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Under a theory of event representations that defines events as dynamic changes in objects across both
time and space, as in the proposal of Intersecting Object Histories (Altmann & Ekves, 2019), the
encoding of changes in state is a fundamental first step in building richer representations of events. In
other words, there is an inherent dynamic that is captured by our knowledge of events. In the present
study, we evaluated the degree to which this dynamic was inferable from just the linguistic signal,
without access to visual, sensory, and embodied experience, using recurrent neural networks (RNNs).
Recent literature exploring RNNs has largely focused on syntactic and semantic knowledge. We extend
this domain of investigation to representations of events within RNNs. In three studies, we find
preliminary evidence that RNNs capture, in their internal representations, the extent to which objects
change states; for example, that chopping an onion changes the onion by more than just peeling the
onion. Moreover, the temporal relationship between state changes is encoded to some extent. We found
RNNG are sensitive to how chopping an onion and then weighing it, or first weighing it, entails the onion
that is being weighed being in a different state depending on the adverb. Our final study explored what
factors influence the propagation of these rudimentary event representations forward into subsequent
sentences. We conclude that while there is much still to be learned about the abilities of RNNs
(especially in respect of the extent to which they encode objects as specific tokens), we still do not know
what are the equivalent representational dynamics in humans. That is, we take the perspective that the
exploration of computational models points us to important questions about the nature of the human
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mind.
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INTRODUCTION

Semantic space is all around us. Contemporary approaches to
semantic memory, both its computer and human instantiations,
have converged on the idea that semantic knowledge — the
knowledge we have of the world around us and the things it
contains — is organized in such a way as to encode similarity
between concepts along multiple dimensions (e.g. Yee, Jones, &
McRae, 2018). LSA (Landauer & Dumais, 1997) and HAL (Lund
& Burgess, 1996) were conceptually simple approaches to
generating such similarity spaces by computer. More recently, a
number of additional approaches to generating semantic similarity
spaces have evolved (see also Perconti & Plebe, 2020), including
word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2018),

The authors would like to thank the anonymous reviewers whose
comments on prior versions of the manuscript significantly
improved this paper. We thank also Marten van Schijndel, Eiling
Yee, Yanina Prystauka, and Zac Ekves for their continuing and
thoughtful discussion of this work. Finally, there is an unwritten
convention that one does not thank the Editor. We therefore cannot
thank Dick Aslin for his astute comments and insightful guidance
that helped bring this paper into being.

ELMo (Peters, Neumann, lyyer, Gardner, Clark, Lee, &
Zettlemoyer, 2018), BERT (Devlin, Chang, Lee, & Toutanova,
2018), and ERNIE 2.0 (Sun, Wang, Li, Feng, Tian, Wu, & Wang,
2020). Each of these is based on the same underlying principle as
govern LSA and HAL - their internal representation of a word,
after learning, is a reflection of the contexts in which it occurred
and the other words with which it co-occurred in those contexts
(for now we gloss over the fact that some models reflect contextual
co-occurrences as representations abstracted across individual co-
occurrences, while no longer encoding those individual co-
occurrences — e.g. LSA, while other kinds of model can reflect
contextual co-occurrences not only as abstracted representations
but also as representations that maintain those individual co-
occurrences — e.g. BERT). These models underpin almost all
practical Al (Artificial Intelligence) approaches to NLP (natural
language processing). And while the implementations vary in
respect of the (deep learning) technologies they require, they all
capture that same underlying principle — words that are
experienced in similar contexts will have similar meanings and
will thus be “closer” in semantic space than words occurring in
more dissimilar contexts. However, there are important differences
between these models: After learning, HAL, LSA, and word2vec
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return the same representation for a word regardless of the actual
context in which that word might subsequently occur.
Contemporary models of semantic memory, on the other hand,
propose that concepts are dynamic — the knowledge we access
about any given concept depends on the context in which we
access that knowledge — as defined, for example, by task demands,
the broader situation in which the knowledge is accessed, or the
idiosyncratic experience of the individual accessing the concept
(e.g. Yee & Thompson-Schill, 2016; Mirkovic & Altmann, 2019).
BERT, ELMo, and ERNIE 2.0 do return different word
representations (word embeddings or vectors that constitute a
mapping from word form to semantic space) depending on the
context, but while they might provide useful insights into the
information that a semantic space might ideally (or in practice)
encode, they are not intended as, and nor are they, psychologically
plausible models of (human) natural language processing (and
specifically, natural language learning).

Our focus here is not on semantic space per se but on
representation (or its equivalent in a dynamical system — see
below). Equally, our focus is not on lexical representation but on
event representation. We shall describe a number of “simulations”
with Recurrent Neural Networks (RNNs: similar to Elman’s
Simple Recurrent Network (SRN: Elman, 1990) but with more
than one hidden layer) using Long Short-Term Memory units
(LSTMS - see below). These essentially scale up the insights that
Elman reported with respect to emergent representations of
syntactic and semantic dependencies (Elman, 1990, 1993). Below,
we apply some of these insights to learned representations of
discourse and event dependencies, in networks with vocabularies
in the tens of thousands. Our aim is not to build a better NLP
device, but to better understand the possible (and probable)
encoding of event structure in the human mind. We return in the
General Discussion to the relationship between RNNs and models
such as ELMo (essentially a bidirectional RNN) and BERT.

Below, we explore whether RNNs can develop sensitivity to
the essential content of event representations (Studies 1 and 2
below), and the factors that may influence the propagation of both
linguistically relevant and event relevant representations through
time and context (Study 3). Our goal is not to evaluate whether
RNNs or some other computational model are the model that best
fits human behavior, but instead to try to understand how a
possible mechanism for acquiring and processing event
representations (recurrence) may relate to human behavior. For
example, it may be the case that simple exposure to language
and/or corresponding variation in the external world is sufficient
to enable the emergence of event-relevant behaviors. At issue is:
how? As outlined below, our results call for deeper understanding
of how humans maintain (and change) linguistic representations
while processing language, using similar techniques to the
computational approach we outline below (in Study 3).

Event Representation

We follow Altmann & Ekves (2019) in assuming that an
event occurs when, minimally, an object changes state across time.
On this approach, event representations are grounded in
representations of object histories — the distinct states of an object
across time. If a knife cuts through an onion, both the knife and the
onion change state (albeit in different ways) — both the knife and
the onion can be considered as trajectories through space and time
whose intersection defines the event in respect of its participants
and the changes in state they endure. Altmann & Ekves (2019)

referred to this as the Intersecting Object Histories account of
event representation (the “IOH”).

The IOH makes certain assumptions about the
“computational substrate” that are based on properties of SRNs
originally observed by Elman (and see Altmann & Mirkovic, 2009,
for fuller discussion of these, and their relevance for sentence
processing and event representation). The representation of a
sentence — the linguistic realization of an event — is, in the SRN, a
trajectory across time (afforded by recurrence through time), with
different sentence types having different trajectories that
nonetheless reflect similarity in structure. These trajectories also
reflect the constraints acquired through learning on how, at each
point in the trajectory, the trajectory may continue. We can
therefore operationalize representation in Elman’s networks not
simply as activation patterns across the hidden layers, but as
constraints on which patterns can follow which other patterns.

At issue for present purposes, is whether, and how, a system
based on a recurrent architecture like the SRN might acquire event-
relevant structure. At a minimum, and following the approach
described above in relation to the IOH, we contend that it would
need to track individual entities across sentences (similar in some
respects to tracking entities across events or situations), and to
track changes to those entities as a consequence of the events they
participate in.

Keeping track of discourse entities across sentence boundaries

Early work on the influence of inter-sentential discourse
dependencies on subsequent (linguistic) behaviors concerned the
influence of context on ambiguity resolution (Tyler and Marslen-
Wilson, 1977; Crain & Steedman, 1986; Altmann & Steedman,
1988). In one such study (Spivey-Knowlton, Trueswell, &
Tanenhaus, 1993), the presence of more than one possible
antecedent in an earlier sentence (e.g. “Two knights were attacking
a dragon ... the dragon killed one of the knights”) impacted on
behaviors in a later sentence (e.g. beginning “The knight killed...”)
— Altmann & Steedman’s Principle of Referential Support
(Altmann & Steedman, 1988) predicted that a simple noun phrase
which failed to pick out the intended referent (‘“The knight killed”)
would be interpreted as the first noun phrase in a complex noun
phrase construction (“The knight killed by the dragon fell to the
ground with a thud”). Thus, depending on the referential context,
syntactic ambiguities (“‘killed” as a main verb or as a past participle
in a reduced relative clause) will be resolved one way or another.
Crucially, this requires that information about entities introduced
earlier on (the knights) is propagated forwards, from one sentence
to the next (the basis for anaphoric dependencies across sentences).
Could an RNN Iearn to use referential context to resolve syntactic
ambiguities of this kind?

