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ABSTRACT: Typical environmental conditions associated with horizontal convective rolls (HCRs) and cellular convec-
tion have been known for over 50 years. Yet our ability to predict whether HCRs, cellular convection, or no discernable
organized (null) circulation will occur within a well-mixed convective boundary layer based upon easily observed en-
vironmental variables has been limited. Herein, a large database of 50 cases each of HCR, cellular convection, and null
events is created that includes observations of mean boundary layer wind and wind shear, boundary layer depth; surface
observations of wind, temperature, and relative humidity; and estimates of surface sensible heat flux. Results from a
multiclass linear discriminant analysis applied to these data indicate that environmental conditions can be useful in
predicting whether HCRs, cellular convection, or no circulation occurs, with the analysis identifying the correct circu-
lation type on 72% of the case days. This result is slightly better than using a mean convective boundary layer (CBL) wind
speed of 6ms ™! to discriminate between HCRs and cells. However, the mean CBL wind speed has no ability to further
separate out cases with no CBL circulation. The key environmental variables suggested by the discriminant analysis are
mean sensible heat flux, friction velocity, and the Obukhov length.

SIGNIFICANCE STATEMENT: We spend our lives in the boundary layer, the layer of the atmosphere that extends
upward from the ground to a typical daytime depth of 1 km. When viewed from above, there are two common flow
patterns that occur within this layer—long parallel lines of rising motion that extend from tens to hundreds of kilometers,
with long parallel lines of sinking motion in between, and more circular regions of vertical motion that form adjacent to
one another. These flow patterns influence the movement of heat, moisture, and winds within the boundary layer. This
study shows that the flow pattern can be predicted from routinely available Doppler radar and surface weather station
observations.
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1. Introduction The advent of aircraft, satellite, and radar opened a new era
of research on HCRs and cells, as expansive cloud patterns not
clearly discernable from the ground became very apparent
when viewed from above (Kuettner 1959, 1971; Malkus and
Riehl 1964) or via ground-based remote sensing (Angell et al.
1968; Konrad 1970; Berger and Doviak 1978). Kelly (1982)

used Doppler radar to investigate the relationship between

Horizontal convective rolls (HCRs) and cellular convection
(cells) have been a topic of study since Woodcock (1940) ex-
plored the flight patterns of herring gulls in the cold season off
the coast of Massachusetts. He observed two distinct flight
patterns that were used to deduce very different boundary

layer circulation types: a columnar form of ascending motion
(cells) and a linear form of ascending motion (HCRs). He
found that there was a 10-m wind speed threshold of 7ms™!
at which cells ended and HCRs began, and further suggested
that HCRs were not produced for wind speeds = 13ms™' or
when the water temperature was less than the air temperature
(suggesting a stable boundary layer). Deardorff (1976) arrived
at the same conclusion as Woodcock (1940) using free-
convection scaling arguments. Deardorft suggested that the
13ms ™! limit on HCRs could have been a behavioral choice
of herring gulls rather than a wind speed limit of the HCRs
themselves.
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radar return signals and precipitating HCRs in the Great Lakes
region during winter. Doppler radial velocities produced hor-
izontally and vertically alternating confluence and difluence
patterns indicative of HCR updraft and downdraft circulations.
Doppler radar also was shown to be capable of sensing HCRs
in clear air during the warm season owing to an increased
concentration of insects within the upward branch of an HCR
circulation (Christian and Wakimoto 1989; Geerts and Miao
2005). The ability of Doppler radar to detect HCRs and cells in
clear air enhanced our abilities to explore these circulations,
because the formation of clouds was no longer needed for
detection.

These studies and others led to a basic understanding that in
daytime convective boundary layers with moderate surface
buoyancy flux, HCRs and cells often develop to help transport
heat, moisture and momentum vertically throughout the bound-
ary layer (see Asai 1970; Brown 1980; Atkinson and Zhang 1996
and references therein). When surface buoyancy flux is the driving
force, these vertical circulations are hampered by vertical wind
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shear aligned perpendicular to the axis of the vertical circula-
tions. Thus, for larger values of wind shear the axes of the
boundary layer vertical circulations tend to be aligned with
the wind shear vector and yield the long, linear updraft and
downdraft structures characteristic of HCRs. Wind shear is
always present in the convective boundary layer owing to the
effects of surface friction, and when the wind direction is
constant with height the wind shear vector and wind vector are
parallel to each other. When this happens, the mean boundary
layer wind speed is often a reasonable proxy for the low-level
boundary layer wind shear magnitude. However, horizontal
temperature and pressure gradients can create boundary layer
winds that change direction with height and in these cases the
boundary layer wind speed is no longer a good proxy for the
low-level boundary layer wind shear magnitude. For smaller
values of wind shear the buoyancy effects can dominate over
the effects of wind shear yielding no preferred orientation to
the updraft and downdraft circulations. Thus, cells become the
favored outcome.

Special observations from field experiments also have been
critical to improving our understanding of HCRs and cells
(e.g., LeMone 1973; Briimmer et al. 1985; Kristovich 1993;
Briimmer 1999) as well as their importance to convective ini-
tiation, especially near boundaries (Wilson et al. 1992; Xue and
Martin 2006; Weckwerth and Parsons 2006). Weckwerth et al.
(1997) used a combination of airborne radar and flux mea-
surements to investigate the environmental characteristics that
support HCR and cell formation. Their results suggest that
moderate sensible heat flux (SHF), some wind shear, and mean
convective boundary layer (CBL) wind speeds = 5.5ms™"
were necessary for HCR existence. This wind speed threshold
agrees reasonably well with the 7ms™' threshold found by
Woodcock (1940). Below this wind speed threshold value,
Weckwerth et al. (1997) show that either cells or no organized
boundary layer circulations (nulls) were found.

