
mathematics

Article

Entrainment of Weakly Coupled Canonical
Oscillators with Applications in Gradient Frequency
Neural Networks Using Approximating
Analytical Methods

AmirAli Farokhniaee 1,2,*,† , Felix V. Almonte 3, Susanne Yelin 1,4 and Edward W. Large 2

1 Department of Physics, University of Connecticut, Storrs, CT 06269, USA; syelin@g.harvard.edu
2 Music Dynamics Laboratory, Department of Psychology, University of Connecticut, Storrs, CT 06269, USA;

edward.large@uconn.edu
3 Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA;

falmonte@fau.edu
4 Department of Physics, Harvard University, Cambridge, MA 02138, USA

* Correspondence: a.farok@uconn.edu

† Current address: School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland.

Received: 30 June 2020; Accepted: 1 August 2020; Published: 7 August 2020
����������
�������

Abstract: Solving phase equations for systems with high degrees of nonlinearities is cumbersome.

However, in the case of two coupled canonical oscillators, that is, a reduced model of translated

Wilson–Cowan neuronal dynamics, under slowly varying amplitude and rotating wave approximations,

we suggested a convenient way to find their average relative phase evolution. This approach enabled us

to find an explicit solution for the average relative phase of the two coupled canonical oscillators based

on the original neuronal model parameters, and importantly, to find their phase-locking constraint.

This methodology is straightforward to implement in any Wilson–Cowan-type coupled oscillators with

applications in gradient frequency neural networks (GFNNs).

Keywords: dynamical systems; nonlinear phenomena; nonlinear differential equations; approximate

analytical solutions; neuronal population dynamics; gradient frequency neural networks; canonical model

1. Introduction

Complex systems transit between various dynamical states. The overall dynamical description

of a complex system in many cases can be reduced to a low-dimensional set of nonlinear ordinary

differential equations [1]. In cases of a biological complex system, for instance, a nervous system,

the descriptive dynamical models could be a Hodgkin–Huxley model that gives a detailed biophysical

description of action potential initiation and propagation in neurons, and a Wilson–Cowan neural

mass model that describes the dynamics of excitatory and inhibitory neural populations. However,

it is rare or even impossible to know precisely all the parameters that are employed in these types

of models. To address this issue, one can utilize model reduction techniques to obtain a canonical

description of the main models. A canonical model is the simplest class of equivalent dynamical

models in analytical terms, and can be derived by methods such as normal form and center manifold

theory. For example, the simple spiking model of Izhikevich is a canonical model of Hodgkin–Huxley

that could be obtained by either nullclines or current-voltage relations. The canonical model approach

is useful for studying the behavior of the entire family of models if the information about most of their

parameters is not complete or well known [2].

The canonical model for gradient frequency neural networks (GFNNs) or in short, the canonical

model, is a simplified mathematical model that describes the dynamical properties of oscillatory
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neural populations near a Poincaré-Andronov-Hopf bifurcation [3,4]. Models of cochlear outer hair

cells assume critical oscillations based on Hopf bifurcation. For example, it is proposed that in

the mammalian cochlea, the basilar membrane is driven by a set of critical oscillators (most likely

outer hair cells) and the response of a critical Hopf oscillator has considerable bearing on human

psychoacoustics [5]. The canonical model is capable of processing time varying external stimuli,

and facilitates the study of nonlinear time-frequency transformations [3], which is important in

auditory signal processing. Bifurcation analysis and dynamical properties of a periodically-forced

canonical oscillator have been investigated in detail [4]. Such analysis is of importance because the

canonical model describes the state transitions of the system between quiescence and spontaneous

activity. However, finding the analytical solutions of a canonical model that contains a high amount

of nonlinearity is cumbersome. Investigators have introduced and applied approximating analytical

methods such as the homotopy perturbation method [6,7], the variational iteration method and

more [8]. In this manuscript, we study the average relative phase dynamics of two coupled canonical

oscillators while utilizing slowly varying amplitude and rotating wave approximations [9].

Normal form theory, along with center manifold theory, are two approaches that mathematicians

employ to simplify dynamical systems. Both of these approaches reduce dimensionality and eliminate

the nonlinearities up to the desired order. The method of normal forms can be traced back to the

Ph.D. thesis of Henri Poincaré (1929) [10]. It is a powerful tool with which to study the stability

and bifurcation analysis of nonlinear differential equations, which employs successive, near-identity

nonlinear transformations to obtain a simple form and is restricted to systems which do not have

perturbation parameters (unfoldings) [11]. The structure of normal forms is determined entirely by the

linear part of the vector field under study. Here we employ conventional normal form theory (CNF),

which uses the near-identity change of variables to find the canonical models of single and coupled

Wilson–Cowan oscillators.

Our analysis in this paper is categorized under four sections. In Section 2.1 that forms an overview,

we start with a Wilson–Cowan oscillator and obtain its normal form. Then we restate the theorems

that facilitate deriving a canonical model for single Wilson–Cowan oscillators (the canonical model).

In Section 2.2 we extend the methodology of the near-identity change of variables in normal form

theory for single oscillators of Section 2.1 to obtain a canonical model for two coupled Wilson–Cowan

oscillators. By utilizing polar transformation and decomposing the real and imaginary parts of

the system, we obtain radial and angular equations of motion for each of the canonical oscillators.

These equations are highly nonlinear and not straightforward to solve analytically. We propose an

ansatz in Section 3 that is valid under slowly varying amplitude and rotating wave approximations

and leads to a dynamical description of the average relative phase between the two coupled canonical

oscillators. This proposed method facilitates working with the cumbersome radial and angular

equations derived in Section 2.2. Finally, we solve the average relative phase equation explicitly. This

solution is validated by taking its time limit to check if we have correctly obtained the steady state.

2. Methods

2.1. The Canonical Model of Single Oscillators

2.1.1. Wilson–Cowan Model

The Wilson–Cowan model is a model of neural oscillation based on excitatory and inhibitory

neural populations. Neurons are called excitatory if they increase the probability of a postsynaptic

action potential occurring, and inhibitory if they decrease this likelihood. According to Hugh D.

Wilson and Jack D. Cowan, all nervous processes of any complexity are dependent upon the interaction

of excitatory and inhibitory cells [12]. Consider an interconnected pair of excitatory and inhibitory

neurons. This pair is called a Wilson–Cowan neural oscillator, and is considered one of the basic

mechanisms of the generation of oscillatory activity in the brain [13]. Each unit in the oscillator

represents a local population of neurons, in the cerebellum, olfactory cortex and neocortex. By letting
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xi and yi denote activity of the ith excitatory and inhibitory neurons, respectively, the Wilson–Cowan

neural model has the form:

µx ẋi = −xi + (1− τxxi)S(ρxi
+

n

∑
j=1

aijxj −
n

∑
j=1

bijyj)

µyẏi = −yi + (1− τyyi)S(ρyi
+

n

∑
j=1

cijxj −
n

∑
j=1

dijyj)

(1)

where µx and µy > 0 are the membrane time constants and τx and τy are refractory periods of

excitatory and inhibitory neurons, respectively. aij, bij, cij and dij > 0 for i 6= j are synaptic coefficients.

bii and cii are synaptic too, since they denote interactions between excitatory and inhibitory neurons

within the ith neural oscillator. aii and dii are feedback parameters, which can be positive or negative.