To explore this, Davis and Schijndel (2020) trained RNNs
with LSTMs on an 80 million word subset of Wikipedia. SRNs
have relatively short memories — long-distance dependencies are
difficult for an SRN to learn because the hidden layer gets more
and more information added to it on each successive time-step, and
resolving information from the more distant past gets
progressively harder (this is an over-simplification, but the
intuition will suffice). LSTMs (Hochreiter & Schmidhuber, 1997)
are units that overcome this by maintaining information across
successive time-steps (they each have a dynamic memory that the
network learns to modify, update, and draw from depending on the
current word and the preceding context; they learn to balance the
need to propagate information forward in time with the need to




modify or even forget that information). During training, the
networks (each with different random initializations) had to predict
each successive word in the corpus given the preceding words
(Elman’s 1990 prediction task). After training, each network was
tested on the 16 actual stimuli from Spivey-Knowlton et al. (1993).
Surprisal (Hale, 2001) was calculated at the phrase verb+by
(“killed by” in the example above). Surprisal was lower for the
networks when the preceding context contained two referents than
when it contained one (“A knight and his squire were attacking a
dragon”). Similar patterns were observed for main verb / reduced
relative ambiguities when embedded not in referential contexts but
in temporally supporting contexts (Trueswell & Tanenhaus, 1991).
There were no such differences in surprisal for networks trained
on versions of the corpus in which the order of sentences was
scrambled (thereby breaking any inter-sentential dependencies). It
would appear, then, that RNNs with LSTMs can, at least to an
extent (see below), track discourse entities across sentence
boundaries and if necessary resolve referential ambiguities in order
to establish continuity of reference. Or at least, like humans, they
behave as if this is what they do.

Representational content: Tracking object states across events

While impressive, the Davis and Schijndel (2020)
demonstration does not tell us the nature of the information that
was propagated across the context-sentence pairings. Surprisal
tells us about lexical expectations, but it does not tell us about the
internal representational content that the models propagated across
each sentence and which presumably was the causal antecedent of
these expectations. Encoding event representations requires the
encoding not only of information about the entities themselves, but
also about the states they pass through as events unfold. If a chef
chops an onion and then weighs it, the thing being weighed is
chopped. If the chef chops an onion but first weighs it, the thing
being weighed is not chopped. In these cases, the object
representation that propagates through the second -clause
(beginning “and then” or “but first”) should reflect the event-
related changes to the onion that occurred in the first clause,
depending on the temporal adverbial. Importantly, the state that the
onion is in depends on which onion is referred to in the second
clause: Chopping an onion and then weighing another onion
means that the thing being weighed is (most likely) not a chopped
onion. These different scenarios (both the real-world scenarios and
their linguistic equivalents) exemplify what we mean by
propagating a representation forward in time and reflecting
whatever changes in state it undergoes as it transitions from one
event (chopping) to another (weighing). Could an RNN
spontaneously  develop the appropriate representational
generalizations just through exposure to a large but otherwise
arbitrarily chosen language corpus?

Within a semantic similarity space typical of a model such as
LSA, different objects (concepts) occupy different parts of the
space. But they do not occupy single points, they occupy regions
of space, with different points within the region reflecting different
contextual dependencies associated with the different states of the
object. The concept corresponding to the object “onion” is a region
of space that includes yellow, white, and red onions, peeled onions,
chopped onions, and fried onions (for related discussion see
Solomon, Medaglia, & Thompson-Schill, 2019). In principle, then,
an RNN should be able to develop emergent categories (i.e.
regions of space) that are structured in such a way as to capture the
contextual dependencies between verbs such as “chop” and nouns
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such as “onion” that specify the distinct states (points in the space)
that should be activated as a sentence such as “chop the onion”
unfolds. More interesting is whether the network can then
propagate the appropriate states (the appropriate representational
content) across multiple sentences such that when “weigh the
onion” is encountered, the onion is still at that same point in space
(albeit displaced slightly by the weighing). Importantly, distance
within the region of space, between one point and another, could
in principle reflect the degree of change that the object undergoes
as it is displaced in the space (as modulated by the verb) —
chopping the onion might displace that particular onion within the
onion region by more than peeling the onion, reflecting more
movement along the different featural dimensions along which the
onion changes: The more change, the more movement, and the
greater the distance. But how could a network learn, from
linguistic input alone, the relevant featural dimensions along
which objects change as they participate in events? While featural
dimensions may emerge as an abstraction over the network's
hidden unit activations (c.f. Elman, 1993), what the network is
exposed to is more akin to affordances (e.g., Gibson, 1979;
Glenberg, 1997), albeit in the linguistic domain. A sentence
describing an event in which an onion is chopped is unlikely to be
followed by a sentence in which that same onion is then peeled. So
given that the RNNs are in the business of predicting upcoming
input, event descriptions constrain what upcoming descriptions are
afforded by the current input (reflecting the real world affordances
that accompany events across time). Whether RNNs can develop
sensitivity to affordances of these kinds is the basis for the studies
to which we now turn.

Preview of the studies and main results

In all three studies we adopted the same computational
architecture as in Davis & Schijndel (2020). Study 1 was
motivated by Hindy, Altmann, Kalenik, & Thompson-Schill
(2012), who collected degree-of-change ratings for the sentence
pairs that they used in an fMRI study of object-state change.
Participants had been instructed to read sentences such as “The
chef will chop the onion” or “The man will choose the bagel” and
to rate on a 7-point scale by how much the thing that was acted
upon in the sentence changed relative to how it had been before it
was acted upon. Inspired by Representational Similarity Analyses
(RSA, Kriegeskorte, Mur, & Bandettini, 2008) we compare the
activation patterns across the hidden layers at the end of each
sentence to the activation patterns that resulted from presenting to
the networks the indefinite form of the noun referenced at the end
of the sentence (e.g. “an onion” or “a bagel” for the two examples
above). We found that the network’s unfolding representations (as
indexed by the similarity to this baseline; see Supplemental
Material A) correlated with the degree-of-change ratings in human
participants asked to judge the exact same sentences.

In Study 2 we asked whether the representation of the target
object at the end of the sentence would propagate appropriately
into a second sentence. We contrasted matched pairs of two-
sentence sequences such as “The chef will chop the onion. Then,
she will weigh the onion” and “The chef will chop the onion. First,
she will weigh the onion”. In the THEN condition, the onion at the
end of the second sentence is chopped — it should be dissimilar to
a prototypical onion (indexed by the activation pattern due to just
the word “onion”). In the FIRST condition, the onion at the end of
the second sentence is being referenced in its prior unchopped
state, and so should be more similar to a prototypical onion
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(relative to the observed similarity in the THEN condition). This
is exactly what we found in our similarity analyses. And when we
replaced “the onion” at the end of the second sentence in the THEN
condition with “another onion”, the networks, like people
(Solomon, Hindy, Altmann, & Thompson-Schill, 2015) treated
this onion as a more prototypical onion.

Whereas Study 2 explored how representations of the object
undergoing change propagate through the sentences, Study 3
explored how representations of the sentential subject likewise
propagate. This more exploratory study used similarity through
time to track the representation of the sentential subject through to
the end of the first sentence and into both the second and a third.
We found, unsurprisingly, that the sentential subject does
propagate through the sentences, but that its representation
changes dynamically as a function of other input and its
perturbation of the network's activation state. We interpret these
dynamics as reflecting the extent to which the linguistic input
places constraints on what states the network, as a dynamical
system, can move into next. We now turn to the studies in detail
before discussing the implications of these results for our
understanding of both network, and human, behavior.

STUDIES
Neural Networks

We followed the architectural details in Davis and van
Schijndel (2020). Specifically, we trained RNNs with LSTM
hidden units using a language modeling objective (i.e. predicting
the next word; as in Elman, 1990)." The models had two LSTM
layers with 400 hidden units each, 400-dimensional word
embeddings, a dropout rate of 0.2 and batchsize 20. They were
trained for 40 epochs (with early stopping) using PyTorch. To
disassociate effects of training data, we trained two sets of models
on different data. The first (Wikipedia models; N=25) was trained
on approximately 103 million tokens of preprocessed Wikipedia
text taken from verified higher quality articles (Wikitext-103;
Merity, Xiong, Bradbury, & Socher, 2016). The other set of
models (Web models; N=25) was trained on approximately 100
million tokens of web data taken from URL links in “higher
quality” reddit posts, which crucially excluded all Wikipedia data
(OpenWebTextCorpus; Gokaslan and Cohen, 2019).2 Sentence
length was similar across the two corpora (18 and 17, respectively)
although there was greater variance in the Web corpus (standard
deviations: 15 and 22 respectively). Each of the models was
initialized with a different set of connection weights. The
vocabularies of the models were constrained to the top S0K most
frequent words in their respective training corpora. Words were
represented using one-hot encodings (that is, 49,999 bits "off" and
one bit "on") for the input, and the output at each time step was a
probability distribution for the next word ranging over the
vocabulary.

