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Abstract 12 

Climate stationarity is a traditional assumption in the design of the urban drainage network, 13 

including green infrastructure practices such as bioretention cells. Predicted deviations from 14 

historic climate trends associated with global climate change introduce uncertainty in the ability 15 

of these systems to maintain service levels in the future. Climate change projections are made 16 

using output from coarse-scale general circulation models (GCMs), which can then be 17 

downscaled using regional climate models (RCMs) to provide predictions at a finer spatial 18 

resolution. However, all models contain sources of error and uncertainty, and predicted changes 19 

in future climate can be contradictory between models, requiring an approach that considers 20 

multiple projections. The performance of bioretention cells were modeled using USEPA’s Storm 21 

Water Management Model (SWMM) to determine how design modifications could add 22 

resilience to these systems under future climate conditions projected for Knoxville, Tennessee, 23 

USA. Ten downscaled climate projections were acquired from the North American Coordinated 24 

Regional Downscaling Experiment program, and model bias was corrected using Kernel Density 25 

Distribution Mapping (KDDM). Bias-corrected climate projections were used to assess 26 

bioretention hydrologic function in future climate conditions. Several scenarios were evaluated 27 

using a probabilistic approach to determine the confidence with which design modifications 28 
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could be implemented to maintain historic performance for both new and existing (retrofitted) 29 

bioretention cells. The largest deviations from current design (i.e., concurrently increasing 30 

ponding depths, thickness of media layer, media conductivity rates, and bioretention surface 31 

areas by 307%, 200%, 200%, and 300%, respectively, beyond current standards) resulted in the 32 

greatest improvements on historic performance with respect to annual volumes of infiltration and 33 

surface overflow, with all ten future climate scenarios across various soil types yielding 34 

increased infiltration and decreased surface overflow compared to historic conditions. However, 35 

lower performance was observed for more conservative design modifications; on average, 36 

between 13-82% and 77-100% of models fell below historic annual volumes of infiltration and 37 

surface overflow, respectively, when ponding zone depth, media layer thickness, and media 38 

conductivity were increased alone. Findings demonstrate that increasing bioretention surface 39 

area relative to the contributing catchment provides the greatest overall return on historic 40 

performance under future climate conditions and should be prioritized in locations with low in 41 

situ soil drainage rates. This study highlights the importance of considering local site conditions 42 

and management objectives when incorporating resiliency to climate change uncertainty into 43 

bioretention designs. 44 
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1.0 Introduction  51 

For several decades, research has connected urbanization and land development to 52 

impacts on the hydrologic cycle and receiving water bodies (Leopold, 1968; Hollis, 1975; Klein, 53 

1979; Arnold and Gibbons, 1996; Booth and Jackson, 1997; Walsh et al., 2005). Cities 54 

worldwide are employing green infrastructure (GI) techniques, referred to as stormwater control 55 

measures (SCMs), low impact development (LID), and water sensitive urban design (WSUD), to 56 

manage urban runoff. One of the most popular SCMs is the bioretention cell, which manages 57 

runoff volumes by promoting infiltration, temporary retention, and evapotranspiration, and 58 

removes pollutants via natural treatment mechanisms such as soil adsorption, filtration, and 59 

plant/microbial uptake (Davis et al., 2009). Many studies have demonstrated their ability to 60 

reduce runoff volumes and mitigate peak flow rates to levels that resemble pre-development 61 

hydrologic conditions (e.g., Brown and Hunt, 2011; DeBusk and Wynn, 2011; Winston et al., 62 

2016).  63 

Bioretention designs are commonly based on past climate conditions, where treatment 64 

objectives (e.g., retaining runoff from the 90th percentile storm on-site) derived from historic 65 

records are used to determine key parameters such as surface area. This relies on the assumption 66 

of climate stationarity, where such targets remain constant over time (Denault et al., 2006). 67 

However, climate change challenges this approach, threatening to overwhelm existing systems 68 

and risking diminished performance or operational failure (Denault et al., 2006; Berggren et al., 69 

2012; Hathaway et al., 2014). There is widespread agreement that surface temperatures and 70 

extreme weather shifts will increase over the 21st century due to global climate change, though 71 

the magnitude of change is uncertain and dependent upon many factors, including anthropogenic 72 

emissions, human adaptation, technological advances, and natural climate variability (Berliner, 73 
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2003; IPCC, 2014). Given the operational lifespan of these systems (beyond 20-25 years), the 74 

functionality of presently installed SCMs in future climate conditions is under question (Zhang et 75 

al., 2019). Therefore, despite future climate uncertainties, there is a need to investigate methods 76 

to develop climate resilient bioretention designs which maintain performance under shifting 77 

hydrologic regimes (Rosenberg et al., 2010). 78 

Climate change impact studies rely on future projections based on general circulation 79 

models (GCMs) (IPCC, 2014; Semadeni-Davis et al., 2008). Although GCMs generally simulate 80 

the same processes, all models approach the global system differently and contain variable 81 

sources of error, uncertainty, and sometimes contradictory projections (Semadeni-Davies, 2008); 82 

thus, research recommends the use of an array of GCMs to better understand potential future 83 

climate changes (Rosenberg et al., 2010; Zhang et al., 2019; Barah et al., 2020; Ramshani et al., 84 

2020). Because the spatial scale of GCMs (on the order of hundreds of kilometers) is too coarse 85 

for the small catchments associated with urban hydrology (tens of kilometers or less), outputs 86 

from large-scale GCMs are often transformed for use in smaller-scale applications utilizing 87 

dynamic downscaling techniques such as regional climate models (RCMs) (Willems et al., 88 

2012). However, because climate uncertainty is magnified at the regional scale, resulting 89 

systematic bias must be corrected via statistical downscaling methods prior to assessing local-90 

scale climate impacts (Semadeni-Davies et al., 2008; Willems et al., 2012; Mearns et al., 2017).  91 

Despite the limited availability of fine-scale climate projections, studies have investigated 92 

climate change impacts on bioretention performance using various techniques. A common 93 

approach is the delta change factor (DCF) method, where relative changes predicted by climate 94 

models are applied to an observed rainfall series to produce future precipitation projections 95 

