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Abstract

Climate stationarity is a traditional assumption in the design of the urban drainage network,
including green infrastructure practices such as bioretention cells. Predicted deviations from
historic climate trends associated with global climate change introduce uncertainty in the ability
of these systems to maintain service levels in the future. Climate change projections are made
using output from coarse-scale general circulation models (GCMs), which can then be
downscaled using regional climate models (RCMs) to provide predictions at a finer spatial
resolution. However, all models contain sources of error and uncertainty, and predicted changes
in future climate can be contradictory between models, requiring an approach that considers
multiple projections. The performance of bioretention cells were modeled using USEPA’s Storm
Water Management Model (SWMM) to determine how design modifications could add
resilience to these systems under future climate conditions projected for Knoxville, Tennessee,
USA. Ten downscaled climate projections were acquired from the North American Coordinated
Regional Downscaling Experiment program, and model bias was corrected using Kernel Density
Distribution Mapping (KDDM). Bias-corrected climate projections were used to assess
bioretention hydrologic function in future climate conditions. Several scenarios were evaluated

using a probabilistic approach to determine the confidence with which design modifications
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could be implemented to maintain historic performance for both new and existing (retrofitted)
bioretention cells. The largest deviations from current design (i.e., concurrently increasing
ponding depths, thickness of media layer, media conductivity rates, and bioretention surface
areas by 307%, 200%, 200%, and 300%, respectively, beyond current standards) resulted in the
greatest improvements on historic performance with respect to annual volumes of infiltration and
surface overflow, with all ten future climate scenarios across various soil types yielding
increased infiltration and decreased surface overflow compared to historic conditions. However,
lower performance was observed for more conservative design modifications; on average,
between 13-82% and 77-100% of models fell below historic annual volumes of infiltration and
surface overflow, respectively, when ponding zone depth, media layer thickness, and media
conductivity were increased alone. Findings demonstrate that increasing bioretention surface
area relative to the contributing catchment provides the greatest overall return on historic
performance under future climate conditions and should be prioritized in locations with low in
situ soil drainage rates. This study highlights the importance of considering local site conditions
and management objectives when incorporating resiliency to climate change uncertainty into

bioretention designs.

Keywords: Bioretention; climate change; hydrology; water balance; resiliency; SWMM
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1.0 Introduction

For several decades, research has connected urbanization and land development to
impacts on the hydrologic cycle and receiving water bodies (Leopold, 1968; Hollis, 1975; Klein,
1979; Arnold and Gibbons, 1996; Booth and Jackson, 1997; Walsh et al., 2005). Cities
worldwide are employing green infrastructure (GI) techniques, referred to as stormwater control
measures (SCMs), low impact development (LID), and water sensitive urban design (WSUD), to
manage urban runoff. One of the most popular SCMs is the bioretention cell, which manages
runoff volumes by promoting infiltration, temporary retention, and evapotranspiration, and
removes pollutants via natural treatment mechanisms such as soil adsorption, filtration, and
plant/microbial uptake (Davis et al., 2009). Many studies have demonstrated their ability to
reduce runoff volumes and mitigate peak flow rates to levels that resemble pre-development
hydrologic conditions (e.g., Brown and Hunt, 2011; DeBusk and Wynn, 2011; Winston et al.,

2016).

Bioretention designs are commonly based on past climate conditions, where treatment
objectives (e.g., retaining runoff from the 90™ percentile storm on-site) derived from historic
records are used to determine key parameters such as surface area. This relies on the assumption
of climate stationarity, where such targets remain constant over time (Denault et al., 2006).
However, climate change challenges this approach, threatening to overwhelm existing systems
and risking diminished performance or operational failure (Denault et al., 2006; Berggren et al.,
2012; Hathaway et al., 2014). There is widespread agreement that surface temperatures and
extreme weather shifts will increase over the 21% century due to global climate change, though
the magnitude of change is uncertain and dependent upon many factors, including anthropogenic

emissions, human adaptation, technological advances, and natural climate variability (Berliner,
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2003; IPCC, 2014). Given the operational lifespan of these systems (beyond 20-25 years), the
functionality of presently installed SCMs in future climate conditions is under question (Zhang et
al., 2019). Therefore, despite future climate uncertainties, there is a need to investigate methods
to develop climate resilient bioretention designs which maintain performance under shifting

hydrologic regimes (Rosenberg et al., 2010).

Climate change impact studies rely on future projections based on general circulation
models (GCMs) (IPCC, 2014; Semadeni-Davis et al., 2008). Although GCMs generally simulate
the same processes, all models approach the global system differently and contain variable
sources of error, uncertainty, and sometimes contradictory projections (Semadeni-Davies, 2008);
thus, research recommends the use of an array of GCMs to better understand potential future
climate changes (Rosenberg et al., 2010; Zhang et al., 2019; Barah et al., 2020; Ramshani et al.,
2020). Because the spatial scale of GCMs (on the order of hundreds of kilometers) is too coarse
for the small catchments associated with urban hydrology (tens of kilometers or less), outputs
from large-scale GCMs are often transformed for use in smaller-scale applications utilizing
dynamic downscaling techniques such as regional climate models (RCMs) (Willems et al.,
2012). However, because climate uncertainty is magnified at the regional scale, resulting
systematic bias must be corrected via statistical downscaling methods prior to assessing local-

scale climate impacts (Semadeni-Davies et al., 2008; Willems et al., 2012; Mearns et al., 2017).

Despite the limited availability of fine-scale climate projections, studies have investigated
climate change impacts on bioretention performance using various techniques. A common
approach is the delta change factor (DCF) method, where relative changes predicted by climate
models are applied to an observed rainfall series to produce future precipitation projections

(Anandhi et al., 2011). Numerous studies have modeled GI under future conditions by applying
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change factors to alter precipitation volume, intensity, and seasonal patterns (Semadeni-Davies et
al., 2008; Olsson et al., 2009; Pyke et al., 2011; Moore et al., 2016). Despite its ease of use, the
DCF method contains several disadvantages and may not fully consider all aspects of changing
climate conditions that influence GI (e.g., event frequency, changes in antecedent conditions,

etc.) (Anandhi et al., 2011).