Parameters ρxi
and ρyi

denote the external inputs from sensory organs and other regions of the brain

to the ith excitatory and inhibitory neurons respectively. S is a sigmoid function that is continuous and

monotonously increases. For simplicity and without loss of generality, we consider the Wilson–Cowan

neural model in the special case τx = τy = 0 and µx = µy = 1. That is:

ẋi = −xi + S(ρxi
+

n

∑
j=1

aijxj −
n

∑
j=1

bijyj)

ẏi = −yi + S(ρyi
+

n

∑
j=1

cijxj −
n

∑
j=1

dijyj)

(2)

We first derive the canonical model for single translated Wilson–Cowan oscillator without external

inputs, ρx = ρy = 0 in Equation (2):

ẋ = −x + tanh(ax− by)

ẏ = −y + tanh(cx− dy)
(3)

Third-order Taylor expansion of the hyperbolic tangent function in Equation (3) leads to the translated

Wilson–Cowan model expanded to cubic order:

ẋ = (a− 1)x− by− ax(
a2x2

3
+ b2y2) + by(

b2y2

3
+ a2x2)

ẏ = −(d + 1)y + cx + dy(
d2y2

3
+ c2x2)− cx(

c2x2

3
+ d2y2)

(4)

Our strategy in this study (via CNF) is based on the fact that changing the coordinates must not affect

the stability of the origin. In fact, we only use coordinate transformations that map the origin to itself.

2.1.2. The Normal Form

Locality, the inclusion of nonlinear transformations and the dominance of the linear part of the

system are three requirements of normal form theory [10]. In other words, nonlinear coordinate

transformations (near-identity change of variables) are to be performed in the vicinity of a fixed point

(in case of Equation (4), the origin), and the structure of this normal form is determined entirely by the

linear part of the system under study.
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To find the normal form of Equation (4), we map the Cartesian coordinates (x, y) on the complex

domain by introducing s = x + iy and s̄ = x − iy. By differentiating s with respect to time and

substituting for ẋ and ẏ given in Equation (4) we get:

ṡ = ẋ + iẏ

=

(

a− 1 + ic

2

)

(s + s̄) +

(−1− d + bi

2

)

(s− s̄)

− a3

24
(s + s̄)3 +

b3

24
i (s− s̄)3

+

(

ab2 + icd2

8

)

(s + s̄) (s− s̄)2

+

(

c2d− ia2b

8

)

(s + s̄)2 (s− s̄) .

(5)

We have used the fact that x = s+s̄
2 and y = s−s̄

2i . Now, we perform a near-identity change of variables,

i.e., substitute for s by z according to the transformation:

s 7−→ z + κzp z̄q, (6)

where p and q are positive integers whose sum gives us the highest order of nonlinearity present in the

desired canonical model and κ is a complex number. This is an essential step in the normal form theory

which gives us the chance to eliminate the desired terms by setting κ appropriately, and consequently

simplify the model in terms of nonlinear terms present in the expansion. Finding such values for κ is

presented in Appendix A. Rearranging Equation (6) in terms of z yields:

z = s− κzp z̄q

= s− κ(s− κzp z̄q)p(s̄− κ̄z̄pzq)q

= s− κsp s̄q + ... .

(7)

If we differentiate this equation with respect to time, we get an expression for ż that without considering

quintic and higher terms (p + q = 3) is:

ż = ṡ− pκsp−1 ṡs̄q − qκsp ˙̄ss̄q−1. (8)

There are two choices for p and q, either (p, q) = (1, 2) or (p, q) = (2, 1). Both cases are presented in

Appendix A, along with detailed calculations. In either case, the general normal form of Wilson–Cowan

model (Equation (3)) can be expressed as:

żs = A1z + A2z̄ + Apqzp z̄q (9)

with the coefficients presented in Appendix A. We replaced ż by żs to indicate that this normal form is

for a single oscillator. This CNF can describe all kinds of bifurcations.

2.1.3. The Normal Form about a Hopf Bifurcation Point: The Canonical Model

Here we utilize two theorems from local dynamical systems theory [10] to reduce the normal

form in Equation (9) into the canonical model, the model that describes the system about a Hopf

bifurcation point.

Note that in the near-identity change of variables we made a transformation of the form z 7−→
z + h(z, z̄) where h is third-order in z and z̄.
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Theorem 1. In transformations of the type z 7−→ z + h(z, z̄) for some h = zp z̄q at the bifurcation point of

Hopf type we must not have p− q = −1 [10].

This can never happen if p and q are both even numbers. Therefore, all even-order terms can

be removed from the expansion. This theorem guarantees that even if the expansion of the sigmoid

function S contains even-order terms, they can be removed for the special case of Hopf bifurcation.

This condition also suggests that it works only with p = 2 and q = 1, so Equation (9) can be written as:

ż = A1z + A2z̄ + A21z2z̄. (10)

This is still not the simplest normal form of Hopf bifurcation.

Theorem 2. The cubic terms except z2z̄ can be eliminated for the Hopf normal form [10].

This is true if and only if:

A2 =
a + d

2
+

1

2
i(−b + c) = 0 (11)

which means a = −d and b = c = ω where ω is a real number. Substituting these results in the other

coefficient A1 leads us to:

A1 =
1

2
(−2 + a− d) + i

(

b + c

2

)

= (a− 1) + iω. (12)

By introducing α = a− 1 and β = A21, Equation (10) becomes:

ż = (α + iω)z + βz2z̄. (13)

This is the canonical model for a single Wilson–Cowan oscillator without external input in agreement

with the results in [13]. In other words, the canonical model (Equation (13)) is the description of a

Wilson–Cowan oscillator (Equation (3)) about a Hopf bifurcation point. We compare the nullclines of

the translated Wilson–Cowan oscillator with the ones obtained by the canonical model (set ż = 0 in

Equation (13)) in Figure 1. The nullclines of the models coincide in the vicinity of the origin (the fixed

point), which is the point of interest.

Figure 1. The nullclines. Nullclines of both Wilson–Cowan (black) and canonical (blue) models.

