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computational linguistics. In this paper, we synthesize several approaches to reconciliation, which 

taken together suggest that embodied experience is a type of distributional information similar to 

that captured in distributional semantic models2 (e.g., Andrews et al., 2009; Hoffman et al., 2018; 

Johns & Jones, 2012; Steyvers, 2010), and language and its distributional characteristics reflect a 

type of embodied experience (e.g., Clark, 2006; Dove, 2018, 2019; Borghi et al., 2019). That is, we 

can consider distributional and embodied information as fundamentally the same type of data, 

entangled and mutually influencing each other across multiple timescales. The representations that 

emerge through this interaction reflect the characteristics of our unique and shared environments.  

In this paper, we first provide a brief historical review of embodied and distributional semantic 

models, outlining major advantages and criticisms of each. Next, we review reconciliation efforts and 

outline remaining issues. We then synthesize these interdisciplinary efforts toward reconciliation, 

providing a rough sketch of how both embodied and distributional knowledge can be obtained via 

the same sensitivity to regularities present in experience-based input. This sensitivity to experience-

based input engenders semantic representations reflective of our shared and unique experiences. 

We conclude by offering suggestions for future (interdisciplinary) work considering embodied and 

distributional data in a common framework. 

HISTORICAL OVERVIEW 

Modern semantic memory research has chiefly operated on two independent paths: distributional 

semantic models (e.g., Landauer & Dumais, 1997; Griffiths et al., 2007; Lund & Burgess, 1996) and 

embodied cognition (e.g., Allport, 1985; Barsalou, 1999; Damasio, 1989; Glenberg, 1997). Until the 

last decade or so, these fields have been largely independent due to apparent differences in the 

characterization of meaning.3 Distributional models suggest that meaning can be inferred from the 

contexts (almost always operationalized as language contexts) in which words appear—this is well 

illustrated by Firth’s (1957) supposition that “You shall know a word by the company it keeps.” 
Meaning in (language-based) distributional models is derived from and represented in terms of 

statistical patterns of co-occurrence with other words in a language. Embodied approaches, on the 

other hand, suggest that meaning is grounded in our sensory, perceptual, motor, interoceptive, and 

introspective experiences with the world (e.g., Barsalou, 1999). Context is also important in 

embodied theories (for reviews see, e.g., Yee & Thompson-Schill, 2016; Yeh & Barsalou, 2006), but 

this context is situated or grounded: to access the meaning of a word, we simulate the bodily states 

associated with experiencing that concept ‘in the wild’ (Barsalou, 1999), and this simulation varies 
according to the current context as well as an individual’s history. 

While recent years have seen growing interest in reconciling distributional and embodied 

perspectives in a common model (e.g., Andrews et al., 2009), such approaches often consider the 

information (i.e., the input) that goes into distributional models and embodied information as two 

 
2 Throughout this paper, we use the word “distributional” in two different ways: distributional models refer to 

the cognitive mechanisms, implemented in formal models, that are sensitive to distributional statistics, and 
that are traditionally implemented using language as the input. Distributional statistics (or distributional 

information) refers to properties of the environment (whether language or other). While language input is 

distributional in nature, we do not intend to conflate language input with distributional statistics—other sorts 

of input (e.g., perceptual) are similarly characterized by distributional statistics.  
3 We characterize these differences as “apparent” because we view them primarily as a result of 
methodological differences due to the type of input that is the focus of study in different disciplines.  
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neurons sensitive to co-occurring inputs, e.g., the convergence of information about sound and 

visual motion; Damasio, 1989). And once an associative network is established, Wernicke suggested 

(as Hume did centuries earlier), partial activation of the network can trigger activation of the entire 

network, where the network corresponds to all information associated with the concept (Gage & 

Hickok, 2005). This means that any experience associated with the concept can activate relevant 

conceptual knowledge—for example, because the word coffee tends to be experienced in the same 

settings as actually experiencing coffee, merely hearing or seeing the word will activate a network of 

sensory and perceptual brain areas involved in seeing, smelling, and tasting coffee (see also 

Pulvermüller, 2013, who describes these phenomena in terms of Hebbian learning, and Yee & 

Thompson-Schill, 2016, who describe conceptual knowledge as “the flow of activation […] through a 
network of connections that cumulatively reflect prior experience”, p. 1022, reflecting Jeff Elman’s 
(1990) approach to knowledge formation using simple recurrent networks; see Box 1).  

Box 1. The simple recurrent network. 

The simple recurrent network (SRN; Elman, 1990) is a classic example of how, through accumulated 

experience over time with words (or, in principle, any experience), concepts and categories can 

emerge without explicit feedback. The network retains a copy of its previous state (i.e., the context) 

and uses this to predict the next element in a sequence. Importantly, although the hidden units of 

the SRN are undifferentiated computationally, the representations that emerge after learning—
which reflect accumulated knowledge about the contexts in which we experience things—are not 

undifferentiated functionally. Due in part to this computational plasticity, SRNs have been used to 

understand how abstract structure emerges in many contexts, including both embodied (e.g., Yee & 

Thompson-Schill, 2016, who based their account on conceptual principles borrowed from the SRN) 

and distributional (e.g., Hoffman et al., 2018—an implemented model) experience frameworks. In 

our view, then, knowledge of a concept is no more than the knowledge of the contexts (whether 

embodied or distributional) in which that concept (or the word(s) that refer to it) occurs (see also 

Elman, 2009; Yee & Thompson-Schill, 2016). Understanding the computational principles of the SRN 

is critical to understanding some of the concepts—as well as the implemented hybrid models (e.g., 

Hoffman et al., 2018)—discussed in this paper. We also discuss insights generated by the SRN with 

respect to abstraction and cognition more broadly elsewhere (Davis et al., 2020b). 
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Figure 2. A simple recurrent network. Each layer consists of one or more units, and information (e.g., 

words, semantic features) flows first from input units, to hidden units, and then to output units. At 

every timepoint, the context units propagate to the hidden layer, giving the network access to its 

‘memory’ of prior states. 