Other studies have implemented different approaches to assess climate change impacts on
GI performance. Zahmatkesh et al. (2014) analyzed historic rainfall patterns to develop hourly
multipliers and disaggregate daily climate output from 134 GCMs into hourly rainfall projections
for New York City. Zahmatkesh et al. (2015) investigated the effectiveness of LID under future
climate using this methodology. Despite annual runoff volumes increasing by 48%, the authors
observed a 41% decline in average annual runoff volumes and peak flow reductions of 8-13% in
model scenarios where LID practices (porous pavement, rainwater harvesting, and bioretention
cells) were implemented. Zhang et al. (2019) analyzed the reliability of WSUDs in Melbourne,
Australia using an ensemble of eight GCMs. Using historical rainfall data and a multiplicative
random cascade model (HiDRUS), 100 continuous rainfall projections were developed for each
GCM at high spatial (1 km) and temporal (6-minute) resolutions. Results showed lower
precipitation and longer dry periods in the future, with minimal impact on WSUD performance.
Large variability was observed across the GCMs, and larger practices were recommended to
account for this uncertainty and maintain future performance (Zhang et al., 2019). Wang et al.
(2019a) used intensity-duration-frequency (IDF) curves to evaluate GI performance in a
hypothetical catchment in Guangzhou, China using historical data and 11 GCMs under four
representative concentration pathways (RCPs) (IPCC, 2014). Larger practices yielded increased

runoff volume reductions, though performance improvements decreased with increasing GI
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surface area. Similarly, GI effectiveness decreased as storm sizes and return periods increased

(Wang et al., 2019a).

Given the highly regional and uncertain nature of climate change impacts, and the limited
research investigating its effects on bioretention, there is a critical need to examine the ability of
these systems to maintain performance in future conditions. Further, there is a need to determine
how bioretention design elements impact future performance such that regulatory agencies,

stormwater engineers, and municipal officials can build climate resiliency into these systems.

The objective of this study was to investigate the impact of climate change on future
bioretention performance and determine how design modifications and site conditions influence
the climate resiliency of these systems. Using a probabilistic approach, bioretention hydrology
under various climate change scenarios was compared to a baseline period to determine the
design modifications required to achieve past performance under future climate conditions.
While the study area was in the southeastern United States, this approach may be applicable to
broader geographical regions, allowing the prioritization of specific design elements that enhance
the resiliency of bioretention cells to climate change. Though studies have investigated climate
change impacts on bioretention performance, to the authors’ knowledge, no studies have

addressed this research gap using such methodology.

2.0 Materials and Methods

2.1 Conceptual study location

The hypothetical study site was based on the climate of Knoxville, Tennessee, USA
(35.9606°N, 83.9207°W, approximate elevation 270 m). The mean annual temperature in

Knoxville is 16°C, while the mean annual precipitation is approximately 1215 mm (Tennessee
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Climatological Service). The frequency and severity of extreme rainfall events are expected to
increase across the southeastern United States under both lower and higher emissions scenarios
in the future, posing risks to human health, frequent and prolonged drought, and increased spread

of vector borne disease (USGCRP, 2018).

The hypothetical catchment represented an impervious surface common to urban areas
(e.g., a paved parking lot) and consisted of a relatively flat, completely impervious, 0.4 ha area
draining to a single bioretention cell. Three underlying soil types (ranging from clay to sandy
loam) were modeled to capture the potential variability of climate change impacts on
bioretention performance at locations with different soil characteristics. Observed climate data
for the baseline period (2010-2014) was obtained from a weather station at the nearest airport

(McGhee Tyson) and used to simulate historic performance.

2.2 Hydrological model

The USEPA Storm Water Management Model (SWMM) version 5.1 was used to assess
bioretention hydrologic performance in this study (Rossman, 2015; Niazi et al., 2017). All runoff
from the hypothetical catchment was routed to the bioretention cell; depression storage was not
considered to simulate the complete connection of the catchment to the outlet. Infiltration was
estimated using the Green-Ampt method, and dynamic wave flow routing was used in the
models (Rossman, 2015). Evaporation was estimated from daily air temperatures using the
Hargreaves method (Hargreaves and Samani, 1985; Rossman, 2015). Hourly rainfall from
observed data (baseline period — 2010-2014) or climate change projections (future period —
2040-2044) were used as model inputs. Other parameters were determined from a review of
literature and the characteristics of the simulated study location (Table 1). As the study focused

on performance changes between the baseline and future climate conditions, as opposed to
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modeling a specific site, no calibration or verification of the models was performed (Wang et al.,

2016).

Table 1: Summary of parameters of hypothetical catchment used in SWMM models.

Parameter Description Value
Area Area of subcatchment (ha) 0.4
% Slope  Average surface slope (%) 1
% Imperv  Percent of impervious area (%) 100
N-Imperv Manning’s n for impervious area 0.01
% Zero Percent c:)f impervious area with no depression 100
storage (%)
% Routed Percent of runoff routed between sub-areas (%) 100

2.3 Model scenarios

The future performance of two model scenarios (“New Build” and “Retrofit”) was

simulated for a period from 2040-2044, representing the final five years of a 25-year service life

for a bioretention cell constructed in 2020. The scenarios are described below:

