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Abstract Imaging tectonic creep along active faults is critical for measuring strain accumulation and
ultimately understanding the physical processes that guide creep and the potential for seismicity. We
image tectonic deformation along the central creeping section of the San Andreas Fault at the Dry Lake
Valley paleoseismic site (36.468°N, 121.055°W) using three data sets with varying spatial and temporal
scales: (1) an Interferometric Synthetic Aperture Radar (InSAR) velocity field with an ~100-km footprint
produced from Sentinel-1 satellite imagery, (2) light detection and ranging (lidar) and structure-from-
motion 3-D topographic differencing that resolves a decade of deformation over a 1-km aperture, and (3)
surface fractures that formed over the 3- to 4-m wide fault zone during a drought from late 2012 to 2014. The
InSAR velocity map shows that shallow deformation is localized to the San Andreas Fault. We demonstrate a
novel approach for differencing airborne lidar and structure-from-motion topography that facilitates
resolving deformation along and adjacent to the San Andreas Fault. The 40-m resolution topographic
differencing resolves a 2.5 + 0.2 cm/yr slip rate localized to the fault. The opening-mode fractures
accommodate 2.20% cm/yr of fault slip. A 90% + 30% of the 1-km aperture deformation is accommodated
over the several meter-wide surface trace of the San Andreas Fault. The extension direction inferred from the
opening-mode fractures and topographic differencing is 40°-48° from the local trend of the San Andreas
Fault. The localization of deformation likely reflects the well-oriented and mature fault.

Plain Language Summary Typically, damaging earthquakes occur along faults as sudden
movement following decades to millennia with very little to no fault motion. Creeping faults behave
differently, slipping slowly and relatively continuously. While it may be easy to overlook the hazard they
pose, moderate-magnitude earthquakes occur along creeping faults. Slip rates of several centimeters per year
accumulate over time and can cause serious infrastructure damage to communities built along faults.

We measure fault motion along the central portion of the creeping San Andreas Fault at a site located
between Los Angeles and San Francisco. We constrain deformation at a variety of spatial scales including
(1) movement over tens of kilometers from satellite radar imagery, (2) deformation within a 1-km
aperture from light detection and ranging (lidar) and structure-from-motion topographic differencing, and
(3) along the meter-scale width of the fault's trace from surface cracks. Integrating these data sets

provides a new opportunity to image the 3-D fault zone structure, constrain fault slip rates, and analyze the
strain budget. The data sets show that most if not all of the 2.5 cm/yr creep rate is localized to the

3- to 4-m wide fault at the Earth's surface. We attribute the high localization of deformation to the fault being
mature and well-aligned for strike-slip movement.

1. Introduction

Recent advances in geodetic imaging of coseismic deformation have facilitated an increased understanding of
the frictional behavior of the upper crust, on- and off-fault deformation, and seismic hazard (e.g., Barnhart
etal., 2019; Brooks et al., 2017; Milliner et al., 2016; Nissen et al., 2014; Vallage et al., 2015; Wedmore et al., 2019).
Topographic differencing techniques have been applied to resolve deformation along and adjacent to faults
that have ruptured the surface (e.g., Howell et al., 2020; Scott et al., 2018, 2019), leading to constraints on
shallow fault structure. The creeping portions of the San Andreas Fault, California, illustrate a range of
behaviors including distributed deformation along geometric fault bends (e.g., DeLong et al., 2010; Lindsey
et al., 2014), the presence of moderate magnitude (~M,,5-6.5) earthquakes (Bakun, 1999; Burgmann et al.,
2000; Oppenheimer et al., 2010; Toppozada et al., 2002), and large earthquakes on adjacent locked segments
that may be modulated by creep events (e.g., Arrowsmith et al., 1997; Khoshmanesh & Shirzaei, 2018b;
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Murray & Langbein, 2006; Sieh, 1978). Along the central San Andreas Fault, displacement rates increase with
distance from the fault (e.g., Titus et al., 2006). Such displacement gradients are either due to locked fault
patches that accumulate strain that may later be released seismically (Johnson, 2013; Jolivet et al., 2015;
Khoshmanesh & Shirzaei, 2018a; Tong et al., 2015) or may reflect slip partitioning along secondary structures
(Johnson et al., 2018; Langenheim et al., 2013; Titus et al., 2007). Existing deformation rates measured with
creep meters, alignment arrays, differential Global Navigation Satellite System (GNSS) (dGNSS), and
Interferometric Synthetic Aperture Radar (SAR) (InSAR) are not spatially dense and/or lack sensitivity to
the 3-D deformation field. Closing this gap in observations will facilitate a better understanding of the shallow
fault zone (Chen & Biirgmann, 2017; Harris, 2017; Toke & Arrowsmith, 2006).