One of the challenges with using data from field experiments
is that, whereas the number of types of available observations
is large and the atmospheric sampling is comprehensive, the
number of cases for which these observations are available
is relatively small. One must turn to operational datasets to
obtain a large number of cases. Thankfully, a number of methods
are available that provide information on the environmental
conditions within CBLs. The velocity—azimuth display (VAD)
method can be used to calculate the mean horizontal wind
using Doppler radar radial velocity observations at a fixed
range gate (Browning and Wexler 1968). Applying the VAD to
radial velocity observations at different range gates yields a
vertical wind profile from approximately 200 m above ground
level to above the top of the CBL on most days. The addition of
dual-polarization observations to the WSR-88D allows layers
of Bragg scattering to be identified, which often occurs near the
top of the CBL and is characterized by Zpg values close to 0 dB
(Melnikov et al. 2011, 2013; Davison et al. 2013; Richardson
et al. 2017a,b). Banghoff et al. (2018) further showed that the
top of the CBL Z; can be estimated from quasi-vertical profiles
(QVPs) of differential reflectivity Zpgr. Using the estimated Z;
and the VAD-derived vertical wind profile one can easily
calculate mean CBL wind speed and mean CBL wind shear.
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Surface mesonetworks have expanded greatly since 2000
(Mahmood et al. 2017) and some have sufficiently accurate
temperature and wind measurements at two heights to provide
estimates of SHF and friction velocity us (Brotzge and
Crawford 2000). Thus, using observations from the national
network of WSR-88Ds and selected surface mesonets, one can
routinely estimate the mean CBL wind speed, mean CBL wind
shear, Z;, surface virtual potential temperature 6,, surface
SHF, and u.. These variables can be combined to calculate
numerous other helpful boundary layer parameters.

Banghoff et al. (2020) used observations from the Twin
Lakes, Oklahoma, WSR-88D over 10 warm seasons (1 April-
30 September) to document over 1380 cases of HCR and cell
occurrence, duration, and associated aspect ratios. They found
that on precipitation-free days, HCRs occurred on 71% of the
days, cells occurred on 21% of the days, and nulls occurred on
7% of the days. HCRs and cells typically formed in mid-
morning and persisted on average for 3—4 h. Different circu-
lation types tended to be more common at different times of
the warm season, with HCRs being more common in April,
May, June, and early July and cells being more common in
August and September. Nulls are scattered throughout the
warm season. The monthly trends indicate that changing en-
vironmental conditions correlate to changes in circulation type,
suggesting that environmental conditions can be used to pre-
dict circulation type. The Banghoff et al. (2020) study repre-
sents the largest dataset of HCRs and cells ever investigated
and is the foundation for the present study (dataset available
from Stensrud et al. 2019).

Improved knowledge of the environmental conditions as-
sociated with each type of boundary layer circulation would
clarify the environmental influences on circulation type in
addition to helping modelers and forecasters better predict
boundary layer organization. Thus, the dataset created by
Banghoff et al. (2020) is used to identify cases representing
the three circulation types. The environmental conditions for
these cases are determined from routinely available observa-
tions and differences between the environments of HCRs,
cells, and nulls explored. Only cases that display a single cir-
culation type are selected for study, with the resulting dataset
consisting of 50 cases per circulation type: HCR, cell, and null.
The size of the dataset should yield enough variability to ex-
amine which environmental parameters are associated with the
three circulation types. The potential for an operational method to
determine whether HCRs, cells, or null cases are more likely in a
given environment also is investigated.

Section 2 describes the observational datasets and analysis
methods used. This discussion is followed by analysis results in
section 3, which includes both a comparison of the mean en-
vironmental conditions for the three circulation types as well as
results from a multiclass linear discriminant analysis. A sum-
mary is found in section 4.

2. Data and methods

Warm-season Doppler radar and Oklahoma Mesonet ob-
servations from central Oklahoma from 2013 to 2017 are used
to create a dataset of 50 cases each of HCRs, cells, and null
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FIG. 1. Number of cases plotted as a function of month during the
warm season from April to September of HCRs (black), cells
(blue), and null events (brown). Cases were selected from the years
2013-17 using the database from Banghoff et al. (2020).

cases from the dataset of Banghoff et al. (2020). The cases
selected for subsequent analysis display only a single circula-
tion type (HCR, cell, or null), even though HCRs transition to
or from cellular convection on roughly one-third of the cases
(Banghoff et al. 2020) and hybrid HCR and cell events have
been observed in other studies (Grossman 1982; LeMone et al.
2010). Only data from 2013 and later are used owing to the
need for dual-polarization WSR-88D observations at the Twin
Lakes (KTLX) radar to estimate Z;. The cases span all 6 months,
although HCR cases are more common in May and June and
there is only one HCR case in September (Fig. 1). Cell and null
cases are spread fairly evenly throughout the warm-season
months, although there are more null cases in May than the
other months.

a. Oklahoma Mesonet observations

Oklahoma Mesonet stations consist of 10-m towers that
collect wind observations at 2 and 10m above ground level
(AGL), temperature and relative humidity at 1.5 and 9m
AGL, and atmospheric pressure, rainfall, solar radiation, and
soil temperature and soil moisture at three depths (McPherson
et al. 2007). The Mesonet has been in operation since 1994,
and it has grown over time to 120 stations, with at least one
Mesonet station in each of the 77 counties in Oklahoma.
Observations from the Mesonet are collected every minute,
and 5-min-average values are reported for most variables
(Brock et al. 1995; McPherson et al. 2007). The instrumenta-
tion used by the Oklahoma Mesonet is reported in McPherson
et al. (2007).