The New Build scenario represented a bioretention cell constructed in 2020. In this
scenario, design components were modified beyond regulatory recommendations, and the
resulting effects on performance under future climate was investigated (TDEC, 2014).
The Retrofit scenario simulated modifications performed to an existing bioretention cell
in 2020 in response to anticipated climate change. As more frequent and severe rain
events are expected in the study area, increased instances of overflow could be expected
to occur. In this scenario, the bioretention media layer thickness was incrementally
decreased as the surface storage zone was deepened, representing the finite cross-section

depth for the system. This was intended to simulate media removal from the practice to
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increase surface storage depth, a measure that could theoretically be implemented in

place of a full reconstruction.
2.4 Bioretention modeling and design configurations

Bioretention design parameters, such as practice size, media depth, and surface storage
depth, were initially based on design criteria specified in the Tennessee Permanent Stormwater
Management and Design Guidance Manual (TDEC, 2014). Initial designs were sized to capture
runoff from a 25.4 mm storm in the surface storage zone. Components of the baseline design
(“BASE”) are shown in Table 2. Model parameters were incrementally adjusted from this design
to form several configurations for the New Build and Retrofit scenarios (Table 3). Due to model
limitations and a desire to quantify the performance implications following specific design
modifications, factors which could reasonably impact bioretention performance over time (i.e.,
media porosity, field capacity, and clogging) remained unchanged from initial conditions in all

simulations.
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Table 2: Baseline bioretention design parameters (BASE).

Parameter Description Value Source

Surface Layer

Berm Height Maximum depth water can pond in bowl (cm) 15 TDEC (2014)

Soil Layer

Thickness Soil layer thickness (cm) 61  TDEC (2014)

Porosity Soil porosity (volume fraction) 0.44 Committee (2005)

Field . . . .

Capacity Soil field capacity (volume fraction) 0.09 Committee (2005)

;Rglilrtl}[ng Soil wilting point (volume fraction) 0.04 Committee (2005)

Conductivity Saturated hydraulic conductivity of soil 5 Parameter adjusj[ed
(cm/hr) in model scenarios

Conductivity Slope of log(conductivity)-soil moisture 50 Rossman (2015)

Slope content curve

Suction . . . Brakensiek et al.

Head Soil capillary suction (cm) 10 (1981)

Storage Layer

Thickness Storage layer (soil) thickness (cm) 15  County (2008)

Void Ratio ~ Storage layer void ratio (voids/solids) 0.4  Miller (1978)

Seepage . . Parameter adjusted

Rate Rate of water seepage to native soil (mm/hr) 1.3 1 K scenarios

Clogging . L

Factor Clogging parameter (clogging ignored) 0 -

Drain Layer

Flow Determines drain flow rate as a function of

Coefficient  hydraulic head (C) 0.6 County (2008)

Flow Determines drain flow rate as a function of

Exponent hydraulic head (n) 0.5 County (2008)

Offset Drain height above bottom of storage layer 15 Miller (1978)

(cm)




209  Table 3: Bioretention design configurations used in New Build and Retrofit scenarios.

New Build Scenario Design Configurations:
Ponding: All BASE parameters held constant except Berm Height

Configuration Berm Height (cm)

P1 15

P2 30

P3 61

Media Depth: All BASE parameters held constant except Thickness (soil layer)

Configuration Thickness (cm)

DEP1 61

DEP2 91

DEP3 122

Media Conductivity: All BASE parameters held constant except Conductivity

Configuration Conductivity (mm/hr)

CONI1 51

CON2 76

CON3 102

Surface Area: All BASE parameters held constant except Area

Configuration Area (percent of drainage area)

Al 5%

A2 10%

A3 15%

Composite Configurations: All BASE parameters held constant except the following:

Configuration Berm Height Thickness Conductivity Area
(cm) (cm) (mm/hr) (% Catchment)

LOW 15 61 51 5%

MID 30 91 76 10%

HIGH 46 122 102 15%

Retrofit Scenario Design Configurations:
Retrofit Configurations: All BASE parameters held constant except the following:

Configuration Berm Height (cm) Thickness (cm)
R1 15 91
R2 30 76
R3 46 61

R4 61 46
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In total, 15 designs were analyzed under the New Build scenario. Parameters were
individually adjusted to assess their impact on future performance and illustrate where priority
should be placed when considering additional investments in bioretention design. Composite
configurations containing a combination of these designs were also tested. Table 3 also details
the four configurations tested in the Retrofit scenario (R1-R4). The surface storage depth in
scenario R4 (approximately 61 cm) is double the maximum ponding depth recommended in local
regulations (TDEC, 2014). Additionally, the media depth is reduced to 46 cm in this design.
Beyond performance implications, safety hazards, prolonged surface ponding, and impacts to
plant health could be expected if this design were implemented. However, this was considered to
illustrate the lengths that may be required to retrofit an existing system to maintain performance

under future conditions.

The BASE design configuration (Table 2) was modeled with observed rainfall data
(2010-2014) to compare the New Build and Retrofit results against historic performance.
Bioretention configurations were modeled using three underlying soil types (i.e., K1, K2, and
K3) to assess the impact of site-specific conditions on bioretention hydrology under climate
change. The underlying soils included clay (Ksat = 1.27 mm hr'!, K1), clay loam (K = 12.7 mm

hr!, K2), and sandy loam (Ksa = 25.4 mm hr'!, K3).
2.5 Future climate data

Climate change projections were downloaded from the North American Coordinated
Regional Downscaling Experiment (NA-CORDEX) Program (Mearns et al., 2017; Unidata
Science Gateway, 2020). Projections are derived from RCMs which use boundary conditions
created from GCMs in the Coupled Model Intercomparison Project 5 (CMIP5) database (Mearns

et al., 2017). Only projections containing hourly rainfall data were used to better represent the

12
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hydrologic response times of urban areas (Zahmatkesh et al., 2015). As a result, ten dynamically
downscaled projections of hourly rainfall data over a five-year period were used in this study

(Table 4).

Table 4: Description of hourly climate models used in this study.