Empirical evidence 

Is it true that areas of the brain that, for example, are involved in perceiving the color of coffee or in 

guiding action when sipping from a mug also become active when thinking about the color 

associated with coffee or when reading the word sip? Sometimes. Early neuroimaging studies did 

not find direct overlap between brain regions involved in perception and action and the 

representation of sensorimotor information. Rather, they observed that, e.g., areas of the brain 

adjacent to those involved in perceiving color are activated when we say what an object’s most 
typical color is (e.g., brown for coffee) as compared to saying its name (Chao & Martin, 1999; Martin 

et al., 1995), and that when passively reading action verbs implicating movement of the hands, legs, 

and mouth, areas adjacent to the corresponding motor region are activated for words like sip (Hauk 

et al., 2004). However, more recent studies have observed evidence of direct overlap. For instance, 

when color-perception areas were identified using a more demanding color perception task (i.e., 

making subtle judgments about differences in the hues of presented colors) direct overlap was 

observed between areas involved in color perception and color knowledge (Simmons et al., 2007). 

This implies that at least some part of the system supporting color perception also represents color 

knowledge (for further discussion, see Martin, 2016). In addition to the visual system, similar 

findings have been reported for motor (in premotor cortex; Willems et al., 2010), auditory (e.g., 

Kiefer et al., 2008), and emotional systems (Ziegler et al., 2018). These are only a few examples of 

evidence supporting embodied cognition—there is now abundant empirical work (described in 

greater detail elsewhere; e.g., Barsalou, 2016; Meteyard et al., 2012) suggesting that conceptual 

knowledge is (at least partially) sensorimotor-based.  

INPUT UNITS
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Critiques 

Arguments advanced against embodied cognition have pointed out that this overlap or adjacency of 

activation need not imply that sensory and/or motor regions are functionally involved in conceptual 

processing. Rather, it has been argued that activation in these areas may simply be a (downstream) 

consequence of conceptual processing that actually occurs without any functional involvement of 

sensory or motor regions (see, e.g., Mahon & Caramazza, 2008; Mahon, 2015). However, there is 

now evidence from neuropsychological, neurostimulation, and behavioral studies suggesting that 

not only are the same regions for perceiving objects active when thinking about those objects in 

their absence, but also that those regions are to some degree necessary for comprehension. For 

example, compared with age-matched controls, patients with Parkinson’s disease have difficulty 
accessing the meaning of words and sentences referring to motor action (Fernandino et al., 2013a, 

2013b; see also Buccino et al., 2018). This suggests that the motor system (which is compromised in 

Parkinson’s disease) is necessary for understanding the meaning of manually experienced concepts 

(for related evidence in various sensorimotor domains and in both healthy and patient populations, 

see e.g., Davis et al., 2020c; Trumpp et al., 2013; Vukovic et al., 2017; Yee et al., 2013).  

Another critique levied against embodied approaches is that there are many concepts, e.g., idea or 

justice (typically referred to as “abstract” concepts) for which it is not obvious that sensory or motor 
systems would be routinely involved when we experience them. We have only just begun to 

understand the representational substrates of such concepts, but there is emerging evidence that 

we understand concepts like justice at least in part by re-activating the emotion systems involved in 

feeling justice (e.g., Kousta et al., 2011; Vigliocco et al., 2013), the social systems involved in 

understanding justice (e.g., Rice et al., 2018), the memory systems involved in encoding 

environmental cues to justice (e.g., Davis et al., 2020a), the interoceptive systems that process 

internal bodily sensations associated with experiencing an instance of justice (e.g., perhaps a 

steadying heartrate and reduction in muscle tension; Connell et al., 2018), the magnitude systems 

involved in comprehending quantity (e.g., Wilson-Mendenhall et al., 2013), the temporal brain 

systems involved in processing time and duration (for discussion, see Binder et al., 2016; Davis et al., 

2020a) and the linguistic systems involved in communicating about justice (e.g., Borghi & Zarcone, 

2016). 

Concepts that are supported by these systems more than by sensory or motor systems tend to be 

considered more “abstract.” But even highly abstract concepts like idea involve some sensorimotor 

experience (see Lynott et al., 2020). Indeed, it is increasingly accepted that abstractness is a 

continuum—there is no real dichotomy between abstract and concrete concepts. Instead, where a 

given concept falls on the abstract-to-concrete continuum is determined by the relative 

contributions of sensorimotor vs. these other systems (for further discussion, see Vigliocco et al., 

2009; for a more detailed discussion of “abstract” concepts and embodied frameworks, see Borghi 

et al., 2017, 2019).   

Further, implicit in experience-based, embodied theories of semantic memory is the idea that 

conceptual representations are individualized. That is, because we have different experiences, my 

representation of coffee is different from that of my local barista. But if we all have different 

semantic representations (e.g., if coffee means something different to me than it does to you), how 

can we communicate with each other? This poses a difficult—though not insurmountable—problem 
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for embodied theories (see e.g., Yee & Thompson-Schill, 2016). Later in this paper, we speculate on 

how uniting distributional and embodied data under a common framework provides a potential 

solution to both the problem of abstract concepts and the question of how shared meaning is 

achieved.  

Overall, it is becoming increasingly evident that in order to comprehend the meaning of something, 

it helps to (at least partially) reengage the neural systems that are involved in actually experiencing 

that thing. This suggests that information in these neural systems constitutes part of a concept’s 
meaning. However, most of the effects seen in embodied cognition research are relatively small: the 

ability to identify a hammer, for example, is not completely lost when a patient suffers damage to 

motor areas of the brain. One might imagine that this lack of catastrophic interference is a problem 

for embodied accounts. But there are two reasons for this lack of catastrophic interference. First, 

because concepts are distributed over multiple sensorimotor modalities (e.g., motor, visual, 

auditory; see Figure 1), when one modality is interfered with, much of the representation may still 

be available. Second, concepts are also supported by knowledge that is not directly sensorimotor. 

This includes information that does not have obvious correlates in any individual sensory or motor 

modality (and may be, e.g., emotional, social, or interoceptive, or stored in higher levels of the 

semantic system), and it also includes language. Indeed, although much of semantic knowledge 

comes from direct experience with objects and actions, much also comes from spoken (and written) 

language—we have knowledge of places that we have never been, and of people we have never 

met. We turn now to semantic knowledge derived from language input, before considering how 

sensorimotor and language knowledge may mutually reinforce one another. 

Distributional semantics 

Philosophical and historical background 

Distributional semantic models have been developed based on the distributional hypothesis, which 

suggests that a word derives meaning as a function of the ‘company it keeps’—that is, the words and 

linguistic contexts with which it tends to occur (e.g., Firth, 1957; Harris, 1954). While some have 

suggested that the learning mechanisms in distributional models are general mechanisms that could 

in principle handle any type of data4 (e.g., events, experiences; Landauer & Dumais, 1997; see also 

Günther et al., 2019), the vast majority of implemented models use linguistic corpus data as input.). 