(Anandhi et al., 2011). Numerous studies have modeled GI under future conditions by applying 96 
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change factors to alter precipitation volume, intensity, and seasonal patterns (Semadeni-Davies et 97 

al., 2008; Olsson et al., 2009; Pyke et al., 2011; Moore et al., 2016). Despite its ease of use, the 98 

DCF method contains several disadvantages and may not fully consider all aspects of changing 99 

climate conditions that influence GI (e.g., event frequency, changes in antecedent conditions, 100 

etc.) (Anandhi et al., 2011). 101 

Other studies have implemented different approaches to assess climate change impacts on 102 

GI performance. Zahmatkesh et al. (2014) analyzed historic rainfall patterns to develop hourly 103 

multipliers and disaggregate daily climate output from 134 GCMs into hourly rainfall projections 104 

for New York City. Zahmatkesh et al. (2015) investigated the effectiveness of LID under future 105 

climate using this methodology. Despite annual runoff volumes increasing by 48%, the authors 106 

observed a 41% decline in average annual runoff volumes and peak flow reductions of 8-13% in 107 

model scenarios where LID practices (porous pavement, rainwater harvesting, and bioretention 108 

cells) were implemented. Zhang et al. (2019) analyzed the reliability of WSUDs in Melbourne, 109 

Australia using an ensemble of eight GCMs. Using historical rainfall data and a multiplicative 110 

random cascade model (HiDRUS), 100 continuous rainfall projections were developed for each 111 

GCM at high spatial (1 km) and temporal (6-minute) resolutions. Results showed lower 112 

precipitation and longer dry periods in the future, with minimal impact on WSUD performance. 113 

Large variability was observed across the GCMs, and larger practices were recommended to 114 

account for this uncertainty and maintain future performance (Zhang et al., 2019). Wang et al. 115 

(2019a) used intensity-duration-frequency (IDF) curves to evaluate GI performance in a 116 

hypothetical catchment in Guangzhou, China using historical data and 11 GCMs under four 117 

representative concentration pathways (RCPs) (IPCC, 2014). Larger practices yielded increased 118 

runoff volume reductions, though performance improvements decreased with increasing GI 119 
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surface area. Similarly, GI effectiveness decreased as storm sizes and return periods increased 120 

(Wang et al., 2019a).  121 

Given the highly regional and uncertain nature of climate change impacts, and the limited 122 

research investigating its effects on bioretention, there is a critical need to examine the ability of 123 

these systems to maintain performance in future conditions. Further, there is a need to determine 124 

how bioretention design elements impact future performance such that regulatory agencies, 125 

stormwater engineers, and municipal officials can build climate resiliency into these systems.  126 

The objective of this study was to investigate the impact of climate change on future 127 

bioretention performance and determine how design modifications and site conditions influence 128 

the climate resiliency of these systems. Using a probabilistic approach, bioretention hydrology 129 

under various climate change scenarios was compared to a baseline period to determine the 130 

design modifications required to achieve past performance under future climate conditions. 131 

While the study area was in the southeastern United States, this approach may be applicable to 132 

broader geographical regions, allowing the prioritization of specific design elements that enhance 133 

the resiliency of bioretention cells to climate change. Though studies have investigated climate 134 

change impacts on bioretention performance, to the authors’ knowledge, no studies have 135 

addressed this research gap using such methodology.  136 

2.0 Materials and Methods 137 

2.1 Conceptual study location 138 

 The hypothetical study site was based on the climate of Knoxville, Tennessee, USA 139 

(35.9606°N, 83.9207°W, approximate elevation 270 m). The mean annual temperature in 140 

Knoxville is 16°C, while the mean annual precipitation is approximately 1215 mm (Tennessee 141 
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Climatological Service). The frequency and severity of extreme rainfall events are expected to 142 

increase across the southeastern United States under both lower and higher emissions scenarios 143 

in the future, posing risks to human health, frequent and prolonged drought, and increased spread 144 

of vector borne disease (USGCRP, 2018). 145 

 The hypothetical catchment represented an impervious surface common to urban areas 146 

(e.g., a paved parking lot) and consisted of a relatively flat, completely impervious, 0.4 ha area 147 

draining to a single bioretention cell. Three underlying soil types (ranging from clay to sandy 148 

loam) were modeled to capture the potential variability of climate change impacts on 149 

bioretention performance at locations with different soil characteristics. Observed climate data 150 

for the baseline period (2010-2014) was obtained from a weather station at the nearest airport 151 

(McGhee Tyson) and used to simulate historic performance. 152 

2.2 Hydrological model 153 

 The USEPA Storm Water Management Model (SWMM) version 5.1 was used to assess 154 

bioretention hydrologic performance in this study (Rossman, 2015; Niazi et al., 2017). All runoff 155 

from the hypothetical catchment was routed to the bioretention cell; depression storage was not 156 

considered to simulate the complete connection of the catchment to the outlet. Infiltration was 157 

estimated using the Green-Ampt method, and dynamic wave flow routing was used in the 158 

models (Rossman, 2015). Evaporation was estimated from daily air temperatures using the 159 

Hargreaves method (Hargreaves and Samani, 1985; Rossman, 2015). Hourly rainfall from 160 

observed data (baseline period – 2010-2014) or climate change projections (future period – 161 

2040-2044) were used as model inputs. Other parameters were determined from a review of 162 

literature and the characteristics of the simulated study location (Table 1). As the study focused 163 

on performance changes between the baseline and future climate conditions, as opposed to 164 
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modeling a specific site, no calibration or verification of the models was performed (Wang et al., 165 

2016). 166 

Table 1: Summary of parameters of hypothetical catchment used in SWMM models. 167 

Parameter Description Value 

Area Area of subcatchment (ha) 0.4 

% Slope Average surface slope (%) 1 

% Imperv Percent of impervious area (%) 100 

N-Imperv Manning’s n for impervious area 0.01 

% Zero 
Percent of impervious area with no depression 

storage (%) 
100 

% Routed Percent of runoff routed between sub-areas (%) 100 

 168 

2.3 Model scenarios 169 

 The future performance of two model scenarios (“New Build” and “Retrofit”) was 170 

simulated for a period from 2040-2044, representing the final five years of a 25-year service life 171 

for a bioretention cell constructed in 2020. The scenarios are described below:  172 