Model No. GCM RCM RCP Spatial Resolution
1 CanESM2 CanRCM4 4.5 50 km
2 CanESM2 CanRCM4 8.5 50 km
3 GFDL-ESM2M  WRF 8.5 25 km
4 GFDL-ESM2M  WRF 8.5 50 km
5 HadGEM2-ES WRF 8.5 25 km
6 HadGEM2-ES WRF 8.5 50 km
7 MPI-ESM-LR RegCM4 8.5 25 km
8 MPI-ESM-LR RegCM4 8.5 50 km
9 MPI-ESM-LR WRF 8.5 25 km
10 MPI-ESM-LR WRF 8.5 50 km

The majority of the RCPs available from the hourly NA-CORDEX archive used the
RCPS8.5 emissions scenario, representing continued population growth, anthropogenic emissions,
and energy consumption (IPCC, 2014). Though technological advances, emissions reductions,
and human adaptations could mitigate future climate changes and impacts on bioretention
hydrology, this was embraced to illustrate the magnitude of action that required to impact future
bioretention performance. Further, the intent of the study was not to compare differences in

bioretention performance between possible RCPs.
2.6 Bias correction

Climate models regularly overestimate the frequency of low intensity rainfall while
underestimating occurrences of intense rain, referred to as the “drizzle problem” (Sun and
Solomon, 2005; Stephens et al., 2010). Because RCM outputs represent averages of larger grids

(i.e., 25 km or 50 km grids), the data must be adjusted to fit the scale of observed values at a

13
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location of interest (Cook et al., 2019; Cook et al., 2020). Thus, bias correction (BC) procedures
should be implemented before RCM outputs are used in hydrologic models (Rosenberg et al.,

2010).

Kernel density distribution mapping (KDDM), a novel non-parametric technique
developed by McGinnis et al. (2015), was used to correct climate model bias. Distribution
mapping techniques such as KDDM adjust individual values within climate model output to
match their statistical distribution with that of an observed data set (McGinnis et al., 2015). The
KDDM method fits a transfer function between the empirical cumulative distribution functions
(CDFs) of observed rainfall and climate model output for a historical time period to adjust future
climate data to the scale of the observed data (McGinnis et al., 2015; Cook et al., 2019; Cook et
al., 2020). Based on available rainfall data for Knoxville, 1997-2011 was chosen for the

historical period, and 2035-2049 for the future period for bias correction.

The KDDM bias correction procedure was performed on both hourly rainfall and
temperature (daily maximum and minimum) datasets that were used in the hydrologic models
using the R package “climod” (McGinnis, 2018). Bias correction of temperature projections was
performed on a monthly basis to account for natural, seasonal variations (which can be much
larger than model bias) (McGinnis et al., 2015). The statistical similarities of the observed data
and bias corrected climate model output for the historical period were confirmed using the
Wilcoxon rank sum test, which was concluded after observing that the null hypothesis could be
accepted for all ten models following bias correction (R Core Team, 2019). Subsets of bias
corrected temperature and rainfall data for the period of interest (2040-2044) were then inputted
to SWMM models. More information on the KDDM bias correction procedure can be found in

McGinnis et al. (2015) and the climod documentation (McGinnis, 2018).

14



273 2.7 Performance metrics

274 Three components of the annual water balance (surface overflow, infiltration, and drain
275  outflow) were used to compare future bioretention performance in the New Build and Retrofit
276  scenarios against past performance. The proportion of climate projections leading to improved
277  future performance relative to historic levels (by both annual volumes diverted to each pathway
278  as well as their percentage of the overall water balance) was determined and compared across
279  design configurations to characterize their impact on performance (Table 3). The procedure

280  followed in this analysis is shown in Figure 1.

Download hourly NA-CORDEX climate Acquire observed, historic
change projections for Knoxville, TN climate data from Knoxville, TN

b

Bias correction using Kernel Density
Distribution Mapping (KDDM)

/\ :

Retrofit New Build SWMM simulations
design design of historic
scenarios scenarios performance
SWMM SWMM
simulations simulations
of future of future
performance performance

Compare hydrology under climate change to historic performance and provide
recommendationsto improve bioretention climate resiliency under new build and
retrofit scenarios

281

282 Figure 1: Flowchart of work process.
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3.0 Results and Discussion
3.1 Climate change projections

Summary statistics for the bias corrected climate projections (2040-2044) and observed
climate data (2010-2014) are shown in Table 5. Compared to the observed data from 2010-2014,
model projections averaged more annual rainfall (a mean of 1731 mm across all ten projections)
which was delivered in a higher number of rain events (annual mean of 98 events, data not
shown) and separated by shorter dry periods (mean antecedent dry period (ADP) of 3.8 days)
compared to historic observations (mean annual rainfall of 1310 mm delivered in 84 events
separated by a mean ADP of 4.3 days). Median storm sizes in future projections were generally
less than historic conditions, while on average, GCMs projected the size of the 90" percentile
rain event will be approximately 29% larger in the future period (44 mm) compared to historic
conditions (34 mm). This finding agrees with previous studies which report the impact of climate
change on larger storms with less-frequent return periods (e.g., Olsson et al., 2009; Kim and

Choti, 2011; Wang et al., 2019a).