' The mean perplexity for the Wikipedia models on the

validation data for Wikitext-103 was 40.6 with a standard
deviation of 2.05, and for the Web models using a held out
validation set of 10 million tokens of web data the mean
perplexity was 64.53 with a standard deviation of 0.73.

Study 1: RNN encoding of object-state change

The first study evaluates the internal representations of RNN
language models while processing stimuli that describe a change
in state of an object. “Knowledge” of events under IOH requires
“knowledge” of object trajectories -- a network that builds event
representations should represent object affordances under different
contexts, corresponding to the objects in a real-world event
undergoing a change in state. Blended mangoes afford different
interactions than do whole mangoes, with the blending causing
changes in state that are accompanied by different sets of
affordances. In principle, the consequences of changes in state on
the affordances of the object (in its new state) should manifest in
the language used to describe events and their consequences
(changes in state would be accompanied by changes in what may
unfold next).

Using stimuli rated for degree-of-change (the amount an
object was changed by an action), we evaluated whether RNNs
encoded degree of change in a way that mapped onto human
judgments. Sentences with corresponding human ratings were
taken from Hindy et al. (2012) and pooled together with an
additional set of stimuli and ratings developed by Prystauka,
Ekves, and Altmann (in preparation). Across all our studies we
selected the maximum number of stimuli from this original pool of
326 stimuli that satisfied the constraints of the study (e.g. that all
words were known to the networks, that no verb + object
combination appeared more than once, and depending on the
study, that the stimuli either were paired (“minimum” vs
“substantial” change) or were drawn from the same category (e.g.
as in Study 2 below). The resulting 145 stimulus pairs had the
following structure:

The chef will weigh the mango [minimal change implied by the
verb]

The chef will blend the mango [substantial change implied by the
verb]

Hindy et al. (2012) had used such pairs to show (among other
effects) that the fMRI BOLD response elicited by such sentences
correlated with degree-of-change ratings supplied by a separate
group of participants. We excluded any stimulus pair that had any
word in either sentence of the pair that was not contained within
the models' vocabularies. This left 136 sentence pairs for the
Wikipedia models and 140 pairs for the Web models. Ratings had
previously been collected online with each stimulus rated by a
minimum of 25 participants. Because the Hindy et al. ratings were
collected in 2011, and the Prystauka et al. ratings in 2018/19, we
recently collected new ratings for the entire set of stimuli
(containing 326 stimuli from which the sentence pairs for this
study were drawn) and calculated interrater reliability across the
two sets of ratings. Reliability was extremely high (Pearson’s r
= .95). For the data described below it did not matter whether we
used the original ratings, the new ratings, or the average (we report
statistics based on the average). Each pair of stimuli constituted a

2 This is an open source version of the training data in the popular
language model GPT-2 (Radford et al., 2019). The code with
which to further explore the models and recreate the results in
the present study is available at (and the models linked from):
https://github.com/forrestdavis/ExperimentNorming.




minimal pair that differed only in the verb, and consequently in the
manner and degree of change that the entity in object position
would undergo. The stimuli were designed so that one member of
the pair would entail a substantial change to that entity and the
other a minimal change (the degree-of-change ratings confirmed
the minimal/substantial change designation). We followed Hindy
etal., (2012) in using this same paired stimulus structure, using the
minimal change sentence as a baseline for assessing degree-of-
change effects (both for the human ratings and for the model-
derived measure which we describe next).

To assess the internal representations of the RNNs, we
calculated the similarity between the hidden representation of the
final word in each sentence (taken from the final hidden layer of
the RNN) and the hidden representation of a baseline (see
Supplemental Material A). The baseline for each sentence was the
indefinite form of the relevant object (e.g., “a mango” given “the
chef will blend the mango”); the model’s hidden representation
after “mango” thus corresponded to the encoding of the whole
phrase (e.g., the model’s hidden representation of “mango”
following “a”). For complex nouns such as “swimming pool” both
nouns were included. To quantify similarity, we took the
normalized cosine similarity (the Pearson correlation coefficient)®
of the two vectors corresponding to (i) the hidden representation
after each word and (ii) the hidden representation of the baseline.
We used this correlation coefficient as a measure of distance (i.e.
similarity) in activation space. We predicted that RNNs with at
least some knowledge of event structure (i.e. the consequences of
an event for changes in the affordances/states of objects affected
by that event) would have a graded degree of similarity between
the baseline and the object. The baseline reflects the broadest set
of affordances (i.e. the broadest prediction space: “A mango”
licenses future washing, peeling, chopping, blending, freezing, etc)
while changes in the trajectory of an object necessarily restrict
possible affordances (“blending a mango” makes future washing,
peeling, or chopping unlikely). Similarity between the baseline
object and the object embedded in a particular event, then,
corresponds to the extent to which that particular event restricts the
affordances of the object, with lower similarity corresponding to
greater restriction and higher similarity to less restriction (cf. “the
chef blends the mango” vs. “the chef weighs the mango”).

There are a number of different ways to probe the internal
informational content of a network, including diagnostic classifiers
(e.g. Giulanelli, Harding, Mohnert, et al., 2018) and minimal
description length probing (Voita & Titov, 2020). We chose to use
a more direct analog of the question that was asked of the human
participants: By how much is an object changed after an event
relative to how it was before the event? Our measure of
representational similarity asked by how much the hidden unit
activation changes after a linguistic description of an event relative
to how it would be after a generic descriptor. Classifiers can give
a measure of change if interpreted probabilistically (i.e. the change
in likelihood that a pattern will be classified as belonging to a
particular category), but the distance between two representations
is necessarily influenced by the distances between the other
representations on which the classifier has been trained. Cosine
similarity is instead an absolute measure of similarity/change.

3 The Pearson correlation is equivalent to normalized cosine
similarity, making the measure invariant to the addition of a
constant. Qualitatively similar results hold when using
unnormalized cosine similarity (which lacks this property). The
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Statistical analyses of the relationship between model degree
of change and human ratings were performed by calculating a
difference score for each item pair ("substantial" change minus
"minimal" change) and for each variable (human ratings and model
degree of change, averaged across the 25 models). This allowed us
to maintain the pairwise structure in the stimuli. We then computed
the Pearson correlation coefficient r to quantify the relationship
between the difference scores for the two variables, calculating the
upper and lower 95% confidence intervals using the Monte Carlo
method from Preacher (2012). For the Wikipedia models, r = -.20,
p=.012(95% CI: LL -.36, UL -.03); For the Web models, r = -.20,
p=.018 (95% CI: LL -.36, UL -.03). We also used linear mixed
effects models which confirmed the relationship between the
network similarity measure and the human ratings (see
Supplemental Materials B).

Greater similarity between the object and the baseline
correlated with lower human degree-of-change ratings. In other
words, the model representations seem to encode information
about the magnitude of change the object is undergoing. There is
significant variance left unexplained by the models internal
representations, however. That is to be expected given that these
models are trained only on text. The networks provide a
unidimensional measure of representational change (based only on
experiential knowledge of the language). The human raters, on the
other hand, likely provided a multidimensional measure of such
change, grounded in experiential knowledge of both linguistic and
non-linguistic origin, with the latter spread across multiple
sensorimotoric dimensions. Thus, neither of the corpora we used
could encode object-state changes to the degree that humans
experience them in their daily lives, but some corpora may encode
state change more explicitly than others (cookery books may be a
better source of object-state change information in respect of e.g.
chopping, peeling, or blending, for example). Nonetheless, given
the experiential limits imposed on our networks — being exposed
only to linguistic input and that input being impoverished in
respect of conveying the full (real world) range of object-state
change- it is all the more remarkable that RNNs encode event-
relevant structure to the extent that they do. We return to the
challenges that impoverished experience presents, both for the
networks and for understanding the nature of the network's internal
representations, in the general discussion below.

