, E., Jones, M. N., & McRae, K. (2018). Semantic 

memory. Stevens' Handbook of Experimental Psychology and 

Cognitive Neuroscience, 3, 1-38. 

  



EVENT STRUCTURE IN TIME 

   

15  

 

SUPPLEMENTAL MATERIALS 

 

A. Similarity Analyses 

 

For Study 1, we correlated human ratings and a measure of model 

similarity. The human ratings were gathered from existing works 

(Hindy et al., 2012; Prystauka, et al., in preparation). We 

additionally conducted another rating study to confirm the 

consistency of these ratings (detailed in the main text). Participants 

were given sentences drawn from pairs of events, which either 

described a minimal change event (e.g., “the chef will weigh the 

mango”) or a substantial change (e.g., “the chef will blend the 

mango”). They were asked to rate the degree to which the object 

(in this case mango) changed. This resulted in low scores for the 

minimal change stimuli (e.g., 1.83 for weighing the mango) and 

large scores for the substantial change stimuli (e.g., 5.92 for 

blending the mango). We used the minimal change stimulus from 

a pair as a baseline, deriving a difference score that accounts for 

the pairwise structure (e.g., the pair of weighing and blending a 

mango would have a difference score of 4.09). For the models, we 

also generated a difference score accounting for this pairwise 

structure: For each sentence we had a baseline (the indefinite form 

of the relevant object; e.g., “a mango”). We gathered the internal 

representation (the activation pattern at the final hidden layer of 

the LSTM) for this indefinite baseline and calculated its similarity 

(normalized cosine similarity) to the internal representation at the 

end of the stimulus (again, the activation pattern at the final hidden 

layer of the LSTM, after processing e.g., “the chef will weigh the 

mango”). The similarity should be greater for the minimal change 

events (e.g., for “the chef will weigh the mango” the similarity to 

the baseline was 0.60) than the substantial change events (e.g., 

for “the chef will blend the mango” the similarity to the baseline 

was 0.56). Objects may have different similarities, so to enforce 

the pairwise structure of the stimuli we took the difference in 

similarity (here 0.04). Thus, for each pair we had a human change 

of state score and a model change of state score. We then found 

the correlation between the human and model scores across the 

pairs of stimuli. 

  

B. Study 1 linear mixed effects models 

 

We used a linear mixed effects model in R (R Core Team, 2020) 

to confirm the patterns from Study 1. Similarity between model 

representations at the object and the baseline (ObjSim) was 

included as a fixed effect factor predicting human degree-of-

change ratings. Random by-item and by-model effects were 

included with ObjSim by-model random slopes. We simplified the 

model only if it failed to converge. Across the set of human degree-

of-change ratings, we found significant main effects of ObjSim for 

both sets of models. For the Wikipedia models: β = -2.11, SE = 

0.22, z = -9.41, p < 0.001. For the Web models: β = -1.69, SE = 

0.45, z = -3.75, p < 0.001. To estimate the amount of variance 

explained by these models we used the method detailed in 

Nakagawa et al. (2017), using the implementation in the R package 

performance (https://github.com/easystats/performance) which 

returns a conditional R2 value giving the amount of variance 

explained by both the fixed and random effects and a marginal R2 

value giving the amount of variance explained by just the fixed 

effects. For the Wikipedia models, the conditional R2 was 0.20 and 

the marginal R2 was 0.03. For the Web models, the conditional R2 

was 0.10 and the marginal R2 was 0.01. These estimates of 

variance explained are lower than those calculated from Pearson's 

r (r2 = .04 for both the Wikipedia and Web models). 

 

C. Study 3 linear mixed effects models 

 

We used linear mixed effects models as in Study 1 to confirm the 

patterns observed in Study 3. Verb entropy was included as a fixed 

effect predicting degree of subject-object similarity across the 3 

sentences. Random by-item and by-model effects were included 

with verb entropy by-model random slopes. We simplified the 

model only if it failed to converge. Across the three sentences we 

found a significant main effect of verb entropy for both the 

Wikipedia models and the Web models. The one exception was 

that the Wikipedia models found no effect at the object in Sentence 

2. Wikipedia models:  First object β = 0.01, SE = 0.001, z = 6.80, 

p < 0.001; second object (β = 0.003, SE = 0.002, z = 1.56, p = 

0.12),  third object (β = 0.004, SE = 0.002, z = 2.08, p = 0.04). Web 

models: First object β = 0.01, SE = 0.001, z = 2.62, p = 0.009); 

second object β = 0.01, SE = 0.01, z = 2.15, p = 0.03; third object 

β = 0.01, SE = 0.01, z = 3.34, p < 0.001. The conditional R2 ranged 

from 0.70-0.79 while the marginal R2 value was quite small at 

0.01. The equivalent estimates of variance explained from the 

Pearson’s correlations ranged from .02 to .05. 

 

D. Testing additional computational models 

 

Training instantiations of large scale models in NLP is extremely 

computationally costly (especially with regards to BERT and 

GPT-2 where large numbers of dedicated GPUs, and even TPUs, 

are used for training). We therefore used existing models. GPT-2 

XL and BERT base (uncased) were used via Hugging Face’s API 

(Wolf, Chaumond, Debut, et al., 2020).  We additionally made use 

of 6 RoBERTa models from Warstadt, Zhang, Li, et al. (2020). 

RoBERTa is an optimized version of BERT which included some 

hyperparameter tweaks, more data, and removed the next-sentence 

prediction objective in BERT (Liu, Ott, Goyal, et al., 2019). These 

tweaks improved on BERT’s performance, although the overall 

architecture is similar (same number of layers, use of attention, 

etc.). Warstadt et al. (2020) trained RoBERTa models on varied 

amounts of the data from BERT. We made use of three of their 

models trained on 100M tokens and three trained on 1B tokens via 

HuggingFace (https://github.com/nyu-mll/msgs). Finally, we used 

the four ELMo English models provided by AllenNLP (Gardner, 

Grus, Neumann, et al., 2018): a small, medium, and original model 

trained on the same 1B tokens (they differ in number of 

parameters, with the original as specified in Peters et al., 2018), 

and a large model trained on 5.5B tokens. We caution explicit 

generalizations from the results of these models. Given our 

compute limitations, we are unable to tease apart the conflicting 

influences of number of parameters and data size. 

 

 