Other rainfall parameters varied across the GCMs. Nine of the ten models predicted more
rainfall and shorter dry periods than historic observations. Similarly, peak storm intensities
varied across the projections compared to historic conditions. Some models (i.e., models 4, 5, 8,
and 10) contained elevated 90™ percentile peak storm intensities, in line with research suggesting
that future rain events will become more frequent and intense under climate change (USGCRP,
2018). However, other projections predicted lower peak rainfall intensities. Zhang et al. (2019)
found similar variability in assessing climate change projections for Melbourne, Australia, as the
amount of rainfall, duration of dry periods, and maximum and average intensities varied across

the eight GCMs used in their study.
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Taken together, the GCM projections illustrate the importance of addressing the
uncertainty of future climate changes. For example, were future conditions similar to those
predicted in model 9, the deviations from historic conditions (i.e., slightly more annual rainfall
with similar inter-event dry periods and peak rainfall intensities) may allow existing GI practices
to manage future runoff without the need for modifications. However, this is unlikely if future
conditions were to resemble those predicted by model 5; a 226% increase in annual rainfall and
172% increase in 90™ percentile peak rainfall intensity would likely exceed the capacity of
bioretention cells designed and constructed based on historic conditions. Such conditions may
also threaten the health of microbes and plants through inundation during larger rain events,
potentially limiting the treatment benefits they provide (Manka et al., 2016; Zhang et al., 2019).
While some projections contain larger deviations than others, even small changes in climate may
be exacerbated in highly responsive urban catchments, often characterized by a high percentage
of impervious cover (Wang et al., 2019b). As such, the differences in model projections were

recognized to reflect the inherent uncertainty in predicting future climate.
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Table 5: Summary statistics for precipitation and temperature for climate change projections (2040-2044) and observed data (2010-

2014).
Rainfall Dry Period Average Daily Temperature
90 . 90"
Mean Percentile Median Ave, St Percentile
Model  Annual Peak Event Event  Annual Mean Median De;/ Dr Mean Median Max Min
Rain . Depth Rain (days) (days) ) Y (°O) °C) (°C) (O
(mm/yr) Intensity (mm) Days (days) Period
(mm/hr) (days)
1 1611 9.7 4.7 164 3.1 2.0 2.9 6.9 15.2 162 329 -88
2 1465 8.5 4.8 155 3.2 1.7 3.2 7.3 15.3 16.5 31.1 -7.6
3 1626 11.6 5.1 185 34 2.0 3.7 7.8 15.5 16.7 29.7 -9.1
4 1749 13.7 7.6 136 4.3 3.0 4.0 9.6 15.5 16.7 293 -8.8
5 2958 21.9 9.4 152 34 2.3 3.0 7.5 15.0 157 321 -14.1
6 1745 12.7 6.3 136 3.9 2.7 3.7 9.0 15.0 159 335 -143
7 1310 11.9 6.8 136 4.3 33 34 8.6 15.5 16.5 309 -12.5
8 1780 14.9 8.5 134 4.3 3.2 3.9 8.7 15.3 16.0 31.1 -84
9 1484 12.7 8.4 140 4.1 3.0 34 8.8 15.1 16.1 30.6 -l6.1
10 1588 13.4 8.9 132 4.3 3.2 4.0 9.0 15.1 16.1 314 -16.2
Observed 1310 12.7 9.4 139 4.3 3.8 2.9 8.6 15.4 16.5 323 -11.7
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3.2 New Build scenario

Simulation results for the New Build design scenarios (Table 2) are summarized in
Figures 2 and 3. Results show that current designs may be sufficient under some future climate
scenarios that represent lower deviations from current climate but are overwhelmed in others,
and that site-specific considerations should be made when modifying bioretention designs for the
future (Moore et al., 2016; Zhang et al., 2109). As expected, the underlying soil conditions
impacted annual infiltration and drain outflow volumes. Increased annual infiltration volumes
were observed in the well-drained soils in the K3 scenario compared with poorly drained soils
(K1) (Figure 2). Further, a greater number of climate projections met or exceeded historic
infiltration volumes in the K2 and K3 scenarios compared with K1. This suggests that more
conservative design amendments (e.g., increased temporary ponded storage) could have greater
impacts at sites with moderate to well-drained in situ soils compared to poorly-drained soils,
where more significant modifications (e.g., increased surface areas or implementing several
modifications simultaneously such as those in the MID and HIGH scenarios) are needed to meet
historic infiltration volumes. Conversely, drain outflow volumes increased as soil drainage
decreased; models showed that water readily percolated into the rapidly draining soils in
scenarios K2 and K3, while water exiting the practice via the underdrain occurred more

frequently in the poorly drained soils in K1.

Unlike infiltration and drain outflow, underlying soil properties had little effect on annual
surface overflow volumes; modeled surface overflow for many design configurations across all
K scenarios exceeded historic surface levels (Figure 2). Other studies have reported increased
surface overflow from bioretention cells under future climate conditions (e.g., Olsson et al.,

2009; Hathaway et al., 2014), as increased depths and variable intensities of future rainfall can
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overwhelm bioretention infiltration rates and limited volumes for temporary ponded storage.
Because this represents runoff that bypassed any treatment or hydrologic mitigation provided by
the practice, it may be an indication that more significant modifications are needed regardless of
site conditions to reduce the impacts of future runoff, as most models using the MID or HIGH

design configurations reduced surface overflow volumes beyond historic levels.

Trends in future performance were largely consistent across the various soil types with
respect to water balance composition (Figure 3). In general, while the magnitude of each water
balance component shifted between K scenarios, simulations for most configurations resulted in
proportionally lower infiltration and higher surface overflow compared to historic conditions,
while drain outflow was mixed. As with surface overflow volumes, the bioretention water
balance may be heavily influenced by shifting rainfall patterns (e.g., more annual rainfall,
increased magnitudes of larger events, etc.). While many design modifications improved
infiltration volumes in K2 and K3 scenarios, the trends in Figure 3 suggest that projected future
rainfall (Table 5) will limit the ability of bioretention cells to maintain a water balance similar to
historic conditions in all but the most intensive deviations from current design practices, as
consistent improvements were largely limited to A3, MID, and HIGH regardless of underlying

soil conditions.
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364 Figure 2: Box plots summarizing future (2040-2044) bioretention performance with various
365 design modifications under climate uncertainty. Plots show annual volumes directed to

366 infiltration, surface outflow, or drain outflow under three underlying soil conditions (K1: poorly-
367  drained, K2: moderately-drained, K3: well-drained). Annual volumes derived from model results
368  of historic bioretention performance using current design standards and observed rainfall records
369  from 2010-2014 corresponding to each pathway and scenario are indicated by dashed vertical red
370 lines in each plot.
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Figure 3: Box plots summarizing future (2040-2044) bioretention performance with various
design modifications under climate uncertainty. Plots show the percentage of the overall water
balance comprised of infiltration, surface outflow, or drain outflow under three underlying soil
conditions (K1: poorly-drained, K2: moderately-drained, K3: well-drained). The portions of the
water balance based on model results of historic bioretention performance using current design

standards and observed rainfall records from 2010-2014 corresponding to each pathway and

scenario are indicated by dashed vertical red lines in each plot.