Thus, in line with the field more broadly (see e.g., Lenci, 2018), in this paper, when we refer to 

distributional models we are generally referring to models based on language corpus data.  

Despite the fact that meaning in distributional semantic models is almost invariably derived from 

language input only, they have been remarkably successful at capturing, in broad strokes, important 

aspects of the organization of semantic knowledge. For instance, these models can make human-like 

judgments about category membership, and about overall semantic similarity (for review, see Lenci, 

2018). In what follows, we present a brief overview of the main properties of the primary families of 

distributional semantic models. This will set the stage for later discussion of hybrid models that 

incorporate sensory-perceptual data.  

 
4 An exciting new field of work has begun to implement distributional principles for visual scenes (Sadeghi et 

al., 2015), often using computer vision techniques (e.g., Bruni et al., 2014).  
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The philosophical history of distributional theories can be traced to Wittgenstein (1953), who 

suggested that word meaning is characterized by a word’s use in language. Distributional 

frameworks, like embodied semantics, share the notion that our knowledge is derived from 

association. But in contrast to embodied semantics, which emphasize sensory, motor, and action 

associations, in distributional models, concept representations are computed from word-based co-

occurrence vectors, on which we can measure the similarity of the contexts in which words appear 

(e.g., our representation of coffee includes lexical associations with the words mug, sip, and brown, 

and is related to tea because both tend to occur in similar contexts). That is, words have meaning by 

virtue of the frequency with which they co-occur with other words, or the extent to which they tend 

to occur in similar contexts. How exactly those statistical patterns of co-occurrence are extracted 

and analyzed differs among distributional approaches. 

Types of models 

Below, we provide a rough characterization of how different types of distributional semantic models 

build semantic knowledge. For a more complete picture of current and future directions, we refer 

the reader to Boleda (2020) and Lenci (2018), as well as Baroni et al. (2014), Mandera et al. (2017), 

and Wingfield and Connell (2019). 

Early psychological research on distributional semantic models was dominated by count models, 

which count how many times a word appears in particular contexts, or how many times other words 

co-occur with it (for discussion, see also Baroni et al., 2014; Mandera et al., 2017). Of the count 

models, latent abstraction models—the most well-known of which is latent semantic analysis (LSA; 

Landauer & Dumais, 1997)—have had perhaps the most lasting impact on the field. These models, in 

line with the distributional hypothesis, compute co-occurrence frequencies across large corpora of 

linguistic contexts. They then apply a dimensionality reduction technique to the data to derive a 

matrix that is meant to reflect higher-order semantic relationships. This dimensionality reduction 

also results in patterns of similarity that extend beyond co-occurrence: that is, if words tend to occur 

in similar (but not necessarily the same) contexts, they come to be related. These features allow the 

models to perform well on semantic similarity judgments and English-language tests for nonnative 

speakers (Landauer & Dumais, 1997).  

Passive co-occurrence models are similar in their counting of word co-occurrences across contexts, 

but they do not perform dimensionality reduction as in latent abstraction models. The most well-

known of these models is the hyperspace analog to language (HAL; Lund & Burgess, 1996). Passive 

co-occurrence models slide a moving window (window size is typically on the order of several words 

or a sentence) over text corpora, allowing for incremental learning of semantic representations. 

These models thus generate representations based on a plausible yet simplified mechanism of 

human learning, that is, Hebbian learning: they accumulate co-occurrence information over time. 

Compared to LSA, the representations that emerge from HAL are sparse, but still predict semantic 

judgments. More modern instantiations (e.g., COALS; Rohde et al., 2009) perform even better on 

such tasks by changing the method of calculating co-occurrence and applying a decomposition 

technique (Riordan & Jones, 2011). 

In Bayesian models, instead of simply counting co-occurrence statistics (e.g., relying on principles of 

Hebbian learning), the problem of human semantic representation is formulated as one of rational 

statistical inference. The most influential of these has been the topic model (Griffiths et al., 2007). 
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Such models think of semantic organization probabilistically: any given document is a probability 

distribution of topics, and each topic is a probability distribution of words, where the goal of the 

model is to estimate the distribution of topics in a given text (as opposed to representing a word in 

high-dimensional space). Importantly, these models are generative in that they can predict the 

composition of future documents given a particular mixture of topics. The topic model also allows 

words to have different meanings depending on the context: since topics are probability 

distributions over words, a given word differs in its likelihood of appearing in any number of topics, 

and thus, that word may have different meanings across topics. Such models are successful in 

accounting for synonym judgments, semantic priming in ambiguous words, and so on (see Griffiths 

et al., 2007).  

Predict models on the other hand share with co-occurrence models the reliance on a context 

window to understand word meaning, but instead of simply counting those co-occurrences and 

representing them in vector form, predict models use neural networks to derive error-driven 

predictions about word characteristics. The most prominent family of predict models is Google’s 
word2vec (Mikolov et al., 2013). These models learn to predict either the current word given the 

context (usually a window of a researcher-determined width surrounding the target word; the 

continuous bag of words model), or the context words given the current word (skip-gram model). 

One major advantage of predict models is that the cognitive mechanism—prediction—is well 

supported as an actual mechanism of human learning (see Mandera et al., 2017, for discussion). And 

the reader may notice that the contingencies between words and their contexts that are encoded by 

such models are similar to those learned in models such as the simple recurrent network (SRN; see 

Box 1), in which recurrence through time, coupled with a task to explicitly predict what will come 

next (Elman, 1990), leads to emergent representations that reflect the encoding of such 

contingencies. Whereas the basic SRN does not scale up to large vocabularies or long sequences of 

text (because information about long-distance dependencies is, in effect, swamped by more local 

information), contemporary predict models such as word2vec and its successors, as well as recurrent 

neural networks (RNNs) with long short-term memory units (LSTMs), which embody the basic 

computational principles of the SRN while avoiding problems with long-distance dependencies, do 

scale5. But the nature of the contingencies they are capable of encoding is relatively similar in all 

cases. 

