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Abstract

Humans seamlessly make sense of a rapidly changing environment, using a seemingly limitless
knowledgebase to recognize and adapt to most situations we encounter. This knowledgebase is
called semantic memory. Embodied cognition theories suggest that we represent this knowledge
through simulation: understanding the meaning of coffee entails re-instantiating the neural states
involved in touching, smelling, seeing, and drinking coffee. Distributional semantic theories suggest
that we are sensitive to statistical regularities in natural language, and that a cognitive mechanism
picks up on these regularities and transforms them into usable semantic representations reflecting
the contextual usage of language. These appear to present contrasting views on semantic memory,
but do they? Recent years have seen a push toward combining these approaches under a common
framework. These hybrid approaches augment our understanding of semantic memory in important
ways, but current versions remain unsatisfactory in part because they treat sensory-perceptual and
distributional-linguistic data as interacting but distinct types of data that must be combined. We
synthesize several approaches which, taken together, suggest that linguistic and embodied
experience should instead be considered as inseparably entangled: just as sensory and perceptual
systems are reactivated to understand meaning, so are experience-based representations endemic
to linguistic processing; further, sensory-perceptual experience is susceptible to the same
distributional principles as language experience. This conclusion produces a characterization of
semantic memory that accounts for the interdependencies between linguistic and embodied data



that arise across multiple timescales, giving rise to concept representations that reflect our shared
and unique experiences.
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Semantic memory is the lens through which we comprehend the environments which we pass
through. Two approaches—embodied cognition and distributional semantics—offer what are, at first
glance, competing accounts of semantic memory. We describe interdisciplinary efforts to combine
these approaches into one framework.

Introduction

Understanding how we represent meaning—the core problem of semantic memory research—is
central to understanding how humans operate in the world: how we recognize things as the same
even when encountered in different conditions, how we remember objects and events and deploy
that knowledge in different situations, how we know (or think we know) what is similar to what, and
how we communicate with each other despite experiencing the world differently. None of these
would be possible without semantic memory.* This paper will explore and review complementarities
between two influential accounts of meaning—embodied cognition and distributional semantic
models. Embodied and distributional accounts have typically been presented as contrasting views of
semantic memory, owing largely to a lack of cross-disciplinary communication: embodied theories
typically derive from experimental psychology, while distributional semantic models emerge from

1 While we refer to “semantic memory” as a singular construct in order to focus specifically on two accounts of
meaning, we do not intend to suggest that semantic memory independently supports the representation of
meaning. Rather, our contention is that semantic memory is part of an integrated memory system, influencing
and influenced by, among other cognitive functions, episodic memory as well as more implicit forms of
memory like procedural memory (for discussion, see Yee et al., 2018).



computational linguistics. In this paper, we synthesize several approaches to reconciliation, which
taken together suggest that embodied experience is a type of distributional information similar to
that captured in distributional semantic models? (e.g., Andrews et al., 2009; Hoffman et al., 2018;
Johns & Jones, 2012; Steyvers, 2010), and language and its distributional characteristics reflect a
type of embodied experience (e.g., Clark, 2006; Dove, 2018, 2019; Borghi et al., 2019). That is, we
can consider distributional and embodied information as fundamentally the same type of data,
entangled and mutually influencing each other across multiple timescales. The representations that
emerge through this interaction reflect the characteristics of our unique and shared environments.

In this paper, we first provide a brief historical review of embodied and distributional semantic
models, outlining major advantages and criticisms of each. Next, we review reconciliation efforts and
outline remaining issues. We then synthesize these interdisciplinary efforts toward reconciliation,
providing a rough sketch of how both embodied and distributional knowledge can be obtained via
the same sensitivity to regularities present in experience-based input. This sensitivity to experience-
based input engenders semantic representations reflective of our shared and unique experiences.
We conclude by offering suggestions for future (interdisciplinary) work considering embodied and
distributional data in a common framework.

HISTORICAL OVERVIEW

Modern semantic memory research has chiefly operated on two independent paths: distributional
semantic models (e.g., Landauer & Dumais, 1997; Griffiths et al., 2007; Lund & Burgess, 1996) and
embodied cognition (e.g., Allport, 1985; Barsalou, 1999; Damasio, 1989; Glenberg, 1997). Until the
last decade or so, these fields have been largely independent due to apparent differences in the
characterization of meaning.? Distributional models suggest that meaning can be inferred from the
contexts (almost always operationalized as language contexts) in which words appear—this is well
illustrated by Firth’s (1957) supposition that “You shall know a word by the company it keeps.”
Meaning in (language-based) distributional models is derived from and represented in terms of
statistical patterns of co-occurrence with other words in a language. Embodied approaches, on the
other hand, suggest that meaning is grounded in our sensory, perceptual, motor, interoceptive, and
introspective experiences with the world (e.g., Barsalou, 1999). Context is also important in
embodied theories (for reviews see, e.g., Yee & Thompson-Schill, 2016; Yeh & Barsalou, 2006), but
this context is situated or grounded: to access the meaning of a word, we simulate the bodily states
associated with experiencing that concept ‘in the wild’ (Barsalou, 1999), and this simulation varies
according to the current context as well as an individual’s history.

While recent years have seen growing interest in reconciling distributional and embodied
perspectives in a common model (e.g., Andrews et al., 2009), such approaches often consider the
information (i.e., the input) that goes into distributional models and embodied information as two

2 Throughout this paper, we use the word “distributional” in two different ways: distributional models refer to
the cognitive mechanisms, implemented in formal models, that are sensitive to distributional statistics, and
that are traditionally implemented using language as the input. Distributional statistics (or distributional
information) refers to properties of the environment (whether language or other). While language input is
distributional in nature, we do not intend to conflate language input with distributional statistics—other sorts
of input (e.g., perceptual) are similarly characterized by distributional statistics.

3 We characterize these differences as “apparent” because we view them primarily as a result of
methodological differences due to the type of input that is the focus of study in different disciplines.



distinct types of data in need of combination. And so the question remains: what is the relationship
between distributional and embodied information? Before speculating on a solution, we provide a
historical review of embodied and distributional semantics as they have developed independently.

Embodied semantics
Philosophical and historical background

Embodied approaches can be traced back to British Associationism of the 17th and 18th centuries.
According to empiricist philosopher John Locke (1689), conceptual knowledge is built through
experiencing the environment, where the environment is experienced in terms of elementary
perceptual attributes, and concept representations are built incrementally upon these attributes.
Thus, coffee is represented in terms of its color, smell, taste, manipulability, and so on (more
contemporarily, this idea was articulated by Allport, 1985; see Figure 1). For David Hume (1748),
conceptual knowledge could also be traced to world experiences. Critically, Hume suggested that
consistent association of the senses leads those sensory experiences to become connected in the
mind, such that with more frequent conjoint experience, the appearance of one sensory experience
can activate its associates.
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Figure 1. A cartoonized brain depicting how distributed brain regions might contribute to conceptual
knowledge under an embodied cognition framework. Pink areas are roughly meant to correspond to
cortical regions, and grey areas are roughly meant to correspond to subcortical areas. Figure
adapted from Allport (1985) and Thompson-Schill et al. (2006). This figure is licensed under a CC-BY
4.0 International License.