The percentiles corresponding to historic performance, as well as the performance returns
(defined as increases in the percentage of future scenarios meeting or surpassing historic levels)
for each design modification are shown in Table 6. Depending on management objectives and
site conditions, these results illustrate where priority should be placed to incorporate resiliency to
future climate conditions. For example, if the primary management objective was to maximize
runoff reduction by promoting infiltration from bioretention cells in areas with poor to

moderately-drained soils, increasing the depth of the media layer within the practice provides the
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greatest returns relative to other, more conservative design modifications (e.g., increasing
saturated conductivity of media). However, increasing ponding depths provides the greatest

improvements to infiltration performance for sites with well-drained soils (K3).
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Table 6: Comparison of historic bioretention performance (2010-2014) compared to model results of modified designs under future
climate scenarios (2040-2044). Values represent the percentile corresponding to historic performance relative to the range of future
model results. Percentiles based on annual volumes are listed next to those based on water balance composition, which are reported in
parentheses. Performance returns for each design component are shown as the absolute value of the difference between the minimum
and maximum design in each configuration group.

K1 K2 K3
Infiltration Surface Drainage | Infiltration Surface Drainage | Infiltration Surface Drainage
P1 72.5 (100) 0 (0) 39.2 (100) | 68.3 (100) 0(0) 35.4 (100) | 67.0(100) 0(0) 28.5 (100)
P2 71.5 (100) 0 (0) 7.1 (68.5) | 47.2(100) 0(0) 0 (33.8) 37.9 (100) 0(0) 0(9.3)
P3 70.8 (100)  22.3 (26.8) 0 (40.8) 18.0 (100)  22.3 (26.8) 0 (6.0) 12.9 (100)  22.3 (26.8) 0 (0)
|P3-P1] 1.7 (0) 22.3(26.8) 39.2(59.2) 50.3 (0) 22.3(26.8) 35.4(94.0) 54.1 (0) 22.3(26.8) 28.5(100)
CONI1 72.5 (100) 0(0) 39.2 (100) | 68.3 (100) 0(0) 35.4 (100) | 67.0(100) 0(0) 28.5 (100)
CON2 73.3 (100) 0(0) 10.8 (74.6) | 77.4 (100) 0(0) 0(24.3) 83.3 (100) 0(0) 0 (0)
CON3 73.3 (100) 0(0) 0 (63.0) 84.6 (100)  2.9(10.5) 0(0) 89.2 (100)  5.8(23.3) 0 (0)
|CON3-CONI| 0.8 (0) 0(0) 39.2 (59.2) 16.3 (0) 2.9 (10.5) 0(0) 22.2(0) 5.8(23.3) 28.5(100)
DEPI1 72.5 (100) 0(0) 39.2 (100) | 68.3(100) 0(0) 35.4 (100) | 67.0(100) 0(0) 28.5 (100)
DEP2 45.3 (100) 0(0) 53.0 (100) | 36.3 (100) 0(0) 57.5(100) | 51.5(100) 0(0) 49.6 (100)
DEP3 0(79.4) 0(0) 57.9 (100) 0(93.0) 0(0) 65.6 (100) | 39.5(100) 0(0) 64.2 (100)
IDEP3-DEP1| 72.5 (20.6) 0(0) 18.7 (0) 68.3 (7.0) 0(0) 30.2 (0) 27.5(0) 0(0) 35.7 (100)
Al 72.5 (100) 0(0) 39.2 (100) | 68.3 (100) 0(0) 35.4 (100) | 67.0 (100) 0(0) 28.5 (100)
A2 0 (10.6) 242 (28.6) 26.2 (100) 0(36.3) 242 (28.6) 38.5(100) 0 (68.7) 24.2 (28.6) 20.4 (100)
A3 0(0) 48.6 (79.8)  21.6 (100) 0(0.4) 48.6 (79.8)  51.7 (100) 0(18.4) 48.6 (79.8)  60.7 (100)
|A3-Al] 72.5(100)  48.6(79.8) 17.6 (0) 68.3 (100)  48.6(79.8) 16.3 (0) 67.0 (81.6) 48.6 (79.8) 32.2(0)
LOW 72.5 (100) 0(0) 39.2 (100) | 68.3 (100) 0(0) 35.4 (100) | 67.0 (100) 0(0) 28.5 (100)
MID 0(7.2) 78.3(85.4) 5.8(59.0) 0 (24.6) 78.3(85.4) 6.9(24.6) 0 (68.4) 78.3 (85.4) 1.3(3.2)
HIGH 0(0) 100 (100)  18.4(93.1) 0(0) 100 (100)  31.0(90.1) 0 (15.0) 100 (100) 9.0 (35.0)
[HIGH-LOW| 72.5 (100) 100 (100) 20.8(6.9) | 68.3(100) 100 (100) 4.4(9.9) 67.0 (85.0) 100 (100)  19.5(65.0)
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Other modifications should be considered if objectives are centered on reducing
untreated, unmitigated surface overflows. Increasing ponding depths should be prioritized over
deepening media layers or increasing media saturated conductivity for sites in all soil types,
allowing more water to be stored within the bioretention surface layer before percolating into the
media. Increasing media conductivities provided modest improvements in surface overflow for
sites with moderate- to well-drained soils; however, this modification may influence hydraulic
retention times and correspondingly impact the pollutant removal that could occur within the
cell. Finally, priority should be placed on deepening media layers if management objectives are
focused on reducing drainage outflows and retaining runoff on-site, as designs with increased
media thickness (i.e., DEP3) resulted in the highest number of simulations falling below historic
drainage levels in all K scenarios. Unlike increasing saturated conductivities, deepening media
profiles may provide greater opportunities for pollutant removal within the system, as well as
potentially improved plant health due to increased soil volumes, which foster root exploration
and water storage during inter-event dry periods (Read et al., 2008; Hatt et al., 2009; Le

Coustumer et al., 2012).