We present spatially dense deformation measurements at the Dry Lake Valley paleoseismic site (Toke &
Arrowsmith, 2015; 36.468°N, 121.055°W) along the central San Andreas Fault. These observations are criti-
cal for constraining deformation within the fault zone. Shallow fault slip produces a sharp displacement gra-
dient across the fault. However, a broader cross-fault gradient reflects shallow variations in fault slip,
secondary fault activity, or distributed deformation. To determine how deformation is accommodated at
Dry Lake Valley, we make observations at three spatial scales: At the largest scale, we use InSAR to measure
displacements over an ~100-km footprint. We develop novel topographic differencing techniques to measure
3-D deformation from airborne light detection and ranging (lidar) and small uncrewed aerial system (SUAS)-
derived topography at a 1-km aperture around the fault. This data set fills the gap between near-field ana-
lyses from alignment arrays, creep meters, and paleoseismology and far-field InNSAR and GNSS observations.
At the smallest scale, we assess the slip recorded in the surface cracking of soils during the 2012-2014
drought in California (Swain et al., 2014) along a 30 m-long stretch of the Dry Lake Valley site where the
fault is straight and optimally aligned for right-lateral strike movement.

This paper is organized as follows: In section 2, we provide an overview of the Central San Andreas Fault and
the Dry Lake Valley site. In section 3, we discuss constraints on deformation from InSAR, 3-D topographic
differencing, and surface fracturing. For differencing, we emphasize approaches to decrease displacement
and the fault slip rate error. We discuss fracture geometry, opening, and timing relative to a drought. We
compare fault deformation observed from the three data sets and discuss the localization of deformation
in terms of fault maturity and geometric complexity in section 4.

2. Central San Andreas Fault and Dry Lake Valley

The San Andreas Fault forms the primary boundary between the North American and Pacific plates, whose
relative velocity is 45 mm/yr (DeMets et al., 1994). As shown in Figure 1, the central creeping section of the
San Andreas Fault extends 140 km, from Parkfield North to San Juan Bautista and is bounded by locked fault
segments that hosted the 1857 M7.9 Fort Tejon and 1906 M7.9 San Francisco earthquakes. The largest fault
creep rate of over 30 mm/yr occurs at Bitterwater and was measured with an alignment array (Burford
& Harsh, 1980). At Dry Lake Valley, Burford and Harsh's (1980) alignment array from 1967 to 1974 resolves
a 21.9 + 0.4 mm/yr creep rate. The San Andreas Fault overlaps with the Calaveras fault that creeps at
7-9 mm/yr at a location 10-15 km northeast of Dry Lake Valley (Lisowski & Prescott, 1981).

Dry Lake Valley is 11 km northwest of Bitterwater and a few kilometers from Pinnacles National Park. It was
the focus of paleoseismic studies by Toke and Arrowsmith (2015). Immediately southeast of Dry Lake Valley,
the San Andreas Fault crosses rugged terrain, as shown in Figure 2. It cuts along a trough on the southwes-
tern side of a 50- to 150-m high ridge with three beheaded drainages with westward flow. The fault enters
Dry Lake Valley where the ridge ends and cuts across low-relief alluvial fan surfaces emanating from the
western slopes of Buck Ridge. The fault trace bounds an ~150 m-long sag pond produced by an ~50 m-wide
right fault step. For 2-km to the northwest, the fault trace is straight and has a 2- to 7-m-tall fault scarp with
the northeast-side up. Dry Lake Valley is bordered and likely underlain by Pliocene to Quaternary marine
and non-marine sediments (Jennings & Strand, 1958).

In 2012 and 2013, Toke and Arrowsmith (2015) documented an ~5,000-yr record of sedimentation and defor-
mation at Dry Lake Valley from nine fault trenches (Figure 2). The trenches revealed pervasive deformation
fabrics including highly fractured stiff soils associated with a localized fault zone below the surface trace. The
buried fractures were filled with fine sediments. On average, they were oriented 42° to the local fault trend,
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Figure 1. Overview map of the Central San Andreas Fault and other faults in Central California. Fault creep rates along
the San Andreas and Calaveras faults are from Tong et al. (2013). Black lines are faults from the USGS/CGS quaternary
faults and folds database (https://www.usgs.gov/natural-hazards/earthquake-hazards/faults).

had meter scale lengths ranging from ~0.5-m to larger than the ~2-m trench width, and had opening aper-
tures ranging from 0-8 cm with a 2-cm average.

3. Methods
3.1. Far-Field Deformation: InSAR Processing

To detect surface deformation along the San Andreas Fault over an ~100-km footprint, we applied a multi-
temporal SAR interferometric analysis (Shirzaei, 2013) to a set of 101 SAR images acquired by the Sentinel-
1A/B C-band satellites from November 2015 to January 2020 in descending Frame 472 and Path 42 (heading
~193.1° and incidence ~33.9°). We co-registered the single look complex (SLC) images to a reference image
using a standard matching algorithm, a digital elevation model (DEM), 3-D precise orbital parameters, and
amplitude images (Sansosti et al., 2006). The precise orbits yielded a 5-cm 1o 3-D position accuracy
(ESA, 2020), which eliminates the need for any additional correction to reduce residual orbital errors in dif-
ferential interferograms. Next, we applied an enhanced spectral diversity (ESD) approach (Shirzaei
et al., 2017; Yague-Martinez et al., 2016). Using this data set, we generated 404 high-quality interferograms
(Figure S2, supporting information). We performed multi-looking by a factor of 32 and 6 in range and azi-
muth, respectively, resulting in an ~75 X 75 m ground pixel resolution. We removed the topographic phase
(Franceschetti & Lanari, 1999) and performed the flat earth correction using the Shuttle Radar Topography
Mission DEM (Farr et al., 2007) and precise satellite orbital information.
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Figure 2. Topographic hillshade from the 2007 EarthScope airborne lidar and a base map at Dry Lake Valley along the
Central San Andreas Fault. Map shows the 2017 SUAS coverage (Bunds et al., 2020), the trench site (Toke &
Arrowsmith, 2015), and Buck Ridge.