In 1900, neurologist Carl Wernicke outlined a neurophysiological framework that incorporated many
of the principles of British Associationism, bearing strong resemblance to contemporary theories of
conceptual knowledge (e.g., Damasio, 1989). Wernicke (1900) suggested that recurring stimuli
engender the same pattern of activation with each instantiation, and those stimuli retain their
mutual association as a memory trace distributed across sensory-perceptual areas. For instance,
when we drink coffee, we jointly experience its smell, taste, and color, and this association is not
only reflected in joint activation of olfactory, gustatory, and visual brain systems, but their (neural)
association is also retained in memory. These associative networks are established via neural
connectivity (in more contemporary terms, between convergence zones, which are bundles of



neurons sensitive to co-occurring inputs, e.g., the convergence of information about sound and
visual motion; Damasio, 1989). And once an associative network is established, Wernicke suggested
(as Hume did centuries earlier), partial activation of the network can trigger activation of the entire
network, where the network corresponds to all information associated with the concept (Gage &
Hickok, 2005). This means that any experience associated with the concept can activate relevant
conceptual knowledge—for example, because the word coffee tends to be experienced in the same
settings as actually experiencing coffee, merely hearing or seeing the word will activate a network of
sensory and perceptual brain areas involved in seeing, smelling, and tasting coffee (see also
Pulvermiiller, 2013, who describes these phenomena in terms of Hebbian learning, and Yee &
Thompson-Schill, 2016, who describe conceptual knowledge as “the flow of activation [...] through a
network of connections that cumulatively reflect prior experience”, p. 1022, reflecting Jeff Elman’s
(1990) approach to knowledge formation using simple recurrent networks; see Box 1).

Box 1. The simple recurrent network.

The simple recurrent network (SRN; Elman, 1990) is a classic example of how, through accumulated
experience over time with words (or, in principle, any experience), concepts and categories can
emerge without explicit feedback. The network retains a copy of its previous state (i.e., the context)
and uses this to predict the next element in a sequence. Importantly, although the hidden units of
the SRN are undifferentiated computationally, the representations that emerge after learning—
which reflect accumulated knowledge about the contexts in which we experience things—are not
undifferentiated functionally. Due in part to this computational plasticity, SRNs have been used to
understand how abstract structure emerges in many contexts, including both embodied (e.g., Yee &
Thompson-Schill, 2016, who based their account on conceptual principles borrowed from the SRN)
and distributional (e.g., Hoffman et al., 2018 —an implemented model) experience frameworks. In
our view, then, knowledge of a concept is no more than the knowledge of the contexts (whether
embodied or distributional) in which that concept (or the word(s) that refer to it) occurs (see also
Elman, 2009; Yee & Thompson-Schill, 2016). Understanding the computational principles of the SRN
is critical to understanding some of the concepts—as well as the implemented hybrid models (e.g.,
Hoffman et al., 2018)—discussed in this paper. We also discuss insights generated by the SRN with
respect to abstraction and cognition more broadly elsewhere (Davis et al., 2020b).
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Figure 2. A simple recurrent network. Each layer consists of one or more units, and information (e.g.,
words, semantic features) flows first from input units, to hidden units, and then to output units. At
every timepoint, the context units propagate to the hidden layer, giving the network access to its
‘memory’ of prior states.

Empirical evidence

Is it true that areas of the brain that, for example, are involved in perceiving the color of coffee or in
guiding action when sipping from a mug also become active when thinking about the color
associated with coffee or when reading the word sip? Sometimes. Early neuroimaging studies did
not find direct overlap between brain regions involved in perception and action and the
representation of sensorimotor information. Rather, they observed that, e.g., areas of the brain
adjacent to those involved in perceiving color are activated when we say what an object’s most
typical color is (e.g., brown for coffee) as compared to saying its name (Chao & Martin, 1999; Martin
et al., 1995), and that when passively reading action verbs implicating movement of the hands, legs,
and mouth, areas adjacent to the corresponding motor region are activated for words like sip (Hauk
et al., 2004). However, more recent studies have observed evidence of direct overlap. For instance,
when color-perception areas were identified using a more demanding color perception task (i.e.,
making subtle judgments about differences in the hues of presented colors) direct overlap was
observed between areas involved in color perception and color knowledge (Simmons et al., 2007).
This implies that at least some part of the system supporting color perception also represents color
knowledge (for further discussion, see Martin, 2016). In addition to the visual system, similar
findings have been reported for motor (in premotor cortex; Willems et al., 2010), auditory (e.g.,
Kiefer et al., 2008), and emotional systems (Ziegler et al., 2018). These are only a few examples of
evidence supporting embodied cognition—there is now abundant empirical work (described in
greater detail elsewhere; e.g., Barsalou, 2016; Meteyard et al., 2012) suggesting that conceptual
knowledge is (at least partially) sensorimotor-based.




Critiques

Arguments advanced against embodied cognition have pointed out that this overlap or adjacency of
activation need not imply that sensory and/or motor regions are functionally involved in conceptual
processing. Rather, it has been argued that activation in these areas may simply be a (downstream)
consequence of conceptual processing that actually occurs without any functional involvement of
sensory or motor regions (see, e.g., Mahon & Caramazza, 2008; Mahon, 2015). However, there is
now evidence from neuropsychological, neurostimulation, and behavioral studies suggesting that
not only are the same regions for perceiving objects active when thinking about those objects in
their absence, but also that those regions are to some degree necessary for comprehension. For
example, compared with age-matched controls, patients with Parkinson’s disease have difficulty
accessing the meaning of words and sentences referring to motor action (Fernandino et al., 20133,
2013b; see also Buccino et al., 2018). This suggests that the motor system (which is compromised in
Parkinson’s disease) is necessary for understanding the meaning of manually experienced concepts
(for related evidence in various sensorimotor domains and in both healthy and patient populations,
see e.g., Davis et al., 2020c; Trumpp et al., 2013; Vukovic et al., 2017; Yee et al., 2013).