Increasing bioretention surface area relative to the catchment area had the largest effect
on overall performance in every K scenario. Increasing bioretention surface area to 15% of the
contributing catchment resulted in all of climate scenarios surpassing historic annual infiltration
volumes. The largest impact of surface area modification occurred in the K1 scenario, as 100%
of future simulations surpassed historic annual volumes and proportional amounts of infiltration
using the A3 design compared to 27.5% and 0% in the A1 design, respectively. Simulations of
the K2 scenario followed these trends, surpassing performance improvements observed in the K3

scenario with respect to infiltration. This suggests that expanding surface area in new
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bioretention installations may become increasingly important to incorporate resiliency to future

climate change as the infiltration capacities of underlying soils decline.

Increasing bioretention surface area also led to the largest improvements with respect to
minimizing surface overflow and drainage outflows. As surface overflows were mostly
influenced by rainfall parameters, surface area increases led to similar reductions in overflow
regardless of underlying soils. Practices designed with a surface area equal to 15% of the
contributing catchment surpassed historic levels with respect to annual volumes and proportion
of the water balance in 48.6% and 79.8% of climate simulations, respectively, compared with 0%
of simulations meeting historic levels when surface areas were equal to 5% of the catchment.
Interestingly, drainage outflows were minimized in the K3 scenario using the A2 configuration.
This may be attributable to lower surface overflows in these simulations, which resulted in more
runoff percolating through the practice that contributed to both infiltration and drainage outflow.
As increasing surface area yielded the largest impact to future performance, the composite
configurations (LOW, MID, HIGH) followed similar trends observed in the A1, A2, and A3
simulations. However, further improvements were evident in these trials. Reduced effects were
once again observed as drainage of underlying soils increased, suggesting that intensive design
modifications should be considered in areas with poorly draining soils where elevated risks

posed by future climate change are anticipated.

These conclusions support findings from other studies of the effects of climate
uncertainty on LID performance. Studies such as Eckart et al. (2018), Zhang et al. (2019), and
Wang et al. (2019a and 2019b) concluded that larger bioretention surface areas would be needed
to ensure their performance under future climate conditions. Similar to observations by Wang et

al. (2019a), incremental runoff reduction decreased as the bioretention surface area increased, as
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the largest improvements with respect to infiltration occurred between the A1 and A2 (and LOW
to MID) configurations. Likewise, the largest improvements to surface overflow performance
occurred between the LOW and MID configurations. Because these designs correspond to
increased investment in the practice compared to modifying the other parameters, management

objectives should be considered prior to their implementation.

3.3 Retrofit scenario

Results of the Retrofit modifications (Table 2) under future climate conditions are
summarized in Figures 4 and 5, while the percentiles corresponding to historic performance and
returns for each retrofit measure are shown in Table 7. As with the ponding configurations in the
New Build scenario, increasing ponding depths (by subsequently decreasing the media layer
thickness) consistently improved surface overflow performance across all underlying soil types.
However, historic performance was exceeded for the majority of trials in even the highest retrofit
measures, with 71.1 % and 67.4% of simulations exceeding annual volumes and the proportion
of the water balance corresponding to surface overflows, respectively. Further, given that storage
depths in the R4 scenario are substantially higher than permitted depths in many jurisdictions
(e.g., NCDEQ, 2009, TDEC, 2014, MPCA, 2016), the increased risks to public health and safety

may make these designs impractical.
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Figure 4: Box plots summarizing future (2040-2044) bioretention performance with various

K1: Infiltration K2: Infiltration K3: Infiltration
0 1i w T
L] L
I
' R31 R3 .
I
{I:I‘IL R21 R2 .
IF li R I -
00 05 1.0 15 20 1 2 3 0 2 4 8
K1: Surface Overflow K2: Surface Overflow K3: Surface Overflow
1 [
- wl AT w AT
I | |
I | I
1 L] ]
| —| | |— R11 | —i '— R1 | —| ||—
1 ] |
0 4 6 2 4 0 4 6
K1: Drain Outflow K2: Drain Outflow K3: Drain Outflow
' ] [
T o P - | D
L} L] L]
T} o MIF - el D
{1 ' '
o IF - A
| | |
1 oA o I -
0 2 4 6 8 0 1 2 4

Annual Volume (1000 cu miyr)

retroactive modifications implemented to add resiliency under climate uncertainty. Plots show
annual volumes directed to infiltration, surface outflow, or drain outflow under three underlying
soil conditions (K1: poorly-drained, K2: moderately-drained, K3: well-drained). Annual volumes

derived from model results of historic bioretention performance using current design standards

and observed rainfall records from 2010-2014 corresponding to each pathway and scenario are
indicated by dashed vertical red lines in each plot.
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Figure 5: Box plots summarizing future (2040-2044) bioretention performance with various
retroactive modifications implemented to add resiliency under climate uncertainty. Plots show
the percentage of the overall water balance that is comprised of infiltration, surface outflow, or

drain outflow under three underlying soil conditions (K1: poorly-drained, K2: moderately-

30

drained, K3: well-drained). The portions of the water balance based on model results of historic
bioretention performance using current design standards and observed rainfall records from
2010-2014 corresponding to each pathway and scenario are indicated by dashed vertical red lines

in each plot.
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Table 7: Comparison of historic bioretention performance (2010-2014) compared to model
results using retroactive modifications future climate scenarios (2040-2044). Values represent

the percentile of the range of future model results corresponding to historic performance for
various hydrologic pathways, underlying soil conditions, and retrofit measures. Percentiles based
on annual volumes are listed next to those based on water balance composition, which are
reported in parentheses. Performance returns for each scenario are shown as the absolute value of
the difference between R4 and R1.

