

1 **Abstract**

2 Managing social-ecological systems increasingly requires collaboration among diverse teams with a
3 wide range of worldviews and perspectives. Increased attention to the social and cultural factors
4 that shape environmental outcomes is needed for these collaborative teams to function effectively.
5 Mental models are cognitive representations of the external world which guide an individual's
6 thinking, decision-making, and behavior. They are critical elements of collaborative environmental
7 management because they shape our understanding of social-ecological systems, our perceptions of
8 environmental problems, and our preferences for certain management actions. In this paper, we
9 describe an iterative process of constructing and revising mental models at both individual and
10 small group levels over the course of a year in a community-based conservation area in the
11 Ethiopian highlands. We compared mental models of the conservation area from four groups
12 involved in management to identify commonalities and differences in the way people conceptualize
13 the area. While we found high variability in mental models both within and across groups, most
14 participants perceived social, economic, and political variables to be the key drivers of change in
15 this system. Economic variables were also identified as key sensitivities, along with biotic and
16 livelihood variables. However, groups differed considerably in how they thought about
17 relationships between these variables, particularly political and economic variables. We used
18 interviews with participants to assess how they learned throughout the mental modeling process,
19 finding evidence of changes to stakeholder relationships, system understanding, and the time
20 horizons used in planning. Women farmers differed from other groups at multiple stages in our
21 process, both in the structure of the models they produced and in the social learning they
22 experienced. Our study was strengthened by the iterative process that allowed individuals and
23 small groups to reflect on their own understanding and share it with others, resulting in increased
24 communication, mutual respect, and understanding among members of the management team.
25 These findings point to the complementarity of both individual and group-level mental modeling

26 for nuanced system understanding, and emphasize the need for diverse perspectives in
27 collaborative environmental management in order for holistic understanding of both problems and
28 solutions to emerge.

29 **1. Introduction**

30 Social-ecological systems are complex, adaptive systems that exhibit nonlinear dynamics, indirect
31 effects and feedbacks, emergent properties, and heterogeneous links across space and time (Liu et
32 al. 2007). These characteristics can cause unanticipated outcomes that make environmental
33 management difficult, especially considering the rapid rate of global environmental change
34 occurring worldwide (Pepin et al. 2015; Steffen et al. 2011). Oftentimes, the challenges facing
35 social-ecological systems are multidimensional problems that lack clear definitions or solutions
36 (Chapin et al. 2008). Managing these complex systems and challenges increasingly requires
37 collaboration among diverse teams with a range of knowledge types and worldviews so that the
38 boundaries of the problem can be understood from multiple perspectives, and the scope of
39 potential solutions can be expanded (Tengö et al. 2014; Hoffman et al. 2017). In practice however,
40 the benefits of collaborative environmental management have proven difficult to achieve, and
41 research shows this failure is often due to insufficient attention to the social and cultural factors
42 that shape environmental outcomes (McCusker and Carr 2006).

43 Social-ecological systems exist simultaneously as objects in the physical world (e.g., plants, rocks,
44 people) and as cognitive constructs in the minds of the humans living there (Demeritt 2002). These
45 cognitive constructs or “mental models” are internal representations of the external world that
46 guide an individual’s thinking, decision-making, and behavior (Jones et al. 2011). Mental models are
47 incomplete reflections of how the world works, and incorporate both concrete and abstract
48 concepts (Johnson-Laird 1983). For example, a person’s mental model of a river might include
49 physical characteristics like water or rocks as well as the values that person has regarding nature,

50 clean water, or recreation. Because an individual's cognition is inseparable from their cultural and
51 social environment (Roberts 1964; D'Andrade 1981), mental models are shared to an extent within
52 a broader culture or social group and influence the formation of norms and institutions in that
53 group (Halbrendt et al. 2014). Group mental models are thus comprised of culturally-derived ideas
54 and practices and socially transmitted knowledge about how the world functions.

55 Mental models are critical elements of collaborative environmental management because they
56 shape our understanding of human-environment relationships, our perceptions of environmental
57 problems, and our preferences for advocating certain decision options over others (Jones et al.
58 2011; Moon et al. 2019). Differences in people's mental models are neither good nor bad, but may
59 exacerbate barriers to effective communication and decision-making if they are not adequately
60 understood and respected (Biggs et al. 2011). Mental modeling activities have been used in
61 collaborative environmental management across a wide range of contexts, including detecting
62 climate change signals (Gray et al. 2014), examining differences in the perceived impacts of
63 conservation agriculture (Halbrendt et al. 2014), building consensus regarding natural disaster
64 adaptation strategies (Henly-Shepard et al. 2015), and promoting cross-agency management of
65 invasive species (Moon and Adams 2016). These projects seek to facilitate a holistic understanding
66 of a system or problem so that the diverse stakeholders involved in management can create a
67 shared vision or pathway towards action.