To identify elite pixels with lower noise, we calculated the time-series of the complex interferometric phase
noise for each pixel using a wavelet multiresolution analysis (Shirzaei, 2013). Next, we identified elite pixels
by applying a hypothesis test at a 95% confidence level using a chi-square probability density function
(Shirzaei, 2013). To obtain absolute values of the phase changes for elite pixels, we conducted sparse phase
unwrapping (Constantini & Rosen, 1999) using a minimum cost flow (MCF) algorithm (Costantini, 1998).
To correct for the spatially uncorrelated atmospheric delay, we applied a 2-D wavelet multiresolution filter
using Coiflet base functions in one level of decomposition (Shirzaei & Biirgmann, 2012). To solve for the sur-
face deformation time series, we applied re-weighted least squares (Shirzaei & Biirgmann, 2013). In each
iteration, the observation weight matrix is updated based on residuals from the previous iteration
(Shirzaei, 2013). The iteration stopped when either the improvement in the subsequent solution is less than
107 or the iteration number exceeds 100. We further reduced residual atmospheric errors by applying a
high pass filter based on a 1-D continuous wavelet using a derivative of the Gaussian continuous wavelet
base function. The number of wavelets scales so that after the wavelet decomposition, the extracted compo-
nent of the maximum period is ~300 days (Torrence & Compo, 1998). We obtained the denoised time series
by adaptive filtering of the wavelet coefficients at each level of the decomposition (Gao et al., 2010) and then
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Figure 3. (a) Sentinel-1 rate map along the San Andreas Fault from November 2015 to December 2019 (heading angle
~193.1°, center-scene incidence angle ~33.9°). Blue and red colors indicate movement away from and towards
satellite, respectively. Circles denote GNSS stations, color-coded with 3-D displacement rates projected to the satellite's
line of sight. Black lines are faults from the USGS/CGS quaternary faults and folds database (https://www.usgs.gov/
natural-hazards/earthquake-hazards/faults). Inset: Histogram of the difference between InSAR and GNSS

line-of-sight velocities with a standard deviation (STD) of 0.23 cm/yr. (b) Zoom to the Sentinel-1 line-of-sight rate map
near Dry Lake Valley with the same color scale as (a). (c) Line-of-sight fault slip rate calculation at Dry Lake Valley.

reconstructing the signal following the inverse wavelet transform. The long-term line-of-sight (LOS)
displacement rates are the slope to the best-fitting line of the surface deformation time series.

Figure 3a shows the spatial distribution of the LOS velocity field along the San Andreas Fault. The cooler
colors indicate movement away from the satellite, while warmer ones indicate motion towards the satellite.
Circles present GNSS stations, color-coded to the 3-D displacement rate projected to the SAR satellite LOS
(Hanssen, 2001). The projected GNSS and InSAR rates differ by a standard deviation of 0.23 cm/yr, showing
good agreement. Assuming GNSS measurements as ground-truth, we consider the 0.23 cm/yr as the InNSAR
velocity map accuracy for studying near-field observations.

Solving for the right-lateral fault slip rate from the single LOS would require knowing or assuming the sense of
motion. While the topographic differencing shows only negligible vertical and fault-perpendicular rates
(see below), we only calculated the displacement in the SAR LOS as this avoids possible contamination in
the right-lateral slip rate from vertical and fault-perpendicular ground displacement. We calculated
the LOS fault slip rate using the displacement-projection method which we also apply to the topographic dif-
ferencing displacements. For InSAR, we selected rates within ~0.05° of the fault along fault-perpendicular
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500-m wide transects. We solved for the best-fit line along each side of the fault, and the slip rate is the differ-
ence between the lines projected to the fault. The transect in Figure 3c is at the center of the Dry Lake Valley
site, and the uncertainty represents the standard deviation of all transects at Dry Lake Valley.

3.2. Intermediate-Field Deformation: Point Cloud Generation and Topographic Differencing
3.2.1. Point Clouds for Topographic Differencing

While lidar is commonly used to acquire submeter-scale digital topography, the high costs are often
prohibitive for research groups interested in acquiring multitemporal data over modest-sized areas.
Structure from motion (SfM) is an alternative approach and uses concepts from stereo-photogrammetry
(e.g., Johnson et al., 2014) to build the geometry by applying triangulation to optical images. Advances in
feature recognition with the scale-invariant feature transform algorithm (Lowe, 2004; Snavely et al., 2008)
allow for highly variable camera perspective and angle. Texture in SfM point clouds is recorded in red-
green-blue color, and the resulting point cloud is typically only sensitive to the top of vegetation. In contrast,
lidar measures intensity and samples through most vegetation.