Here a = 1, b = c = ω = 1.7, d = −1, α = 0, β = −0.75.
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2.2. The Canonical Model of Two Coupled Oscillators

Now we consider two isolated Wilson–Cowan oscillators that are coupled. We write down

synaptic and feedback parameters as follows:

a11 = a22 = a, b11 = b22 = b, c11 = c22 = c, d11 = d22 = d,

a12 = a21 = s1, b12 = b21 = s2, c12 = c21 = s3, d12 = d21 = s4

Additionally, we assume there are no external stimuli to the system, so ρx1
= ρx2 = 0. Assuming above

conditions in Equation (2) leads to:

ẋ1 = −x1 + S(ax1 − by1 + w1x2 − w2y2)

ẏ1 = −y1 + S(cx1 − dy1 + w3x2 − w4y2)

ẋ2 = −x2 + S(ax1 − by1 + w1x2 − w2y2)

ẏ2 = −y2 + S(cx1 − dy1 + w3x2 − w4y2)

(14)

For small synaptic coefficients w1, .., w4, i.e., to the order of ǫ ≪ 1, we can rescale the system as

wk = ǫck for k = 1, 2, 3, 4. By choosing tanh as the sigmoidal function S and rescaling, the translated

Wilson–Cowan model for two coupled identical oscillators is described by [13]:

ẋ1 = −x1 + tanh(ax1 − by1) + ǫ sech2(ax1 − by1)(c1x2 − c2y2)

ẏ1 = −y1 + tanh(cx1 − dy1) + ǫ sech2(cx1 − dy1)(c3x2 − c4y2)

ẋ2 = −x2 + tanh(ax2 − by2) + ǫ sech2(ax2 − by2)(c1x1 − c2y1)

ẏ2 = −y2 + tanh(cx2 − dy2) + ǫ sech2(cx2 − dy2)(c3x1 − c4y1)

(15)

2.2.1. The General Normal Form

As we did in Section 2.1, we expand the tanh functions to cubic terms for both oscillators and

write the dynamics of each oscillator (i = 1, 2) in the complex domain:

ṡi = ẋi + iẏi. (16)

The expansion of Equation (16) leads to some terms that describe inherent dynamics of each oscillator

(ṡis) and other coupling terms (ṡic), which are addressed in details in Appendix B. So in brief:

ṡi = ṡis + ǫ ṡic. (17)

By doing a near-identity change of variables:

si 7−→ zi + κiz
m
i z̄i

n, (18)

where m and n are positive integers that satisfy m + n = 3, we obtain the final normal form of these

two coupled oscillators:

żi = żis + ǫ żic. (19)

Some lengthy but straightforward algebra leads to four cases for żic depending on the values of

p, q, m and n, which is completely presented in Appendix B. The two cases for żis have been already

presented in Section 2.1.
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2.2.2. Hopf Normal Form: The Canonical Model

As we argued in Section 2.1, Theorem 1, that at the bifurcation point we must not have m− n = −1.

Thus, among all four choices of p, q, m and n (presented as four cases in Appendix B), only the

case for p = m = 1 and q = n = 2 is acceptable for representing Hopf bifurcation (case (I) in

Appendix B). Therefore, the full canonical model that exhibits Hopf bifurcation for two coupled

identical Wilson–Cowan oscillators about the fixed point up to quintic terms is:

żi = żis + ǫ żic =

A1zi + A21z2
i z̄i

+ ǫ[B1zj + B2z̄j + B5z2
i zj + B6z2

i z̄j

+ (B7 − 2κi B̄2)zizj z̄i + (B3 − B1κi)zj z̄i
2

+ (B8 − 2κi B̄1)zi z̄i z̄j + (B4 − B2κi)z̄i
2z̄j

+ B1κjzj z̄j
2 + B2κ̄jz

2
j z̄j]

(20)

where i 6= j and all coefficients A21, B and Ak, Bk for k = 1, 2, ..., 8 depend on synaptic and feedback

parameters described in the original Wilson–Cowan model in Section 2.1.1 and rephrased in Section 2.2

for the case of two coupled oscillators. All the coefficients have been calculated and are presented in

Appendices A and B.

2.2.3. Radial and Angular Equations

Starting with the canonical model (Equation (20)), we can decompose the system to find the

dynamical descriptions of each oscillator’s amplitude and phase:

żi = A1zi + A21|zi|2zi + ǫżic. (21)

Considering the polar transformation of zi: zi = reiφi , represents the canonical model in polar

coordinates. We provide all the algebraic calculations in Appendix C and the final coupled nonlinear

differential equations that govern the dynamics of the amplitudes and phases are:

ṙi = αri + βr3
i +

ǫ[n1 cos(φj − φi) + n2 cos(φj + φi)]rj

+ ǫ[n4 cos(φj + φi)

+ n3 cos(φj − φi) + n5 cos(φj − 3φi) + n6 cos(φj + 3φi)]r
2
i rj

+ ǫ[n7 cos(φi + 3φj) + n8 cos(φj + φi)]r
3
j

(22)

and

φ̇i = ω + δr2
i

+ ǫ[l1 sin(φj − φi) + l2 sin(φj + φi)]
rj

ri

+ ǫ[l4 sin(φj + φi)

+ l3 sin(φj − φi) + l5 sin(φj − 3φi) + l6 sin(φj + 3φi)]rirj

+ ǫ[l7 sin(φi + 3φj) + l8 sin(φj + φi)]
r3

j

ri
,

(23)

where i 6= j and δ is the imaginary part of constant A21. We can derive relationships for the relative

amplitude and phase of the two oscillators by defining φ(t) = φ1(t)− φ2(t) and r(t) = r1(t)− r2(t)

as relative phase and amplitude, respectively. We start with ṙ = ṙ1 − ṙ2 and then substitute for r1
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and r2 obtained in Equation (22). We do the same for the relative phase equation: φ̇ = φ̇1 − φ̇2 using

Equation (23).

In the special case of r1 = r2 the relative amplitude dynamics is described by:

ṙ = ǫn5(cos(φ2 − 3φ1)− cos(φ1 − 3φ2))r
3, (24)

where the value of n5 is given in Appendix C. Solutions of Equation (24) are shown in Figure 2 for

different values of the bifurcation parameter α.

Figure 2. The solutions of r for different values of the bifurcation parameter α. These solutions

exhibit different behaviors of the coupled oscillators, as we changed the bifurcation parameter α.

For α = −1 < 0 we have damped oscillations, and for α = 0 we faced critical ones. For α = 1

spontaneous oscillation was the result. In this figure a = α + 1, b = c = ω = 5, d = a− 2, ǫ = 0.1,

c1 = c2 = c3 = c4 = ǫ, β = A21 and δ = 0.1. The initial conditions were r1 = r2 = 1, φ1 = π and

φ2 = π/6.

By setting Equation (24) equal to zero, we found the fixed points, which are either r∗ = 0 or

φ∗ = 0, π. We demonstrate the solutions of φ for different values of the bifurcation parameter α in

Figure 3.