Another critique levied against embodied approaches is that there are many concepts, e.g., idea or
justice (typically referred to as “abstract” concepts) for which it is not obvious that sensory or motor
systems would be routinely involved when we experience them. We have only just begun to
understand the representational substrates of such concepts, but there is emerging evidence that
we understand concepts like justice at least in part by re-activating the emotion systems involved in
feeling justice (e.g., Kousta et al., 2011; Vigliocco et al., 2013), the social systems involved in
understanding justice (e.g., Rice et al., 2018), the memory systems involved in encoding
environmental cues to justice (e.g., Davis et al., 2020a), the interoceptive systems that process
internal bodily sensations associated with experiencing an instance of justice (e.g., perhaps a
steadying heartrate and reduction in muscle tension; Connell et al., 2018), the magnitude systems
involved in comprehending quantity (e.g., Wilson-Mendenhall et al., 2013), the temporal brain
systems involved in processing time and duration (for discussion, see Binder et al., 2016; Davis et al.,
2020a) and the linguistic systems involved in communicating about justice (e.g., Borghi & Zarcone,
2016).

Concepts that are supported by these systems more than by sensory or motor systems tend to be
considered more “abstract.” But even highly abstract concepts like idea involve some sensorimotor
experience (see Lynott et al., 2020). Indeed, it is increasingly accepted that abstractness is a
continuum—there is no real dichotomy between abstract and concrete concepts. Instead, where a
given concept falls on the abstract-to-concrete continuum is determined by the relative
contributions of sensorimotor vs. these other systems (for further discussion, see Vigliocco et al.,
2009; for a more detailed discussion of “abstract” concepts and embodied frameworks, see Borghi
et al., 2017, 2019).

Further, implicit in experience-based, embodied theories of semantic memory is the idea that
conceptual representations are individualized. That is, because we have different experiences, my
representation of coffee is different from that of my local barista. But if we all have different
semantic representations (e.g., if coffee means something different to me than it does to you), how
can we communicate with each other? This poses a difficult—though not insurmountable—problem



for embodied theories (see e.g., Yee & Thompson-Schill, 2016). Later in this paper, we speculate on
how uniting distributional and embodied data under a common framework provides a potential
solution to both the problem of abstract concepts and the question of how shared meaning is
achieved.

Overall, it is becoming increasingly evident that in order to comprehend the meaning of something,
it helps to (at least partially) reengage the neural systems that are involved in actually experiencing
that thing. This suggests that information in these neural systems constitutes part of a concept’s
meaning. However, most of the effects seen in embodied cognition research are relatively small: the
ability to identify a hammer, for example, is not completely lost when a patient suffers damage to
motor areas of the brain. One might imagine that this lack of catastrophic interference is a problem
for embodied accounts. But there are two reasons for this lack of catastrophic interference. First,
because concepts are distributed over multiple sensorimotor modalities (e.g., motor, visual,
auditory; see Figure 1), when one modality is interfered with, much of the representation may still
be available. Second, concepts are also supported by knowledge that is not directly sensorimotor.
This includes information that does not have obvious correlates in any individual sensory or motor
modality (and may be, e.g., emotional, social, or interoceptive, or stored in higher levels of the
semantic system), and it also includes language. Indeed, although much of semantic knowledge
comes from direct experience with objects and actions, much also comes from spoken (and written)
language—we have knowledge of places that we have never been, and of people we have never
met. We turn now to semantic knowledge derived from language input, before considering how
sensorimotor and language knowledge may mutually reinforce one another.

Distributional semantics
Philosophical and historical background

Distributional semantic models have been developed based on the distributional hypothesis, which
suggests that a word derives meaning as a function of the ‘company it keeps’—that is, the words and
linguistic contexts with which it tends to occur (e.g., Firth, 1957; Harris, 1954). While some have
suggested that the learning mechanisms in distributional models are general mechanisms that could
in principle handle any type of data* (e.g., events, experiences; Landauer & Dumais, 1997; see also
Gulnther et al., 2019), the vast majority of implemented models use linguistic corpus data as input.).
Thus, in line with the field more broadly (see e.g., Lenci, 2018), in this paper, when we refer to
distributional models we are generally referring to models based on language corpus data.

Despite the fact that meaning in distributional semantic models is almost invariably derived from
language input only, they have been remarkably successful at capturing, in broad strokes, important
aspects of the organization of semantic knowledge. For instance, these models can make human-like
judgments about category membership, and about overall semantic similarity (for review, see Lenci,
2018). In what follows, we present a brief overview of the main properties of the primary families of
distributional semantic models. This will set the stage for later discussion of hybrid models that
incorporate sensory-perceptual data.

4 An exciting new field of work has begun to implement distributional principles for visual scenes (Sadeghi et
al., 2015), often using computer vision techniques (e.g., Bruni et al., 2014).



The philosophical history of distributional theories can be traced to Wittgenstein (1953), who
suggested that word meaning is characterized by a word’s use in language. Distributional
frameworks, like embodied semantics, share the notion that our knowledge is derived from
association. But in contrast to embodied semantics, which emphasize sensory, motor, and action
associations, in distributional models, concept representations are computed from word-based co-
occurrence vectors, on which we can measure the similarity of the contexts in which words appear
(e.g., our representation of coffee includes lexical associations with the words mug, sip, and brown,
and is related to tea because both tend to occur in similar contexts). That is, words have meaning by
virtue of the frequency with which they co-occur with other words, or the extent to which they tend
to occur in similar contexts. How exactly those statistical patterns of co-occurrence are extracted
and analyzed differs among distributional approaches.

Types of models

Below, we provide a rough characterization of how different types of distributional semantic models
build semantic knowledge. For a more complete picture of current and future directions, we refer
the reader to Boleda (2020) and Lenci (2018), as well as Baroni et al. (2014), Mandera et al. (2017),
and Wingfield and Connell (2019).

Early psychological research on distributional semantic models was dominated by count models,
which count how many times a word appears in particular contexts, or how many times other words
co-occur with it (for discussion, see also Baroni et al., 2014; Mandera et al., 2017). Of the count
models, latent abstraction models—the most well-known of which is latent semantic analysis (LSA;
Landauer & Dumais, 1997)—have had perhaps the most lasting impact on the field. These models, in
line with the distributional hypothesis, compute co-occurrence frequencies across large corpora of
linguistic contexts. They then apply a dimensionality reduction technique to the data to derive a
matrix that is meant to reflect higher-order semantic relationships. This dimensionality reduction
also results in patterns of similarity that extend beyond co-occurrence: that is, if words tend to occur
in similar (but not necessarily the same) contexts, they come to be related. These features allow the
models to perform well on semantic similarity judgments and English-language tests for nonnative
speakers (Landauer & Dumais, 1997).

Passive co-occurrence models are similar in their counting of word co-occurrences across contexts,
but they do not perform dimensionality reduction as in latent abstraction models. The most well-
known of these models is the hyperspace analog to language (HAL; Lund & Burgess, 1996). Passive
co-occurrence models slide a moving window (window size is typically on the order of several words
or a sentence) over text corpora, allowing for incremental learning of semantic representations.
These models thus generate representations based on a plausible yet simplified mechanism of
human learning, that is, Hebbian learning: they accumulate co-occurrence information over time.
Compared to LSA, the representations that emerge from HAL are sparse, but still predict semantic
judgments. More modern instantiations (e.g., COALS; Rohde et al., 2009) perform even better on
such tasks by changing the method of calculating co-occurrence and applying a decomposition
technique (Riordan & Jones, 2011).