 The New Build scenario represented a bioretention cell constructed in 2020. In this 173 

scenario, design components were modified beyond regulatory recommendations, and the 174 

resulting effects on performance under future climate was investigated (TDEC, 2014). 175 

 The Retrofit scenario simulated modifications performed to an existing bioretention cell 176 

in 2020 in response to anticipated climate change. As more frequent and severe rain 177 

events are expected in the study area, increased instances of overflow could be expected 178 

to occur. In this scenario, the bioretention media layer thickness was incrementally 179 

decreased as the surface storage zone was deepened, representing the finite cross-section 180 

depth for the system. This was intended to simulate media removal from the practice to 181 
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increase surface storage depth, a measure that could theoretically be implemented in 182 

place of a full reconstruction.  183 

2.4 Bioretention modeling and design configurations 184 

Bioretention design parameters, such as practice size, media depth, and surface storage 185 

depth, were initially based on design criteria specified in the Tennessee Permanent Stormwater 186 

Management and Design Guidance Manual (TDEC, 2014). Initial designs were sized to capture 187 

runoff from a 25.4 mm storm in the surface storage zone. Components of the baseline design 188 

(“BASE”) are shown in Table 2. Model parameters were incrementally adjusted from this design 189 

to form several configurations for the New Build and Retrofit scenarios (Table 3). Due to model 190 

limitations and a desire to quantify the performance implications following specific design 191 

modifications, factors which could reasonably impact bioretention performance over time (i.e., 192 

media porosity, field capacity, and clogging) remained unchanged from initial conditions in all 193 

simulations. 194 

 195 

 196 

 197 

 198 

 199 

 200 

 201 

 202 
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Table 2: Baseline bioretention design parameters (BASE). 203 

Parameter Description Value Source 

Surface Layer 

Berm Height Maximum depth water can pond in bowl (cm) 15 TDEC (2014) 

Soil Layer 

Thickness Soil layer thickness (cm) 61 TDEC (2014) 

Porosity Soil porosity (volume fraction) 0.44 Committee (2005) 

Field 

Capacity 
Soil field capacity (volume fraction) 0.09 Committee (2005) 

Wilting 

Point 
Soil wilting point (volume fraction) 0.04 Committee (2005) 

Conductivity 
Saturated hydraulic conductivity of soil 

(cm/hr) 
5 

Parameter adjusted 

in model scenarios 

Conductivity 

Slope 

Slope of log(conductivity)-soil moisture 

content curve 
50 Rossman (2015) 

Suction 

Head 
Soil capillary suction (cm) 10 

Brakensiek et al. 

(1981) 

Storage Layer 

Thickness Storage layer (soil) thickness (cm) 15 County (2008) 

Void Ratio Storage layer void ratio (voids/solids) 0.4 Miller (1978) 

Seepage 

Rate 
Rate of water seepage to native soil (mm/hr) 1.3 

Parameter adjusted 

in K scenarios 

Clogging 

Factor 
Clogging parameter (clogging ignored) 0 - 

Drain Layer 

Flow 

Coefficient 

Determines drain flow rate as a function of 

hydraulic head (C) 
0.6 County (2008) 

Flow 

Exponent 

Determines drain flow rate as a function of 

hydraulic head (n) 
0.5 County (2008) 

Offset 
Drain height above bottom of storage layer 

(cm) 
15 Miller (1978) 

 204 

 205 

 206 

 207 

 208 
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Table 3: Bioretention design configurations used in New Build and Retrofit scenarios. 209 

New Build Scenario Design Configurations: 

Ponding: All BASE parameters held constant except Berm Height 

Configuration Berm Height (cm) 

P1 15 

P2 30 

P3 61 

Media Depth: All BASE parameters held constant except Thickness (soil layer) 

Configuration Thickness (cm) 

DEP1 61 

DEP2 91 

DEP3 122 

Media Conductivity: All BASE parameters held constant except Conductivity 

Configuration Conductivity (mm/hr) 

CON1 51 

CON2 76 

CON3 102 

Surface Area: All BASE parameters held constant except Area 

Configuration Area (percent of drainage area) 

A1 5% 

A2 10% 

A3 15% 

Composite Configurations: All BASE parameters held constant except the following: 

Configuration 
Berm Height 

(cm) 

Thickness 

(cm) 

Conductivity 

(mm/hr) 

Area 

(% Catchment) 

LOW 15 61 51 5% 

MID 30 91 76 10% 

HIGH 46 122 102 15% 

Retrofit Scenario Design Configurations: 

Retrofit Configurations: All BASE parameters held constant except the following: 

Configuration Berm Height (cm) Thickness (cm) 

R1 15 91 

R2 30 76 

R3 46 61 

R4 61 46 
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In total, 15 designs were analyzed under the New Build scenario. Parameters were 210 

individually adjusted to assess their impact on future performance and illustrate where priority 211 

should be placed when considering additional investments in bioretention design. Composite 212 

configurations containing a combination of these designs were also tested. Table 3 also details 213 

the four configurations tested in the Retrofit scenario (R1-R4). The surface storage depth in 214 

scenario R4 (approximately 61 cm) is double the maximum ponding depth recommended in local 215 

regulations (TDEC, 2014). Additionally, the media depth is reduced to 46 cm in this design. 216 

Beyond performance implications, safety hazards, prolonged surface ponding, and impacts to 217 

plant health could be expected if this design were implemented. However, this was considered to 218 

illustrate the lengths that may be required to retrofit an existing system to maintain performance 219 

under future conditions. 220 

The BASE design configuration (Table 2) was modeled with observed rainfall data 221 

(2010-2014) to compare the New Build and Retrofit results against historic performance. 222 

Bioretention configurations were modeled using three underlying soil types (i.e., K1, K2, and 223 

K3) to assess the impact of site-specific conditions on bioretention hydrology under climate 224 

change. The underlying soils included clay (Ksat = 1.27 mm hr-1, K1), clay loam (Ksat = 12.7 mm 225 

hr-1, K2), and sandy loam (Ksat = 25.4 mm hr-1, K3). 226 

2.5 Future climate data 227 

 Climate change projections were downloaded from the North American Coordinated 228 

Regional Downscaling Experiment (NA-CORDEX) Program (Mearns et al., 2017; Unidata 229 