Figure 3. The solutions of φ for different values of the bifurcation parameter α. For the two cases

of α < 0 (damped) and α = 0 (critical) the two oscillators become in-phase with the relative phase

of φ = 0. Obviously, the rate of change of φ for the damped oscillation is greater than the critical

one. When α > 0 (spontaneous), the two oscillators become anti-phase. In this figure a = α + 1,

b = c = ω = 10, d = a− 2, ǫ = 0.1, c1 = c2 = c3 = c4 = ǫ, β = A21 and δ = 0.1. The initial conditions

were r1 = r2 = 1, φ1 = π and φ2 = π/6.
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3. Results

This section contains the main results of this paper. Here, we suggest an analytical solution of

Equation (20) using approximating methods. In practice we were interested to find the relative phase

dynamics of the two coupled canonical oscillators described above. We considered the compact format

of Equation (20):

żk − A1zk − A21|zk|2zk = ǫżkc, (25)

which describes the time evolution of two coupled canonical oscillators (k = 1, 2). Finding the

analytical solutions for z is not straight forward. To address this issue, we utilize the ansatz:

zk(t) = ck(t)e
iωkt + c̄k(t)e

−iωkt (26)

as an approximate solution of this behavior with ck(t) = rkeiφk(t) as the time dependent amplitude of

oscillations. φk and ωk are the phase and frequency of the oscillations of each oscillator, respectively.

This approximate solution is true under the assumptions of slowly varying amplitude and rotating

wave approximations; i.e., the time scale of their dynamics is much larger than 1/ωk (ċk ≪ ωk),

and frequencies bigger than ωk are neglected [1,9,14]. Differentiating this solution with respect to

time yields:

żk(t) = ċk(t)e
iωk(t) + ċk(t)

∗e−iωk(t)

+ iωkck(t)e
iωk(t) − iωkck(t)

∗e−iωk(t).
(27)

Knowing that:

ċk(t) = ṙkeiφk(t) + irkφ̇k(t)e
iφk(t) = (ṙk + irkφ̇k(t))e

iφk(t), (28)

Equation (27) becomes:

żk(t) = (ṙk + irkφ̇k(t))e
iφk(t)eiωk(t)

+ (ṙk − irkφ̇k(t))e
−iφk(t)e−iωk(t)

+ iωkrkeiφk(t)eiωk(t) − iωkrke−iφk(t)e−iωk(t).

(29)

Without loss of generality, we assume equal amplitude for both oscillators, which means r1 = r2 = r.

Note that even if the amplitudes are not equal, the relative phase dynamics do not get changed

since we are analyzing the system under the assumption of slowly varying amplitude approximation;

i.e., ṙ(t) ≪ ω. We note here the equations for the first canonical oscillator; the equations for the

second oscillator are the same by switching the subindices. The left-hand side of Equation (25) after

multiplying by e−iφ1 e−iω1(t) and regrouping is:

L.H.S× e−iφ1 e−iω1(t) = (ṙ + irφ̇1 + iω1r)(1− e−2i(φ1+ω1(t)))

− ((A1 + A2)r− Ar3(ei(φ1+ω1(t)) + e−i(φ1+ω1(t)))2)(1 + e−2i(φ1+ω1(t))).
(30)

Equation (30) contains both oscillatory terms (exponential functions) with integer multiples of ω1 as

the frequency and non-oscillating terms that do not contain these exponentials. By integrating over

a time period given by T = 2π
ω1

(averaging), all oscillatory terms vanish and only the non-oscillating

terms remain:

L.H.S = ṙ + ir(φ̇1 + ω1)− (A1 + A2)r (31)

We consider the right-hand side of Equation (25) and set ǫ = 1 for now to ease the calculations.

Recollecting the coupling terms on the R.H.S. yields:
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R.H.S. = (B1 + B2)r[e
i(φ2+ω1(t)) + e−i(φ2+ω1(t))]

+ (B3 + B4 + B5 + B6 + B7 + B8 − κ1(B1 + B2)

− 2κ1(B̄1 + B̄2))× [ei(φ1+ω1(t)) + e−i(φ1+ω1(t))]2

× [ei(φ2+ω1(t)) + e−i(φ2+ω1(t))]

+ (B1κ2 + B2κ̄2)r
3[ei(φ2+ω1(t)) + e−i(φ2+ω1(t))]3.

(32)

Introducing new coefficients as:















M = B1 + B2

N = B3 + B4 + B5 + B6 + B7 + B8 − κ1M− 2κ1M̄

P = B1κ2 + B2κ̄2

and substituting into the R.H.S. gives:

R.H.S. = Mr[ei(φ2+ω1(t)) + e−i(φ2+ω1(t))]

+ Nr2[ei(φ1+ω1(t)) + e−i(φ1+ω1(t))]2

× [ei(φ2+ω1(t)) + e−i(φ2+ω1(t))]

+ Pr3[ei(φ2+ω1(t)) + e−i(φ2+ω1(t))]3.

(33)

Multiplying the R.H.S. by e−i(φ1+ω1t) gives:

R.H.S. = Mr[e(i(φ2−φ1)) + e−i(φ2+ω1(t))e−i(φ1+ω1(t))]

+ Nr3[ei(φ1+ω1(t)) + e−i(φ1+ω1(t))]2

× [ei(φ2−φ1) + e−i(φ2+φ1+2ω1t)]

+ Pr3[ei(φ2−φ1) + e−i(φ2+φ1+2ω1t)].

(34)

By averaging, only the first term survives and if we consider ǫ not necessarily equal to 1:

R.H.S. = Mǫrei(φ2−φ1) = Mǫreiφ (35)

Now by equating the L.H.S. with the R.H.S. and including the second oscillator by letting 1→ 2 and

consequently φ→ −φ, we obtain:

{

ṙ + ir(φ̇1 + ω1)− (A1 + A2) = Mǫreiφ

ṙ + ir(φ̇2 + ω2)− (A1 + A2) = Mǫre−iφ
(36)

Subtracting second equation from the first one gives:

ir(φ̇1 − φ̇2 + ω1 −ω2) = Mǫr[eiφ − e−iφ]. (37)

By defining the relative frequency as ω = ω1 −ω2 and recalling that sin φ = eiφ−e−iφ

2i :

− ir(φ̇−ω) = Mǫr(2i sin φ). (38)

Hence, the average relative phase dynamics is given by:

φ̇ = ω− C sin φ. (39)
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where C = 2Mǫ is the total coupling coefficient and a complex number, due to M. We can reinterpret

M and consequently C in terms of the initial Wilson–Cowan model parameters (refer to Appendix B):

M = B1 + B2 = c1 + ic3, (40)

so:

C = 2Mǫ = 2ǫ(c1 + ic3). (41)

Note that the magnitude of the total coupling coefficient is:

|C| = 2ǫ
√

c2
1 + c2

3. (42)

It can be described as the coupling strength of the two canonical oscillators. This enables us to access

a coupling coefficient based on the coefficients in the original Wilson-Cowan model. As one can

see, the value of C is independent of c2 and c4. This means that the average phase dynamics of the

system do not depend on c2 and c4 coefficients. C being a complex number indicates the rotation of

the two canonical oscillators in phase space or a delay between their relative oscillations. Integrating

Equation (39) gives us more insights:

t =
∫

dφ

ω− C sin φ
(43)

There is a pole at φ = sin−1(ω
C ). This is the fixed point of the system that gives the steady-state

solution of the relative phase. We will confirm it later by taking the limit of φ as time tends to infinity.