In Bayesian models, instead of simply counting co-occurrence statistics (e.g., relying on principles of
Hebbian learning), the problem of human semantic representation is formulated as one of rational
statistical inference. The most influential of these has been the topic model (Griffiths et al., 2007).



Such models think of semantic organization probabilistically: any given document is a probability
distribution of topics, and each topic is a probability distribution of words, where the goal of the
model is to estimate the distribution of topics in a given text (as opposed to representing a word in
high-dimensional space). Importantly, these models are generative in that they can predict the
composition of future documents given a particular mixture of topics. The topic model also allows
words to have different meanings depending on the context: since topics are probability
distributions over words, a given word differs in its likelihood of appearing in any number of topics,
and thus, that word may have different meanings across topics. Such models are successful in
accounting for synonym judgments, semantic priming in ambiguous words, and so on (see Griffiths
et al., 2007).

Predict models on the other hand share with co-occurrence models the reliance on a context
window to understand word meaning, but instead of simply counting those co-occurrences and
representing them in vector form, predict models use neural networks to derive error-driven
predictions about word characteristics. The most prominent family of predict models is Google’s
word2vec (Mikolov et al., 2013). These models learn to predict either the current word given the
context (usually a window of a researcher-determined width surrounding the target word; the
continuous bag of words model), or the context words given the current word (skip-gram model).
One major advantage of predict models is that the cognitive mechanism—prediction—is well
supported as an actual mechanism of human learning (see Mandera et al., 2017, for discussion). And
the reader may notice that the contingencies between words and their contexts that are encoded by
such models are similar to those learned in models such as the simple recurrent network (SRN; see
Box 1), in which recurrence through time, coupled with a task to explicitly predict what will come
next (Elman, 1990), leads to emergent representations that reflect the encoding of such
contingencies. Whereas the basic SRN does not scale up to large vocabularies or long sequences of
text (because information about long-distance dependencies is, in effect, swamped by more local
information), contemporary predict models such as word2vec and its successors, as well as recurrent
neural networks (RNNs) with long short-term memory units (LSTMs), which embody the basic
computational principles of the SRN while avoiding problems with long-distance dependencies, do
scale®. But the nature of the contingencies they are capable of encoding is relatively similar in all
cases.

Critiques

Although the semantic “knowledge” generated by distributional semantic models can approximate
human responses in many semantic tasks, from a psychological perspective, these models are of
interest only to the extent that the principles that shape their operation lend insight into human
semantic processing. While some specify basic mechanisms that might correspond to the way
humans encode associations (e.g., passive co-occurrence models are loosely based on Hebbian
learning), other mechanisms (e.g., LSA’s dimensionality reduction) incorporate no method for
learning across time (as is present in generative models like the topic model) or for prediction (as is
present in predict models), making them seem implausible (i.e., children presumably do not acquire
millions of words only to reduce them into semantic vectors at a later date). For this reason, some
distributional models have been criticized as being mere methodological tools, not theories of

5 To vocabularies of tens of thousands of words.
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semantic memory (Perfetti, 1998). The most common critique, however, is one that—regardless of
the psychological plausibility of the mechanisms by which they build semantic knowledge—applies
to all distributional semantic models that use only linguistic corpus data as input: unlike embodied
theories, typical distributional models provide no mechanism by which the symbols they process
(i.e., words) are linked to the concepts to which they refer—words are understood through their
relations to other words, but how do any of those words latch onto meaning out in the world? That
is, how are they “grounded” in the real world?

The problem of symbol grounding is illustrated by Searle’s (1980) Chinese room problem (see also
Harnad, 1990). A variant of the problem goes like this: You are a monolingual speaker of English and
isolated in a room with nothing but a huge book. You have been told how to use this book to look up
(based on appearance) any sequence of Chinese characters to find a second “response” sequence.
An interlocutor is outside the room, and you must communicate with her using only slips of paper
slid under the door. She slides a piece of paper to prompt a response from you, and you search the
book for an appropriate response. Ultimately, you find the unfamiliar squiggles that match her
squiggles and submit your response. She is under the impression that you understand Chinese, but
do you?

Of course not (at least, not in any intuitive sense of understanding). It has been argued that, like you
in the Chinese room, distributional models do not truly understand situations because, like the
symbols in the Chinese room problem, the symbols in distributional models are not tied to real
experience (Glenberg & Robertson, 2000). To illustrate the contrast, imagine sitting in your
apartment, writing a paper while finishing a coffee, when suddenly the ceiling springs a leak. You
gulp down your coffee and position the mug under the leak while you search for a larger vessel. How
did you know to use the mug in this novel way? According to embodied theories, you perceive the
mug’s affordances (i.e., possibilities for action; Gibson, 1979; see also Glenberg, 1997), that is, it can
hold liquid. You also have experience pouring liquid into mugs.

But what about distributional models? At least some fail at this task. Glenberg and Robertson (2000)
generated several settings (e.g., “Zoey’s roof sprung a leak while she was writing”) and a set of
sentences including an afforded (e.g., “In place of a bucket, she used her mug to catch the water”), a
non-afforded (e.g., “In place of a bucket, she used her computer to catch the water”), and a related
sentence (e.g., “In place of a bucket, she used a pot to catch the water”). Human participants had no
difficulty distinguishing the afforded sentence from the non-afforded sentence: the afforded
sentence was rated as a sensible solution. However, LSA did not make the same distinction—that is,
cosine values were the same between afforded, non-afforded, and related sentences, and they did
not predict human sensibility judgments.

While distributional semantic models that take only linguistic data as input may be unable to make
use of affordances, what if distributional models are fed with embodied data (e.g., Johns & Jones,
discussed below)? Are they then able to use that sensory-perceptual data—as humans are—to
recognize the affordances of the mug? Can they then recognize that a mug can be used to
temporarily contain a leaky ceiling?
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RECONCILIATION: A REVIEW OF HYBRID APPROACHES

In addition to differences in the type of data considered important for representing meaning, a
divide across disciplinary boundaries has exaggerated the difference between distributional and
embodied approaches. For example, while embodied theorists typically rely on methods from
experimental psychology and cognitive neuroscience, researchers working on distributional
semantics are more likely to use computational methodologies. In the last decade, however, several
attempts have been made to unite distributional and embodied approaches under a single
framework. Here, we discuss the progress made by two lines of research. First, in computational
cognitive science, researchers have implemented “hybrid” computational models that combine
proxies for embodied data (typically feature-based representations, e.g., McRae et al., 2005) with
distributional language data to assess whether combining the two types of data produces more
human-like semantic representations (e.g., Andrews et al., 2009). Second, experimental cognitive
science has examined the relative contributions of embodied and distributional language
information to human lexical-semantic processing (e.g., Louwerse & Jeuniaux, 2010).