Science Gateway, 2020). Projections are derived from RCMs which use boundary conditions 230 

created from GCMs in the Coupled Model Intercomparison Project 5 (CMIP5) database (Mearns 231 

et al., 2017). Only projections containing hourly rainfall data were used to better represent the 232 
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hydrologic response times of urban areas (Zahmatkesh et al., 2015). As a result, ten dynamically 233 

downscaled projections of hourly rainfall data over a five-year period were used in this study 234 

(Table 4). 235 

Table 4: Description of hourly climate models used in this study. 236 

Model No. GCM RCM RCP Spatial Resolution 

1 CanESM2 CanRCM4 4.5 50 km 

2 CanESM2 CanRCM4 8.5 50 km 

3 GFDL-ESM2M WRF 8.5 25 km 

4 GFDL-ESM2M WRF 8.5 50 km 

5 HadGEM2-ES WRF 8.5 25 km 

6 HadGEM2-ES WRF 8.5 50 km 

7 MPI-ESM-LR RegCM4 8.5 25 km 

8 MPI-ESM-LR RegCM4 8.5 50 km 

9 MPI-ESM-LR WRF 8.5 25 km 

10 MPI-ESM-LR WRF 8.5 50 km 

 237 

The majority of the RCPs available from the hourly NA-CORDEX archive used the 238 

RCP8.5 emissions scenario, representing continued population growth, anthropogenic emissions, 239 

and energy consumption (IPCC, 2014). Though technological advances, emissions reductions, 240 

and human adaptations could mitigate future climate changes and impacts on bioretention 241 

hydrology, this was embraced to illustrate the magnitude of action that required to impact future 242 

bioretention performance. Further, the intent of the study was not to compare differences in 243 

bioretention performance between possible RCPs. 244 

2.6 Bias correction 245 

Climate models regularly overestimate the frequency of low intensity rainfall while 246 

underestimating occurrences of intense rain, referred to as the “drizzle problem” (Sun and 247 

Solomon, 2005; Stephens et al., 2010). Because RCM outputs represent averages of larger grids 248 

(i.e., 25 km or 50 km grids), the data must be adjusted to fit the scale of observed values at a 249 
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location of interest (Cook et al., 2019; Cook et al., 2020). Thus, bias correction (BC) procedures 250 

should be implemented before RCM outputs are used in hydrologic models (Rosenberg et al., 251 

2010). 252 

Kernel density distribution mapping (KDDM), a novel non-parametric technique 253 

developed by McGinnis et al. (2015), was used to correct climate model bias. Distribution 254 

mapping techniques such as KDDM adjust individual values within climate model output to 255 

match their statistical distribution with that of an observed data set (McGinnis et al., 2015). The 256 

KDDM method fits a transfer function between the empirical cumulative distribution functions 257 

(CDFs) of observed rainfall and climate model output for a historical time period to adjust future 258 

climate data to the scale of the observed data (McGinnis et al., 2015; Cook et al., 2019; Cook et 259 

al., 2020). Based on available rainfall data for Knoxville, 1997-2011 was chosen for the 260 

historical period, and 2035-2049 for the future period for bias correction.  261 

The KDDM bias correction procedure was performed on both hourly rainfall and 262 

temperature (daily maximum and minimum) datasets that were used in the hydrologic models 263 

using the R package “climod” (McGinnis, 2018). Bias correction of temperature projections was 264 

performed on a monthly basis to account for natural, seasonal variations (which can be much 265 

larger than model bias) (McGinnis et al., 2015). The statistical similarities of the observed data 266 

and bias corrected climate model output for the historical period were confirmed using the 267 

Wilcoxon rank sum test, which was concluded after observing that the null hypothesis could be 268 

accepted for all ten models following bias correction (R Core Team, 2019). Subsets of bias 269 

corrected temperature and rainfall data for the period of interest (2040-2044) were then inputted 270 

to SWMM models. More information on the KDDM bias correction procedure can be found in 271 

McGinnis et al. (2015) and the climod documentation (McGinnis, 2018). 272 
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2.7 Performance metrics 273 

 Three components of the annual water balance (surface overflow, infiltration, and drain 274 

outflow) were used to compare future bioretention performance in the New Build and Retrofit 275 

scenarios against past performance. The proportion of climate projections leading to improved 276 

future performance relative to historic levels (by both annual volumes diverted to each pathway 277 

as well as their percentage of the overall water balance) was determined and compared across 278 

design configurations to characterize their impact on performance (Table 3).  The procedure 279 

followed in this analysis is shown in Figure 1. 280 

 281 

Figure 1: Flowchart of work process. 282 
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3.0 Results and Discussion 283 

3.1 Climate change projections 284 

 Summary statistics for the bias corrected climate projections (2040-2044) and observed 285 

climate data (2010-2014) are shown in Table 5. Compared to the observed data from 2010-2014, 286 

model projections averaged more annual rainfall (a mean of 1731 mm across all ten projections) 287 

which was delivered in a higher number of rain events (annual mean of 98 events, data not 288 

shown) and separated by shorter dry periods (mean antecedent dry period (ADP) of 3.8 days) 289 

compared to historic observations (mean annual rainfall of 1310 mm delivered in 84 events 290 

separated by a mean ADP of 4.3 days). Median storm sizes in future projections were generally 291 

less than historic conditions, while on average, GCMs projected the size of the 90th percentile 292 

rain event will be approximately 29% larger in the future period (44 mm) compared to historic 293 

conditions (34 mm). This finding agrees with previous studies which report the impact of climate 294 

change on larger storms with less-frequent return periods (e.g., Olsson et al., 2009; Kim and 295 

Choi, 2011; Wang et al., 2019a).  296 

Other rainfall parameters varied across the GCMs. Nine of the ten models predicted more 297 

rainfall and shorter dry periods than historic observations. Similarly, peak storm intensities 298 

varied across the projections compared to historic conditions. Some models (i.e., models 4, 5, 8, 299 

and 10) contained elevated 90th percentile peak storm intensities, in line with research suggesting 300 

that future rain events will become more frequent and intense under climate change (USGCRP, 301 