Bunds et al. (2020) generated a point cloud from imagery collected by a Sensefly eBee Plus SUAS on 27 and 28
October 2017 that flew at ~120 m above ground level. The 3,533 sUAS optical photographs had an average
ground pixel size of ~2.8 cm. The eBee Plus, a fixed-wing sSUAS, incorporated a dual-frequency GNSS that
recorded positions at 1 Hz and time-stamped each photograph. Bunds et al. (2020) calculated
post-processed kinematic (PPK) eBee GNSS positions using a local reference station that recorded ~13 h
of 1-Hz position measurements from a Septentrio PolaRx5 receiver with a Trimble Zephyr Geodetic II
antenna. The reference station position was calculated using the National Geodetic Survey (NGS) Online
Positioning User Service, and the position was transformed to ITRF 2000 epoch 2007.2 to match the
EarthScope lidar (EarthScope, 2008; Prentice et al., 2009) using the NGS Horizontal Time-Dependent
Positioning calculator (Pearson & Snay, 2013; Snay, 1999, 2003).

The point cloud was produced using a standard SfM workflow in Agisoft Metashape. Processing steps
included the following: Generate tie points (sparse point cloud) using the “Highest” setting, apply dGNSS
camera positions for georeferencing, and iteratively perform bundle adjustments after removing tie points
with large uncertainty. The dense point cloud created on the “High” setting has 1.2 x 10° points over
2.7 km®. The high setting downsampled the photographs by a factor of two, creating one point per ground
area covered by four photograph pixels. The point cloud was initially 10.2 cm above 30 independently mea-
sured checkpoints and therefore was translated downward. The horizontal and vertical root mean square
errors are 2.1 and 3.8 cm, respectively, relative to checkpoints.

The 2007 airborne lidar data set (EarthScope, 2008) that we use for differencing has a 9.4 pts/m? point den-
sity and was collected with airplane flight lines parallel to the San Andreas Fault. Alignment errors (Shan
et al., 2007) between overlapping flight lines create corduroy patterns in topographic hillshades and linear
artifacts in the displacement fields, as described below.

3.2.2. 3-D Differencing

To calculate 3-D displacements between the 2007 EarthScope lidar and the 2017 SfM point clouds, we use a
windowed implementation of the point-to-plane iterative closest point (ICP) algorithm (Besl & McKay, 1992;
Chen & Medioni, 1992; Nissen et al., 2012; Scott et al., 2018). This approach finds the best rotation and trans-
lation to align decameter-scale windows of the topography data sets and has been applied to terrestrial laser
scanning (TLS), airborne laser scanning, airborne aerial imagery, and stereo-satellite-derived topography
(e.g., Barnhart et al., 2019; Howell et al., 2020; Nissen et al., 2014; Scott et al., 2018; Wedmore et al., 2019).
We use the LibICP algorithm developed by Geiger et al. (2012). The ideal window size (i.e., displacement
resolution) is a trade-off between a small window that is less likely to violate the rigid body assumption
and a larger window size that typically has more features to produce a better alignment (Nissen et al., 2012).
We describe our differencing result as a “rate” representative of the average rate over the decade between the
data set acquisitions.

Our analysis represents hybrid differencing: The 2007 airborne lidar samples both vegetation and the bare
earth while the 2017 SfM-derived data are primarily sensitive to surface features. Because the data sets do
not typically view identical surfaces, producing a precise alignment is challenging. Apparent vertical
deformation may reflect vegetation change. The sUAS has a point density that is ~45 times higher than
the lidar data.
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Figure 4. Optimization of the lidar and structure-from-motion point cloud filtering for 3-D differencing. (a) Horizontal
correlation uncertainty versus window size. Circle: Full EarthScope lidar and the sUAS data set. Triangle: Full
EarthScope data set and the lowest 100 pts/m2 of the sUAS data set. Square: Full EarthScope data set and a

random 10 pts/rn2 from the sSUAS data set. Cross: Ground classified points from the EarthScope data set

(EarthScope, 2008) and the UAS data set classified with LAStool's lasground_new algorithm using default options
(Isenburg, 2019). Diamond: LAStool's wilderness ground classification applied to the lidar and SUAS data sets. Star:
EarthScope's Flight 3 that straddles the San Andreas Fault and the full SUAS data set. (b) Vertical correlation uncertainty
versus window size. Colors are identical to (a). We prefer the wilderness ground classification due to the low
uncertainty and high spatial coverage.