In other words:

φ∗ = sin−1(
ω

C
). (44)

Equation (44) gives us the constraint of having convergent solutions; i.e.:

|ω
C
| ≤ 1. (45)

This is the convergence interval in which we evaluate the integral of Equation (43). Before solving this

integral we consider the special case when the two oscillators have the same frequency, i.e., ω = 0,

such that the integration process becomes simpler:

− Ct =
∫

dφ

sin φ
=

1

2
ln(tan

φ

2
) + c, (46)

where c is the constant of integration and depends on the initial conditions. We solve this equation

for φ:

ln(tan
φ

2
) = −2(Ct + c) =⇒ tan

φ

2
= exp(−2(Ct + c)); (47)

hence, the relative phase is:

φ = 2 tan−1(e−2(Ct+c)). (48)

This result can be written in terms of the integration time interval τ = c
C :

φ = 2 tan−1(e−2C(t−τ)). (49)

Some plots of the relative phase are shown in Figure 4 for different initial conditions.



Mathematics 2020, 8, 1312 12 of 20

Figure 4. The evolution of relative phase when ω1 = ω2. The relative phase (φ) as a function of time

for different initial conditions when C = 0.02. This is a special case when the relative frequency of the

oscillators ω is zero, which means they oscillate with the same frequency. One can see that they become

phase-locked as time increases. In this special case, since ω = 0, the fixed relative phase will be π.

In the general case of Equation (43) in which the canonical oscillators do not necessarily have the

same frequency, i.e., ω 6= 0, the solution within the convergence region (|ωC | ≤ 1) is given by either:

t = − 2√
C2 −ω2

tanh−1(
ω tan

φ
2 − C√

C2 −ω2
) + c (50)

or:

t = − 2√
C2 −ω2

coth−1(
ω tan

φ
2 − C√

C2 −ω2
) + c, (51)

depending on the initial conditions φ1(0) and φ2(0).

Hence, the average relative phase is given by:

φ = 2 tan−1{
√

C2 −ω2

ω
tanh(

−
√

C2 −ω2(t− c)

2
) +

C

ω
} (52)

or:

φ = 2 tan−1{
√

C2 −ω2

ω
coth(

−
√

C2 −ω2(t− c)

2
) +

C

ω
}. (53)

In either case, taking the limit of this average relative phase as time tends to infinity gives us:

lim
t→∞

φ = 2 tan−1{C−
√

C2 −ω2

ω
}. (54)

This angle is the fixed-point or the steady-state solution that we have already mentioned (Equation (44)).

As a proof, recall that

sin 2x = 2 sin x cos x = 2 tan x cos2 x =
2 tan x

1 + tan2 x

and if we set x = φ∗
2 , then:
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sin φ∗ =
2(

C−
√

C2 −ω2

ω
)

1 + (
C−
√

C2 −ω2

ω
)2

=
ω

C
⇒ φ∗ = sin−1(

ω

C
). (55)

In Figure 5 we illustrate some solutions of the relative phase for some different initial conditions.

Figure 5. The evolution of relative phase when ω1 6= ω2. The relative phase (φ) is a function of time

for different initial conditions while C = 2 and ω = 1, so we can see the convergence of the solutions

and phase-locking phenomenon. In this special case, since ω = 1 and C = 2, the fixed relative phase will

be π
6 .

The convergence of the average relative phase of the two canonical oscillators to a fixed point

is an indicator of phase-locking. After some amount of time that depends on their initial conditions,

the two oscillators become phase-locked; i.e., they tend to oscillate with a fixed relative phase.

4. Discussion

The canonical model that we studied in this paper is the normal form of the Wilson–Cowan

oscillators about a Hopf bifurcation point. The Hopf bifurcation in dynamical systems particularly

refers to the development of periodic orbits from an equilibrium or a stable fixed point as an order

parameter crosses a critical value [15]—in this paper the bifurcation parameter α (refer to Equations (13),

(22) and (23)). This is a point of interest in auditory neuroscience, for example, in modeling approaches

that have the potential to link neural dynamics to sound perception [16,17]. Other physical examples

include the identification of stable oscillations in nonlinear waves [15]. Nevertheless, if another type

of bifurcation is of interest, the normal form could be modified to resemble that particular type of

bifurcation. This is because of the fact that normal forms are generic and enable us to remove the

nonlinear terms that are not necessary going to be present for our specific purpose.

This work provided both an overview and detailed analysis of the coupled canonical oscillators

of Wilson–Cowan-type neural field models, along with a novel methodology to check the interesting

solutions. As a recapitulation of previous studies in the literature, we re-derived the canonical models

of single and two coupled Wilson–Cowan oscillators under no external stimulus, Equations (13)

and (20), respectively. As described in the Methods section, we utilized two theorems in nonlinear

dynamical systems that give us constraints on the order of transformations during Hopf bifurcation to

find the most compact form of the canonical model. The evolutions of amplitude and phase of each

oscillator were found by representing the canonical model in the polar coordinates, Equations (22)–(24),

and the solutions were plotted in time for different values of the bifurcation parameter, α, along with

the calculation of the fixed points. The damped, critical and spontaneous behaviors were seen as
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the values of α changes from −1 to 0 and then to 1, respectively (see Figures 2 and 3). These were

compatible with the behavior of the coupled oscillators at the Hopf bifurcation, as expected. By

integrating knowledge and understanding from the basic mathematics and nonlinear dynamics along

with our biophysical understanding of the brain, we presented solutions for the entrainment of two

coupled canonical oscillators, which are analyzed in the Results section. These solutions are in line

with our previous understanding of coupled nonlinear oscillators; however, a more straightforward

method is presented using slowly varying amplitude and rotating wave approximations that helps us

obtain approximate analytical solutions of the average relative phases of the two coupled oscillators.

The time evolution of the average relative phase is given by Equation (49) for an special case wherein

the frequencies of the two oscillators are equal. However, we were able to analytically calculate the

average relative phase dynamics in a more general regime wherein the frequencies of the two oscillators

were not necessarily equal; see Equations (52) and (53). The results were plotted in Figures 4 and 5

for some different values of the initial conditions. The steady-state of the system, the fixed relative

phases of the oscillators are given by Equation (55). The main novel aspect of the proposed method

is that it enables investigators to directly relate the parameters in the canonical model to the original

oscillatory population model of Wilson–Cowan; for example, see Equation (42). On the other hand,

using the ansatz in Equation (26) we overcame the cumbersome task of solving the dynamics of the

coupled canonical oscillators that traditionally have been addressed by the method of averaging [15].

Bifurcation analysis and dynamical properties of the canonical model, including phase planes,

were investigated in detail in a more general regime of forced canonical oscillators [4] and due to their

extensivity, were not presented in this study. The effects of the nonlinear terms in the canonical model,

specifically on the resonance patterns, were analyzed and compared with the Wilson–Cowan model in

an analytical and simulation study [3], and the analysis of higher order nonlinear terms was out of the

scope of this paper.