Study 2: Propagating event participants forwards, and
backwards, in time

Study 1 demonstrated that our RNNs' encoding of discourse
entities was modulated by the verb preceding that entity. This
modulation correlated with human ratings of the degree to which
those objects, in real life settings, would be judged to change state
as a consequence of the event described by the sentence. Having
demonstrated this sensitivity to event-relevant content, in this
second study we ask whether RNNs can propagate the appropriate
content into a subsequent sentence. Specifically, a sentence that
refers to a second event following or preceding, in event time, the
event described in the first sentence. Consider the following

particular implementation we used was corrcoef from numpy:
https://numpy.org/doc/stable/reference/generated/numpy.corrco
ef.html.
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The chef will chop the onion. Then, she will weigh the onion
[same token, future event]

The chef will chop the onion. First, she will weigh the onion
[same token, past event]

In principle, the onion that is weighed in the "Then" condition
should be less similar to a generic onion (it has been chopped) than
the onion that is weighed in the "First" condition, which should be
more similar to a generic onion (it has not yet been chopped). We
followed Solomon et al. (2015) in adding another condition:

The chef will chop the onion. Then, she will weigh another onion
[different token, future event]

The chef will chop the onion. First, she will weigh another onion
[different token, past event]

Solomon et al. (2015) found in an fMRI experiment that sentences
with "another onion" patterned as if this other onion had not
undergone any change (i.e. it was a newly instantiated generic
onion). While we anticipate that "another onion" should be more
like a generic onion than "the onion" after "Then,...". Less clear is
how "another onion" will pattern (in respect of its similarity to "an
onion") after "First,...". In both cases, we would expect some
representation of the original chopped onion to propagate
forwards, because the pragmatics of such constructions
(manifested in their usage) suggests that the chopped onion will be
referred to again in the future (otherwise it would not have been
mentioned at all). Most likely, we would see greater dissimilarity
in the "Then" condition simply because, as event time moves
forward, there is probably a greater likelihood that the chopped
onion will come back into (linguistic) play, in which case the RNN
may increase its activation, thereby decreasing the similarity of its
internal representations to "an onion". We return below to
discussion of the network's encoding of distinct tokens.

We selected 150 two-sentence stimuli from the original set
described above. All stimuli included verbs that had previously
been designated by human participants as causing "substantial
change" (see Study 1). We selected "substantial change" items for
this study so as to better explore the effects of the "Then/First"
alternation (for verbs entailing minimal change, the representation
of the changed entity would be little changed from before or after
the event that changed it, and using such verbs would have lacked
sensitivity). As with Study 1, we calculated the similarity between
the hidden representation of the final word (this time at the end of
the second sentence) and the baseline for each sentence —the
indefinite form of the relevant object (e.g., “an onion” for the
examples above).

We performed a 2 (temporal adverb) x 2 (determiner) within-
subjects ANOVA (every network was given every item in all 4
conditions), followed by planned comparisons of the contrast
between "then...the" and "first...the". For each analysis, we
treated networks as participants and report both by-network (F1)
and by-item (F2) analyses. Table 1 shows the similarity values
(Pearson's r) in each of the 4 conditions for both the Wikipedia and
Web models.

For the Wikipedia models there was a main effect of adverb
("then" vs. "first": F1(1,24) =22.4,p < .0001; F2(1,149) =43.0,p
<0001 ) and of determiner "the" vs. "another": F1(1,24) = 1379.6,
p < .0001; F2(1,149) = 1333.5, p=.000 but no interaction between
the two (F1(1,24 = 1.8, p=.187; F2(1,149) < 1). Similarly for the
Web models ("then" vs. "first": F1(1,24) = 49.1, p < .0001;

Wikipedia Web

Then... First... Then... First...
the... 530 535 545 550
another. .. 700 706 670 675

Table 1. Representational similarity analysis comparing hidden
unit activations at the end of the second sentence to the baseline.
Values are Pearson's r (higher value means more similar), and for
networks (n=25) trained either on the Wikipedia or the Web
corpus.

F2(1,149) = 20.1, p < .0001 ; "the" vs. "another": FI(1,24) =
1652.3, p < .0001; F2(1,149) = 10254, p < .0001) although for
these models there was a marginal interaction between adverb and
determiner (F1(1,24) =7.3,p = 012; F2(1,149) = 1.0, p = .316).
For both sets of models, the "then...the" condition was less similar
to baseline than the "first...the” condition (Wikipedia: F1(1,24) =
220, p < .0001; F2(1,149) = 3064, p < .0001; Web: F1(1,24) =
48.1,p < .0001; F2(1,149) = 86.9, p < .0001).

If an onion was chopped but first it was weighed, reference to
the onion that was weighed engendered a representation that was
more similar to a generic onion than if the onion had been chopped
and then it had been weighed. The networks, regardless of which
corpus they had been trained on, were sensitive to the temporal
ordering of the events and the consequences of this ordering for
the state of the onion (although most likely the distinct states of the
onion are encoded in respect of the likely consequences of an event
for what events can follow — see above). Equally, if an onion was
chopped but then another onion was weighed, that onion was again
more similar to a generic onion (i.e. more similar to the baseline
“an onion”) than if it was the onion that was weighed. We return
in the general discussion for the implications of such a result for
whether, or how, the RNNSs can be considered to have encoded the
onion that was chopped as a specific token onion with "another
onion" encoded as a different token.

Perhaps surprisingly, the same “then”/’first” pattern was
observed for “another onion” as was observed for “the onion”.
Why should “then...another onion” be more dissimilar to the
(presumed) generic than is “first...another onion”? They are both
new tokens, and in some sense should be identical regardless of
the temporal context in which they are introduced. However, and
as we shall discuss further below, the representations we are
probing at the end of the second sentence are not just those
associated with reference to the onion — they reflect the entire
representational state of the network (operationalized as the second
hidden layer). This state will include representational content
pertaining to the onion at the end of this second sentence but also
pertaining to the chef from the first sentence (we explore this
further in Study 3 below), and the onion from the first sentence.
So if there are two instances of onion — i.e. two onion tokens — the
representation at the end of the second sentence will contain
information about the new token (introduced by “another onion’)
and the original token (introduced in that first sentence, and whose
state/affordances reflect having been chopped). We speculate that
in the case of “first...” the state of the original token is
“suppressed” (the affordances of a chopped onion no longer apply
and are less active) meaning that the composite pattern will be
more similar to a generic onion than after “then...” when the
affordances of a chopped onion do still apply. Hence the same
effect of temporal adverb on “another onion” as on “the onion”.



Again, we return below to this issue of how and in what way the
RNN encodes tokens.

If “another onion” puts the network into a state where it
represents both this new token onion and the original token, would
the network be able to distinguish between these two tokens? We
believe that this may be a limitation of the networks as currently
trained. It has been observed that there is a general recency bias in
RNN language models (e.g., Ravfogel et al., 2019; Davis and van
Schijndel, 2020). In our own testing, we have noted a recency bias
for stimuli like "The chef has a small onion and a big onion. He
chopped the small onion. Then, he chopped the ...", where rather
than predicting “big” (as pragmatic reasoning would suggest) both
the Wikipedia and Web-trained models had a greater preference
for “small”. But their preferences were modulated by training
corpus: The Wikipedia networks preferred “big” over the
pragmatically anomalous continuation “banana”, whereas the
Web networks surprisingly preferred “banana” over “big”. In the
real world, of course, where language meets visual experience, that
experience is not subject to the same recency biases that are typical
of language. For example, as our eyes move around a scene, we
tend not to revisit the most recently viewed entities. And when
navigating somewhere and back again, we revisit the earlier
location, not the more recent location. We thus believe that there
are attentional factors in our experience of the external world
which essentially work against the recency biases that pervade our
experience of the linguistic world. We cannot, at this time, tell
whether the recency bias we find in our RNNs is due to their
specific training (i.e. reflecting a general bias in the language they
are exposed to) or due to an architectural limitation that could be
overcome with an attention component (Bahdanau, Cho, &
Bengio, 2014; Vaswani, Shazeer, Parmar, et al., 2017) operating
either over the language or over a different but parallel domain of
experience - c.f. the relationship between linguistic and non-
linguistic domains of variation envisaged in Altmann & Mirkovic
(2009). It is noteworthy that the language model GPT-2 (Radford,
Wu, Child, et al., 2019), a transformer model with an attention
mechanism, does not display a recency preference with these kinds
of stimuli, but predicts the pragmatically expected continuations.
On the other hand, it appears to fail with "The chef has a small
onion and a big onion. He chopped the small orange. Then, he
chopped the ...", where it exhibits a substantial preference for the
continuation “big” over “small” (suggesting a structural preference
over content). The RNNs do not do any better — they prefer the
more recent “small” over “big”, regardless of the corpus on which
they were trained, although the web-trained networks continue to
prefer “banana” over “big”.

These last (informal) data, contrasting RNNs with GPT-2,
highlight an issue that is central to the current series of studies:
RNNs exhibit representational properties that we believe a priori
to be necessary precursors to the behaviors we are targeting. But
representational space is not the same as word space. The
representational similarity analyses reported for Studies 1 and 2
operate over representational space, whereas the behaviors just
described (with big and small onions) reflect operations over word
space. GPT-2 exhibits the right behaviors in word space (insofar
as we have started to explore them) but their correlates in
representational space, at least in respect of object state
affordances and trajectories through time, are relatively opaque.
We return to GPT-2 in the General Discussion.

A final word, in this section, on the distinction between
representation and behavior. We can think of representations in
RNNs as corresponding to the regions of an abstract multi-

EVENT STRUCTURE IN TIME

dimensional (similarity) space that the system can move into as a
function of where it has come from (c.f. our earlier description of
representation in an SRN as constraints on which activation
patterns can follow which other activation patterns). Behavior is
what the system does when it actually traverses that space. Thus,
we refer to network behavior not simply when, for example,
describing its predictions in word space, but also when using
representational similarity analyses to probe where the network is,
in or after, its trajectory through that representational space.
Representation and behavior are thus intimately intertwined
inasmuch as tracing a trajectory — traversing the space — entails
passing through different representational states.