To determine a workflow that minimizes the 3-D displacement uncertainty, we tested several pre-processing
approaches (Figure 4). We thinned the 2017 sUAS data to the lowest 100 pts/m?. We also randomly thinned
the 2017 sUAS data so that both data sets have similar point density. This is unlikely to have introduced bias
by selecting only ground points, for example. We tested two ground classifications to remove vegetation. The
“default ground classification” in Figure 4 represents the ground-classified points available from
OpenTopography for the 2007 data and the LAStools default classification applied to the 2017 data
(Isenburg, 2019). For the “wilderness ground classification”, we applied the wilderness settings in las-
ground_new from LAStools to both data sets to remove vegetation with length greater than 3 m. Other com-
monly applied ground classification approaches remove larger scale features and classify more points as
ground. The wilderness option likely worked best at Dry Lake Valley due to the relatively low-to-the-ground
and sparse vegetation. The wilderness ground-classified points have 4.1 and 179 pts/m?” in the lidar and
sUAS data sets, respectively, as shown in Figure S3. We performed differencing using only the EarthScope
flight line that crosses the San Andreas Fault to minimize the impact of flight line error. We examined each
filtering approach using 20- to 60-m window sizes with a 25-m moving window.
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Figure 5. Fault offset and strain derived from the topographic differencing of the 2007 EarthScope Northern California
airborne lidar and the 2017 sUAS SfM topography. (a) NW (right-lateral) ICP displacement field plotted for points
with horizontal uncertainty less than 1.5 m. The black line is the San Andreas Fault. The coordinate system in (a-c) is
aligned with the San Andreas Fault. (b) San Andreas Fault offset rate estimated from the differential discontinuity
—red: NE (fault-normal), blue: NW (right-lateral), and black (vertical). Offset rate estimated from the rate projection
—pink: NE, light blue: NW, and gray (vertical). (c) Right-lateral shear strain rate. Black lines are the maximum
horizontal shortening direction. This shows only the northwestern third of the site where the scatter in the data is lower.
(d) Rose diagram shows the maximum horizontal shortening direction from 160 strain tensors. Mean orientation is
9.35° + 2.6°, which is 48° from the local fault trend.
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We assessed the effectiveness of the filtering and window size optimization for improving the displacement
results using the displacement correlation uncertainty (Scott et al., 2018), which estimates the uncertainty
for each displacement from the scatter in the 24 surrounding displacements over a 100 X 100 m? window
(Figure S4). The uncertainty is primarily sensitive to noise and landscape characteristics that make a precise
alignment challenging and less sensitive to spatially correlated noise like GNSS errors. The unfiltered point
clouds produced median horizontal and vertical displacement uncertainty of 22-32 cm and 10-13 cm,
respectively. Uncertainty reduced to 16-28 cm (horizontal) and 4-8 cm (vertical) with LAStool's wilderness
ground classification. The single flight line and the wilderness ground points have similar horizontal uncer-
tainty, suggesting that flight line offset and differences in how vegetation is sensed in the unfiltered data set
contribute a similar uncertainty. Expectedly, displacement correlation uncertainty increased with decreas-
ing window size. Ultimately, we preferred a 40-m size window and the wilderness ground classification
due to the low uncertainty and high spatial coverage. The displacement field is shown in Figures 5a and S5.
3.2.3. Fault Slip Rate From the Displacement Discontinuity

We calculated moving averages of 3-D fault offset by differencing ICP displacements across the fault follow-
ing Scott et al. (2018), as shown in Figure S4. The moving box used for the averaging is 40 x 60 m” in the
fault-parallel and perpendicular directions, respectively, with the near-fault side lying 60 m from the fault.
We averaged the displacements with an inverse weighting of the displacement correlation uncertainty.
Let dsy and dyg represent the weighted average of the 3-D vector displacement to the fault's southwest
and northeast, respectively. The uncertainty in the average displacements (Adsy and Adyg) is the standard
error of the weighted mean. The fault-normal, right-lateral, and vertical displacement discontinuity (dd) is
the vector subtraction across the fault,
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dd = dg, — dng. ®

Because our coordinate system aligns with the San Andreas Fault, we extracted the fault-normal, right-lat-
eral, and vertical displacement discontinuity from the three components of dd. The displacement disconti-
nuity uncertainty (Add) is calculated from a propagation of uncertainty,

Add = \/ Adg,? + Adg>. )

To calculate rates, we divided the displacement by the time between the acquisitions. The offset rates are
shown in Figure 5b, and the average right-lateral slip rate at Dry Lake Valley is 2.5 + 0.2 cm/yr.

3.2.4. Fault Slip Rate From the Displacement Projection

We solved for the best-fit line to the displacement (disp) versus fault-normal distance (x) on both sides of the
fault along 40-m wide transects (slope: m, y-intercept: b). We used a linear least-squares inversion weighted
by the inverse of the displacement uncertainty. On the south-west side of the fault,

dispg, = MgyX + bgy. 3
On the northeast side of the fault,
disp,, = MpeX + bpe. 4)

We performed a coordinate transformation to place the origin at the fault based on our geomorphic mapping
(Xfaure = 0). The offset is the difference in dispy,, and disp,,, at the fault:

offset = dispy,, — disp,,, = bsw — Dpe. (5)

We solved for the uncertainty in the offset (Aoffset) using a propagation of uncertainty:

Aoffset = \/ (M — My ?AFX? + (Abg,)? + (Abye)?. ©)

We assumed a 5-m uncertainty in fault location (AFx), although we often know the fault location with
greater accuracy. We calculated the covariance in the line-fitting parameters (Equation 6; Ab,, and Ab,,,)
from the displacement uncertainty. Example transects are shown in Figure S13. The average right-lateral off-
set rate using this method in Dry Lake Valley is 2.7 + 0.8 cm/yr.

3.2.5. Horizontal Strain

We calculated strain rate to constrain the fault zone width and to compare differencing results to the sur-
face fractures. We approximated strain as infinitesimal and solved for the 2-D horizontal strain field (e;)
using a least-squares inversion of sets of 49 horizontal displacements over 150 X 150 m* moving windows
(Figure 5c), following Allmendinger et al. (2009) and Scott et al. (2018). Because the coordinate system is
aligned with the San Andreas Fault (N39W axis), shear strain reflects fault-parallel right-lateral simple
shear. We solved for the principal strain orientation from an eigenvector decomposition of the strain
tensor.