Oklahoma Mesonet stations underneath the cone of the
KTLX WSR-88D surveillance scans are used to determine
surface conditions and to estimate surface SHF and u... These
stations are the Norman, Shawnee and Spencer, Oklahoma,
sites (Fig. 2), and all three sites are grass covered as is typical
for central Oklahoma. It is assumed that the near-surface en-
vironment is horizontally homogeneous under the radar cone
to a distance of 40km from KTLX such that the Mesonet
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FIG. 2. Region around the KTLX WSR-88D in central Oklahoma,
including the Norman (NORM), Spencer (SPEN), and Shawnee
(SHAW) Oklahoma Mesonet sites and the 40-km radar range
ring. The locations of Oklahoma City and major roadways are
indicated.

station density is sufficient to provide reasonable estimates of
the surface variables calculated.

The profile gradient method as outlined in Brotzge and
Crawford (2000) is used to estimate SHF. While surface buoy-
ancy flux is most relevant to boundary layer structure, it is very
hard to measure and so SHF commonly is used instead. The
estimation method is based on dynamical theory discussed by
Panofsky (1963) and Paulson (1970) and requires wind speed
and temperature observations at two heights. The SHF is es-
timated every Smin using the Mesonet observations at the
three sites. Results show that the value of SHF on subhourly
time scales can be particularly noisy owing to the influence of
low-level clouds, yet it is the hourly trends in SHF that tend to
impact the boundary layer circulation (Weckwerth et al. 1996).
To reduce the noise in the SHF estimates, a five-point median
filter is applied to the SHF time series from 0000 to 2355 UTC
on each day for each of the three Mesonet stations. The filtered
values of SHF at each of the three stations are then averaged to
provide a mean value of SHF every 5 min, which is used in our
subsequent calculations and the analyses.

Oklahoma Mesonet observations also are used to calculate
6., the friction velocity ux, and the Obukhov length L every
5min at each station; 6, is calculated from Mesonet observa-
tions of temperature, pressure and relative humidity at 2m,
and ux is a function of the Reynolds stress at the surface and is
calculated directly from Mesonet data using wind observations
and adjustments due to stability, as in Brotzge and Crawford
(2000). The 5-min values of 0, and us are averaged over the
three Mesonet stations. The Obukhov length is the height
AGL when buoyant forces start to dominate over wind shear in
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the generation of turbulence, and it is negative in convective
environments. The Obukhov length is calculated from

—pc 6 13
~ M’ 1)
kg X SHF
where k = 0.4 is the von Karman constant, g = 9.81 m s 2is the

gravitational acceleration, ¢, = 1004 J kg 'K is the specific
heat at constant pressure, and p is the air density, which is the
average calculated from the three Mesonet stations every
5Smin. As mentioned above, it also is assumed that SHF is a
reasonable estimate for the surface buoyancy flux. Last, the
free convective scaling velocity w.. can be thought of as a typical
updraft speed for convective thermals in the CBL (Stull 1988)
and is calculated from

1/3
Z.
w*=<g : xSHF) : @
pcp@u

where SHF is again used instead of buoyancy flux and SHF,
0,, and p are 5-min average values calculated as previously
described, and Z; is determined from the Zpr observations
following Banghoff et al. (2018), which is explained below.
Both L and wy are calculated every 5 min.

b. KTLX WSR-88D observations

The KTLX WSR-88D is located to the southeast of the
Oklahoma City metropolitan area (Fig. 2) at an altitude of
338 m MSL. This radar was upgraded to have dual-polarization
(hereinafter dual-pol) capabilities in 2012. The WSR-88D ob-
servations typically are available every 10 min when the radar
is in clear-air mode and every 4min when in precipitation
mode. For majority of the cases selected, KTLX observations
are every 10 min. Radar observations are used to estimate the
mean CBL winds Ucgy, the mean CBL wind shear dU/dz, and
Z; and to identify the circulation type. As discussed in
Banghoff et al. (2018), Bragg scattering is often found near the
top of the CBL and is characterized by Zpg values close to0 dB
(see also Melnikov et al. 2011, 2013; Davison et al. 2013;
Richardson et al. 2017a,b). Thus, the value of Zpg can be used
to distinguish between biological scatterers, which have much
larger values of Zpg, and the turbulent features that cause the
Bragg scatter zone, which has much lower Zpg, and hence can
be used to diagnose Z; (Banghoff et al. 2018).

The value of Z; is calculated over the radar sampling volume
using the QVP technique described by Kumjian et al. (2013)
and Ryzhkov et al. (2016). A time series of QVPs of Zpp is
created from 1200 to 0000 UTC (subtract 6 h to obtain local
time) to encompass the daytime development of the CBL.
From this QVP time series, the vertical minimum of Zpy is
determined for each observation time throughout the day-
time hours by visual inspection and defines the value of Z;. In
the cases of multiple minimum zones, the center of the bot-
tom minimum zone is taken to be the value of Z;. In case of a
large minimum zone (~ 200 m thickness), the bottom of the
zone is taken to be the value of Z;. The values of Z; vary
smoothly over the daytime hours and are interpolated to 5-min
intervals.
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The VAD method is used to calculate the environmental
winds as a function of height AGL within the radar sampling
volume (Browning and Wexler 1968). The VAD method is
applied to each range gate for radar elevations of 0.5° and
1.5° and then binned in 50-m vertical intervals from 220 m AGL
(lowest altitude of the first radar measurement used) to the top
of the CBL at Z;. The VAD winds represent an average wind
speed within the radar volume. Knowledge of the mean CBL
winds at 50-m vertical intervals allows for easy calculation of
UcgpL over any averaging period. Wind shear dU/dz is calcu-
lated by taking the difference between the wind velocity at
the top of the CBL (Uy,) and wind velocity at 10 m from the
Oklahoma Mesonet and dividing by (Z; — 10m) following
Weckwerth et al. (1997).