Study 3: Propagation dynamics

In the previous studies, we investigated the degree to which
RNNs encode object affordances in their representations both
broadly and for specific tokens. In Study 3, we explored what
effect emergent event representations in RNNs have on other
participants in the event. In particular, we ask what happens to the
representation of the sentential subject as the network encodes
events across multiple sentences? Some representation of the
subject must propagate forwards (a consequence of recurrence,
and a desirable property of any model of human sentence
processing), but what modulates the strength of that propagation?
According to the IOH, the history of an object includes its
intersections with other objects — in effect, that object becomes
dynamically associated with the objects with which it has
intersected (meaning that those associations are context-specific,
depending on where in time and space the intersection occurred).
But such associations can form only to the extent that the
representation of one propagates strongly enough onto the
representation of the other. If prior input has very little effect on
the state of the system (i.e. it perturbs it less), the “trace” of that
input will be weaker than that of an input that has greater effect on
the state of the system. But similarly, if something subsequent to
that input perturbs the system more, it may “mask” the impact of
that earlier input. We might conceptualize this idea with the
following analogy: a bigger splash will cause ripples to travel
further. But the ripples due to a smaller splash may be
overwhelmed by those caused by a subsequent bigger splash. In
this more exploratory study, we use entropy to quantify the splash.

Entropy is operationalized in our RNNs as the amount of
order or disorder in the predictions that the RNN makes at each
point in time. If only a small number of words are predicted at the
next time-step, the system is in a state of low entropy compared to
one in which many words are predicted. And if many words are
predicted but one is predicted by very much more than the others,
then that too reflects a state of low entropy. The more constraining
the context, the more the system is perturbed (the less random the
activation state of the system becomes), and the lower the entropy.
In Study 3 we probed the entropy at the offset of the subject+verb
sequence in the first sentence of a 3-sentence sequence such as

The farmer will shear the sheep. Then, he will feed the sheep. Then,
he will think about the sheep.

The entropy at the offset of “shear” reflects the impact of the
combination of that verb with its subject on what the network will
predict might come next (henceforth, although we shall be
referring to the entropy at that first verb, we shall simply refer to it
as “the entropy”). A verb like “shear” is more constraining than,
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for example, “select”, with a corresponding reduction in entropy at
its offset. But while farmers might constrain the kinds of event that
might be referred to subsequently, a verb like “shear” restricts the
lexical space much more considerably. Thus, low entropy at the
offset of “shear” most likely reflects the “ripples” of “shear” more
than it does the ripples of “farmer” (although of course, it reflects
the combination of the farmer and the shearing). But does the
combined predictive strength of “the farmer will shear” (indicated
by low entropy at the offset of this sequence) aid in the propagation
of some representation of the farmer downstream and into the
subsequent sentences, or will it hinder it? In other words, how does
entropy — a proxy for the state of perturbation of the network —
impact, if at all, on the extent to which the farmer is reflected in
the hidden state representations at each instance of “the sheep”?

We selected 232 two-sentence stimuli from the original set
described above with half drawn from the “substantial change”
category and half from the “minimal change” category. We added
the same third sentence frame to all the stimuli: “Then, <pronoun>
will think about <object from I*' sentence>. This was in part to
ensure all additional words were known to the networks and in part
to ensure that any effects at the end of this 3™ sentence could not
be due to variability across items at this 3" sentence. All words
contained within the entire stimulus set were “known” to all the
networks (the 25 Wikipedia and the 25 Web networks). There was
no difference in entropy across the minimal and substantial change
verbs (means: 5.95 and 5.94 respectively, F < 1.0). We included
both substantial and minimal change verbs so as to include a spread
of degree-of-change (entropy did not correlate with degree-of-
change; r=.05,t< 1.0).

Figure 1 shows the similarity of the activation pattern at each
word to the activation pattern due to the baseline “the farmer” — it
illustrates the degree to which some representation of the farmer is
“contained” within the hidden state representation at each point in
the sentences, and shows how a representation of that first
sentential subject propagates forward from the beginning of the
first sentence to the end of the last. We computed the Pearson
correlation between entropy and similarity of the hidden unit
activations to “the farmer” at the offset of each mention of “the

sheep”. There was a statistically significant and positive
correlation at all three mentions. For the Wikipedia networks —
Sentence 1: r = 22, p = .001 (95% CI: LL .09, UL .34); Sentence
2:r=.15,p=.043 (95% CI: LL .002, UL .26); Sentence 3: r = .15,
p=.021 (95% CI: LL .02, UL .27). For the Web networks —
Sentence 1: r = .18, p = .006 (95% CI: LL .05, UL .30); Sentence
2:r=.15,p=.020 (95% CI: LL .03, UL .27); Sentence 3: r = .18,
p=.007 (95% CI: LL .05, UL .30). See Supplemental Material C
for confirmation with linear mixed effects models. In contrast, we
found no correlations between entropy and subject similarity at the
pronouns, suggesting that our data are not simply a reflection of
high subject similarity. We did find similar influences of the
entropy when the object in the second sentence was changed from
“the sheep” to “another sheep” , although similarity to “the farmer”
was significantly reduced.

The data from this study suggest that dynamics matter — that
is, that the perturbation of the network, indexed here by the state
of entropy after the combination of the subject and verb in the first
sentence, does impact on the activation profile of representations
in subsequent sentences. The lower the entropy, the less similar
was the representation at “the sheep” to “the farmer”. That is, the
lower the entropy was, the less clearly the sentential subject
propagated forwards through to both the end of that first sentence
and subsequently into the following sentences. One interpretation
of this result is that we are seeing the effects of a bigger splash on
an earlier splash — the perturbation due to a strongly constraining
verb masking the lesser perturbation due to the sentential subject.
This may in part reflect the centrality of the predicate, in English,
in respect of constraining the participants’ roles in the
sentence (i.e. in defining the “intersections” as described in the
IOH). In languages such as Japanese, where the verb typically
comes at the end of the sentence, we might expect to find
equivalent effects at points within the sentence that are similarly
constraining (i.e. at certain post-nominal particles that function as
case markers; see Kamide, Altmann, & Haywood, 2003, for the
behavioral manifestation of such constraints on incremental
processing and prediction in Japanese).

Representational similarity to the sentential subject ("The farmer")
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Figure 1. Similarity of the activation state of the hidden units at each word position to the activation state of those units after

experiencing just the subject of the sentence (“the farmer”)



Regardless of interpretation, the actual significance of these
data is not in respect of what we might hope to know about
networks, but in respect of what we do not know about the human
brain: We do not know what the equivalent dynamic is in the human
brain. Might recall of earlier material in a sentence similarly
depend on entropy? Would participants better recall the farmer in
a subsequent cued-recall task (cued with “the sheep”) if he had
selected a sheep rather than sheared a sheep? Could we use RSA
in a neuroimaging task to generate a continuous measure of
“representational integrity” as we did, in computational terms, for
Figure 1? Here, we are equating representational similarity with
representational integrity — the more similar the representation
after “sheep” to the representation after “farmer”, the greater the
integrity of the representation (i.e. the less interference during
propagation, or the stronger the association that formed between
“farmer” and “sheep” when they first co-occurred in that first
sentence). These are all questions for future studies. The point,
simply, is that consideration of network dynamics lends itself
naturally to consideration of brain dynamics. And a theme that will
recur below is that, when it comes to such dynamics, we do not
know even what the target behavior is in the human brain that we
should be hoping to model.

GENERAL DISCUSSION

According to the IOH (Altmann & Ekves, 2019), a hallmark
of event representation is the encoding of object-state change
across time. In Study 1, we demonstrated that item-wise
differences in similarity computed from the RNNs’ internal
representations correlated with item-wise differences in human
ratings of the degree to which an object is changed by an event it
participates in. Study 1 thus showed that the RNNs developed an
emergent state space that is similar, at least along some limited
dimensions, to the representational space encoded by human
participants. Study 2 extended these state change findings to show
that the representation of onion introduced in the first sentence
(“The chef chopped an_onion”) propagated into the second
sentence (“Then/First, she smelled the onion”). However, this
propagation was modulated by the temporal adverb; when the
onion was referenced at a point in time after the chopping, it was
less similar to the representation engendered by the phrase “an
onion” (the generic baseline) than when it was referenced at a point
in time before the chopping.