3.3. Near-Field Deformation: Surface Fractures

Surface fractures at Dry Lake Valley are our smallest scale of deformation, and we compare their opening to
the topographic differencing results. We produced an orthomosaic of fractures along the fault trace with SfM
processing of 606 photographs taken with hand-held Nikon D90 and Fuji FinePix cameras on 20 September
2014 (Figure 6). The ~50 X 5 m* orthomosaic was georeferenced using ground control points measured with
rapid-static GNSS. We did not observe tectonic ground fractures in the 2011 and 2012 summers when con-
ducting paleoseismic studies or in October 2017 when collecting the sUAS data set (Bunds et al., 2020).

We mapped 119 fractures along the fault trace that occur in a left-stepping en echelon pattern and form
left-stepping groups that we interpret as R-shears (Figure 6). On average, the surface fractures are 54 cm
long, have a maximum width of 1.8 cm, and overlap with adjacent fractures by a factor of 2.2 (i.e., lines
drawn along the maximum extension direction cross on average 2.2 fractures). In the field and
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(a) (e) >~ slip/2

Linear Troughs
\(ir\ferred R-shears)

lengthening/2
\\ Opening-mode | #

\ Fractures

Figure 6. Surface fractures during the 2014 drought. (a) Relationship and (b) field photo of R-shears and extensional
fractures. (c) Rose diagram of extensional fractures with a 1.2° + 1.3° average orientation, ~40° from the local San
Andreas Fault trend. (d) Interpreted topographic hillshade, showing fractures (black) and R-shears (red). Figure S13 is
the non-interpreted image. (e) Quantifying the relationship between fracture opening and right-lateral fault slip.

(f) Our interpretation of creep along the San Andreas Fault: Fractures open at the surface and connect to a narrow fault
within 1-3 m below the ground surface (Toke & Arrowsmith, 2015).

orthomosaic imagery, the fractures appear vertical, and the paleoseismic investigation confirmed a
subvertical to vertical dip of older, filled subterranean fractures (Toke & Arrowsmith, 2015). The fractures
trend 184° on average, forming a 40° angle to the local trend of the San Andreas Fault. We saw no
evidence of rotation or shearing along the fractures and interpreted the fractures as Mode 1. We presume
that the fractures are entirely tectonic (i.e., not desiccation cracks). Likely, the fractures have a similar
depth to their length. Our topographic differencing strain analysis showed that the fault-parallel dilation
is 1-2 orders of magnitude smaller than the shear strain, validating this interpretation (Figure S12). We
calculated right-lateral slip along the San Andreas from the measured fracture opening of an individual
fracture (Figure 6e),

Maximum fracture opening

sin(0) ’ @

Maximum slip from fracture =

where 0 is the angle between fracture orientation and the San Andreas Fault. We corrected for fracture
tapering to account for our measurements at the maximum width. We modeled the fractures as trapezoids
where each fracture's average width is half its maximum width, giving a fracture tapering correction
(Tf) of 0.5,

Average fault slip = Ty X (Maximum slip from fracture) X overlap. (8)

We considered this to be a minimum opening. Had we assumed ellipsoidal fractures (e.g., Spence &
Turcotte, 1985) with average widths greater than half the maximum width, the average opening would be
60% larger. Based on the values above, the average right-lateral fault slip accommodated by Mode 1 fractures
is 3.057 34 cm. The uncertainty reflects differences in repeated measurement of fracture openings. There is
additional evidence for fractures: Our 2014 sUAS imagery shows fractures south of where we acquired the
hand-held imagery and similar fractures have been observed elsewhere along the creeping fault (e.g., the
DeRose Winery, Toke & Arrowsmith, 2015).

Assessing the time over which the fractures formed and accommodated strain is challenging due to the time
between field inspections and uncertainty in the amount and timing of the rainfall at Dry Lake Valley. The
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fractures formed after the clay-rich soil at the site dried and hardened following the last significant rainfall at
the start of the California drought which began in the 2013 water year and extended through the 2014 water
year (i.e., October 2012-September 2014: Swain et al., 2014). No fractures were seen in June 2013, although it
is possible incipient fractures were unnoticed (Toke & Arrowsmith, 2015).

Based on meteorological data from the USGS Hernandez HDZ rain gauge (California Department of Water
Resources, 2020), we place additional bounds on when the fractures mostly likely developed. The Hernandez
Station is located 200 m higher in elevation and 20-km SSE from Dry Lake Valley and therefore may have
had more rainfall than Dry Lake Valley. The station recorded 44% of the normal rain fall during the drought
from November 2012 to February 2014. The 2013 wet season (October 2012-April 2013) was much less wet
than typical, but there were two heavy rain events (more than 2-cm rainfall) in November and December.
From January to mid-April 2013 measurable rainfall occurred at least every 2 weeks, but the last rainfall
event of more than 0.5 cm in 24 h occurred on 8 March 2013. Based on this rainfall record and the fact that
we did not observe fractures in June 2013, we infer that the earliest the fractures could have begun to form
was mid-April 2013. There were then several months-long dry periods and no significant rain events until
late winter 2014. In late February and April 2014, there were rainfall events with 2.5 and 1.7 cm. At the
Hernandez gauge, there was no rain between April and when we measured the fractures in September
2014. The shortest period for fracture formation is April to September 2014 (~5 months bounding a single
dry season), and we consider this improbable. More likely, the fractures began forming in mid-April 2013
and recorded 1.41 + 0.08 yr (i.e., 17-months with 1 month uncertainty at the 1o level) of fault activity before
September 2014. Accounting for the uncertainty in opening and time, the opening-mode fractures accom-
modated 2.270% cm/yr of right-lateral fault slip rate.