To classify boundary layer circulations into HCR, cell, or
null cases, Banghoff et al. (2020) use a plan position indicator
(PPI) plot of radar reflectivity factor at horizontal polarization,
Zy, to manually investigate the PPI plots looped over the
daytime hours. Since Zy values for atmospheric biota are
typically < 20dBZ, Z is displayed in the range from —10 to
25dBZ. This range makes it much easier to observe biota and
also aids in identifying precipitation and deep convection that
may impact the circulations. Loops of Z; at an elevation angle
of 1.5° are used to identify start times and end times for
boundary layer circulations, with the 1.5° angle being used
to reduce ground clutter contamination present at the lowest
elevation. The classification of boundary layer circulations for
each case is revisited here by visual inspection and the classi-
fications confirmed (Fig. 3). HCRs are identified by their long
Zy; bands, with their orientation being about parallel to the
mean wind in the CBL (Fig. 3a). Cells are identified by their
polygonal or circular shapes on the Z returns (Fig. 3b). Null
cases are identified by their lack of organizational structure
(Fig. 3c), which could happen primarily for two reasons: the
environment is not conducive for boundary layer circulation
organization or there is insufficient biota to cause Zy returns.
To avoid the latter situation, null cases in this study are re-
quired to have sufficient Z returns above 20 dBZ in this study.
The classification necessarily is subjective and focused upon
the entire reflectivity field surrounding the radar and not just
one region of this field. It is possible that HCRs and cells
could be active simultaneously, as seen in Grossman (1982)
and LeMone et al. (2010), and underlying terrain features
also may play a role in local deviations from the classical
linear and polygonal patterns. Animation of the PPIs on the
days selected suggests that the HCR cases selected here
represent only a single circulation type and are not a hybrid
of the two circulation types, although the cell cases are more
complex and may at times be a hybrid of the two circula-
tion types.

c. Linear discriminant analysis

Fisher (1936) outlines a process by which one can discrimi-
nate group membership on the basis of observed attributes,
which for this study translates into determining CBL circu-
lation type (HCR, cell, or null) using environmental obser-
vations. Given a set of training data from each of two known
groups, linear discriminant analysis (LDA) creates a linear
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function D for each group that combines the observed at-
tributes X, with

D,=aX, +a,X,+ - +akX (3)

Pgr’

where g; are the weights calculated by the technique and X, ;
are thei = 1,2, ..., p observed attributes from the g = 1, 2
groups. Details on how the weights are calculated can be found
in Wilks (2006). The only assumption is that the underlying
covariance matrices are equal for the two groups; if the co-
variance matrices are unequal then the discrimination will be
less accurate but still may be very useful. Either dimensional or
dimensionless data can be used as attributes, providing great
flexibility when exploring datasets. One can view LDA as a
way to calculate a function that maximizes the separation of
the group means. Once the weights are determined from the
training data, D can be calculated for any X and group mem-
bership determined by whether the value of D is closer to the
mean value of D; or D, calculated from the training data (see
Wilks 2006). This same approach is called multiclass discriminant
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FI1G. 3. Equivalent radar reflectivity factor Z; at 1.4° for
(a) HCR, (b) cell, and (c) null events as sampled from the Twin
Lakes (KTLX) WSR-88D. The HCR signature has a distinct lin-
ear structure in the reflectivity field, whereas the cell signature has
circular to hexagonal features in a honeycomb-like collection. The
null signature has a much more random reflectivity field. These
signatures are typical of the patterns seen for the three circula-
tion types.

analysis (MDA) when extended to three or more groups
(Rao 1948).

For the present study the groups are HCR, cell and null
events, and the attributes are SHF, L, uy, wy, Z;, Ucgr, and
dU/dz. General guidance is that at least 5 cases are needed
for each attribute (Viana and Sansigolo 2016) and since this
study uses seven variables as attributes, the observational
dataset should have at least 35 cases for each group; thus, 50
cases are used for each group in this study. Because there
are three classification groups, three pairwise combinations
of classes are used with LDA to discriminate between
(i) HCRs and cells, (ii) HCRs and nulls, and (iii) cells and
nulls. Information on the observed frequency of HCRs,
cells, and nulls is not used in MDA it is assumed that the
groups are equally likely and so for a three-group classification
a 33.3% correct rate is the expected correct percent value
for a random selection. A probabilistic classification ap-
proach is applied to the results of the three LDAs to de-
termine into which group the observations on a given day
belong (Wilks 2006). The group associated with the highest
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probability is selected for each day. See Wilks (2006) for
further details.

With data that vary greatly in magnitude and variance, such
as seen in ux and Z; for instance, the equal covariance ma-
trices assumption is likely invalid. Thus, a rescaling is ap-
plied wherein the natural logarithm of the data values is
used. This rescaling is important because small variations in
the data become larger and large variations in the data become
smaller, thereby helping to make the variances and covariances
more equal among the different variables and approaching
the assumptions for MDA. The matrix-to-matrix correlations
vary from 0.80 to 0.96 for the three covariance matrices,
suggesting that the covariance matrices are similar. Testing
confirms that MDA results are improved when the natural
logarithm rescaling is applied to the variables.