A related hallmark of event representation — related that is,
to the encoding of object-state change — is the distinction encoded
in such representations of object tokens versus object types; it is
not just any onion that is being smelled, it is the same individual
onion (the same token) as had been chopped. The RNNs in Study
2 were sensitive to this distinction between the same onion and
another onion: After the chopping, smelling “another onion”
engendered a representation that was more similar to a generic
onion than did smelling “the onion”. The networks thus appear to
distinguish between cases when reference is to the same token and
cases when reference is to a different token of the same type.
Nonetheless, we do not have direct access to the networks’ actual
representations (as distinct from the raw activation values across
the networks’ hidden units) — we are no more able to determine
whether the network in fact encodes objects as tokens than we are
able to determine whether a human participant encodes objects as
tokens — we return below to why there is no such direct access,
and why, nonetheless, we believe that the RNNs did instantiate
tokens.

EVENT STRUCTURE IN TIME

The behaviors observed in Studies 1 and 2 address just one
aspect of an event representation; namely, object-state change.
Study 3 was more exploratory, examining factors that might
mediate the extent to which the object acted upon (e.g. the onion)
becomes representationally associated with the object that acted
upon it (the chef). Our interest here was in how properties of the
verb (e.g., how constraining the verb was in respect of its
predictive informativeness — how much it perturbed the system)
might impact on the network’s ability to propagate and re-activate
those representations as appropriate. We found that the greater the
perturbation at the verb, the harder it was for the representations
associated with the subject to propagate forwards and make contact
with the representations due to the object (the onion).

Our longer-term goal in running this study was to raise an
issue not about network dynamics but about brain dynamics:
Would we see the same propagation dynamics if we were to probe
the equivalent in human participants? For example, perhaps the
effects we observed at the final word in the 3-sentence sequence
were unrelated to the content of the word “onion” in that position
— i.e. unrelated to that object’s history. Would this be a “good”
thing, or a “bad” thing? We cannot know until equivalent analyses
of the equivalent dynamic are carried out in human participants
(e.g. using neuroimaging data and RSA through time — see e.g.
Choi, Marslen-Wilson, Lyu, Randall, & Tyler, 2020). Perhaps they
would show the same dependence on the entropy of the verb in the
first sentence that we observed in our networks. Without knowing
what the human equivalent dynamic is, we cannot know which is
the target behavior we should hope to explain. If nothing else, our
RNNs have opened the door to asking such questions and to
probing human behavior in new ways that would inform the nature
of the dynamical properties of the brain’s encoding of the
unfolding language.

Event Representation and the Sparsity of the Input

These data are by no means exhaustive — they are just a first
step in our understanding of how RNNs can or might encode event
representations and their corresponding dependencies, and as just
mentioned, they open the door to future investigations of
propagation dynamics in the human case. But while much further
investigation is warranted, the current data, limited as they are, do
nonetheless beg the question: What was the basis for our RNNs’
abilities? Surprisingly, this is not so straightforward a question.
Even knowing what the RRN can do is far from straightforward;
on what basis do we evaluate how the network works? Can we
even evaluate what, in the corpus, led to the networks’ behaviors?
One very significant challenge is captured by the following
statistic: The word sequence “chop the onion” appears just once in
the whole of Wikipedia. And “weigh the onion” appears ... not at
all. In fact, for the Wikipedia corpus, 94% of the 290 verb+object
combinations did not appear in the corpus on which the networks
were trained; for the WEB corpus this figure was 89%. The extent
of this sparsity within the corpus poses a major challenge for
understanding the causal mechanisms through which the networks
acquired, encoded, and deployed the knowledge that contributed
to their event-relevant performance. In the context of such sparsity,
how could the networks, even in principle, learn that chopping an
onion changes that onion by more than weighing it?

The answer to this last question is related to the question
“What do categories, as encoded in semantic memory, offer the
cognitive system?” The traditional answer is: “generalization”. In
the present context this means that it should not matter that “chop
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the onion” is effectively absent from the corpus. What matters is
that “chop” and “onion” appear separately many thousands of
times and, perhaps critically, that “onion” frequently co-occurs
with “garlic”, “carrot”, “mushroom”, and other choppable things.
So long as nearby semantic space encodes something as affording
chopping, and so long as that space, or the semantic space
associated with chopping*, encodes the class of state change that
constitutes being chopped (e.g. the class of change that is common
across the chopping of onions, carrots, logs, text, etc), or encodes
a space of consequent actions, the novel combination of chopping
and onions can be interpreted. Thus, “onion” would, in lieu of
actual experience, inherit properties of other objects in nearby
semantic space. This inheritance is due to constraints on where (in
state space) the system can move next as a function of were (in
state space) it has come from. These constraints do not reflect
simple context-independent co-occurrence statistics (c.f. LSA) but
rather reflect accumulated experience of context-dependent
trajectories through state space (c.f. SRNs). Hence, if sparsity in
the corpus is accompanied by an appropriate category structure
across the semantic space (defined through proximity in the
similarity space), novel combinations of verbs and objects, or in
real-world terms, of actions and participants in those actions, can
be interpreted through such inheritance.

Trajectories and their Propagation through Time

Novel combinations of verbs and the discourse entities that
participate in the actions denoted by those verbs constitute novel
trajectories through state space. However, an unintended
interpretation of such a statement is that these trajectories are
independently realized within the networks’ internal states, like
veins running through the network’s body, albeit across time.
However, in the recurrent architecture we envisaged in Altmann &
Ekves (2019), and certainly within the RNNs employed here, there
are no such independently realizable trajectories (beyond some
theoretical abstraction). Rather, the entire state of the
representational substrate (which may or may not coincide with the
entire network) is in flux; an individual trajectory is the
manifestation in that substrate of information that evolves through
time, distributed across the entire representational substrate both
in network space (hidden unit activation space) and time (c.f.
“neural manifolds”, although these are generally associated with
subsets of the entire neural substrate; e.g. Gallego, Perich, Naufel,
et al., 2018). These are not veins that can be stripped from the
network’s body. And this makes a causal interpretation of the
network’s behavior (i.e. what internal “representations” drive
those behaviors, and what from their experience drove the
emergence of those representations) particularly challenging (see
e.g. Tabor, Cho, & Szkudlarek, 2013, and references contained
therein, for related discussion). How, for example, can we possibly
know if the network has a representation corresponding to a
specific token object? But equally, and in the scientifically-
mandated absence of intuition, how can we possibly know if a
human participant has a representation corresponding to a specific
token object? What behavior would we expect to observe under
what conditions? And imagine that our RNNs exhibited the
equivalent behavior... should we interpret the RNN’s behavior

4 According to the IOH, representations of actions are emergent
properties of the representational system; to the extent that
classes of objects change states in analogous ways, the analogy
can emerge as a category across those changed states. Use of the

differently from how we interpret the human participant’s? The
answer to this last question is, of course, “no”. Or rather, “no” is
the answer to the related question “should we interpret the human
participant’s behavior differently from how we interpret the
network’s?”

The key behavior that we believe underlies our RNNs’ ability
to capture key aspects of event representation is the propagation
and modification of object representations forwards in time (that
is, forwards through the sentence — we established in Study 2 that
the networks exhibited some sensitivity to the linguistic time travel
afforded by temporal adverbs). This directionality matters. It is
common to assume that, in the case of referential dependencies, a
subsequent anaphor or referring expression refers back in time to
some specific token discourse entity introduced previously.
Equally, it is common to assume, in the terms of a recurrent
architecture, that the current state of the network contains echoes
of its past states, and that the current input can cue retrieval of
information from those past states (c.f. cue-based retrieval
approaches to sentence processing; e.g. Lewis, Vasishth, & Van
Dyke, 2006). An alternative assumption is that in cases of
anaphora or other referential dependency, the antecedents (the
knights from the Davis & Schijndel (2020) study, or the
chef/farmer from our own studies reported here) are propagated
forward across the sentences such that the antecedent to a
subsequent expression such as “the chef’ or “she” is not an
antecedent at all (in its literal sense), but a concurrent component
of the network’s internal representation. In discussing the likely
workings of our networks, we use the concept of propagation
forward in time, rather than retrieval from backwards in time, as
this more accurately reflects the underlying computational
mechanism (as instantiated in the LSTMs). It is not the case that,
for example, a “representation” is put in a metaphorical box where
it remains, static, until retrieved at some later time, or that the
representation is carried forward in time on the crest of a predictive
wave, remaining unchanged for the duration of the wave on which
it travels (c.f. models of human memory based on cue-based
retrieval, which argue that what is retrieved is reconstructed from
the context at the time of retrieval and that, in essence, it is
impossible to access/retrieve the same representation twice; e.g.
Roediger, 2001). As representations carry forward, they change
with the network as the network itself changes state dynamically
through time. Whatever representation is initially activated on-the-
fly changes as more of the sentence accrues. The chopping, the
onion, the smelling... these each impact on the chef as each
sentence unfolds word-by-word.