We considered some assumptions in our analysis to ease the calculations. In all of the study,

we considered no external stimulus present in the system. Traditionally, external inputs could be

considered within the sigmoidal functions’ arguments of the neural field model and consequently

would be present in the Taylor expansions of those sigmoid functions. However, the external inputs

could be simply considered as direct additive terms as in case of the canonical oscillator, which was

investigated in detail in a previous study [4]. For the sake of simplicity, we considered the coupled

canonical oscillators to be identical. Nevertheless, one can consider them non-identicall and obtain the

same oscillatory terms as in the canonical model but with different coefficients. The average relative

phase calculations are done under the assumption of small perturbations; i.e., the time evolution of

the canonical oscillators’ amplitudes are much smaller than their relative frequency. If we are in a

regime in which this assumption is not true anymore, the average relative phases of the two canonical

oscillators still could be found numerically but not explicitly.

The results of this study contribute to applications such as neural network modelings that target

desired or unwanted resonance in the oscillatory system under investigation. The methodology

of deriving the single and coupled canonical models presented here could be generalized for any

Wilson–Cowan-type activity rate model and any number of oscillators.
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Abbreviations

The following abbreviations are used in this manuscript:

GFNNs Gradient Frequency Neural Networks

CNF Conventional Normal Form

Appendix A

Here are all the calculations needed to continue after Equation (8) and obtain the conventional

normal form, Equation (9). In Equation (8) we need to substitute for ṡ from Equation (5), but before

doing that we rewrite Equation (5) in a simpler way:

ṡ = A1s + A2 s̄ + A3s2 s̄ + A4ss̄2 + A5s3 + A6 s̄3 (A1)

where the coefficients are:















































A1 = 1
2 (−2 + a− d) + i

(

b+c
2

)

A2 = a+d
2 + i

2 (−b + c)

A3 = 1
8

(

d3 − a3 − ab2 + c2d
)

+ i
8

(

c3 − a2b− b3 − cd2
)

A4 = − 1
8

(

a3 + ab2 + c2d + d3
)

+ i
8

(

c3 + a2b + b3 − cd2
)

A5 = 1
24

(

−a3 + 3ab2 + 3c2d− d3
)

+ i
24

(

−3a2b + b3 + c3 + 3cd2
)

A6 = 1
24

(

−a3 + 3ab2 − 3c2d + d3
)

+ i
24

(

3a2b− b3 + 3cd2 + c3
)

.

With this substitution for ṡ, Equation (8) becomes:

ż = A1s + A2 s̄ + A3s2 s̄ + A4ss̄2 + A5s3 + A6 s̄3 − κpsp−1 s̄q (A1s + A1 s̄)− κqsp s̄q−1 (Ā1 s̄ + Ā1s) . (A2)

Now we transform all s and s̄ on the right-hand side of Equation (A2) according to the near-identity

change of variable (Equation (6)) to find the final normal form:

ż = A1z + A2z̄ + A3z2z̄ + A4zz̄2 + A5z3 + A6z̄3 + A1κzp z̄q + A2κ̄zq z̄p − Ā2qκzp+1z̄−1+q − Ā1qκzp z̄q

− A1 pκzp z̄q − A2 pκz−1+p z̄q+1.
(A3)

By choosing p and q such that their addition is the order of the monomials that we want to remove,

we can eliminate many of the monomials and get simpler formats. Since here we are interested

in removing monomials with orders higher than cubic, p + q = 3, and there will be two choices

for p and q; either (p, q) = (1, 2) or (p, q) = (2, 1). Note that we have made the transformation as

z 7−→ z + h(z, z̄) for some h = zp z̄q, where p + q is the order of the term that we want to simplify and

p, q ∈ N. We consider these choices of (p, q) as case(I) and case(I I).

• case(I) : (p, q) = (1, 2)

In Equation (A3) if we set (p, q) = (1, 2) we get:

ż = A1z + A2z̄ + (A4 − 2κĀ1) zz̄2 + (A3 − 2κĀ2 + A2κ̄) z2z̄ + A5z3 + (A6 − A2κ)z̄3, (A4)

using the fact that zz̄ = |z|2. Applying normal form method successively to eliminate terms that

contain z3 and z̄3 we obtain:

ż = A1z + A2z̄ + (A4 − 2κĀ1)
∣

∣

∣
z|2z̄ + (A3 − 2κĀ2 + A2κ̄) z

∣

∣

∣
z|2 (A5)

If we set κ =
A4

2Ā1
, we can remove one more term which is |z|2z̄. Then the normal form becomes:
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ż = A1z + A2z̄ + (A3 − 2κĀ2 + A2κ̄) z|z|2 (A6)

Defining A21 = A3 − 2κĀ2 + A2κ̄ yields the normal form when (p, q) = (1, 2):

ż = A1z + A2z̄ + A21z|z|2. (A7)

• case(I I) : (p, q) = (2, 1)

In a similar fashion, but this time with (p, q) = (2, 1) we can eliminate other terms. Again by

starting off Equation (A3) and collecting the terms we get:

ż = A1z + A2z̄ + (A4 − 2A2κ + A2κ̄) zz̄2 + (A3 − A1κ − κĀ1) z2z̄ + (A5 − κĀ2) z3 + A6z̄3, (A8)

and applying normal form method successively to eliminate terms that contain z3 and z̄3 we get:

ż = A1z + A2z̄ + (A4 − 2A2κ + A2κ̄)
∣

∣

∣
z|2z̄ + (A3 − A1κ − κĀ1) z

∣

∣

∣
z|2 (A9)

If we choose κ =
A3

A1 + Ā1
, the last term on the right-hand side cancels out. By introducing A12 =

A4 − 2A2κ + A2κ̄ we end up with the final normal form for this particular case:

ż = A1z + A2z̄ + A12|z|2z̄. (A10)

In summary:

• case(I) : (p, q) = (1, 2)⇒ żs = A1z + A2z̄ + A21|z|2z.

• case(I I) : (p, q) = (2, 1)⇒ żs = A1z + A2z̄ + A12|z|2z̄.

Appendix B

Here are all the calculations needed to continue after Equation (19) and obtain the conventional

normal form. For succinctness we only do the calculations for the first oscillator; the same calculations

are true for the second oscillator by replacing subindex 1→ 2.







































ṡ1 = ẋ1 + iẏ1

= (a− 1)x1 − by1 − ax1(
a2x2

1
3 + b2y2

1) + by1(
b2y2

1
3 + a2x2

1)

+ǫ(c1x2 − c2y2)(1 + 2abx1y1 − a2x2
1 − b2y2

1)

+i[−(d + 1)y1 + cx1 + dy1(
d2y2

1
3 + c2x2

1)− cx1(
c2x2

1
3 + d2y2

1)

+ǫ(c3x2 − c4y2)(1 + 2cdx1y1 − c2x2
1 − d2y2

1)]

(A11)

By recollecting the terms we can separate the right-hand side to two main terms; the first term is for

the intrinsic oscillation of each oscillator and the second one with a factor of ǫ describes the coupling

to another oscillator:

ṡ1 = ẋ1 + iẏ1

= [(a− 1 + ic)x1 − (b + i(d + 1))y1 − (ab2 + icd2)x1y2
1 + (a2b + ic2d)x2

1y1

− (
a3 + ic3

3
)x3

1 + (
b3 + id3

3
)y3

1] + ǫ[(c1 + ic3)x2 − (c2 + ic4)y2

+ x1y1(2abc1 + 2icdc3)x2 − x1y1(2abc2 + 2icdc4)y2

− y2
1(c1b2 + ic3d2)x2 + y2

1(c2b2 + ic4d2)y2 − x2
1(c1a2 + ic3c2)x2 + x2

1(c2a2 + ic4c2)y2]

= ṡs1 + ǫṡc1.