To explore which observed variables are most important
to discriminating between HCRs, cells, and nulls, the MDA is
provided with all possible 120 variable combinations from two
variables to seven variables. As discussed in the next section,
some of these variables are highly correlated, such as SHF and
wx (correlation of 0.86 in the training data) and Ucpp and
dUldz (correlation of 0.83 in the training data), and therefore
contain redundant information. Yet correlated variables are
still provided to MDA since at worst this situation will simply
result in little improvement in discrimination and at best it may
be that even limited amounts of independent information will
improve the discrimination. The variables that result in the
best discrimination between the groups are the observations
most important to correctly predicting circulation type and
thus may be keys to understanding the physical processes that
underlie the differences in circulation type.

Once the observations and parameters from the Oklahoma
Mesonet stations (SHF, L, and uy), the KTLX WSR-838D
(UcpL and Z;), and the convective scaling velocity wx and
wind shear dU/dz that require observations from both Mesonet
and radar, are calculated at the available observation times
(Mesonet data every 5Smin, KTLX data and parameters that
use KTLX data every 5-10 min depending upon volume scan in
use), the observations and parameters are averaged in time for
each case. The averaging is applied over the lifetime of the
circulation, that is, from the start of the circulation to its de-
mise, and thus the averaging time length varies for each HCR
and cell case. This choice results in averaging times between
1.5 and 8 h. For null events, the time averaging is applied uni-
formly from 1800 to 2200 UTC, or over 4 h so that the mean
averaging time period is similar for all cases in the training
data. The time mean values for each case are used in the sub-
sequent analyses because they are more representative of the
environmental conditions for HCRs, cells, and nulls than
values averaged over 5 or 10 min and should help to discrimi-
nate between the environments of the three groups.

The potential for an operational method to determine
whether HCRs, cells, or null cases are more likely to occur on a
given day is explored with a smaller independent dataset.
Instead of averaging observations over the time period of the
circulations, a shorter averaging time is used and chosen to be
the 30-min period prior to the start time of HCRs or cells. For
null events with no defined start time, the averaging period is
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TABLE 1. Time-averaged values of SHF, L, ux, Ucpy, dU/dz, Z;,
and wy calculated using the 50 cases each for HCRs, cells, and
nulls. The largest values from the three circulation types are shown
in boldface type, and smallest values are shown in italics.

Variable HCRs Cells Nulls
SHF (Wm™?) 122 134 114
L (m) -86 -21 -53
usg (ms™ 1) 0.37 0.23 0.28
Ucgr, (ms™1) 9.1 35 5.9
dUldz (s71) 42 x 1073 12x 1073 3.0x107°
Z; (m) 1282 1271 1043
wa (ms™h) 1.48 1.51 133

from 1800 to 1830 UTC. A total of 50 additional cases (17 HCR,
17 cells, and 16 null) are used to test the usefulness of the MDA
approach as a predictive tool. Observations from both the
KTLX WSR-88D and the three Oklahoma Mesonet stations
are used, with cases again taken from the dataset of Banghoff
et al. (2020) except that different case days are chosen.

The ability of various methods to predict whether HCRs,
cells, or null cases occur based upon environmental conditions
is evaluated in several related ways. Percent correct is simply
the percentage of case days correctly identified for a particular
circulation type. Mean percent correct is the average percent
correct for all three circulation types. Weighted mean percent
correct is the percent correct weighted by the observed fre-
quencies of the three circulation types found by Banghoff et al.
(2020), or 71% HCRs, 21% cells, and 7% null cases. Here the
percent correct for HCRs is weighted 3.4 times more than the
percent correct for cells and 10.1 times more than the percent
correct for null cases.

3. Results
a. Mean environmental conditions and correlations

The mean values of the seven environmental variables cal-
culated from the 50 HCR, cell, and null cases are summarized
in Table 1, although there is considerable spread around the
means. Mean values of SHF are positive for the three circu-
lation types, as expected for a daytime CBL, with cells having
slightly larger mean SHF and wy than either HCRs or nulls.
L varies from —2 to —343 m across all cases, with cells having
the least negative mean value of L. Slightly larger SHF and w .,
along with a less negative value of L, suggest a more con-
vectively forced CBL on days with cells.

Correlations between the seven environmental variables
are calculated using data from all 150 cases and reported in
Table 2. Results show that Ucgy is positively correlated with
dU/dz and usx, and negatively correlated with L, at values
above 0.66, suggesting that much of their variations are dom-
inated by the variation in low-level wind shear magnitude.
However, these observations also contain independent infor-
mation as their intercorrelations explain less than 70% of their
variations. SHF and w is the most highly correlated variable
pair in the dataset and both have moderate correlations with
L and negligible correlations with Ucgr, dU/dz, and ux.
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TABLE 2. Correlations between the seven environmental vari-
ables calculated using observations from all 150 cases in the

training dataset.

UCBL dU/dZ L U W SHF Zi

UcsL 1 0.83 —0.73 0.66 —0.15 -0.14 0.12
dUldz 1 —0.64 042 -034 -022 -015
L 1 —0.37 0.44 041 -0.12
Use 1 0.34 028 —0.04
Wi 1 0.86 0.18
SHF 1 —0.16
Zl' 1

These relationships also are consistent with the expectation
that variations in w, are dominated by variations in buoyancy
(characterized by SHF), which is independent of wind shear.
In contrast, L is negatively correlated with Ucgy, dU/dz, and
ux supporting the idea that the height at which buoyant
forces dominate over shear is higher as the wind shear in-
creases. Last, Z; has negligible correlations with all other
variables, consistent with the expectation that the depth of
the circulations is independent of wind shear magnitude and
buoyancy.