While it is an inherent property of recurrence in the RNN that
information can propagate forward in time, how did our RNNs
learn to propagate the right information forward (right in the sense
of enabling the observed behaviors), modulating it to reflect the
exigencies of the (described) event? RNNs are constrained to be
forward looking — they predict upcoming input on the basis of prior
input, with no access to the right context (i.e. the input that would
come after the target item to be predicted). This is distinct from
models such as word2vec (Mikolov et al., 2018), BERT (Devlin et
al., 2018) or ELMo (Peters et al., 2018). For many instances of
syntactic or sense disambiguation, the right context is completely
disambiguating (cf. “The knight killed by the dragon fell to the

same label, e.g. “chop”, to refer to these analogous changes
would encourage such emergence.
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ground”’ vs. “The knight killed the dragon which fell to the ground”
or “I went to the bank to get my money” vs. “I went to the bank of
the river”). But without access to the right context, learning to
propagate from the left, using e.g. referential dependencies to
inform the resolution of ambiguities to the right, can contribute to
reducing the prediction error through correctly predicting how an
ambiguity should resolve, or through correctly predicting what
kinds of actions might be referred to next given the new state of a
propagated object. We conjecture that, to the extent that the left
context can contribute to reducing error during training, the
propagation of object representations as trajectories through time
and object-state space is an emergent feature of forwards
prediction (left-to-right predictive contingencies) in a recurrent or
equivalent architecture.

Although this has still to be systematically tested (see
Ettinger, 2020, for evidence suggesting that BERT lacks event
knowledge; and Tran, Vusazza, & Monz, 2018, and Abnar,
Dehghani, & Zuidema, 2020, for further elucidation of the role of
recurrence within NLP), we did briefly explore whether the results
reported here (Study 1) are unique to the RNN’s architecture.
Models such as word2vec, which return the same word embedding
regardless of context, will not be able to model the contextual
dependencies on which our data rest. But what of BERT, ELMo,
or the more recent GPT-2 (Radford et al.,2019)? We in fact tested
all three of these models (different pre-trained and open-sourced
instantiations that differed in training set and parameters; see
Supplemental Materials D) and found that each could model the
data from Study 1 — that is, they had developed hidden-layer
representations that, across the range of sentences used in that
study, predicted human ratings of change in state. We used seven
variants of BERT, each with 12 hidden layers. Treating each as a
participant (i.e. for each item, averaging across all seven models —
equivalent to our analytic procedure in Study 1 above), the first
hidden layer was sensitive to degree-of-change (i.e. a statistically
significant correlation to the human ratings; r=-.16, p = .049,95%
CI: LL -.32, UL -.001). We had just a single instantiation of GPT-
2 and therefore analyzed each of its 48 hidden layers separately.
Six of these were sensitive to degree-of-change (i.e. we found
statistically significant correlations to the human ratings); -.21 <r
<-.17). We note, however, that these statistical analyses of BERT
and GPT-2 would not reach statistical significance if corrected for
multiple comparisons (reflecting multiple correlations, at each of
their 12 and 48 layers respectively). The four different
instantiations of ELMo, treated as participants, were also sensitive
to degree-of-change (r=-.18,p=.033,95% CI: LL -.33, UL - 01).
None of this is surprising, given our original premise that degree-
of-change manifests in the language models as differences in
linguistic affordances — i.e. differences in the contexts that can
follow the critical event descriptions. It is noteworthy that both
BERT and ELMo take into account the context following a
word/sentence when developing their internal embeddings — it
would be surprising if these models were not sensitive to
rightwards contextual contingencies.

This last observation begs the question: Why invest all this
(theoretical and practical) effort in RNNs rather than these more
powerful and widely-used models? Our emphasis throughout this
work has been on the propagation of representations, updated as
they travel from left to right through a sentence or series of
sentences to reflect changes afforded by the events described in
those sentences. Models such as BERT and ELMo are
bidirectional — they simultaneously apply left and right context to
the processing of each word, and it is not possible to assess their

performance on left-to-right word-by-word incremental changes in
representation without fundamentally deviating from how they are
trained. Whereas left-to-right incremental processing is a given for
human speech processing, NLP models operating over text (and
even over speech) have the luxury during training (and after) of
not being limited to left-to-right incrementation. Study 3, for
example, is beyond the reach of BERT and ELMo because, except
for the very final instantiation of “the sheep” at the end of the third
sentence, the representation of each word is given by both its left
and right context. These are not models of incremental processing.
GPT-2 does permit incremental representational propagation and
updating. However, we observed earlier that as representations
propagate forward through and across sentences, they change with
each incremental step — representations are not put into a
metaphorical box where they remain unchanged until retrieved
some time later. GPT-2 would need to learn the dynamic that
causes such continuous change — it is not built into the architecture
of GPT-2 as it is in the architecture of an RNN. That is, the use of
attention in GPT-2 affords the model the ability to query past time
steps while ignoring intervening words (and representations). This
may be a key distinguishing feature between models such as GPT-
2 and recurrent architectures when applied to the task of modeling
incremental left-to-right processing, language acquisition, or even
human memory. And while GPT-2 has met with considerable
success in respect of modeling prediction, and its neural correlates,
during human sentence processing (e.g. Goldstein, Zada, Buchnik,
et al., 2020; Heilbron, Armeni, Schoffelen, et al., 2020) such
studies do not (yet) track the representational content that changes
in lockstep with the unfolding language and that underpins those
behaviors. This is a further reason to understand better the nature
of the brain’s own propagation dynamics (c.f. Study 3 above).
With respect to the representations that our RNNs propagated
forwards in time, we cannot with any certainty claim that these
were object tokens, although their behavior (probed in
representational space using similarity) suggests that, functionally
at least, they were doing something close. But how close? Elman’s
SRNs (Elman, 1993) operationalized tokenization as the
distinction between different exemplars of the same lexical item
occurring at different positions in a sentence (as in e.g. “boys who
boys chase chase boy”). The trajectory associated with each
instantiation constrained the network’s prediction of which words
might plausibly come next. In his examples, lexical items were
grounded in an interaction between their contexts across time and
the (emergent) representations activated at each point of that time.
In essence, each token lexical item was distinguished from each
other on the basis of its unique trajectory through the network’s
hidden state space (see Altmann & Ekves, 2019, for further
discussion of tokenization). The onion in our examples propagated
forwards from one sentence to another in a different
representational form depending on the subject and verb with
which it was associated in the first sentence (and, in Study 2,
modulated by whether the onion being referred to in that second
sentence was marked as the version after the chopping or before).
That is, the onion had a trajectory across time that encoded both
the specific, dynamically changing contexts in which it had
occurred (c.f. episodic memory) and the different regions of
semantic space associated with those contexts and its own
representational affordances (c.f. semantic memory). And just as
we cannot “see” in a human brain distinct representations for
distinct token objects, so we cannot see them in the RNN — we are
forced in both cases to infer their existence from analyses of these
systems’ behaviors in different contexts. We do not know whether
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the RNN individuates representations as tokens that accrue
attributes (with each successive experience of the token) that are
bound to that “specific” token (e.g. that specific onion as unique
from all others), or whether it experiences each instance of a token
as unique, with each attribute modifying that instance without a
commitment to all instances of the token having the same identity.
It may be impossible to distinguish between these two possibilities,
in networks and indeed, even in humans (for discussion of the
continuity of representational existence of tokens across
discontinuities in perceptual experience, see Altmann & Ekves,
2019). To the extent that the RNN encodes objects as trajectories,
and to the extent that each trajectory is unique and has continuity
of representational existence (through forward propagation), the
manifestation of a word in a sentence is the manifestation of a
token that, functionally, has a unique identity.

CONCLUSIONS

What have we learned from the studies we have reported here
— that a “black box” that is relatively opaque to representational
analysis can mimic human behavior (itself the behavior of a “black
box”)? In fact, it is only opaque to a classical analysis that assumes
bounded representations that can be teased apart one from the
other. It is only opaque to an analysis that assumes a combinatorial
semantics predicated on discrete combinations of discrete
elements. We would claim that the propagation of
“representations” (in quotes to reflect their non-discrete realization
within a dynamical system) within and across sentences in our
RNNs is combinatorial semantics (perhaps not in the sense of
mapping onto formal semantic structures, but certainly in the sense
of driving, and predicting, behavior — c.f. Glenberg, 1997, and
certainly in the sense of the dynamic combination of
representations through time to create new representations that are
more than just the conjunction of the original). Much further work
is required to understand the nature of the semantic space that our
networks acquired, and to understand how that space changed
dynamically as each sentence we gave it unfolded through time.
But the purpose of this first set of studies was to explore whether
RNNs can encode even the most basic properties of event
structure, and a prerequisite for that was to explore whether they
could predict the same behaviors that indicate that we humans
encode event structure. In demonstrating that RNNs can indeed do
that (for an admittedly limited set of event-relevant behaviors), we
have identified a need to further investigate human processing: For
example, more recent testing of the Davis and Schijndel (2020)
networks found that for the contexts “Two knights were attacking
a dragon” or “A knight and his squire were attacking a dragon”
and the continuation “the dragon killed one of the knights”, the
networks showed lower surprisal for a subsequent sentence
starting “The knight tickled by.” when it was two knights than
when it was a knight and his squire. The networks anticipated a
particular structure rather than particular content (that is, even
though the verb “fickled” is contextually anomalous, unlike
“killed”, the networks still preferred the participle interpretation
over the main verb interpretation). In fact, Altmann and Steedman
(1988; fn 5 p.202) predicted that a relative clause modifier,
regardless of content, should indeed be preferred in a two-referent
context. And yet, to our knowledge this has never been tested — a
prerequisite to evaluating the models’ performance on such cases
(we also successfully modelled the influence of situational context
on syntactic ambiguity resolution reported by Tyler & Marslen-
Wilson, 1977, using the exact same stimuli. But again, we were