Critiques 

Although the semantic “knowledge” generated by distributional semantic models can approximate 

human responses in many semantic tasks, from a psychological perspective, these models are of 

interest only to the extent that the principles that shape their operation lend insight into human 

semantic processing. While some specify basic mechanisms that might correspond to the way 

humans encode associations (e.g., passive co-occurrence models are loosely based on Hebbian 

learning), other mechanisms (e.g., LSA’s dimensionality reduction) incorporate no method for 

learning across time (as is present in generative models like the topic model) or for prediction (as is 

present in predict models), making them seem implausible (i.e., children presumably do not acquire 

millions of words only to reduce them into semantic vectors at a later date). For this reason, some 

distributional models have been criticized as being mere methodological tools, not theories of 

 
5 To vocabularies of tens of thousands of words. 
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semantic memory (Perfetti, 1998). The most common critique, however, is one that—regardless of 

the psychological plausibility of the mechanisms by which they build semantic knowledge—applies 

to all distributional semantic models that use only linguistic corpus data as input: unlike embodied 

theories, typical distributional models provide no mechanism by which the symbols they process 

(i.e., words) are linked to the concepts to which they refer—words are understood through their 

relations to other words, but how do any of those words latch onto meaning out in the world? That 

is, how are they “grounded” in the real world? 

The problem of symbol grounding is illustrated by Searle’s (1980) Chinese room problem (see also 

Harnad, 1990). A variant of the problem goes like this: You are a monolingual speaker of English and 

isolated in a room with nothing but a huge book. You have been told how to use this book to look up 

(based on appearance) any sequence of Chinese characters to find a second “response” sequence. 

An interlocutor is outside the room, and you must communicate with her using only slips of paper 

slid under the door. She slides a piece of paper to prompt a response from you, and you search the 

book for an appropriate response. Ultimately, you find the unfamiliar squiggles that match her 

squiggles and submit your response. She is under the impression that you understand Chinese, but 

do you?  

Of course not (at least, not in any intuitive sense of understanding). It has been argued that, like you 

in the Chinese room, distributional models do not truly understand situations because, like the 

symbols in the Chinese room problem, the symbols in distributional models are not tied to real 

experience (Glenberg & Robertson, 2000). To illustrate the contrast, imagine sitting in your 

apartment, writing a paper while finishing a coffee, when suddenly the ceiling springs a leak. You 

gulp down your coffee and position the mug under the leak while you search for a larger vessel. How 

did you know to use the mug in this novel way? According to embodied theories, you perceive the 

mug’s affordances (i.e., possibilities for action; Gibson, 1979; see also Glenberg, 1997), that is, it can 

hold liquid. You also have experience pouring liquid into mugs.  

But what about distributional models? At least some fail at this task. Glenberg and Robertson (2000) 

generated several settings (e.g., “Zoey’s roof sprung a leak while she was writing”) and a set of 
sentences including an afforded (e.g., “In place of a bucket, she used her mug to catch the water”), a 
non-afforded (e.g., “In place of a bucket, she used her computer to catch the water”), and a related 
sentence (e.g., “In place of a bucket, she used a pot to catch the water”). Human participants had no 

difficulty distinguishing the afforded sentence from the non-afforded sentence: the afforded 

sentence was rated as a sensible solution. However, LSA did not make the same distinction—that is, 

cosine values were the same between afforded, non-afforded, and related sentences, and they did 

not predict human sensibility judgments.  

While distributional semantic models that take only linguistic data as input may be unable to make 

use of affordances, what if distributional models are fed with embodied data (e.g., Johns & Jones, 

discussed below)? Are they then able to use that sensory-perceptual data—as humans are—to 

recognize the affordances of the mug? Can they then recognize that a mug can be used to 

temporarily contain a leaky ceiling?  
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RECONCILIATION: A REVIEW OF HYBRID APPROACHES 

In addition to differences in the type of data considered important for representing meaning, a 

divide across disciplinary boundaries has exaggerated the difference between distributional and 

embodied approaches. For example, while embodied theorists typically rely on methods from 

experimental psychology and cognitive neuroscience, researchers working on distributional 

semantics are more likely to use computational methodologies. In the last decade, however, several 

attempts have been made to unite distributional and embodied approaches under a single 

framework. Here, we discuss the progress made by two lines of research. First, in computational 

cognitive science, researchers have implemented “hybrid” computational models that combine 

proxies for embodied data (typically feature-based representations, e.g., McRae et al., 2005) with 

distributional language data to assess whether combining the two types of data produces more 

human-like semantic representations (e.g., Andrews et al., 2009). Second, experimental cognitive 

science has examined the relative contributions of embodied and distributional language 

information to human lexical-semantic processing (e.g., Louwerse & Jeuniaux, 2010). 

Hybrid (distributional + embodied) models  

The first attempt to combine distributional linguistic data and a proxy for embodied data in a single 

model (Andrews et al., 2009; see also Steyvers, 2010) used a probabilistic Bayesian model based on 

the topic model (Griffiths et al., 2007) to create a joint distribution of distributional linguistic data 

and perceptual feature-based data. The semantic representations that emerged from this joint 

distribution matched human behavior better than if the model was fed either (a) each distribution 

individually or (b) both distributions independently. This suggests that the emergent representations 

are not simply the sum-total of feature-based and distributional linguistic representations: it is the 

interaction between experiential and linguistic data that allows for more human-like semantic 

knowledge to emerge. (Andrews et al., 2009). An important feature of this model is that it can 

essentially perform inference, providing a potential solution to the grounding problem for words 

experienced only via language. For example, let’s say we have considerable sensorimotor experience 

with coffee, but we have never drunk tea before. Via these sensorimotor experiences with coffee, 

we have a grounded representation of coffee, where coffee is typically hot, has a dark color, is drunk 

for its stimulating properties, is served in a mug, and so on. The words coffee and tea happen to 

occur in similar contexts. Thus, even if the model has never directly experienced tea, it ascribes 

qualities to tea that are typical of (already grounded) words seen in similar contexts—that is, coffee.  

More recent efforts have made this inference process more explicit by training a model to infer the 

sensory-perceptual properties of a concept based on the lexical associates of that concept (Johns & 

Jones, 2012; Hoffman et al., 2018). For example, Johns and Jones (2012) used a global memory 

model, inspired by Barsalou’s (1999) perceptual symbol systems, that integrated distributional data 

(word-by-context co-occurrence vectors from Wikipedia; Willits et al., 2007) and multiple proxies for 

sensory-perceptual data (feature norms, McRae et al, 2005; Vinson & Vigliocco, 2008; and modality 

exclusivity norms, which indicate the extent to which a given concept is experienced across five 

modalities, Lynott & Connell, 2009). Not every word in the linguistic corpus has a sensory-perceptual 

representation, and so the model iteratively generates inferred perceptual representations for those 

words based on their similarity to all of the words that do have some sensory-perceptual 
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representation. But can these inferred perceptual representations use affordances to differentiate 

situations? 