68 Developing this holistic understanding through the sharing of mental models requires some form of
69 learning. Mental models evolve and change over time in response to new information and
70 interactions among people in social networks (Reed et al. 2010). Understanding how mental
71 models change, and how this change impacts collaborative environmental management, requires
72 better understanding of how people learn – both as individuals and in groups. Social learning,
73 which derives largely from theories of organizational management (Argyris & Schon 1978), is an

74 iterative group process where learning occurs at the level of the individual but is situated in a
75 particular social and cultural context (Lave & Wenger 1991; Keen et al. 2005). This is the definition
76 we use in this paper, which differs slightly from those who consider social learning to occur when
77 change permeates throughout an entire society (Reed et al. 2010), or learning conducted by society
78 at large through broad institutional change (Woodhill 2002).

79 Structured mental modeling exercises, where mental models are collectively described and
80 discussed, can facilitate social learning (Gray et al. 2014). Sharing mental models can enhance
81 communication among members of a social-ecological system management team by making visible
82 (i.e., graphically representing or describing) the similarities and differences in system
83 understanding, and thus enabling teams to overcome obstacles that can prevent the incorporation
84 of diverse knowledge types (Biggs et al. 2011; Henly-Shepard et al. 2015). Scholars largely agree
85 that social learning is a normative and desirable outcome in environmental management (Armitage
86 et al. 2008), as it has been shown to improve understanding of social-ecological systems (Walters &
87 Holling 1990), to foster adaptation and collective action (Pahl-Wostl et al. 2007), and to build trust
88 among diverse individuals (Reed et al. 2010) - all of which contribute to improved collaborative
89 environmental management (Lang et al. 2012). However, few studies have examined the
90 relationship between mental models and social learning with sufficient length and depth to provide
91 empirical rather than anecdotal observations of learning.

92 In this paper, we describe an iterative process of constructing and revising mental models at both
93 individual and small group levels over the course of a year. We present a case study of a
94 community-based conservation area in the Ethiopian highlands, with participants from four social
95 groups involved in environmental management. We conceptualize these groups on a gradient from
96 local to scientific knowledge based primarily on their occupation, level of formal education, and
97 social networks. The objectives of the research are to (1) understand how mental models of the

98 social-ecological system vary among these groups, and (2) assess the social learning experienced by
99 participants in the mental modeling process, with the aim of contributing to more empirically-
100 informed theories and methods for facilitating collaborative environmental management.

101 **2. Methods**

102 **2.1 Study Area**

103 The Guassa Community Conservation Area (hereafter 'Guassa') is located in the Menz Gera woreda
104 (similar to a county) of the Amhara Region of Ethiopia (Figure 1). Ranging from 2,600 – 3,560
105 m.a.s.l., this 78 km² area receives a mean annual precipitation of 1,650 mm (Fashing et al. 2014).
106 Guassa supports many endemic and threatened species, including the critically endangered
107 Ethiopian wolf (*Canis simensis*) and the gelada monkey (*Theropithecus gelada*) (Ashenafi et al.
108 2005). Guassa is named after the guassa grasses (*Festuca macrophylla*) that are valued by local
109 communities for their use as thatch, rope, construction material, and forage (Ashenafi and Leader-
110 Williams 2005; Steger et al. 2020).

111

112 **Figure 1.** Map of Guassa and its surroundings. Top inset map shows the location of Guassa in
 113 relation to the capital city of Addis Ababa, Ethiopia. Bottom inset map shows the nine communities
 114 involved in the study and their administrative identification numbers.

115 Guassa has undergone significant political and land management changes throughout its 400+ year
 116 history (Fischer et al. 2014). The area was managed for hundreds of years according to the Qero
 117 system of communal management that restricted access to the grasses through brief open seasons
 118 every few years (Ashenafi & Leader-Williams 2005). In 1975, the agrarian reform transferred land
 119 ownership to the state, and community control over Guassa management declined. Community
 120 efforts to re-establish exclusive rights to the area were supported by international conservation
 121 efforts in the late 1990s, leading to a new co-management regime between local farmers and
 122 government agencies (Ashenafi & Leader-Williams 2005; Fischer et al. 2014). In 2012, exclusive use
 123 rights to the area were formally restored to the nine communities with ancestral rights by Amhara

124 Regional Regulation No. 97. Since 2010, grazing and firewood collection have been banned inside
125 Guassa due to perceived threats to sustainability and the endangered Ethiopian wolf.