A threshold value of Ucgr ~ 6ms~ ' for HCRs has been
suggested in other studies (Woodcock 1940; Deardorff 1976;
Weckwerth et al. 1997) to discriminate between HCRs and
cells. In the 50 HCR cases explored here, there are only 5 cases
with Ucpr. less than 6 m s~ ! and the smallest case value of Ucpy,
for HCRs is 4.6 m s~ '. In contrast, the cell mean value of Ucgy,
is 3.5ms ! and only 5 cell cases have UcgL > 6ms~ L. This
suggests thata Ucpgp of 6 m s~ isindeed a reasonable threshold
value for discriminating between HCRs and cells, yielding a
correct discrimination 90% of the time in the training data.
Unfortunately, a scatterplot of Ucgy and wy from all cases
shows that a 6ms~! threshold for Ucg; has little ability to
separate out null events from the other two circulation types,
as 32 null cases have Ucgr, < 6ms™~ ' and 18 null cases have
Ucpr >6ms ! (Fig. 4). This scatterplot also shows that HCRs,
cells, and nulls share similar ranges of ws, suggesting that
larger values of wy and SHF, indicative of a more convectively
forced CBL, do not lead to cells becoming more common as
might be expected. In addition, wx by itself is unable to dis-
tinguish between any of the circulation types.

Weckwerth et al. (1997) found that HCRs are present for
dUldz > 2 X 107*s™!, cells are present for dU/dz roughly
below this value, and null and unorganized convection is as-
sociated with dU/dz values shared by both HCRs and cells.
Applying a2 X 107*s™! dU/dz threshold to the current dataset
yields an 87% correct discrimination between HCRs and cells
in the training data (Fig. 5), slightly less than found using Ucgy,
while dU/dz does not help to separate out null events (27 of 50
null events have dU/dz in excess of this threshold). This result
agrees well with the analysis of Weckwerth et al. (1997). The
mean dU/dz from the 50 HCR cases is 4.2 X 1073 s ! with a
range of CBL wind shear from 9 X 10™*to 1.3 X 10~ 2s™!; this
range of dU/dz values exceeds those reported by Weckwerth
et al. (1997) and the minimum value of dU/dz suggests that the
dUl/dz needed to support HCRs is very small. The dU/dz range
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FIG. 4. Scatterplot of wy: (m's~') vs Ucpy (ms ™) for the 50 cases
each of HCR (black circles), cell (blue squares), and null (brown
triangles) in the dataset. The horizontal red line indicates the
6ms ! value of Ucg.. that provides a reasonable threshold value
to separate HCR and cell cases.

for cells is from 8.6 X 105 to 5.4 X 10™>s™ 1, overlapping with
the lower range of wind shear values for HCRs, while nulls
have the largest dU/dz range of 1.7 X 10 t0 1.0 X 107 2s™ 1. A
closer look at the values of Z; in Table 1 and Fig. 5 show that
this variable may provide some useful discrimination between
nulls and HCRs or cells, as the mean value of Z; is nearly 200 m
less for nulls. Using a threshold value of 1100 m for Z;, with
values larger indicating HCRs or cells and values smaller in-
dicating nulls, yields a 68 % correct discrimination (Fig. 5). The
large spread in values around the means continues to make
discrimination of nulls challenging.
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FIG. 5. Scatterplot of Z; (m) vs dU/dz (X103 s 1) for the 50 cases
each of HCR (black circles), cell (blue squares), and null (brown
triangles) in the dataset. The horizontal red line indicates the
2 X 1073s™! value of dU/dz that provides a reasonable threshold
value to separate HCR and cell cases, and the vertical green dashed
line indicates the 1100-m value of Z; that helps to separate null
events from the other circulation types.
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A similar general outcome occurs when ux and SHF values
are evaluated. The mean value of ux in the dataset is largest for
HCRs and smallest for cells, as expected as the correlation
between u and Ucgy is 0.66, with a similar value ranges among
all three circulation types (not shown). Using a threshold us. value
of 0.30 ms ™! to discriminate between HCRs and cells, the dataset
yields an 87% correct discrimination between the two in the
training data (Fig. 6). Yet again there is little ability to further
discriminate null cases. The largest values of SHF are associ-
ated with cells, although cells also have the greatest spread
of SHF, and with HCRs having the narrowest distribution of
SHEF. However, there is no obvious threshold value for SHF
that would distinguish between the circulation types.

As these analyses suggest, the differences in mean envi-
ronmental conditions between null, cell and HCR cases are not
large, with the mean environmental properties of nulls in be-
tween the mean values for HCRs and cells. Based upon these
comparisons, it appears that a threshold value of Ucgp =
6ms ! is slightly more helpful than the other environmental
variables in discriminating between HCRs and cells, although
none of the observations is particularly helpful at identifying
null cases.