able to show that the models predicted the human behavior on the
basis of structural (cataphoric) dependencies across clauses, and
we do not know whether the reported human behaviors were
similarly based on structural cues). And with respect to Study 3,
we know of no study that has explicitly considered how the
representation of the subject of a sentence (or the object, or any
other discourse entity) propagates forward, moment-by-moment,
into successive sentences that maintain discourse cohesion. We
found that the less constraining the verb in that first sentence, the
greater the integrity of the representation of the subject that
propagated forward into successive sentences. We interpreted this
result in terms of “network perturbation” — a kind of computational
salience. The propagation dynamics we observed in that study may
be a fundamental property of dynamical systems, or of the brain,
or of both. Recent advances in using RSA across time in
neuroimaging (e.g. Choi et al., 2020) suggest that equivalent
studies with human neuroimaging may be possible — allowing
researchers to identify if equivalent patterns emerge in the brain,
and where.

The answer, therefore, to where this leaves us, is that, at
worst, consideration of the event-representational abilities of
RNNs has opened up novel avenues of research into the human
mind that have not, hitherto, been considered. At best, we have a
computational tool whose analysis may enable us to ground basic
properties of event representation in the dynamics of a
computational machinery that acquires, encodes, and deploys
experiential knowledge across the senses, and which most likely
encodes events as the encoding of their consequences for how the
language, or corresponding world, can unfold. Our claim in this
respect is that the RNNs, once trained, are more than just a model
of the language — the knowledge they encode is a product of the
input and of the computational dynamics of the system. Those
dynamics constrain the model to acquiring certain kinds of
knowledge in certain kinds of ways, and they constrain the model
to subsequently deploying that knowledge in particular ways. It is
undoubtedly the case that these networks would, with further
testing, fail more than they would succeed. But their successes thus
far suggest avenues of research, on representational content and its
propagation, in the computational, behavioral and neuroscientific
domains that in fact render the future success or failure of these
particular networks moot.

DEDICATION

Thirty years ago, Jacques Mehler asked GTMA: What have
we learned about sentence processing in the past 10 years? The
provocation was explicit in his prosody, a domain of language that
was foremost on his mind at that time, having moved away from
sentence processing research some time before (at least 10 years
before, one would assume from that prosody). But Jacques’
provocation was a method. It taught those of us around him to
think, and to identify our passions, and to use those passions to
create our science. Jacques was a mentor whose impact
undoubtedly contributed to the collaboration that led to the current
work. He is missed. GTMA, October 2020.
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SUPPLEMENTAL MATERIALS
A. Similarity Analyses

For Study 1, we correlated human ratings and a measure of model
similarity. The human ratings were gathered from existing works
(Hindy et al., 2012; Prystauka, et al., in preparation). We
additionally conducted another rating study to confirm the
consistency of these ratings (detailed in the main text). Participants
were given sentences drawn from pairs of events, which either
described a minimal change event (e.g., “the chef will weigh the
mango”) or a substantial change (e.g., “the chef will blend the
mango”). They were asked to rate the degree to which the object
(in this case mango) changed. This resulted in low scores for the
minimal change stimuli (e.g., 1.83 for weighing the mango) and
large scores for the substantial change stimuli (e.g., 5.92 for
blending the mango). We used the minimal change stimulus from
a pair as a baseline, deriving a difference score that accounts for
the pairwise structure (e.g., the pair of weighing and blending a
mango would have a difference score of 4.09). For the models, we
also generated a difference score accounting for this pairwise
structure: For each sentence we had a baseline (the indefinite form
of the relevant object; e.g., “a mango”). We gathered the internal
representation (the activation pattern at the final hidden layer of
the LSTM) for this indefinite baseline and calculated its similarity
(normalized cosine similarity) to the internal representation at the
end of the stimulus (again, the activation pattern at the final hidden
layer of the LSTM, after processing e.g., “the chef will weigh the
mango”). The similarity should be greater for the minimal change
events (e.g., for “the chef will weigh the mango” the similarity to
the baseline was 0.60) than the substantial change events (e.g.,
for “the chef will blend the mango” the similarity to the baseline
was 0.56). Objects may have different similarities, so to enforce
the pairwise structure of the stimuli we took the difference in
similarity (here 0.04). Thus, for each pair we had a human change
of state score and a model change of state score. We then found
the correlation between the human and model scores across the
pairs of stimuli.

B. Study 1 linear mixed effects models

We used a linear mixed effects model in R (R Core Team, 2020)
to confirm the patterns from Study 1. Similarity between model
representations at the object and the baseline (ObjSim) was
included as a fixed effect factor predicting human degree-of-
change ratings. Random by-item and by-model effects were
included with ObjSim by-model random slopes. We simplified the
model only if it failed to converge. Across the set of human degree-
of-change ratings, we found significant main effects of ObjSim for
both sets of models. For the Wikipedia models: = -2.11, SE =
022,z =-941,p <0.001. For the Web models: B =-1.69, SE =
045,z = -3.75, p < 0.001. To estimate the amount of variance
explained by these models we used the method detailed in
Nakagawa et al. (2017), using the implementation in the R package
performance (https://github.com/easystats/performance) which
returns a conditional R? value giving the amount of variance
explained by both the fixed and random effects and a marginal R?
value giving the amount of variance explained by just the fixed
effects. For the Wikipedia models, the conditional R? was 0.20 and
the marginal R? was 0.03. For the Web models, the conditional R?
was 0.10 and the marginal R* was 0.01. These estimates of

variance explained are lower than those calculated from Pearson's
r (r> = .04 for both the Wikipedia and Web models).

C. Study 3 linear mixed effects models

We used linear mixed effects models as in Study 1 to confirm the
patterns observed in Study 3. Verb entropy was included as a fixed
effect predicting degree of subject-object similarity across the 3
sentences. Random by-item and by-model effects were included
with verb entropy by-model random slopes. We simplified the
model only if it failed to converge. Across the three sentences we
found a significant main effect of verb entropy for both the
Wikipedia models and the Web models. The one exception was
that the Wikipedia models found no effect at the object in Sentence
2. Wikipedia models: First object 5 =0.01, SE =0.001, z = 6.80,
p < 0.001; second object (f = 0.003, SE = 0.002, z = 1.56, p =
0.12), third object ( =0.004, SE =0.002,z=2.08,p =0.04). Web
models: First object B = 0.01, SE = 0.001, z = 2.62, p = 0.009);
second object 3 =0.01, SE=0.01,z =2.15, p = 0.03; third object
p=0.01,SE=0.01,z=3.34,p <0.001. The conditional R? ranged
from 0.70-0.79 while the marginal R? value was quite small at
0.01. The equivalent estimates of variance explained from the
Pearson’s correlations ranged from .02 to .05.

D. Testing additional computational models

Training instantiations of large scale models in NLP is extremely
computationally costly (especially with regards to BERT and
GPT-2 where large numbers of dedicated GPUs, and even TPUs,
are used for training). We therefore used existing models. GPT-2
XL and BERT base (uncased) were used via Hugging Face’s API
(Wolf, Chaumond, Debut, et al., 2020). We additionally made use
of 6 RoBERTa models from Warstadt, Zhang, Li, et al. (2020).
RoBERTa is an optimized version of BERT which included some
hyperparameter tweaks, more data, and removed the next-sentence
prediction objective in BERT (Liu, Ott, Goyal, et al., 2019). These
tweaks improved on BERT’s performance, although the overall
architecture is similar (same number of layers, use of attention,
etc.). Warstadt et al. (2020) trained RoBERTa models on varied
amounts of the data from BERT. We made use of three of their
models trained on 100M tokens and three trained on 1B tokens via
HuggingFace (https:/github.com/nyu-mll/msgs). Finally, we used
the four ELMo English models provided by AllenNLP (Gardner,
Grus, Neumann, et al., 2018): a small, medium, and original model
trained on the same 1B tokens (they differ in number of
parameters, with the original as specified in Peters et al., 2018),
and a large model trained on 5.5B tokens. We caution explicit
generalizations from the results of these models. Given our
compute limitations, we are unable to tease apart the conflicting
influences of number of parameters and data size.