To test this, they used action words (e.g., hang) to stand in for sentences like “Hang the coat on the 
____”6 and computed their average cosine with object words—the object words consisted of 

realistic words, afforded words, and non-afforded words (e.g., rack, vacuum, and cup, respectively), 

as in Glenberg and Robertson (2000). The average cosine was highest for realistic words (rack), then 

for afforded words (vacuum), and lowest for non-afforded words (cup) when the inferred perceptual 

representations were used. Thus, although distributional semantic models may not be able to 

recognize affordances when provided with only language input (Glenberg & Robertson, 2000), when 

the model had access to perceptual data, it was able to ‘recognize’ affordances, just as humans do. 

The model was also sensitive to sensory-perceptual-based priming effects, where for example 

typewriter primes piano due to overlap in how the objects are manipulated, despite not sharing an 

associative or taxonomic semantic relationship (Myung, Blumstein, & Sedivy, 2006). These findings 

show that equipping a distributional-style model with sensory-perceptual property data may 

effectively simulate embodied phenomena.  

Most hybrid computational models have, like Johns & Jones (2012), approached the problem of 

combining distributional and sensory-perceptual data by inputting distributional linguistic data, in 

the form of semantic vectors that have been derived from large corpora of text, alongside a proxy 

for embodied data into a distributional model. However, even without using previously derived 

semantic vectors as the language input, it is possible for a system to learn semantic relationships 

from co-occurrence. This was demonstrated by Hoffman et al. (2018), who combined an SRN (Elman, 

1990; see Box 1) with a hub-and-spoke architecture, an influential model of semantic memory which 

suggests that conceptual knowledge consists of spatially distributed modality-specific information 

that converges in a central hub (Rogers et al., 2004; for reviews, see Lambon Ralph et al., 2017; 

Patterson et al., 2007). The model derives semantic representations from event-like sequences of 

verbal inputs and sensorimotor units, and predicts verbal and sensorimotor output (see Hoffman et 

al., 2018, Figure 1). Within this model, the hub functionally corresponds to the hidden layer 

illustrated in Box 1, and as such receives, together with the current input, a record of its prior state 

(essentially an encoding of its successively prior states). This prior state encodes contextual 

dependencies accumulated over recent experience.  

The success of Hoffman et al.’s (2018) model shows that semantic representations can be derived 

from a continuous sequence of events, as we might imagine the process unfolding in humans. And 

like the other hybrid models described in this section, their model can also ascribe sensorimotor 

properties to concepts that do not (in the model) originally have them, as a function of their co-

occurrence with concepts that do. 

Thus, a critical upshot of the models described in this section is that they shed light on potential 

mechanisms by which concepts that have not been directly experienced can acquire an embodied 

representation: as long as we have experienced some concepts (e.g., coffee), we can use their 

sensory-perceptual characteristics to build a representation of concepts that appear in similar 

 
6 The change from sentences to words was made because LSA (and the model of Johns & Jones, 2012) is not a 

model of sentence comprehension. 
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contexts but which we have not directly experienced (e.g., tea).7 Through this kind of “acquired 

embodiment,” these models also suggest a mechanism by which more abstract concepts can acquire 

sensory-perceptual associations (e.g., death occurs in similar contexts to funeral, which is associated 

with sensory-perceptual properties like black).  

This is not to say that these more abstract concepts would be devoid of meaning if they did not 

“acquire” embodiment from language. Rather, sensorimotor experience may form our earliest 

representations of all concepts, even highly abstract ones. However, because more abstract 

concepts tend to occur in variable, spatiotemporally extended contexts (consider that game can 

refer to a game of chess or a game of hockey, or that understanding justice entails apprehension of 

events spread over space and time; see Davis et al., 2020a, for discussion), they are abstracted 

further away from those experiences (see Pulvermüller, 2013). In addition, as discussed earlier, 

systems for affect, social cognition, magnitude, temporal properties, interception, and so on may all 

contribute to the embodied experience of more abstract concepts, and thus, their representation 

(see also Barsalou, 1999; Vigliocco et al., 2009).  

Thus, the “acquired embodiment” mechanism proposed by Hoffman et al. (2018) might allow us to 
infer, from similar concepts, experiential properties for concepts which have relatively fewer or less 

stable sensorimotor associations, but it need not be the only path to embodiment of highly abstract 

concepts, nor is it exclusive to paradigmatically abstract concepts. The following section further 

probes the interdependencies between distributional linguistic and embodied data and reviews 

experimental evidence that questions whether this acquired embodiment mechanism is plausible for 

humans when learning new concepts.  

Effects of embodied and distributional linguistic information on semantic processing 

The previous section reviewed possible architectures within which distributional linguistic and 

embodied data might be integrated. The experimental literature, however, complicates this picture: 

embodied and distributional linguistic data may be so entangled at multiple timescales—from 

learning and acquisition to real-time processing—that trying to treat them as separate and 

postulating a mechanism by which they are then combined may create a false dichotomy, and may 

be implausible as a mechanism by which humans incorporate distributional language and embodied 

data in building semantic representations.  

To what extent does linguistic information contribute to effects that have typically been considered 

as emerging due to embodiment alone? Embodied cognition investigations of lexical-semantic 

processing typically do not assess the extent to which other factors (e.g., distributional variables like 

word cooccurrence frequencies) could explain effects attributed to embodiment. For example, 

evidence of perceptual simulation in language processing comes from studies showing that words 

are processed faster when placed on a screen in their iconically canonical location—attic is 

processed faster when presented at the top of a screen, while basement is processed faster when 

presented at the bottom of a screen (Zwaan & Yaxley, 2003). This has been taken to suggest that we 

simulate situations when processing language. The symbol interdependency hypothesis (Louwerse, 

 
7Note that Barsalou’s (1999) perceptual symbol systems can also, in principle, perform this function: as long as 

requisite component simulators have been activated (e.g., cup, dark, hot, stimulating), the system can exhibit 

productivity by combining known perceptual symbols into a novel concept. 
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2007), however, suggests that sensory-perceptual information is reflected in our language, and 

because of this, effects of embodied variables can also emerge via frequency-based characteristics of 

language usage. For instance, given that English is read not only from left to right but (like most 

languages) from top to bottom, this account predicts that in written English, when a sentence 

contains both attic and basement, the relative location of those physical spaces will be reflected in 

the word order—i.e., the word attic will come first more often than basement. This is indeed the 

case. Moreover, word-order frequency explains the location iconicity effect better than a measure of 

location iconicity itself does, suggesting that language experience not only reflects but may also 

modulate the effects of perceptual experience on language processing (Louwerse, 2008).  