The selected threshold value for Ucpy is further evaluated
using the smaller 50 case independent dataset of environ-
mental conditions. The ranges of observational values in the
independent dataset are very similar to those in the training
dataset, with many of the relative orderings of the mean values
from the three groups identical (e.g., mean Ucgy, largest for
HCRs and smallest for cells, wy largest for cells and smallest
for nulls). When this mean wind speed threshold is applied
to the independent dataset, 76% of the HCR cases and 71 % of
the cell cases are identified correctly. If we take into account
the observed frequencies of the three groups from Banghoff
et al. (2020) and acknowledge the lack of any ability to predict
nulls, then the weighted mean percent correct discrimination is
69%. Yet there are hints in the scatterplots that other variables
provide some information on circulation type, suggesting that a
more quantitative approach is needed to maximize the value of
the larger dataset to determine the environmental conditions
associated with the three CBL circulation types.

b. Discriminant analysis

MDA is applied to the data for HCRs, cells and nulls given
various variable combinations to determine: 1) the observation(s)
most important to correctly predicting circulation type; 2) whether
the resulting discriminant functions provide insight into the
physical processes governing circulation type; and 3) whether
environmental conditions can be used to predict circulation
type. Because some of the scatterplots show ability to distin-
guish between HCRs and cells with only two variables, the
MDA is first applied using only two variables from the training
data. All the possible two-variable combinations are used in
the MDA, yielding a total of 21 combinations. A probabilistic
classification rule is applied to the resulting LDA output and
the predicted group is compared to the observed group (HCR,
cell, null). The correct assignment of groups is then calculated
as a percent correct for HCR, cell, and null groups, and a mean
percent correct for all three groups. It is assumed that the three
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FIG. 6. Scatterplot of SHF (W m ™) vs us (m s~ ") for the 50 cases
each of HCR (black circles), cell (blue squares), and null (brown
triangles) in the dataset.

groups are equally likely, such that a percent correct greater
than 33.3% shows skill above a random guess. We first explore
the results from the training data and then apply the resulting
MDA to the test dataset.

Results from the training data indicate that correctly pre-
dicting null events is the most difficult, with many of the two-
variable combinations yielding < 50% correct and a mean of
45% correct for null cases for all 21 variable combinations
(Table 3). The variable that is most useful in predicting null
events is Z;. As discussed earlier, the mean Z; value is ~200 m
smaller for null events than for either HCRs or cells. This result
may be attributed to case selection, or it may be that the
presence of vertical circulations within the boundary layer
leads to deeper CBLs than would otherwise occur. Though null
cases occur on only 7% of the days without precipitation
(Banghoff et al. 2020), little else is known about why coherent
circulations do not occur on these days with favorable envi-
ronmental conditions.

The HCR group is the easiest to predict correctly, with =80%
correct when Ucpr is one of the two-variable subsets in
Table 3. For cells, =70% correct occurs for over one-half of the
subsets, although the mean from all subsets for cells is only 4%
less than the mean for HCRs (i.e., 69% correct for HCRs, 65%
correct for cells). Replacing Ucgp with dU/dz in the two-
variable MDA vyields an 21% decrease in percent correct for
HCRs, yet yields a similar percent correct for cells and nulls,
further suggesting that CBL wind shear by itself is not a useful
discriminator of circulation type.

The largest mean percent correct using a two-variable
combination MDA applied to the training data includes
UcgL and Z; and yields a 69% mean percent correct, yet even
for this subset null cases are only 56% correct (Table 3). One
can increase the percent correct to 76% for nulls using the
subset wx and Z;, but at the cost of decreasing the correct
prediction for HCRs to 30%. Even with smaller SHF and w,
the median value of Z;/w. is smaller for nulls compared to
HCRs and cells, suggesting that thermals reach the top of the
CBL more rapidly for null cases.
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TABLE 3. Percent correct and mean percent correct for identifying the CBL circulation type (HCR, cell, or null) of various combinations
of environmental observations when used in MDA. The 21 combinations of two variables are shown first, followed by the best-performing

3-, 4-, 5-, 6-, and 7-variable combination results, listing the variables used in the MDA. Results are compared with the training data.

Weighted mean percent correct is calculated from the independent test dataset.

Variable 1 Variable 2 HCR Cell  Null Mean percent correct ~ Weighted mean percent correct
UcpL SHF 88 70 36 65 58
UcsL Use 86 68 44 66 55
UcsL —-L 84 72 34 63 57
UcgL dUldz 84 74 44 67 46
Use dUldz 78 76 44 66 65
—-L Wi 82 70 24 59 53
dUldz SHF 58 70 30 53 69
UcgL Z; 80 72 56 69 35
dUldz Wi 56 70 28 51 70
Use Wi 78 64 42 61 66
Use —-L 76 74 34 61 68
dUldz Z; 62 60 52 58 28
Use Z; 72 52 64 63 31
dUldz -L 64 80 38 61 33
Us: SHF 72 72 32 59 72
—-L SHF 68 72 32 57 48
-L Z; 64 70 60 65 24
SHF Z; 50 20 74 48 22
Wi Z; 30 36 76 47 19
Wi SHF 26 40 56 41 40

Variables in best MDA
MDA3 Ucgl, U, and Z; 82 72 66 73 31
MDA4 UcgL, U, Z;, and wy 84 74 72 77 32
MDAS5 UcgL, Us, Zi, ws, and —L 82 74 68 75 37
MDAG6 UcpL, Us, Z;, ws, —L, and dU/dz 82 76 68 75 33
MDA7 All variables 80 76 62 73 42

The value of additional predictors for discriminant analysis
is explored by providing every potential variable combination
from three variables to seven variables to the MDA, yielding
99 unique combinations. Results using the training data show
that the mean percent correct initially increases on average
as the number of variables used by MDA increases (Fig. 7),
reaching a maximum of 77% mean percent correct for the
four-variable MDA (Table 3). The predictors selected for
the best-performing MDAs are consistent, such that the pre-
dictors for the three-variable MDA appear in the four-, five-,
and six-variable MDA, as expected. The four most important
variables are Ucpy, Usx, Z;, and wy (Table 3), representing
wind shear, buoyancy and CBL geometry. While Ucgy and ux
have a correlation of 0.66 (Table 2), the correlations among all
other variable pairs in this 4-variable group are less than 0.35.
These results further strengthen the conclusions from earlier
studies that Ucpy is an important variable for determining
CBL circulation type. The importance of the variables Z;, ux,
and wy further underscores the interplay between wind shear
and buoyancy in determining circulation type.