K Scenario  Configuration Infiltration Surface Drainage
R1 75.7 (100) 0(0) 36.8 (100)
R2 82.8 (100) 0(0) 0.7 (61.3)
K1 R3 100 (100) 16.0 (25.8) 0(33.8)
R4 100 (100) 28.9 (32.6) 0(0)
[R4-R1| 24.3 (0) 28.9 (32.6) 36.8 (100)
R1 68.4 (100) 0(0) 32.4 (100)
R2 67.3 (100) 0(0) 0 (26.0)
K2 R3 69.4 (100) 16.0 (25.8) 0(0)
R4 71.1 (100) 28.9 (32.6) 0(0)
[R4-R1| 2.7 (100) 28.9 (32.6) 32.4 (100)
R1 66.3 (100) 0(0) 27.6 (82.0)
R2 44.0 (100) 0(0) 0(0)
K3 R3 26.4 (100) 16.0 (25.8) 0(0)
R4 16.9 (100) 28.9 (32.6) 0(0)
|[R4-R1] 49.4 (0) 28.9 (32.6) 27.6 (82.0)

Hathaway et al. (2014) determined that storage depths would need to be increased by 9-
31 cm (while holding other design parameters constant) to restrict annual overflow from
bioretention cells to a baseline scenario under future climate conditions in North Carolina, USA.
In a similar study demonstrating the geographic differences of climate impacts on bioretention
hydrology, Winston (2016) found that increasing ponding depths by up to 51% (corresponding to
an additional 5-17 cm) was necessary to maintain historic surface overflows from a bioretention
cell in northeast Ohio, USA. Simulation results from the Retrofit scenario indicate that even
more storage may be necessary to reduce future surface overflow. This suggests that other
retrofit measures may need to be considered to improve surface overflow performance. For

example, as suggested by the New Build scenario results (Table 6), replacing existing media with
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a more rapidly draining mixture in combination with modifying ponding depths may provide

additional improvements in bioretention performance in sites with well-drained soils.

While marginally increased volumes were directed toward infiltration in well-drained
soils, the portion of the water balance representing infiltration in historic conditions was not
achieved in any of the Retrofit configurations. Performance based on annual infiltration volumes
slightly declined in the K1 scenario as retrofit measures increased from R1 to R4 yet remained
relatively similar across K2 trials. The hydrologic impact of the retrofit measures in the future
period was most apparent with respect to drainage outflows. Across all K scenarios, the
proportion of simulations with elevated levels of drainage outflows increased with increasing
retrofit measures (i.e., between R1 and R4). However, while drainage outflows represent runoff
receiving treatment from the practice, the decreased bioretention media thickness in the Retrofit
scenario (especially in the R3 and R4 configurations) may limit the pollutant removal
capabilities of the cell due to decreased retention times and soil volumes available for plant roots,
resulting in a diminished quality of drainage. Based on these results and the limited reduction to
surface overflows and the risks to public health and safety associated with these designs, the
proposed retrofit measures may not provide a feasible path to incorporating resiliency to climate

change in existing bioretention facilities.

4.0 Conclusions and Recommendations

Climate change poses risks to GI such as bioretention cells to effectively manage urban
stormwater runoff in the coming decades. Simulations using EPA SWMM 5.1 and bias corrected
climate model output were analyzed using a probabilistic approach to evaluate the efficacy of
bioretention design modifications and retrofit measures to add resiliency to bioretention cells in

the face of future climate uncertainty. Results indicated that the greatest return on historic
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performance occurred when increased surface areas (relative to the contributing catchment) are
used in design, especially in sites with moderate to poorly drained in situ soils. However, while
retrofits to existing bioretention cells reduced untreated surface overflows in future simulations,
the marginal performance returns, risks to public health and safety, and potentially diminished
treatment capacities of these designs may not represent a realistic option to incorporate climate

resiliency into existing practices.

Findings also demonstrate the attention that must be directed to management objectives,
risk tolerance, and local site conditions when assessing options to ensure bioretention
effectiveness in future climate conditions. Depending on underlying soil characteristics, results
suggest that design modifications had various impacts to bioretention hydrology, which should
be considered with respect to management objectives such as minimizing surface overflows or
maximizing runoff reduction via infiltration. In several instances, current design standards met or
exceeded historic performance levels for a subset of future climate projections. In locations
where stormwater engineers or officials are willing to accept the likelihood that most climate
projections will lead to future performance declines, increased investment in bioretention design
may not be necessary. However, modifying bioretention designs, such as the use of larger
practices, may be critical in more risk averse communities to ensure their effective operation in

the future.

Future studies should incorporate this methodology with a larger set of climate models,
emissions scenarios, and study locations to more broadly understand the impacts of climate
change on bioretention performance. Studies should add to the combination of design factors,
consider the effects of clogging and media degradation over time (e.g., decreases in media

porosity and field capacity) on the viability of retrofit measures, and consider the economic
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impacts of modified designs to identify optimal methods to enhance bioretention resiliency to
future climate uncertainty with respect to infrastructure costs. Research should be conducted to
investigate the impacts of climate change on the pollutant removal performance of bioretention
cells. Finally, this assessment is predicated on a desire to maintain historical function into the
future, but different interventions affect different hydrologic pathways. There is a need for
broader discussion in the urban watershed management community to clearly define resiliency

their context.
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