4. Results and Discussion

4.1. Deformation Rates

Because of the short spatial and temporal interferometric baselines used for InSAR time-series analysis, the
2016-2020 InSAR velocity map remains coherently adjacent to the fault (Figure 3). Importantly, zooming in
to Dry Lake Valley (Figure 3b) shows that deformation is narrowly localized to the San Andreas Fault with
strong contrasts in the LOS displacement rate (blue and yellow) on either side of a narrow fault trace (white).
Other signals include atmospheric noise in the central valley and in the coastal ranges. The approximate oval
shape of subsidence to the southeast of Dry Lake Valley represents the Coalinga Oil Fields.

Because the largest earthquake near Dry Lake Valley during the study period was a M5.3 event in October
2012 at a 9-km depth 30 km to the southeast of the site (USGS: Earthquake Hazards Program, 2012), we con-
clude that topographic differencing (Figure 5) captures San Andreas Fault creep. At Dry Lake Valley, the
sharp change in displacement across the fault suggests that the majority of deformation within 500 m of
the fault is accommodated over less than 40 m, the differencing resolution. Right-lateral creep rates are
2.5 + 0.2 cm/yr and 2.7 + 0.8 cm/yr calculated from the displacement discontinuity method and
displacement-projection methods, respectively (Figure 7). The slip-projection method uncertainty is higher,
because flight line offsets near the data set boundary impact the best-fit lines and therefore also the inferred
fault offset. The method's slightly greater rate likely reflects error, but we cannot completely rule out that the
difference may reflect the greater aperture of the displacement-projection method. Southeast of Dry Lake
Valley, displacements are considerably noisier (Figure 5), reflecting the higher vegetation and greater topo-
graphic relief where erosional processes are likely more active. Visually, creep is still concentrated along the
fault trace. The NE-SW displacement is often negligible, showing only insignificant fault-normal motion.
The vertical deformation largely reflects vegetation changes whose signal is pronounced because the hybrid
sensors have varying sensitivity to vegetation.

The highest horizontal shear strain rates (Figure 5¢) of ~3 x 10™*/yr occur over an ~100-m aperture that
straddles the San Andreas Fault. We use a 150-m window size in the strain calculation, further suggesting
that surface creep is localized to no more than several tens of meters from the fault. The instantaneous direc-
tion of maximum shortening (Figure 5D) is 9.4° + 2.1°, which is 47° from the trend of the San Andreas Fault
(321°). This result is consistent with the 3° + 7° average trend of opening mode fractures measured from the
orthomosaic imagery. The fault parallel dilation is negligible (8.5 x 107® + 5 x 10™>/yr).
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Figure 7. Creep rates from this study (diamonds) and others compiled from the literature based on alignment arrays
(Burford & Harsh, 1980; Galehouse & Lienkaemper, 2003; Titus et al., 2006), cultural features (Brown &

Wallace, 1968; Burford & Harsh, 1980; Roth & Wallace, 1967), creep meters (Burford, 1988), and InSAR (Tong et al., 2013)
measurements. Our three measurements (diamonds) are all at Dry Lake Valley (gray line) and are separated for visual
clarity only. Topo diff: Topographic difference rate from the displacement discontinuity (dd) and the
displacement-projection (proj) methods.

4.2. Comparison of Fault Creep Rates at Different Apertures

Over a 3- to 4-m aperture, the opening-mode fractures accommodate 90% =+ 30% of the topographic differen-
cing creep rate. Especially given the assumption of trapezoidal fractures which may underestimate the open-
ing, the fractures are likely to accommodate the full topographic differencing rate. If the differencing rate is
larger than the fracture rate, the remaining strain is likely accommodated at most several tens of meters from
the fault as distributed deformation.

At Dry Lake Valley, the slip rate inferred from a 110-m long alignment array measured from 1967 to 1974 is
2.19 + 0.04 cm/yr (Burford & Harsh, 1980) and a 20062010 InSAR time series is 2.24 + 0.27 cm/yr (Tong
et al., 2013). The alignment array rate is almost within uncertainty of the 2.5 + 0.2 cm/yr topographic differ-
encing rate, and thus, we conclude that the difference likely reflects error. However, we cannot exclude
either a long-term rate change or that month to year-long episodic creep events are responsible. Tong
et al.'s (2013) InSAR rate is within the uncertainty of our displacement discontinuity rate. We conclude that
the topographic differencing rates are consistent with other data sets given the uncertainty.

4.3. Fracturing Within the Fault Zone

Riedel shears, extensional fractures, and short discontinuous faults with a few centimeters of offset are
typically the main surface expression in moderate magnitude earthquakes, such as the 2004 M6.0
Parkfield earthquake (e.g., Rymer et al., 2006) and the 2014 M6.0 Napa, CA, earthquake (e.g., Brooks
et al., 2017). In larger strike-slip earthquakes, Riedel shear fractures also form, particularly along less
mature faults (Lin & Nishikawa, 2011; Quigley et al., 2012). Opening mode fractures can form as part of
a Riedel system or independently. Off-fault fractures can form due to dynamic stresses from propagating
seismic waves which can also cause sand and clasts to fall and prop fractures open (Loveless et al., 2005;
Scott et al., 2016).