Hybrid (distributional + embodied) models

The first attempt to combine distributional linguistic data and a proxy for embodied data in a single
model (Andrews et al., 2009; see also Steyvers, 2010) used a probabilistic Bayesian model based on
the topic model (Griffiths et al., 2007) to create a joint distribution of distributional linguistic data
and perceptual feature-based data. The semantic representations that emerged from this joint
distribution matched human behavior better than if the model was fed either (a) each distribution
individually or (b) both distributions independently. This suggests that the emergent representations
are not simply the sum-total of feature-based and distributional linguistic representations: it is the
interaction between experiential and linguistic data that allows for more human-like semantic
knowledge to emerge. (Andrews et al., 2009). An important feature of this model is that it can
essentially perform inference, providing a potential solution to the grounding problem for words
experienced only via language. For example, let’s say we have considerable sensorimotor experience
with coffee, but we have never drunk tea before. Via these sensorimotor experiences with coffee,
we have a grounded representation of coffee, where coffee is typically hot, has a dark color, is drunk
for its stimulating properties, is served in a mug, and so on. The words coffee and tea happen to
occur in similar contexts. Thus, even if the model has never directly experienced tea, it ascribes
qualities to tea that are typical of (already grounded) words seen in similar contexts—that is, coffee.

More recent efforts have made this inference process more explicit by training a model to infer the
sensory-perceptual properties of a concept based on the lexical associates of that concept (Johns &
Jones, 2012; Hoffman et al., 2018). For example, Johns and Jones (2012) used a global memory
model, inspired by Barsalou’s (1999) perceptual symbol systems, that integrated distributional data
(word-by-context co-occurrence vectors from Wikipedia; Willits et al., 2007) and multiple proxies for
sensory-perceptual data (feature norms, McRae et al, 2005; Vinson & Vigliocco, 2008; and modality
exclusivity norms, which indicate the extent to which a given concept is experienced across five
modalities, Lynott & Connell, 2009). Not every word in the linguistic corpus has a sensory-perceptual
representation, and so the model iteratively generates inferred perceptual representations for those
words based on their similarity to all of the words that do have some sensory-perceptual
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representation. But can these inferred perceptual representations use affordances to differentiate
situations?

To test this, they used action words (e.g., hang) to stand in for sentences like “Hang the coat on the
_____"®and computed their average cosine with object words—the object words consisted of
realistic words, afforded words, and non-afforded words (e.g., rack, vacuum, and cup, respectively),
as in Glenberg and Robertson (2000). The average cosine was highest for realistic words (rack), then
for afforded words (vacuum), and lowest for non-afforded words (cup) when the inferred perceptual
representations were used. Thus, although distributional semantic models may not be able to
recognize affordances when provided with only language input (Glenberg & Robertson, 2000), when
the model had access to perceptual data, it was able to ‘recognize’ affordances, just as humans do.
The model was also sensitive to sensory-perceptual-based priming effects, where for example
typewriter primes piano due to overlap in how the objects are manipulated, despite not sharing an
associative or taxonomic semantic relationship (Myung, Blumstein, & Sedivy, 2006). These findings
show that equipping a distributional-style model with sensory-perceptual property data may
effectively simulate embodied phenomena.

Most hybrid computational models have, like Johns & Jones (2012), approached the problem of
combining distributional and sensory-perceptual data by inputting distributional linguistic data, in
the form of semantic vectors that have been derived from large corpora of text, alongside a proxy
for embodied data into a distributional model. However, even without using previously derived
semantic vectors as the language input, it is possible for a system to learn semantic relationships
from co-occurrence. This was demonstrated by Hoffman et al. (2018), who combined an SRN (Elman,
1990; see Box 1) with a hub-and-spoke architecture, an influential model of semantic memory which
suggests that conceptual knowledge consists of spatially distributed modality-specific information
that converges in a central hub (Rogers et al., 2004; for reviews, see Lambon Ralph et al., 2017,
Patterson et al., 2007). The model derives semantic representations from event-like sequences of
verbal inputs and sensorimotor units, and predicts verbal and sensorimotor output (see Hoffman et
al., 2018, Figure 1). Within this model, the hub functionally corresponds to the hidden layer
illustrated in Box 1, and as such receives, together with the current input, a record of its prior state
(essentially an encoding of its successively prior states). This prior state encodes contextual
dependencies accumulated over recent experience.

The success of Hoffman et al.’s (2018) model shows that semantic representations can be derived
from a continuous sequence of events, as we might imagine the process unfolding in humans. And
like the other hybrid models described in this section, their model can also ascribe sensorimotor
properties to concepts that do not (in the model) originally have them, as a function of their co-
occurrence with concepts that do.

Thus, a critical upshot of the models described in this section is that they shed light on potential
mechanisms by which concepts that have not been directly experienced can acquire an embodied
representation: as long as we have experienced some concepts (e.g., coffee), we can use their
sensory-perceptual characteristics to build a representation of concepts that appear in similar

6 The change from sentences to words was made because LSA (and the model of Johns & Jones, 2012) is not a
model of sentence comprehension.
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contexts but which we have not directly experienced (e.g., tea).” Through this kind of “acquired
embodiment,” these models also suggest a mechanism by which more abstract concepts can acquire
sensory-perceptual associations (e.g., death occurs in similar contexts to funeral, which is associated
with sensory-perceptual properties like black).

This is not to say that these more abstract concepts would be devoid of meaning if they did not
“acquire” embodiment from language. Rather, sensorimotor experience may form our earliest
representations of all concepts, even highly abstract ones. However, because more abstract
concepts tend to occur in variable, spatiotemporally extended contexts (consider that game can
refer to a game of chess or a game of hockey, or that understanding justice entails apprehension of
events spread over space and time; see Davis et al., 20204, for discussion), they are abstracted
further away from those experiences (see Pulvermiiller, 2013). In addition, as discussed earlier,
systems for affect, social cognition, magnitude, temporal properties, interception, and so on may all
contribute to the embodied experience of more abstract concepts, and thus, their representation
(see also Barsalou, 1999; Vigliocco et al., 2009).

Thus, the “acquired embodiment” mechanism proposed by Hoffman et al. (2018) might allow us to
infer, from similar concepts, experiential properties for concepts which have relatively fewer or less
stable sensorimotor associations, but it need not be the only path to embodiment of highly abstract
concepts, nor is it exclusive to paradigmatically abstract concepts. The following section further
probes the interdependencies between distributional linguistic and embodied data and reviews
experimental evidence that questions whether this acquired embodiment mechanism is plausible for
humans when learning new concepts.