2018). However, other projections predicted lower peak rainfall intensities. Zhang et al. (2019) 302 

found similar variability in assessing climate change projections for Melbourne, Australia, as the 303 

amount of rainfall, duration of dry periods, and maximum and average intensities varied across 304 

the eight GCMs used in their study.  305 
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 Taken together, the GCM projections illustrate the importance of addressing the 306 

uncertainty of future climate changes. For example, were future conditions similar to those 307 

predicted in model 9, the deviations from historic conditions (i.e., slightly more annual rainfall 308 

with similar inter-event dry periods and peak rainfall intensities) may allow existing GI practices 309 

to manage future runoff without the need for modifications. However, this is unlikely if future 310 

conditions were to resemble those predicted by model 5; a 226% increase in annual rainfall and 311 

172% increase in 90th percentile peak rainfall intensity would likely exceed the capacity of 312 

bioretention cells designed and constructed based on historic conditions. Such conditions may 313 

also threaten the health of microbes and plants through inundation during larger rain events, 314 

potentially limiting the treatment benefits they provide (Manka et al., 2016; Zhang et al., 2019). 315 

While some projections contain larger deviations than others, even small changes in climate may 316 

be exacerbated in highly responsive urban catchments, often characterized by a high percentage 317 

of impervious cover (Wang et al., 2019b). As such, the differences in model projections were 318 

recognized to reflect the inherent uncertainty in predicting future climate. 319 
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Table 5: Summary statistics for precipitation and temperature for climate change projections (2040-2044) and observed data (2010-320 

2014). 321 

Model 

Rainfall Dry Period Average Daily Temperature 

Mean 

Annual 

Rain 

(mm/yr) 

90th 

Percentile 

Peak Event 

Intensity 

(mm/hr) 

Median 

Event 

Depth 

(mm) 

Avg. 

Annual 

Rain 

Days 

Mean 

(days) 

Median 

(days) 

St. 

Dev. 

(days) 

90th 

Percentile 

Dry 

Period 

(days) 

Mean 

(°C) 

Median 

(°C) 

Max 

(°C) 

Min 

(°C) 

1 1611 9.7 4.7 164 3.1 2.0 2.9 6.9 15.2 16.2 32.9 -8.8 

2 1465 8.5 4.8 155 3.2 1.7 3.2 7.3 15.3 16.5 31.1 -7.6 

3 1626 11.6 5.1 185 3.4 2.0 3.7 7.8 15.5 16.7 29.7 -9.1 

4 1749 13.7 7.6 136 4.3 3.0 4.0 9.6 15.5 16.7 29.3 -8.8 

5 2958 21.9 9.4 152 3.4 2.3 3.0 7.5 15.0 15.7 32.1 -14.1 

6 1745 12.7 6.3 136 3.9 2.7 3.7 9.0 15.0 15.9 33.5 -14.3 

7 1310 11.9 6.8 136 4.3 3.3 3.4 8.6 15.5 16.5 30.9 -12.5 

8 1780 14.9 8.5 134 4.3 3.2 3.9 8.7 15.3 16.0 31.1 -8.4 

9 1484 12.7 8.4 140 4.1 3.0 3.4 8.8 15.1 16.1 30.6 -16.1 

10 1588 13.4 8.9 132 4.3 3.2 4.0 9.0 15.1 16.1 31.4 -16.2 

Observed 1310 12.7 9.4 139 4.3 3.8 2.9 8.6 15.4 16.5 32.3 -11.7 

 322 
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3.2 New Build scenario 323 

 Simulation results for the New Build design scenarios (Table 2) are summarized in 324 

Figures 2 and 3. Results show that current designs may be sufficient under some future climate 325 

scenarios that represent lower deviations from current climate but are overwhelmed in others, 326 

and that site-specific considerations should be made when modifying bioretention designs for the 327 

future (Moore et al., 2016; Zhang et al., 2109). As expected, the underlying soil conditions 328 

impacted annual infiltration and drain outflow volumes. Increased annual infiltration volumes 329 

were observed in the well-drained soils in the K3 scenario compared with poorly drained soils 330 

(K1) (Figure 2). Further, a greater number of climate projections met or exceeded historic 331 

infiltration volumes in the K2 and K3 scenarios compared with K1. This suggests that more 332 

conservative design amendments (e.g., increased temporary ponded storage) could have greater 333 

impacts at sites with moderate to well-drained in situ soils compared to poorly-drained soils, 334 

where more significant modifications (e.g., increased surface areas or implementing several 335 

modifications simultaneously such as those in the MID and HIGH scenarios) are needed to meet 336 

historic infiltration volumes. Conversely, drain outflow volumes increased as soil drainage 337 

decreased; models showed that water readily percolated into the rapidly draining soils in 338 

scenarios K2 and K3, while water exiting the practice via the underdrain occurred more 339 

frequently in the poorly drained soils in K1. 340 

Unlike infiltration and drain outflow, underlying soil properties had little effect on annual 341 

surface overflow volumes; modeled surface overflow for many design configurations across all 342 

K scenarios exceeded historic surface levels (Figure 2). Other studies have reported increased 343 

surface overflow from bioretention cells under future climate conditions (e.g., Olsson et al., 344 

2009; Hathaway et al., 2014), as increased depths and variable intensities of future rainfall can 345 
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overwhelm bioretention infiltration rates and limited volumes for temporary ponded storage. 346 

Because this represents runoff that bypassed any treatment or hydrologic mitigation provided by 347 

the practice, it may be an indication that more significant modifications are needed regardless of 348 

site conditions to reduce the impacts of future runoff, as most models using the MID or HIGH 349 

design configurations reduced surface overflow volumes beyond historic levels. 350 

 Trends in future performance were largely consistent across the various soil types with 351 

respect to water balance composition (Figure 3). In general, while the magnitude of each water 352 

balance component shifted between K scenarios, simulations for most configurations resulted in 353 

proportionally lower infiltration and higher surface overflow compared to historic conditions, 354 

while drain outflow was mixed. As with surface overflow volumes, the bioretention water 355 

balance may be heavily influenced by shifting rainfall patterns (e.g., more annual rainfall, 356 

increased magnitudes of larger events, etc.). While many design modifications improved 357 

infiltration volumes in K2 and K3 scenarios, the trends in Figure 3 suggest that projected future 358 

rainfall (Table 5) will limit the ability of bioretention cells to maintain a water balance similar to 359 

historic conditions in all but the most intensive deviations from current design practices, as 360 

consistent improvements were largely limited to A3, MID, and HIGH regardless of underlying 361 

soil conditions. 362 
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 363 

Figure 2: Box plots summarizing future (2040-2044) bioretention performance with various 364 

design modifications under climate uncertainty. Plots show annual volumes directed to 365 

infiltration, surface outflow, or drain outflow under three underlying soil conditions (K1: poorly-366 

drained, K2: moderately-drained, K3: well-drained). Annual volumes derived from model results 367 

of historic bioretention performance using current design standards and observed rainfall records 368 

from 2010-2014 corresponding to each pathway and scenario are indicated by dashed vertical red 369 

lines in each plot. 370 
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 371 