(A12)
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The first bracket is what we already got for single oscillator in Section 2, and the second bracket is

because of the coupling. s index refers to the terms for a single oscillator, and c index refers to coupling

terms. We just need to work on ṡc1, since we have already done the first part (ṡs1) in Appendix A:

ṡc1 = (c1 + ic3)x2 − (c2 + ic4)y2 + x1y1(2abc1 + 2icdc3)x2 − x1y1(2abc2 + 2icdc4)y2

− y2
1(c1b2 + ic3d2)x2 + y2

1(c2b2 + ic4d2)y2 − x2
1(c1a2 + ic3c2)x2 + x2

1(c2a2 + ic4c2)y2.
(A13)

Since x1 = s1+s̄1
2 and y1 = s1−s̄1

2 , we can replace for x1 and y1 in the above equation so we get the

right-hand side in terms of s and s̄:

ṡ1c = B1s2 + B2 s̄2 + B3 s̄1
2s2 + B4 s̄1

2 s̄2 + B5s2
1s2 + B6 s̄2 + B7s1 s̄1s2 + B8s1 s̄1 s̄2, (A14)

where:


































































B1 = 1
2 (c1 − c4 + i(c2 + c3))

B2 = 1
2 (c1 + c4 + i(c3 − c2))

B3 = 1
8 ((c− id)2(c4 − ic3)− ic2(a− ib)2 − c1(a− ib)2)

B4 = 1
8 (−c1(a− ib)2 + i(c2(a− ib)2 − (c− id)2(c3 − ic4)))

B5 = 1
8 (−c1(a− ib)2 − ic2(a + ib)2 − (c + id)2(c4 − ic3))

B6 = 1
8 (−c1(a + ib)2 + i(c2(a + ib)2 − (c + id)2(c3 − ic4)))

B7 = 1
4 (−c1(a2 + b2)− i(c2(a2 + b2) + (c2 + d2)(c3 + ic4)))

B8 = 1
4 (−c1(a2 + b2) + i(c2(a2 + b2)− (c2 + d2)(c3 − ic4)))

(A15)

and p, q, m and n are positive integers. It is the time now for the near-identity change of variables:

{

s1 7−→ z1 + κ1z
p
1 z̄1

q

s2 7−→ z2 + κ2zm
2 z̄2

n
(A16)

The algebraic procedure is the same as single oscillator analysis. Rewriting the transformation gives

us: z1 = s1 − κ1z
p
1 z̄1

q and z2 = s2 − κ2zm
2 z̄2

n. Therefore:

z1c = s1 − κ1z
p
1 z̄1

q (A17)

and the same format for the second oscillator by replacing 1 by 2 and (p, q) with (m, n). Continuing

with the first oscillator and differentiating Equation (A17):

ż1c = ṡ1c − pκ1s
p−1
1 ṡ1c s̄1

q − κ1qs
p
1 s̄1

q−1 ˙̄s1c. (A18)

In this equation we substitute for ṡ1 from Equation (A14) completely, but for the second and third

terms on the right-hand side we do not need a complete substitution, as the other terms are of orders

higher than cubic, which are not the matter of interest. Hence:

ż1c = B1s2 + B2 s̄2 + B3 s̄1
2s2 + B4 s̄1

2 s̄2 + B5s2
1s2 + B6s2

1 s̄2 + B7s1 s̄1s2 + B8s1 s̄1 s̄2

− pκ1s
p−1
1 s̄1

q(B1s2 + B2 s̄2)− κ1qs
p
1 s̄1

q−1(B̄1 s̄2 + B̄2s2)
(A19)

By going back to the original transformation (Equation (A16)) and eliminating all terms of order more

than cubic (p + q = m + n = 3), we can obtain the normal form for the coupled part of the oscillations:

ż1c = B1z2 + B5z2
1z2 + B7z1z2z̄1 + B3z2z̄1

2 + B2z̄2 + B6z2
1z̄2 + B8z1z̄1z̄2 + B4z̄1

2z̄2 + B1zm
2 κ2z̄2

n

− qκ1B̄2z
p
1 z̄1

q−1z2 − qκ1B̄1z
p
1 z̄2z̄1

q−1 − B1 pκ1z
p−1
1 z̄1

q
z2 − B2 pκ1z

p−1
1 z̄1

q z̄2 + B2zn
2 z̄2

mκ̄2.
(A20)
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We have four cases depending on different choices of p, q, m and n. The normal forms are:

• case(I) : (p, q) = (1, 2), (m, n) = (1, 2)

ż1c = B1z2 + B2z̄2 + B5z2
1z2 + B6z2

1z̄2 + (B7 − 2κ1B̄2)z1z2z̄1 + (B3 − B1κ1)z2z̄1
2

+ (B8 − 2κ1B̄1)z1z̄1z̄2 + (B4 − B2κ1)z̄1
2z̄2 + B1z2κ2z̄2

2 + B2κ̄2z2
2z̄2

• case(I I) : (p, q) = (2, 1), (m, n) = (1, 2)

ż1c = B1z2 + B2z̄2 + B3z2z̄1
2 + B4z̄1

2z̄2 + (B5− κ1B̄2)z
2
1z2 + (B6− κ1B̄1)z

2
1z̄2 + (B7− 2κ1B̄1)z1z2z̄1

+ (B8 − 2κ1B2)z1z̄1z̄2 + B1z2κ2z̄2
2 + B2κ̄2z2

2z̄2

• case(I I I) : (p, q) = (1, 2), (m, n) = (2, 1)

ż1c = B1z2 + B5z2
1z2 + B2z̄1 + B6z2

1z̄2 + (B3− B1κ1)z2z̄1
2 + (B4− B2κ1)z̄2z̄1

2 + (B7− 2B̄2κ1)z1z2z̄1

+ (B8 − 2B̄1κ1)z1z̄1z̄2 + B1κ2z2
2z̄2 + B2κ̄2z2z̄2

2

• case(IV) : (p, q) = (2, 1), (m, n) = (2, 1)