Effects of embodied and distributional linguistic information on semantic processing

The previous section reviewed possible architectures within which distributional linguistic and
embodied data might be integrated. The experimental literature, however, complicates this picture:
embodied and distributional linguistic data may be so entangled at multiple timescales—from
learning and acquisition to real-time processing—that trying to treat them as separate and
postulating a mechanism by which they are then combined may create a false dichotomy, and may
be implausible as a mechanism by which humans incorporate distributional language and embodied
data in building semantic representations.

To what extent does linguistic information contribute to effects that have typically been considered
as emerging due to embodiment alone? Embodied cognition investigations of lexical-semantic
processing typically do not assess the extent to which other factors (e.g., distributional variables like
word cooccurrence frequencies) could explain effects attributed to embodiment. For example,
evidence of perceptual simulation in language processing comes from studies showing that words
are processed faster when placed on a screen in their iconically canonical location—attic is
processed faster when presented at the top of a screen, while basement is processed faster when
presented at the bottom of a screen (Zwaan & Yaxley, 2003). This has been taken to suggest that we
simulate situations when processing language. The symbol interdependency hypothesis (Louwerse,

’Note that Barsalou’s (1999) perceptual symbol systems can also, in principle, perform this function: as long as
requisite component simulators have been activated (e.g., cup, dark, hot, stimulating), the system can exhibit
productivity by combining known perceptual symbols into a novel concept.
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2007), however, suggests that sensory-perceptual information is reflected in our language, and
because of this, effects of embodied variables can also emerge via frequency-based characteristics of
language usage. For instance, given that English is read not only from left to right but (like most
languages) from top to bottom, this account predicts that in written English, when a sentence
contains both attic and basement, the relative location of those physical spaces will be reflected in
the word order—i.e., the word attic will come first more often than basement. This is indeed the
case. Moreover, word-order frequency explains the location iconicity effect better than a measure of
location iconicity itself does, suggesting that language experience not only reflects but may also
modulate the effects of perceptual experience on language processing (Louwerse, 2008).

This is not to say that embodied factors do not play an important role in lexical-semantic processing
(we saw in our historical review of embodied semantics that they do). Rather, in this case, the
distributional characteristics of a language roughly encode embodied characteristics of perceptual
experience, and these ‘less precise’ representations can stand in for full perceptual simulation during
rapid conceptual processing, whereas resources necessary for more detailed perceptual simulation
are deployed during slower language processing or when processing images (Louwerse & Connell,
2011; Louwerse & Jeuniaux, 2010; see also Barsalou et al., 2008; Connell, 2019; Connell & Lynott,
2013; Louwerse et al., 2015; Santos et al., 2011). As another example, there is evidence that a
word’s meaning is influenced by the embodied properties of the contexts in which it appears.
Specifically, when the emotional valence, arousal, and concreteness (properties that arguably reflect
embodied experience) of a word’s average context® are analyzed, each of these properties explains
significant variance in lexical decision times and recognition memory for the word above and beyond
that explained by these same properties of the word itself (Snefjella & Kuperman, 2016). Thus,
experiential properties of the (average) contexts a word appears in become a part of that word’s
meaning (see also Elman, 2009; Yee & Thompson-Schill, 2016), and these properties are reflected in
lexical-semantic processing. Data like these suggest that distributional linguistic and embodied
information are intimately linked: the way we use language—and the distributional characteristics
that reflect this usage—is reflective of our embodied experience.

This link is complicated further by work showing that, in addition to language taking on properties of
our embodied experience, our sensory-perceptual experiences can be shaped by language. That is,
labelling an object can carve boundaries into our experience, changing the way we activate
knowledge about object concepts (e.g., Edmiston & Lupyan, 2015) at the earliest stages of visual
processing (Boutonnet & Lupyan, 2015), and even determining whether we see something or not
(Lupyan & Spivey, 2010; Lupyan & Ward, 2013). For further discussion of how language affects
perception, see Lupyan et al. (2020). All of this work is consistent with the take-home message of
this review: what have traditionally been considered “embodied” and “distributional” language-
based data are so interconnected that a meaningful divide cannot be made.

Another important question is how embodied and distributional linguistic information interact in
learning: how much can we learn from distributional linguistic information, and how do words come
to take on the embodied properties of the contexts in which they occur? As described above, it has
been proposed that we can learn embodied meanings of words through acquired embodiment (e.g.,
Hoffman et al., 2018), whereby sensory-perceptual properties can be attributed to, for example,

8 In this case, the five words preceding and five words following each instance of a word in a large corpus.

15



more abstract concepts by virtue of them sharing linguistic contexts with concrete concepts, (e.g., a
relatively abstract concept like death might become associated with black via associations with
funeral). And indeed, novel words can acquire embodied-like representations from purely linguistic
experience (Glnther et al., 2020). Specifically, after novel words were learned in contexts implying
upwards or downwards movements, action-congruency effects were found if participants had to
access word meaning. This suggests that embodied representations can be acquired via contextual
association (see also Snefjella et al., 2020; Snefjella & Kuperman, 2016). However, when people
learned similar concepts but were tested for action-congruency effects using a task that did not
require accessing the words’ meanings (Glnther et al., 2018) no action-congruency effects were
observed. Thus, short-term experience with language may not be enough to produce effects
typically interpreted as reflecting obligatory engagement of embodied conceptual knowledge, but
such embodied properties of the linguistic context in which a novel word is learned may be recruited
when we explicitly consider the meaning of that novel word.

Learning novel words in “distributional” language contexts also seems to facilitate category
learning—so long as the novel words are presented with known words that have coherent semantic
organization (Ouyang et al., 2017). For instance, even if you don’t know anything about yerba mate,
finding out that it is associated with tea, cups, and cafes, can facilitate recognition of sentences
containing the novel word, assimilate novel words into categories (either animals or vehicles), and
inductively associate novel words with the appropriate referents (Ouyang et al., 2017). In contrast, if
you only know that yerba mate is associated with other unknown words like a bombilla and a
guampa’® is unlikely to help you understand its meaning. Knowing about the associates of yerba
mate informs our semantic knowledge of yerba mate only if the associates are meaningful to us. The
reader may notice the relevance of the symbol-grounding problem here—a new word defined in
terms of other, ungrounded words cannot acquire deep meaning.