This is not to say that embodied factors do not play an important role in lexical-semantic processing 

(we saw in our historical review of embodied semantics that they do). Rather, in this case, the 

distributional characteristics of a language roughly encode embodied characteristics of perceptual 

experience, and these ‘less precise’ representations can stand in for full perceptual simulation during 
rapid conceptual processing, whereas resources necessary for more detailed perceptual simulation 

are deployed during slower language processing or when processing images (Louwerse & Connell, 

2011; Louwerse & Jeuniaux, 2010; see also Barsalou et al., 2008; Connell, 2019; Connell & Lynott, 

2013; Louwerse et al., 2015; Santos et al., 2011). As another example, there is evidence that a 

word’s meaning is influenced by the embodied properties of the contexts in which it appears. 

Specifically, when the emotional valence, arousal, and concreteness (properties that arguably reflect 

embodied experience) of a word’s average context8 are analyzed, each of these properties explains 

significant variance in lexical decision times and recognition memory for the word above and beyond 

that explained by these same properties of the word itself (Snefjella & Kuperman, 2016). Thus, 

experiential properties of the (average) contexts a word appears in become a part of that word’s 
meaning (see also Elman, 2009; Yee & Thompson-Schill, 2016), and these properties are reflected in 

lexical-semantic processing. Data like these suggest that distributional linguistic and embodied 

information are intimately linked: the way we use language—and the distributional characteristics 

that reflect this usage—is reflective of our embodied experience. 

This link is complicated further by work showing that, in addition to language taking on properties of 

our embodied experience, our sensory-perceptual experiences can be shaped by language. That is, 

labelling an object can carve boundaries into our experience, changing the way we activate 

knowledge about object concepts (e.g., Edmiston & Lupyan, 2015) at the earliest stages of visual 

processing (Boutonnet & Lupyan, 2015), and even determining whether we see something or not 

(Lupyan & Spivey, 2010; Lupyan & Ward, 2013). For further discussion of how language affects 

perception, see Lupyan et al. (2020). All of this work is consistent with the take-home message of 

this review: what have traditionally been considered “embodied” and “distributional” language-

based data are so interconnected that a meaningful divide cannot be made. 

Another important question is how embodied and distributional linguistic information interact in 

learning: how much can we learn from distributional linguistic information, and how do words come 

to take on the embodied properties of the contexts in which they occur? As described above, it has 

been proposed that we can learn embodied meanings of words through acquired embodiment (e.g., 

Hoffman et al., 2018), whereby sensory-perceptual properties can be attributed to, for example, 

 
8 In this case, the five words preceding and five words following each instance of a word in a large corpus. 
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more abstract concepts by virtue of them sharing linguistic contexts with concrete concepts, (e.g., a 

relatively abstract concept like death might become associated with black via associations with 

funeral). And indeed, novel words can acquire embodied-like representations from purely linguistic 

experience (Günther et al., 2020). Specifically, after novel words were learned in contexts implying 

upwards or downwards movements, action-congruency effects were found if participants had to 

access word meaning. This suggests that embodied representations can be acquired via contextual 

association (see also Snefjella et al., 2020; Snefjella & Kuperman, 2016). However, when people 

learned similar concepts but were tested for action-congruency effects using a task that did not 

require accessing the words’ meanings (Günther et al., 2018) no action-congruency effects were 

observed. Thus, short-term experience with language may not be enough to produce effects 

typically interpreted as reflecting obligatory engagement of embodied conceptual knowledge, but 

such embodied properties of the linguistic context in which a novel word is learned may be recruited 

when we explicitly consider the meaning of that novel word.  

Learning novel words in “distributional” language contexts also seems to facilitate category 

learning—so long as the novel words are presented with known words that have coherent semantic 

organization (Ouyang et al., 2017). For instance, even if you don’t know anything about yerba mate, 

finding out that it is associated with tea, cups, and cafes, can facilitate recognition of sentences 

containing the novel word, assimilate novel words into categories (either animals or vehicles), and 

inductively associate novel words with the appropriate referents (Ouyang et al., 2017). In contrast, if 

you only know that yerba mate is associated with other unknown words like a bombilla and a 

guampa9 is unlikely to help you understand its meaning. Knowing about the associates of yerba 

mate informs our semantic knowledge of yerba mate only if the associates are meaningful to us. The 

reader may notice the relevance of the symbol-grounding problem here—a new word defined in 

terms of other, ungrounded words cannot acquire deep meaning.  

The findings reviewed above are consistent with the suggestion that distributional models that take 

only language data as input may be adequate for broadly capturing semantic similarity, and 

emerging evidence suggests that novel words may, to some degree, acquire embodied 

representations by virtue of the embodied properties of the contexts in which they appear (Günther 

et al., 2020; Snefjella et al., 2020; see also Snefjella & Kuperman, 2016). An interesting open 

question is whether embodied experience alone (e.g., Öttl et al., 2017) also facilitates category 

learning, or whether language is necessary for carving categorical boundaries into our experience 

(for review, see Lupyan, 2012). While it seems that some categories—dense ones, with highly 

overlapping sensory-perceptual features across exemplars (e.g., dark, hot beverages)—might form 

without language (though their formation is no doubt aided by language), others with more abstract 

rules for category membership might rely on language and its co-occurrence properties (e.g., 

mammals; Markman & Hutchinson, 1984; Sloutsky, 2010; see Davis & Yee, 2019, for discussion; see 

also Lupyan, 2009). 

 
9 Yerba mate is a kind of tea popular in South America. It is typically drunk out of a hollowed gourd called a 

guampa and sipped from a flattened metal straw with a filter to strain the infusion. The straw is called a 

bombilla.  