The best-performing variable combinations in MDA change
when assessed using the independent dataset. The MDA
function coefficients for all 21 two-variable combinations are as
determined from the training data, but the independent ob-
servations are provided as input and the group classification is
the only output. Using the independent data, the combination
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of Z; and SHF yields a 75% correct for nulls (not shown), al-
though as seen with the training data this combination has little
ability to distinguish HCRs or cells. Results indicate that the
best two-variable MDA combination is us and SHF, which
yields a weighted mean percent correct of 72% (last column in
Table 3) when the observed frequencies are taken into account,
slightly better than the weighted mean percent correct of 69%
found using a simple threshold value for Ucg;.. However, more
predictors may further improve the discrimination between the
three groups using MDA.

As done with the two-variable MDA, the function coeffi-
cients for the three to seven variable MDA combinations are as
determined from the training data, but the independent ob-
servations are provided as input and the group classification is
the only output. Results show that when the MDA models
developed on the training dataset are applied to the indepen-
dent data the mean percent correct decreases by 21% on av-
erage, as expected (Fig. 7). Yet the mean percent correct for
individual MDA models consistently remains = 33% (Fig. 7),
the percentage that results from a random assignment to re-
gime in a three category MDA. Results suggest that the MDA
using from three to seven variables performs similar to or
worse than was found using two variables when given the in-
dependent testing data and evaluated using the weighted mean
percent correct, indicating that the additional observations are
not helpful and including more variables in MDA may cause
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(HCR, cells, and nulls) plotted vs the 120 unique variable combi-
nations used in MDA and ordered by the number of variables given
to MDA, starting at two variables on the left and ending with all
seven variables on the right. The blue line is the mean percent
correct determined using the training data, whereas the orange line
is mean percent correct using the 50 independent test cases.

overfitting. The best overall MDA as determined from the
independent dataset uses only two variables, us and SHF,
followed by the three-variable MDA using us, SHF, and L;
both have a weighted mean percent correct of 72%. This result
suggests that it is possible to predict CBL circulation type using
surface data alone using MDA.

4. Summary

Surface observations from the Oklahoma Mesonet and CBL
observations from the KTLX WSR-88D are used to calculate
SHF, L, uy., Ucgr, dU/dz, Z;, and w for 50 cases each of HCR,
cell and null events in central Oklahoma between 2013 and
2017. These environmental variables can be estimated rou-
tinely at many locations. The size of the dataset yields enough
variability to examine which environmental parameters are
associated with the three circulation types, with cases selected
from the dataset of Banghoff et al. (2020). The 150 cases rep-
resent the largest dataset to date to determine whether envi-
ronmental conditions can be used to predict CBL circulation
type—HCR, cell, or null. Results from the training data indi-
cate that MDA applied to observations of Ucgy, ux, Z;, and
wsx yields a 77% mean percent correct and an 80% weighted
mean percent correct. When MDA is applied to an indepen-
dent dataset, the largest weighted mean percent correct drops
to 72% and the best-performing MDA is a two-variable model
using ux and SHF, which highlights the importance of winds
and buoyancy in determining circulation type. This result fur-
ther suggests that surface observations alone may be helpful in
predicting CBL circulation type. The presence of hybrid events
in the datasets, such as combined HCR and cell circulations,
would adversely affect the MDA results and may contribute
to a lower weighted mean percent correct.

If one is interested only in whether the CBL circulation on a
given day is likely to be a cell or HCR, then Ucgp. = 6 m s 'can

Brought to you by Pennsylvania State University, Paterno Library | Unauthenticated | Downloaded 04/09/21 07:12 PM UTC

MONTHLY WEATHER REVIEW

VOLUME 149

be used to discriminate between the two, with HCRs present 76 %
of the time in the independent dataset when Ucpp > 6ms !
and cells present 71% of the time when this mean wind speed
value is not exceeded. This yields a weighted mean percent
correct of 69% when taking into account the observed fre-
quencies of the CBL circulations, just slightly less than found
using MDA. This wind speed threshold agrees well with pre-
vious values of 7ms ™! suggested by Woodcock (1940), 5ms~!
suggested by Christian and Wakimoto (1989), and 5.5ms™"
suggested by Weckwerth et al. (1997).

As mentioned previously, it is the ability to determine null
events that is most difficult. Because Banghoff et al. (2020)
show that HCRs or cells occur on 92% of the days without
precipitation, the importance of predicting null events may not
be large. Yet, the reason why null events occur when conditions
seem favorable for the development of boundary layer circu-
lations, such as HCRs and cells, is unclear. The MDA results
are encouraging in that they suggest that the environments of
null events can be distinguished from those of cells and HCRs
and deserves further study. The results of this study further
show that advent of operational dual-polarization WSR-88Ds
across the United States opens a new research opportunity
for studying boundary layer circulations using radar. A simple
combination of operational radars with a well-designed surface
observation network has shown itself to be very fruitful, which
can benefit other areas of boundary layer research.
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