Figure 3: Box plots summarizing future (2040-2044) bioretention performance with various 372 

design modifications under climate uncertainty. Plots show the percentage of the overall water 373 

balance comprised of infiltration, surface outflow, or drain outflow under three underlying soil 374 

conditions (K1: poorly-drained, K2: moderately-drained, K3: well-drained). The portions of the 375 

water balance based on model results of historic bioretention performance using current design 376 

standards and observed rainfall records from 2010-2014 corresponding to each pathway and 377 

scenario are indicated by dashed vertical red lines in each plot. 378 

 379 

 The percentiles corresponding to historic performance, as well as the performance returns 380 

(defined as increases in the percentage of future scenarios meeting or surpassing historic levels) 381 

for each design modification are shown in Table 6. Depending on management objectives and 382 

site conditions, these results illustrate where priority should be placed to incorporate resiliency to 383 

future climate conditions. For example, if the primary management objective was to maximize 384 

runoff reduction by promoting infiltration from bioretention cells in areas with poor to 385 

moderately-drained soils, increasing the depth of the media layer within the practice provides the 386 
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greatest returns relative to other, more conservative design modifications (e.g., increasing 387 

saturated conductivity of media). However, increasing ponding depths provides the greatest 388 

improvements to infiltration performance for sites with well-drained soils (K3). 389 

 390 

 391 

 392 

 393 

 394 

 395 
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Table 6: Comparison of historic bioretention performance (2010-2014) compared to model results of modified designs under future 396 

climate scenarios (2040-2044). Values represent the percentile corresponding to historic performance relative to the range of future 397 

model results. Percentiles based on annual volumes are listed next to those based on water balance composition, which are reported in 398 

parentheses. Performance returns for each design component are shown as the absolute value of the difference between the minimum 399 

and maximum design in each configuration group. 400 

 
K1 K2 K3 

Infiltration Surface Drainage Infiltration Surface Drainage Infiltration Surface Drainage 

P1 72.5 (100) 0 (0) 39.2 (100) 68.3 (100) 0 (0) 35.4 (100) 67.0 (100) 0 (0) 28.5 (100) 

P2 71.5 (100) 0 (0) 7.1 (68.5) 47.2 (100) 0 (0) 0 (33.8) 37.9 (100) 0 (0) 0 (9.3) 

P3 70.8 (100) 22.3 (26.8) 0 (40.8) 18.0 (100) 22.3 (26.8) 0 (6.0) 12.9 (100) 22.3 (26.8) 0 (0) 

|P3-P1| 1.7 (0) 22.3 (26.8) 39.2 (59.2) 50.3 (0) 22.3 (26.8) 35.4 (94.0) 54.1 (0) 22.3 (26.8) 28.5 (100) 

CON1 72.5 (100) 0 (0) 39.2 (100) 68.3 (100) 0 (0) 35.4 (100) 67.0 (100) 0 (0) 28.5 (100) 

CON2 73.3 (100) 0 (0) 10.8 (74.6) 77.4 (100) 0 (0) 0 (24.3) 83.3 (100) 0 (0) 0 (0) 

CON3 73.3 (100) 0 (0) 0 (63.0) 84.6 (100) 2.9 (10.5) 0 (0) 89.2 (100) 5.8 (23.3) 0 (0) 

|CON3-CON1| 0.8 (0) 0 (0) 39.2 (59.2) 16.3 (0) 2.9 (10.5) 0 (0) 22.2 (0) 5.8 (23.3) 28.5 (100) 

DEP1 72.5 (100) 0 (0) 39.2 (100) 68.3 (100) 0 (0) 35.4 (100) 67.0 (100) 0 (0) 28.5 (100) 

DEP2 45.3 (100) 0 (0) 53.0 (100) 36.3 (100) 0 (0) 57.5 (100) 51.5 (100) 0 (0) 49.6 (100) 

DEP3 0 (79.4) 0 (0) 57.9 (100) 0 (93.0) 0 (0) 65.6 (100) 39.5 (100) 0 (0) 64.2 (100) 

|DEP3-DEP1| 72.5 (20.6) 0 (0) 18.7 (0) 68.3 (7.0) 0 (0) 30.2 (0) 27.5 (0) 0 (0) 35.7 (100) 

A1 72.5 (100) 0 (0) 39.2 (100) 68.3 (100) 0 (0) 35.4 (100) 67.0 (100) 0 (0) 28.5 (100) 

A2 0 (10.6) 24.2 (28.6) 26.2 (100) 0 (36.3) 24.2 (28.6) 38.5 (100) 0 (68.7) 24.2 (28.6) 20.4 (100) 

A3 0 (0) 48.6 (79.8) 21.6 (100) 0 (0.4) 48.6 (79.8) 51.7 (100) 0 (18.4) 48.6 (79.8) 60.7 (100) 

|A3-A1| 72.5 (100) 48.6 (79.8) 17.6 (0) 68.3 (100) 48.6 (79.8) 16.3 (0) 67.0 (81.6) 48.6 (79.8) 32.2 (0) 

LOW 72.5 (100) 0 (0) 39.2 (100) 68.3 (100) 0 (0) 35.4 (100) 67.0 (100) 0 (0) 28.5 (100) 

MID 0 (7.2) 78.3 (85.4) 5.8 (59.0) 0 (24.6) 78.3 (85.4) 6.9 (24.6) 0 (68.4) 78.3 (85.4) 1.3 (3.2) 