 

 17 

Summary of hybrid approaches  

The experimental work described in this section suggests that distributional linguistic information is 

parasitic on perceptual data—language structure comes to reflect our embodied experiences. On 

the converse, embodiment can, to some degree, emerge solely as a result of distributional 

associations (Günther et al., 2020; but see Günther et al., 2018). It is clear that there are non-trivial 

interdependencies between distributional linguistic information and embodied-perceptual 

information (see also Andrews et al., 2014). The way that language is structured reflects the nature 

of our shared embodied experiences (e.g., Louwerse, 2008), and the way we perceive our embodied 

experiences is shaped by language (see Lupyan, 2012; Lupyan et al., 2020 for reviews). Thus, some 

form of hybrid approach that accommodates these interdependencies is necessary for building an 

adequate account of semantic memory. But what is the nature of the interdependency between 

distributional language and embodied data, and how does it emerge? In the sections below, we 

discuss possible solutions for these issues—solutions that emerge from the accounts reviewed 

above—and suggest some concrete steps for future cross-disciplinary work. 

IMPLICATIONS FOR THEORIES OF SEMANTIC MEMORY 

As described earlier, all distributional models propose that semantic knowledge arises as a function 

of some cognitive mechanism which attends to, processes, and stores the statistical regularities and 

associations in natural language. Although some studies have emphasized differences between 

embodied and distributional accounts of semantic memory (e.g., Glenberg & Robertson, 2000), this 

mechanism is not so different from the mechanism by which sensorimotor information comes to 

comprise concept representations under embodied cognition theories, where the simultaneous 

firing of neuron assemblies sensitive to, for example, touch, taste, sight, and speech lead to the 

association of those experiences over time (e.g., Barsalou, 1999; Damasio, 1989; Pulvermüller, 

2013). And indeed, in most hybrid computational models, distributional linguistic and sensory-

perceptual data are processed by the same mechanism (e.g., Andrews et al., 2009; Hoffman et al., 

2018). Just as reading or hearing a word entails activation of its (linguistic) contextual associates for 

distributional language models, reading or hearing a word entails activation of its sensory, motoric, 

and perceptual associates for embodied accounts. We know words by the “linguistic and perceptual 

company they keep” (Louwerse, 2018).  

In line with the conclusions offered by hybrid accounts, it is perfectly compatible with embodied 

theories for linguistic labels to develop in concert with other perceptual attributes of a concept, with 

the difference simply being that the event giving rise to a linguistic label is the perception of an 

auditory or visual word instead of a non-linguistic sensation, perception, or action. The words are 

simply integrated into associated simulators in memory. Indeed, what is sometimes cited as a strong 

embodied view (Barsalou, 1999; for discussion, see Meteyard et al., 2012) actually captures both 

types of information, emphasizing statistical linguistic processing and embodiment. In this way, 

distributional and embodied information are necessarily linked from the earliest stages: there is no 

meaningful separation between them, because they are never separate. An accompanying idea is 

that linguistic labels represent “just” another feature of a concept, albeit one which can activate 
conceptual knowledge in important (or privileged) ways (for discussion, see e.g., Connell, 2019; 

Lupyan, 2012; Yee, 2019). Just as there are differences in the time course of activation for different 

sensorimotor features (e.g., function and shape; Yee et al., 2011), labels may be activated faster 
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than detailed sensorimotor information. These differences need not reflect qualitative differences 

between “types” of feature information, but rather differences in the level of abstraction at which 

each feature operates (or the contextual appropriateness of a given feature; for discussion, see Yee 

& Thompson-Schill, 2016). Moreover, the label is invariant in the sense that whereas some features 

may be more or less active, or entirely absent on different instantiations of a concept, the label is a 

feature that, being generally applicable, can act as an anchor that binds more variable features. 

Perhaps because of their invariance, labels are effective as a computationally inexpensive way to 

access conceptual knowledge. 

In hybrid (embodied + distributional) computational models that incorporate sensory-perceptual 

information, a mechanism is built-in by which words that refer to things that are not experienced 

through the senses (i.e., words for highly abstract concepts) can “acquire” embodiment. But the 

evidence reviewed here suggests that even the most abstract concepts involve some sensorimotor 

experience, and that linguistic labels develop in concert with perceptual symbols. Accordingly, it is 

not necessary for words to ‘acquire’ embodiment through contextual association. Rather, even 

highly abstract concepts can start out with embodied associations, and then be abstracted further 

away from embodied experience if they occur in more variable contexts (as concepts that are 

relatively more abstract do; Hoffman et al., 2013). In such cases, language may be more important 

for representation and processing because of its ability to help organize regularities in the 

environment, especially when those regularities are more variable or are organized via abstract rules 

not consistent across sensory-perceptual experiences (for developmental review, see Markman, 

1990). For example, the linguistic label in conjunction with a prefrontal cortex-based selection 

mechanism may help to group sparsely distributed features of a category (e.g., in highly abstract 

concepts like equivalence; Sloutsky, 2010) and/or language may augment the environment by 

mediating recall and directing attention toward the features of categories and concepts (Clark, 2006; 

see also Lupyan, 2012; Althaus & Mareschal, 2014; for a broad overview of these issues, see Yee, 

2019). 

In addition to their ability to help group perceptual features into categories, words can also acquire 

category structure through language context alone in an experimental setting (Ouyang et al., 2017), 

suggesting that learning from language context alone may also be sufficient to learn the types of 

categories important to a shared understanding of how to categorize the world. Further pursuit of 

these issues might yield insight into a common critique of embodied theories: if our concept 

representations are built of individual experiences, how is it that we can communicate at all? How 

do we know what each other is talking about? One rebuttal to this concern is that we largely 

experience the same world—while many personal experiences are different, you and your neighbors 

have roughly the same experiences with cars, coffee, and carpets, even if my favorite barista’s coffee 
representation engenders a more detailed simulation than mine does. This may be good enough—
perfect representational overlap is not required to achieve successful communication, as long as 

there is sufficient overlap given the current communicative context (for discussion see, e.g., 

Casasanto & Lupyan, 2015; Connell & Lynott, 2014; Taylor & Zwaan 2009; Yee & Thompson-Schill, 

2016). But if we can acquire category structure through linguistic context alone, this suggests that 

language usage is also a powerful mechanism through which we gain access to—and assimilate new 

information into—categories of knowledge that are largely agreed upon within human societies. 

Given the impressive successes of distributional models at predicting major semantic phenomena 
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like similarity judgments and priming, it should be no surprise that learning through language usage 

facilitates learning categories and relationships thought to be shared across individuals.  