ż1c = B1z2 + B3z̄1
2z2 + B2z̄2 + B4z̄1

2z̄2 + (B5− B̄2κ1)z2z2
1 + (B6− B̄1κ1)z̄2z2

1 + (B7− 2B1κ1)z1z2z̄1

+ (B8 − 2B2κ1)z1z̄1z̄2 + B1κ2z2
2z̄2 + B2κ̄2z2z̄2

2

Appendix C

Starting off the canonical model for two coupled identical oscillators (Equation (20)), we can solve

for the amplitude and phase of each oscillator:

żk = A1zk + A21|zk|2zk + ǫżkc. (A21)

By considering the polar transformation of zk : zk = rkeiφk , where the index k indicates each oscillator,

(k = 1, 2) represents this normal form in polar coordinates:

eiφk (ṙk + irkφ̇k) = A1rkeiφk + Ar3
keiφk + ǫżkc. (A22)

Dividing both sides of Equation (A22) by eiφk :

ṙk + irkφ̇k = A1rk + Ar3
k + ǫżkce−iφk (A23)

The real and imaginary parts of these equations provide us with the amplitude and phase of each

oscillator, respectively:

ṙk = Re(A1)rk + Re(A)r3
k + ǫRe(żkce−iφk )φ̇k = Im(A1) + Im(A)r2

k +
ǫ

rk
Im(żkce−iφk ) (A24)

Now we need to substitute for ż1c (and ż2c by interchanging the index 1 ←→ 2) from case(I) in

Appendix B and separate real and imaginary parts to continue the calculations for the amplitude and

phase of each oscillator, respectively:

ż1ce−iφ1 = B1r2ei(φ2−φ1) + [B2r2 + B1κ2r3
2]e
−i(φ2+φ1) + [B5 + B7 − 2κ1B̄2]r

2
1r2ei(φ2+φ1)

+ [B8 + B6 − 2κ1B̄1]r
2
1r2e−i(φ2−φ1) + [B3 − κ1B1]r

2
1r2ei(φ2−3φ1)

+ [B4 − κ1B2]r
2
1r2e−i(φ2+3φ1) + [κ̄2B2]r

3
2e−i(φ1+3φ2)

(A25)

with real and imaginary parts:
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Re(ż1ce−iφ1) = Re(B1)r2 cos(φ2 − φ1) + Re[B2r2 + B1κ2r3
2] cos(φ2 + φ1)

+ Re[B5 + B7 − 2κ1B̄2]r
2
1r2 cos(φ2 + φ1) + Re[B8 + B6 − 2κ1B̄1]r

2
1r2 cos(φ2 − φ1)

+ Re[B3 − κ1B1]r
2
1r2 cos(φ2 − 3φ1) + Re[B4 − κ1B2]r

2
1r2 cos(φ2 + 3φ1)

+ Re[κ̄2B2]r
3
2 cos(φ1 + 3φ2)

(A26)

Im(ż1ce−iφ1) = Im(B1)r2 sin(φ2 − φ1) + Im[B2r2 + B1κ2r3
2] sin(φ2 + φ1)

+ Im[B5 + B7 − 2κ1B̄2]r
2
1r2 sin(φ2 + φ1) + Im[B8 + B6 − 2κ1B̄1]r

2
1r2 sin(φ2 − φ1)

+ Im[B3 − κ1B1]r
2
1r2 sin(φ2 − 3φ1) + Im[B4 − κ1B2]r

2
1r2 sin(φ2 + 3φ1)

+ Im[κ̄2B2]r
3
2 sin(φ1 + 3φ2)

(A27)

Recollecting:

Re(ż1ce−iφ1) = r2[n1 cos(φ2 − φ1) + n2 cos(φ2 + φ1)] + r2
1r2[n4 cos(φ2 + φ1) + n3 cos(φ2 − φ1)

+ n5 cos(φ2 − 3φ1) + n6 cos(φ2 + 3φ1)] + r3
2[n7 cos(φ1 + 3φ2) + n8 cos(φ2 + φ1)]

(A28)

Im(ż1ce−iφ1)

r1
=

r2

r1
[l1 sin(φ2 − φ1) + l2 sin(φ2 + φ1)] + r1r2[l4 sin(φ2 + φ1) + l3 sin(φ2 − φ1)

+ l5 sin(φ2 − 3φ1) + l6 sin(φ2 + 3φ1)] +
r3

2

r1
[l7 sin(φ1 + 3φ2) + l8 sin(φ2 + φ1)],

(A29)

where:

n1 = Re(B1), n2 = Re(B2), n3 = Re(B8 + B6 − 2κ1B̄1),

n4 = Re(B5 + B7 − 2κ1B̄2), n5 = Re(B3 − κ1B1),

n6 = Re(B4 − κ1B2), n7 = Re(κ̄2B2), n8 = Re(κ2B1),

l1 = Im(B1), l2 = Im(B2),

l3 = Im(B8 + B6 − 2κ1B̄1), l4 = Im(B5 + B7 − 2κ1B̄2),

l5 = Im(B3 − κ1B1), l6 = Im(B4 − κ1B2),

l7 = Im(κ̄2B2), l8 = Im(κ2B1).

Therefore:

ṙ1 = Re(A1)r1 + Re(A)r3
1+

ǫ{r2[n1 cos(φ2 − φ1) + n2 cos(φ2 + φ1)] + r2
1r2[n4 cos(φ2 + φ1)

+ n3 cos(φ2 − φ1) + n5 cos(φ2 − 3φ1) + n6 cos(φ2 + 3φ1)] + r3
2[n7 cos(φ1 + 3φ2) + n8 cos(φ2 + φ1)]}

(A30)

ṙ2 = Re(A1)r2 + Re(A)r3
2+

ǫ{r1[n1 cos(φ2 − φ1) + n2 cos(φ2 + φ1)] + r2
2r1[n4 cos(φ2 + φ1)

+ n3 cos(φ2 − φ1) + n5 cos(φ1 − 3φ2) + n6 cos(φ1 + 3φ2)] + r3
1[n7 cos(φ2 + 3φ1) + n8 cos(φ2 + φ1)]}

(A31)

φ̇1 = Im(A1) + Im(A)r2
1

+ ǫ{ r2

r1
[l1 sin(φ2 − φ1) + l2 sin(φ2 + φ1)] + r1r2[l4 sin(φ2 + φ1)

+ l3 sin(φ2 − φ1) + l5 sin(φ2 − 3φ1) + l6 sin(φ2 + 3φ1)] +
r3

2

r1
[l7 sin(φ1 + 3φ2) + l8 sin(φ2 + φ1)]}

(A32)

φ̇2 = Im(A1) + Im(A)r2
2

+ ǫ{ r1

r2
[l1 sin(φ1 − φ2) + l2 sin(φ2 + φ1)] + r1r2[l4 sin(φ2 + φ1)

+ l3 sin(φ1 − φ2) + l5 sin(φ1 − 3φ2) + l6 sin(φ1 + 3φ2)] +
r3

1

r2
[l7 sin(φ2 + 3φ1) + l8 sin(φ2 + φ1)]}

(A33)

where δ in the last two equations is the imaginary part of constant A21.
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