HIGH 0 (0) 100 (100) 18.4 (93.1) 0 (0) 100 (100) 31.0 (90.1) 0 (15.0) 100 (100) 9.0 (35.0) 

|HIGH-LOW| 72.5 (100) 100 (100) 20.8 (6.9) 68.3 (100) 100 (100) 4.4 (9.9) 67.0 (85.0) 100 (100) 19.5 (65.0) 
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Other modifications should be considered if objectives are centered on reducing 401 

untreated, unmitigated surface overflows. Increasing ponding depths should be prioritized over 402 

deepening media layers or increasing media saturated conductivity for sites in all soil types, 403 

allowing more water to be stored within the bioretention surface layer before percolating into the 404 

media. Increasing media conductivities provided modest improvements in surface overflow for 405 

sites with moderate- to well-drained soils; however, this modification may influence hydraulic 406 

retention times and correspondingly impact the pollutant removal that could occur within the 407 

cell. Finally, priority should be placed on deepening media layers if management objectives are 408 

focused on reducing drainage outflows and retaining runoff on-site, as designs with increased 409 

media thickness (i.e., DEP3) resulted in the highest number of simulations falling below historic 410 

drainage levels in all K scenarios. Unlike increasing saturated conductivities, deepening media 411 

profiles may provide greater opportunities for pollutant removal within the system, as well as 412 

potentially improved plant health due to increased soil volumes, which foster root exploration 413 

and water storage during inter-event dry periods (Read et al., 2008; Hatt et al., 2009; Le 414 

Coustumer et al., 2012). 415 

Increasing bioretention surface area relative to the catchment area had the largest effect 416 

on overall performance in every K scenario. Increasing bioretention surface area to 15% of the 417 

contributing catchment resulted in all of climate scenarios surpassing historic annual infiltration 418 

volumes. The largest impact of surface area modification occurred in the K1 scenario, as 100% 419 

of future simulations surpassed historic annual volumes and proportional amounts of infiltration 420 

using the A3 design compared to 27.5% and 0% in the A1 design, respectively. Simulations of 421 

the K2 scenario followed these trends, surpassing performance improvements observed in the K3 422 

scenario with respect to infiltration. This suggests that expanding surface area in new 423 
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bioretention installations may become increasingly important to incorporate resiliency to future 424 

climate change as the infiltration capacities of underlying soils decline. 425 

Increasing bioretention surface area also led to the largest improvements with respect to 426 

minimizing surface overflow and drainage outflows. As surface overflows were mostly 427 

influenced by rainfall parameters, surface area increases led to similar reductions in overflow 428 

regardless of underlying soils. Practices designed with a surface area equal to 15% of the 429 

contributing catchment surpassed historic levels with respect to annual volumes and proportion 430 

of the water balance in 48.6% and 79.8% of climate simulations, respectively, compared with 0% 431 

of simulations meeting historic levels when surface areas were equal to 5% of the catchment. 432 

Interestingly, drainage outflows were minimized in the K3 scenario using the A2 configuration. 433 

This may be attributable to lower surface overflows in these simulations, which resulted in more 434 

runoff percolating through the practice that contributed to both infiltration and drainage outflow. 435 

As increasing surface area yielded the largest impact to future performance, the composite 436 

configurations (LOW, MID, HIGH) followed similar trends observed in the A1, A2, and A3 437 

simulations. However, further improvements were evident in these trials. Reduced effects were 438 

once again observed as drainage of underlying soils increased, suggesting that intensive design 439 

modifications should be considered in areas with poorly draining soils where elevated risks 440 

posed by future climate change are anticipated. 441 

These conclusions support findings from other studies of the effects of climate 442 

uncertainty on LID performance. Studies such as Eckart et al. (2018), Zhang et al. (2019), and 443 

Wang et al. (2019a and 2019b) concluded that larger bioretention surface areas would be needed 444 

to ensure their performance under future climate conditions. Similar to observations by Wang et 445 

al. (2019a), incremental runoff reduction decreased as the bioretention surface area increased, as 446 
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the largest improvements with respect to infiltration occurred between the A1 and A2 (and LOW 447 

to MID) configurations. Likewise, the largest improvements to surface overflow performance 448 

occurred between the LOW and MID configurations. Because these designs correspond to 449 

increased investment in the practice compared to modifying the other parameters, management 450 

objectives should be considered prior to their implementation. 451 

3.3 Retrofit scenario 452 

Results of the Retrofit modifications (Table 2) under future climate conditions are 453 

summarized in Figures 4 and 5, while the percentiles corresponding to historic performance and 454 

returns for each retrofit measure are shown in Table 7. As with the ponding configurations in the 455 

New Build scenario, increasing ponding depths (by subsequently decreasing the media layer 456 

thickness) consistently improved surface overflow performance across all underlying soil types. 457 

However, historic performance was exceeded for the majority of trials in even the highest retrofit 458 

measures, with 71.1 % and 67.4% of simulations exceeding annual volumes and the proportion 459 

of the water balance corresponding to surface overflows, respectively. Further, given that storage 460 

depths in the R4 scenario are substantially higher than permitted depths in many jurisdictions 461 

(e.g., NCDEQ, 2009, TDEC, 2014, MPCA, 2016), the increased risks to public health and safety 462 

may make these designs impractical. 463 
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 464 

Figure 4: Box plots summarizing future (2040-2044) bioretention performance with various 465 

retroactive modifications implemented to add resiliency under climate uncertainty. Plots show 466 

annual volumes directed to infiltration, surface outflow, or drain outflow under three underlying 467 

soil conditions (K1: poorly-drained, K2: moderately-drained, K3: well-drained). Annual volumes 468 

derived from model results of historic bioretention performance using current design standards 469 

and observed rainfall records from 2010-2014 corresponding to each pathway and scenario are 470 

indicated by dashed vertical red lines in each plot. 471 
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 472 

Figure 5: Box plots summarizing future (2040-2044) bioretention performance with various 473 

retroactive modifications implemented to add resiliency under climate uncertainty. Plots show 474 

the percentage of the overall water balance that is comprised of infiltration, surface outflow, or 475 

drain outflow under three underlying soil conditions (K1: poorly-drained, K2: moderately-476 

drained, K3: well-drained). The portions of the water balance based on model results of historic 477 

bioretention performance using current design standards and observed rainfall records from 478 