The findings reviewed above are consistent with the suggestion that distributional models that take
only language data as input may be adequate for broadly capturing semantic similarity, and
emerging evidence suggests that novel words may, to some degree, acquire embodied
representations by virtue of the embodied properties of the contexts in which they appear (Glinther
et al., 2020; Snefjella et al., 2020; see also Snefjella & Kuperman, 2016). An interesting open
question is whether embodied experience alone (e.g., Ottl et al., 2017) also facilitates category
learning, or whether language is necessary for carving categorical boundaries into our experience
(for review, see Lupyan, 2012). While it seems that some categories—dense ones, with highly
overlapping sensory-perceptual features across exemplars (e.g., dark, hot beverages)—might form
without language (though their formation is no doubt aided by language), others with more abstract
rules for category membership might rely on language and its co-occurrence properties (e.g.,
mammals; Markman & Hutchinson, 1984; Sloutsky, 2010; see Davis & Yee, 2019, for discussion; see
also Lupyan, 2009).

° Yerba mate is a kind of tea popular in South America. It is typically drunk out of a hollowed gourd called a
guampa and sipped from a flattened metal straw with a filter to strain the infusion. The straw is called a
bombilla.
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Summary of hybrid approaches

The experimental work described in this section suggests that distributional linguistic information is
parasitic on perceptual data—language structure comes to reflect our embodied experiences. On
the converse, embodiment can, to some degree, emerge solely as a result of distributional
associations (Ginther et al., 2020; but see Ginther et al., 2018). It is clear that there are non-trivial
interdependencies between distributional linguistic information and embodied-perceptual
information (see also Andrews et al., 2014). The way that language is structured reflects the nature
of our shared embodied experiences (e.g., Louwerse, 2008), and the way we perceive our embodied
experiences is shaped by language (see Lupyan, 2012; Lupyan et al., 2020 for reviews). Thus, some
form of hybrid approach that accommodates these interdependencies is necessary for building an
adequate account of semantic memory. But what is the nature of the interdependency between
distributional language and embodied data, and how does it emerge? In the sections below, we
discuss possible solutions for these issues—solutions that emerge from the accounts reviewed
above—and suggest some concrete steps for future cross-disciplinary work.

IMPLICATIONS FOR THEORIES OF SEMANTIC MEMORY

As described earlier, all distributional models propose that semantic knowledge arises as a function
of some cognitive mechanism which attends to, processes, and stores the statistical regularities and
associations in natural language. Although some studies have emphasized differences between
embodied and distributional accounts of semantic memory (e.g., Glenberg & Robertson, 2000), this
mechanism is not so different from the mechanism by which sensorimotor information comes to
comprise concept representations under embodied cognition theories, where the simultaneous
firing of neuron assemblies sensitive to, for example, touch, taste, sight, and speech lead to the
association of those experiences over time (e.g., Barsalou, 1999; Damasio, 1989; Pulvermdiller,
2013). And indeed, in most hybrid computational models, distributional linguistic and sensory-
perceptual data are processed by the same mechanism (e.g., Andrews et al., 2009; Hoffman et al.,
2018). Just as reading or hearing a word entails activation of its (linguistic) contextual associates for
distributional language models, reading or hearing a word entails activation of its sensory, motoric,
and perceptual associates for embodied accounts. We know words by the “linguistic and perceptual
company they keep” (Louwerse, 2018).

In line with the conclusions offered by hybrid accounts, it is perfectly compatible with embodied
theories for linguistic labels to develop in concert with other perceptual attributes of a concept, with
the difference simply being that the event giving rise to a linguistic label is the perception of an
auditory or visual word instead of a non-linguistic sensation, perception, or action. The words are
simply integrated into associated simulators in memory. Indeed, what is sometimes cited as a strong
embodied view (Barsalou, 1999; for discussion, see Meteyard et al., 2012) actually captures both
types of information, emphasizing statistical linguistic processing and embodiment. In this way,
distributional and embodied information are necessarily linked from the earliest stages: there is no
meaningful separation between them, because they are never separate. An accompanying idea is
that linguistic labels represent “just” another feature of a concept, albeit one which can activate
conceptual knowledge in important (or privileged) ways (for discussion, see e.g., Connell, 2019;
Lupyan, 2012; Yee, 2019). Just as there are differences in the time course of activation for different
sensorimotor features (e.g., function and shape; Yee et al., 2011), labels may be activated faster
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than detailed sensorimotor information. These differences need not reflect qualitative differences
between “types” of feature information, but rather differences in the level of abstraction at which
each feature operates (or the contextual appropriateness of a given feature; for discussion, see Yee
& Thompson-Schill, 2016). Moreover, the label is invariant in the sense that whereas some features
may be more or less active, or entirely absent on different instantiations of a concept, the label is a
feature that, being generally applicable, can act as an anchor that binds more variable features.
Perhaps because of their invariance, labels are effective as a computationally inexpensive way to
access conceptual knowledge.

In hybrid (embodied + distributional) computational models that incorporate sensory-perceptual
information, a mechanism is built-in by which words that refer to things that are not experienced
through the senses (i.e., words for highly abstract concepts) can “acquire” embodiment. But the
evidence reviewed here suggests that even the most abstract concepts involve some sensorimotor
experience, and that linguistic labels develop in concert with perceptual symbols. Accordingly, it is
not necessary for words to ‘acquire’ embodiment through contextual association. Rather, even
highly abstract concepts can start out with embodied associations, and then be abstracted further
away from embodied experience if they occur in more variable contexts (as concepts that are
relatively more abstract do; Hoffman et al., 2013). In such cases, language may be more important
for representation and processing because of its ability to help organize regularities in the
environment, especially when those regularities are more variable or are organized via abstract rules
not consistent across sensory-perceptual experiences (for developmental review, see Markman,
1990). For example, the linguistic label in conjunction with a prefrontal cortex-based selection
mechanism may help to group sparsely distributed features of a category (e.g., in highly abstract
concepts like equivalence; Sloutsky, 2010) and/or language may augment the environment by
mediating recall and directing attention toward the features of categories and concepts (Clark, 2006;
see also Lupyan, 2012; Althaus & Mareschal, 2014; for a broad overview of these issues, see Yee,
2019).

In addition to their ability to help group perceptual features into categories, words can also acquire
category structure through language context alone in an experimental setting (Ouyang et al., 2017),
suggesting that learning from language context alone may also be sufficient to learn the types of
categories important to a shared understanding of how to categorize the world. Further pursuit of
these issues might yield insight into a common critique of embodied theories: if our concept
representations are built of individual experiences, how is it that we can communicate at all? How
do we know what each other is talking about? One rebuttal to this concern is that we largely
experience the same world—while many personal experiences are different, you and your neighbors
have roughly the same experiences with cars, coffee, and carpets, even if my favorite barista’s coffee
representation engenders a more detailed simulation than mine does. This may be good enough—
perfect representational overlap is not required to achieve successful communication, as long as
there is sufficient overlap given the current communicative context (for discussion see, e.g.,
Casasanto & Lupyan, 2015; Connell & Lynott, 2014; Taylor & Zwaan 2009; Yee & Thompson-Schill,
2016). But if we can acquire category structure through linguistic context alone, this suggests that
language usage is also a powerful mechanism through which we gain access to—and assimilate new
information into—categories of knowledge that are largely agreed upon within human societies.
Given the impressive successes of distributional models at predicting major semantic phenomena
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like similarity judgments and priming, it should be no surprise that learning through language usage
facilitates learning categories and relationships thought to be shared across individuals.