The ideas synthesized here lead to a position similar in many ways to that of Clark (2006) and later, 

Dove (2018, 2019), who suggest that language provides another domain of perceivable objects (e.g., 

words) which are used—in the same way as the sensory-perceptual properties of the external 

environment—for building coherent semantic representations through our fundamental ability to 

learn through statistical and associative regularities. That is, in a sense, their argument is also that 

distributional linguistic and embodied information should not be considered distinct.10 Having words 

for things helps us to abstract and organize across regularities in the environment, and the 

distributional properties of language may also help us to abstract and organize across regularities in 

words so as to reflect category structure shared across individuals. These features of language allow 

our conceptual knowledge to be largely shared across members of a community, even if finer-

grained details differ with individual experience. 

NEXT STEPS 

Cross-disciplinary approaches must be a continuing point of emphasis for further progress on these 

issues. Experimental approaches must investigate how distributional and embodied information 

interact in learning and representation, and what type of learning is necessary for embodied-like 

representations to emerge (e.g., Öttl et al., 2017; Günther et al., 2020). Neural investigations of this 

may be particularly important: given that embodied theories hold that sensory-perceptual 

experience gives rise to concept representation in modality-specific neural systems, one might ask: is 

there a mechanism by which linguistic context-derived representations can come to be encoded in 

sensorimotor cortex? From a different angle, how do particular properties of our environments 

influence (or become influenced by) distributional properties of a language? And to what extent do 

these effects of our environments on distributional statistics of language interact with individual 

differences in embodied experiences (e.g., discounting vs. reinforcing experiences)?  

Developmental science also has a crucial role to play towards understanding the roles of embodied 

and distributional language experience in building semantic memory. At the heart of both 

approaches is the idea that experience is central to building conceptual representations, and that the 

resultant structure of semantic memory reflects those idiosyncratic experiences. Work on embodied 

cognition suggests that sensory, perceptual, and motor experience contributes to concept 

representations—that is, the more you experience something in a particular modality, the more its 

corresponding concept is represented in that modality (e.g., Davis et al., 2020c, Yee et al., 2013). 

However, these investigations typically measure experience at a single timepoint, when conceptual 

knowledge is assessed. Understanding the process by which experiences are laid down in 

sensorimotor systems over time is a ripe topic for future work. Even more poorly understood is how 

the interaction between embodied and distributional language information might contribute to 

developmental milestones. Using computational models (e.g., Andrews et al., 2009), it may be 

 
10 If one takes the perspective that sensorimotor experience is continuous, whereas language is discrete, it 

may seem that they are fundamentally distinct types of data and thus ought to be processed differently. But in 

fact, linguistic information is not discrete—the speech signal, for example, like sensorimotor experience, is 

continuous in nature, but can be perceived categorically (Liberman et al., 1967; see Harnad, 2003, 2017 for 

review). The act of labelling may be particularly important for categorical perception (e.g., Lupyan, 2017).  



 

 20 

possible to derive empirical predictions about how children might represent the meaning of 

concepts that they have not yet directly experienced, by virtue of distributional associations with 

other, related concepts. Addressing these sorts of questions will engender a better understanding of 

how linguistic and embodied inputs interact from acquisition. 

Computational approaches should, on the other hand, acknowledge that distributional language and 

embodied information cannot be considered separately, and that even so-called abstract concepts, 

which seem at first to be dependent on the distributional statistics of language, are not amodal—
that is, even what have traditionally been considered quite abstract concepts (e.g., truth) have 

embodied components (see Borghi et al., 2017, for review; see also Lynott et al., 2020). The 

controlled semantic cognition approach (Hoffman et al., 2018) is a step in this direction because it 

implements distributional properties (i.e., language co-occurrence) in real time using an SRN. 

However, this approach might benefit from allowing the sensorimotor nodes to reflect a broader 

array of properties (e.g., affective qualities) and from allowing all concepts (even highly abstract) to 

have some embodied experience from the outset. In addition to accounting for the context-

dependent sensorimotor representation of concepts, such models should strive to account for the 

sorts of semantic phenomena (e.g., semantic similarity) that distributional models are so well-suited 

to explaining. If concept representations emerge from episodes of joint linguistic and embodied 

experience, another interesting avenue might be to integrate principles from exemplar-based 

models (e.g., Hintzman, 1986). Such models can incorporate perceptual and linguistic 

representations within a single memory trace and learn semantic representations from these 

exemplar memory traces (Johns & Jones, 2015).  

Emerging work also suggests that there may be no “one-size-fits-all” distributional language model. 
That is, one model may capture behaviour better for a certain type of semantic task, while another 

model may be better at capturing behaviour for a different one (Wingfeld & Connell, 2019). Model 

characteristics (e.g., model type, corpus size and quality) influence how well the model captures 

behavior, and these effects differ as a function of the level at which the task operates—for instance, 

some distributional models optimally capture synonym judgment (a relatively low-level task), while 

others better explain semantic decisions (a relatively high-level task). Likewise, different semantic 

relationships are best captured by different distributional language models (Brown et al., 2020). 

Humans may flexibly use distributional semantic knowledge as a function of situational demands 

(Wingfield & Connell, 2019), much in the same way that embodied representations may be recruited 

to differing degrees depending on the context (see e.g., Connell, 2019; Yee & Thompson-Schill, 

2016). This work calls for a better understanding of the interplay between (different types of) 

distributional language knowledge and (different types of) sensory-perceptual knowledge as 

conceptual processing unfolds. Models that integrate the properties described in this review could 

potentially explain (a) the rich, detailed, embodied properties of semantic representations (e.g., 

reliance of particular concepts on the manual modality, as in hammer), (b) broad semantic relations 

that are shared across individuals (e.g., similarity across concepts, where hammer is related to 

wrench), and (c) how distributional and embodied information interact to build concept 

representations based on experiential association. 
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CONCLUSIONS 

Embodied and distributional perspectives, at first glance, appear to be distinct approaches to 

answering the same question: how do humans understand and represent the meaning of things? 

Because early distributional models handled only linguistic data, it was suggested that the 

representations they contained made no contact with the world. That is, they were ungrounded. But 

there is no reason for “distributional” to mean “linguistic,” and it is increasingly recognized that 
distributional and embodied approaches are not mutually exclusive, and are even complementary 

(for further discussion, see Günther et al., 2019). While hybrid computational approaches have 

treated sensory-perceptual and distributional information as distinct but interacting data types, 

experimental approaches and embodied theories suggest that this divide has little traction in reality. 

Distributional and embodied information are entangled through experiential association from the 

earliest stages of conceptual development. The implications of this for the emergence of embodied 

concept representations and implementation of these principles in formal architectures remain ripe 

topics for cross-disciplinary endeavors.  
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