2010-2014 corresponding to each pathway and scenario are indicated by dashed vertical red lines 479 

in each plot. 480 

 481 

 482 

 483 

 484 

 485 

 486 
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Table 7: Comparison of historic bioretention performance (2010-2014) compared to model 487 

results using retroactive modifications future climate scenarios (2040-2044). Values represent 488 

the percentile of the range of future model results corresponding to historic performance for 489 

various hydrologic pathways, underlying soil conditions, and retrofit measures. Percentiles based 490 

on annual volumes are listed next to those based on water balance composition, which are 491 

reported in parentheses. Performance returns for each scenario are shown as the absolute value of 492 

the difference between R4 and R1. 493 

 494 
K Scenario Configuration Infiltration Surface Drainage 

K1 

R1 75.7 (100) 0 (0) 36.8 (100) 

R2 82.8 (100) 0 (0) 0.7 (61.3) 

R3 100 (100) 16.0 (25.8) 0 (33.8) 

R4 100 (100) 28.9 (32.6) 0 (0) 

|R4-R1| 24.3 (0) 28.9 (32.6) 36.8 (100) 

K2 

R1 68.4 (100) 0 (0) 32.4 (100) 

R2 67.3 (100) 0 (0) 0 (26.0) 

R3 69.4 (100) 16.0 (25.8) 0 (0) 

R4 71.1 (100) 28.9 (32.6) 0 (0) 

|R4-R1| 2.7 (100) 28.9 (32.6) 32.4 (100) 

K3 

R1 66.3 (100) 0 (0) 27.6 (82.0) 

R2 44.0 (100) 0 (0) 0 (0) 

R3 26.4 (100) 16.0 (25.8) 0 (0) 

R4 16.9 (100) 28.9 (32.6) 0 (0) 

|R4-R1| 49.4 (0) 28.9 (32.6) 27.6 (82.0) 

 495 

Hathaway et al. (2014) determined that storage depths would need to be increased by 9-496 

31 cm (while holding other design parameters constant) to restrict annual overflow from 497 

bioretention cells to a baseline scenario under future climate conditions in North Carolina, USA. 498 

In a similar study demonstrating the geographic differences of climate impacts on bioretention 499 

hydrology, Winston (2016) found that increasing ponding depths by up to 51% (corresponding to 500 

an additional 5-17 cm) was necessary to maintain historic surface overflows from a bioretention 501 

cell in northeast Ohio, USA. Simulation results from the Retrofit scenario indicate that even 502 

more storage may be necessary to reduce future surface overflow. This suggests that other 503 

retrofit measures may need to be considered to improve surface overflow performance. For 504 

example, as suggested by the New Build scenario results (Table 6), replacing existing media with 505 
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a more rapidly draining mixture in combination with modifying ponding depths may provide 506 

additional improvements in bioretention performance in sites with well-drained soils. 507 

While marginally increased volumes were directed toward infiltration in well-drained 508 

soils, the portion of the water balance representing infiltration in historic conditions was not 509 

achieved in any of the Retrofit configurations. Performance based on annual infiltration volumes 510 

slightly declined in the K1 scenario as retrofit measures increased from R1 to R4 yet remained 511 

relatively similar across K2 trials. The hydrologic impact of the retrofit measures in the future 512 

period was most apparent with respect to drainage outflows. Across all K scenarios, the 513 

proportion of simulations with elevated levels of drainage outflows increased with increasing 514 

retrofit measures (i.e., between R1 and R4). However, while drainage outflows represent runoff 515 

receiving treatment from the practice, the decreased bioretention media thickness in the Retrofit 516 

scenario (especially in the R3 and R4 configurations) may limit the pollutant removal 517 

capabilities of the cell due to decreased retention times and soil volumes available for plant roots, 518 

resulting in a diminished quality of drainage. Based on these results and the limited reduction to 519 

surface overflows and the risks to public health and safety associated with these designs, the 520 

proposed retrofit measures may not provide a feasible path to incorporating resiliency to climate 521 

change in existing bioretention facilities. 522 

4.0 Conclusions and Recommendations 523 

Climate change poses risks to GI such as bioretention cells to effectively manage urban 524 

stormwater runoff in the coming decades. Simulations using EPA SWMM 5.1 and bias corrected 525 

climate model output were analyzed using a probabilistic approach to evaluate the efficacy of 526 

bioretention design modifications and retrofit measures to add resiliency to bioretention cells in 527 

the face of future climate uncertainty. Results indicated that the greatest return on historic 528 
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performance occurred when increased surface areas (relative to the contributing catchment) are 529 

used in design, especially in sites with moderate to poorly drained in situ soils. However, while 530 

retrofits to existing bioretention cells reduced untreated surface overflows in future simulations, 531 

the marginal performance returns, risks to public health and safety, and potentially diminished 532 

treatment capacities of these designs may not represent a realistic option to incorporate climate 533 

resiliency into existing practices. 534 

Findings also demonstrate the attention that must be directed to management objectives, 535 

risk tolerance, and local site conditions when assessing options to ensure bioretention 536 

effectiveness in future climate conditions. Depending on underlying soil characteristics, results 537 

suggest that design modifications had various impacts to bioretention hydrology, which should 538 

be considered with respect to management objectives such as minimizing surface overflows or 539 

maximizing runoff reduction via infiltration. In several instances, current design standards met or 540 

exceeded historic performance levels for a subset of future climate projections. In locations 541 

where stormwater engineers or officials are willing to accept the likelihood that most climate 542 

projections will lead to future performance declines, increased investment in bioretention design 543 

may not be necessary. However, modifying bioretention designs, such as the use of larger 544 

practices, may be critical in more risk averse communities to ensure their effective operation in 545 

the future. 546 

Future studies should incorporate this methodology with a larger set of climate models, 547 

emissions scenarios, and study locations to more broadly understand the impacts of climate 548 

change on bioretention performance. Studies should add to the combination of design factors, 549 

consider the effects of clogging and media degradation over time (e.g., decreases in media 550 

porosity and field capacity) on the viability of retrofit measures, and consider the economic 551 
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impacts of modified designs to identify optimal methods to enhance bioretention resiliency to 552 

future climate uncertainty with respect to infrastructure costs. Research should be conducted to 553 

investigate the impacts of climate change on the pollutant removal performance of bioretention 554 

cells. Finally, this assessment is predicated on a desire to maintain historical function into the 555 

future, but different interventions affect different hydrologic pathways. There is a need for 556 

broader discussion in the urban watershed management community to clearly define resiliency in 557 

their context.  558 
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