The ideas synthesized here lead to a position similar in many ways to that of Clark (2006) and later,
Dove (2018, 2019), who suggest that language provides another domain of perceivable objects (e.g.,
words) which are used—in the same way as the sensory-perceptual properties of the external
environment—for building coherent semantic representations through our fundamental ability to
learn through statistical and associative regularities. That is, in a sense, their argument is also that
distributional linguistic and embodied information should not be considered distinct.'® Having words
for things helps us to abstract and organize across regularities in the environment, and the
distributional properties of language may also help us to abstract and organize across regularities in
words so as to reflect category structure shared across individuals. These features of language allow
our conceptual knowledge to be largely shared across members of a community, even if finer-
grained details differ with individual experience.

NEXT STEPS

Cross-disciplinary approaches must be a continuing point of emphasis for further progress on these
issues. Experimental approaches must investigate how distributional and embodied information
interact in learning and representation, and what type of learning is necessary for embodied-like
representations to emerge (e.g., Ottl et al., 2017; Giinther et al., 2020). Neural investigations of this
may be particularly important: given that embodied theories hold that sensory-perceptual
experience gives rise to concept representation in modality-specific neural systems, one might ask: is
there a mechanism by which linguistic context-derived representations can come to be encoded in
sensorimotor cortex? From a different angle, how do particular properties of our environments
influence (or become influenced by) distributional properties of a language? And to what extent do
these effects of our environments on distributional statistics of language interact with individual
differences in embodied experiences (e.g., discounting vs. reinforcing experiences)?

Developmental science also has a crucial role to play towards understanding the roles of embodied
and distributional language experience in building semantic memory. At the heart of both
approaches is the idea that experience is central to building conceptual representations, and that the
resultant structure of semantic memory reflects those idiosyncratic experiences. Work on embodied
cognition suggests that sensory, perceptual, and motor experience contributes to concept
representations—that is, the more you experience something in a particular modality, the more its
corresponding concept is represented in that modality (e.g., Davis et al., 2020c, Yee et al., 2013).
However, these investigations typically measure experience at a single timepoint, when conceptual
knowledge is assessed. Understanding the process by which experiences are laid down in
sensorimotor systems over time is a ripe topic for future work. Even more poorly understood is how
the interaction between embodied and distributional language information might contribute to
developmental milestones. Using computational models (e.g., Andrews et al., 2009), it may be

10 |f one takes the perspective that sensorimotor experience is continuous, whereas language is discrete, it
may seem that they are fundamentally distinct types of data and thus ought to be processed differently. But in
fact, linguistic information is not discrete—the speech signal, for example, like sensorimotor experience, is
continuous in nature, but can be perceived categorically (Liberman et al., 1967; see Harnad, 2003, 2017 for
review). The act of labelling may be particularly important for categorical perception (e.g., Lupyan, 2017).
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possible to derive empirical predictions about how children might represent the meaning of
concepts that they have not yet directly experienced, by virtue of distributional associations with
other, related concepts. Addressing these sorts of questions will engender a better understanding of
how linguistic and embodied inputs interact from acquisition.

Computational approaches should, on the other hand, acknowledge that distributional language and
embodied information cannot be considered separately, and that even so-called abstract concepts,
which seem at first to be dependent on the distributional statistics of language, are not amodal—
that is, even what have traditionally been considered quite abstract concepts (e.g., truth) have
embodied components (see Borghi et al., 2017, for review; see also Lynott et al., 2020). The
controlled semantic cognition approach (Hoffman et al., 2018) is a step in this direction because it
implements distributional properties (i.e., language co-occurrence) in real time using an SRN.
However, this approach might benefit from allowing the sensorimotor nodes to reflect a broader
array of properties (e.g., affective qualities) and from allowing all concepts (even highly abstract) to
have some embodied experience from the outset. In addition to accounting for the context-
dependent sensorimotor representation of concepts, such models should strive to account for the
sorts of semantic phenomena (e.g., semantic similarity) that distributional models are so well-suited
to explaining. If concept representations emerge from episodes of joint linguistic and embodied
experience, another interesting avenue might be to integrate principles from exemplar-based
models (e.g., Hintzman, 1986). Such models can incorporate perceptual and linguistic
representations within a single memory trace and learn semantic representations from these
exemplar memory traces (Johns & Jones, 2015).

Emerging work also suggests that there may be no “one-size-fits-all” distributional language model.
That is, one model may capture behaviour better for a certain type of semantic task, while another
model may be better at capturing behaviour for a different one (Wingfeld & Connell, 2019). Model
characteristics (e.g., model type, corpus size and quality) influence how well the model captures
behavior, and these effects differ as a function of the level at which the task operates—for instance,
some distributional models optimally capture synonym judgment (a relatively low-level task), while
others better explain semantic decisions (a relatively high-level task). Likewise, different semantic
relationships are best captured by different distributional language models (Brown et al., 2020).
Humans may flexibly use distributional semantic knowledge as a function of situational demands
(Wingfield & Connell, 2019), much in the same way that embodied representations may be recruited
to differing degrees depending on the context (see e.g., Connell, 2019; Yee & Thompson-Schill,
2016). This work calls for a better understanding of the interplay between (different types of)
distributional language knowledge and (different types of) sensory-perceptual knowledge as
conceptual processing unfolds. Models that integrate the properties described in this review could
potentially explain (a) the rich, detailed, embodied properties of semantic representations (e.g.,
reliance of particular concepts on the manual modality, as in hammer), (b) broad semantic relations
that are shared across individuals (e.g., similarity across concepts, where hammer is related to
wrench), and (c) how distributional and embodied information interact to build concept
representations based on experiential association.
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CONCLUSIONS

Embodied and distributional perspectives, at first glance, appear to be distinct approaches to
answering the same question: how do humans understand and represent the meaning of things?
Because early distributional models handled only linguistic data, it was suggested that the
representations they contained made no contact with the world. That is, they were ungrounded. But
there is no reason for “distributional” to mean “linguistic,” and it is increasingly recognized that
distributional and embodied approaches are not mutually exclusive, and are even complementary
(for further discussion, see Glnther et al., 2019). While hybrid computational approaches have
treated sensory-perceptual and distributional information as distinct but interacting data types,
experimental approaches and embodied theories suggest that this divide has little traction in reality.
Distributional and embodied information are entangled through experiential association from the
earliest stages of conceptual development. The implications of this for the emergence of embodied
concept representations and implementation of these principles in formal architectures remain ripe
topics for cross-disciplinary endeavors.
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