We infer that the fractures formed along the fault zone at Dry Lake Valley are due to progressive fault slip,
fracture formation, and opening, like the factures formed in moderate magnitude earthquakes. Portions of
the fractures may be associated with preexisting desiccation cracks, but their pervasive nature through the
fault zone, optimal alignment, and straight-line lengths (which exceed that of polygonal cracking at Dry
Lake Valley) suggest that they are primarily unassociated with desiccation cracking. The clayey soil
remained stiff in the absence of rain, and the fractures were progressively opened by ongoing creep. Over
~17 months, the site did not receive enough rain to saturate the soil and close the fractures and/or inhibit
fracture formation (Toke & Arrowsmith, 2015). The nearby M5.3 earthquake in October 2012 (USGS:
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Earthquake Hazards Program, 2012) is unlikely to have caused enough shaking or surface deformation at
Dry Lake Valley to open the cracks and cause debris to continue to prop them open.

Fracture opening may be modulated by accelerated creep events (Khoshmanesh & Shirzaei, 2018b; Wei
et al., 2013) along Central San Andreas Fault that increase moment release relative to background and typi-
cally last for 2 months to 2 yr. However, to the best of our knowledge, no studies measured creep events dur-
ing the timeframe of the fracture opening, at least in part due to the low number of SAR satellites in orbit at
that time. Therefore, we do not know if the opening of the surface fractures was modulated by a creep event.
The slip localization to within 5 m of the fault trace implies that slip likely becomes localized to a discrete
fault plane very near the surface. The shift to en echelon fractures instead of a discrete fault plane may reflect
plastic yielding ahead of the upward propagating energy as the rock strength decreases towards the surface
(Brooks et al., 2017).

4.4. Off-Fault Deformation

Along mature faults (>85 km of offset), 85%-95% of the deformation is accommodated along the main fault
trace and not along secondary faults or as distributed deformation (Dolan & Haravitch, 2014). The San
Andreas Fault has over 315 km of offset and therefore is considered mature (Mathews, 1976). Still, the defor-
mation along creeping segments varies from being highly localized (meters-wide) to distributed over 1-2 km,
particularly near releasing bends (DeLong et al., 2010; Lindsey et al., 2014). Lindsey et al. (2014) attribute
distributed deformation along releasing bends to lower normal stresses that promote distributed yielding
and microcracking.

Comparing fractures to topographic differencing slip rate results suggests that 90% + 30% of the 1-km aper-
ture deformation is accommodated over 3-4 m. The topographic differencing and InSAR rate fields show no
strong evidence of off-fault deformation, suggesting that any deformation not taken up by the fractures is
accommodated within at most a few tens of meters of the fault. The orientation of the opening mode frac-
tures and the maximum shortening oriented ~45° from the San Andreas Fault suggests that the fault is
well-oriented for strike-slip faulting. Dry Lake Valley is surrounded by an ~1-km wide surface alluvium
deposit (Jennings & Strand, 1958), which likely contributes to the shallow fracturing yet does not result in
the broad deformation often observed for coseismic ruptures in soft sediments (Teran et al., 2015; Zinke
et al., 2014). We propose that the slip localization at Dry Lake Valley results from the San Andreas Fault
being mature and its near perfect alignment for regional tectonic slip. Improved constraints on deformation
rates along the releasing bend immediately to Dry Lake Valley's southeast would reveal how a minor geo-
metric complexity impacts distributed deformation.

Other authors report aperture-dependent deformation rates along the central San Andreas Fault. Near-field
(10-m aperture) creep rates are 20% lower than intermediate-field (10 m to 1 km) rates at Mee Ranch
(Figure 1; Titus et al., 2006). Deformation is distributed along a releasing bend at Mustang Ridge where
the fault outcrops in Franciscan sandstone, chert, and conglomerate (DeLong et al., 2010). Like in an earth-
quake, distributed deformation along the creeping fault varies and geometric complexity. Ultimately, knowl-
edge of the variability of strain localization has implications for slip rate, moment accumulation, and hazard.

5. Conclusions

We measured deformation and slip localization at three spatial scales, from near- to far-field, at the Dry Lake
Valley paleoseismic field site along the creeping portion of the central San Andreas Fault from InSAR, topo-
graphic differencing, and surface fractures. Performing differencing with lidar and SfM-derived point clouds
presents a unique challenge due to the varying sensitivity to vegetation and point density of the data sets. The
topographic differencing method constrains spatially dense rates at an aperture intermediate to near-field
creepmeters and alighment arrays and far-field InSAR and GNSS data sets. Using topographic differencing,
we resolved a creep rate of 2.5 + 0.2 cm/yr, which is consistent with other geodetic rates. A 90% + 30% of the
deformation measured at a 1-km aperture was accommodated across a fault zone less than 5 m wide along a
short reach of the Dry Lake Valley site. The high localization reflects the well-oriented fault and the fault's
structural maturity and is consistent with expectations of an earthquake along a mature fault.
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