126 Currently the management team is composed of five representatives from each of the nine
127 communities (the “Guassa Committee”), and about 20 other individuals from two government
128 offices. The Guassa Committee is structured so that one of each community representatives is a
129 woman, as they have historically been excluded from Guassa management (Ashenafi and Leader-
130 Williams 2005). These groups manage the area collaboratively, with final decision-making power in
131 the hands of the Guassa Committee. This diverse and relatively new co-management team makes
132 Guassa a compelling case study for investigating the role of social learning and mental models in
133 collaborative environmental management.

134 **2.2 Measuring Social Learning**

135 In this study, we assessed social learning using interviews. Four Ethiopian scientists interviewed
136 participants in Amharic (~15-20 minutes per person) after each workshop regarding what they
137 learned from the modeling exercise and discussion, how they anticipate using the model in their
138 management decisions, and whether their understanding of other participants’ perspectives
139 changed throughout the workshop. Interviews were translated to English and transcribed. We used
140 in vivo coding (Corbin and Strauss 2015) and inductive thematic analysis to describe trends in the
141 kinds of learning reported by participants and how it changed across the three workshops
142 (Boyatzis 1998). This research was reviewed and approved by Colorado State University’s
143 Institutional Review Board (361-18H), and was conducted with free, prior and informed consent of
144 all participants. Participants were modestly compensated for their time.

145 **2.2 An Iterative Process of Clarifying and Communicating Mental Models**

146 Individual mental modeling exercises can promote equitable collaborative processes by allowing
147 participants to construct and reflect on their own knowledge of the system without other
148 individuals dominating (Reed 2008). However, collective mental modeling exercises have been
149 shown to increase the likelihood of social learning, largely due to the detailed discussions that
150 emerge from the process (Gray et al. 2014). We combined these two methods in our approach to
151 maximize the benefits, choosing an iterative structure to allow participants adequate time to reflect
152 on their responses, think critically about the system, and become comfortable sharing their
153 perspectives (Figure 2). This iterative approach is rare in the literature, despite its theorized
154 benefits for social learning (Henly-Shepard et al. 2015).

155
156 **Figure 2.** The iterative process of eliciting, refining, and communicating mental models. Community
157 workshops occurred in August 2018, February 2019, and August 2019.

158
159 In August 2018, we convened a workshop as part of an on-going effort to better align scientific
160 research in Guassa with the needs of local communities and managers. Participants came from the
161 Guassa Committee (n=27, three each from nine communities), scientists (n= 6), the local
162 administration office (n=5), and the Guassa Conservation office (n=3). These 41 workshop
163 participants (12 women and 29 men) collaboratively identified variables thought to impact the

164 sustainability of the Guassa area, where we collectively defined sustainability as a desired future
165 with abundant guassa grass harvests, continued co-management, increased wildlife populations,
166 and increased tourism. Workshop participants, separated into small groups, then ranked the
167 variables to identify which were perceived as most influential on Guassa sustainability. We used the
168 software ANTHROPAC (Borgatti 1996) to analyze the variable ranking data and calculate Smith's
169 salience value (S) from zero to one for each variable, considering both the frequency of the variable
170 across lists from each respondent and its position within each of those lists (Borgatti 1996).
171 Salience values closer to one indicate good agreement across the respondents.

172 In February 2019, 38 workshop participants were asked to help clarify the strength and
173 direction of relationships between each variable. Participants used a matrix with 25 variables listed
174 across the first column and the first row, corresponding to the 19 variables identified in the first
175 workshop plus six additional variables representing valuable ecosystem services in the area (Steger
176 et al. 2020). In each cell, participants described how the variable in that column header impacts the
177 variable in each row. There were six response options: "Strong Increase," "Weak Increase," "No
178 Impact," "Weak Decrease," "Strong Decrease," and "I don't know". Participants were given as much
179 time as necessary to complete the matrix (~one to two hours), with translators present if questions
180 arose. A total of 35 people completed their matrices.

181 We included 30 of these matrices in the development of aggregated, small group mental
182 models. We excluded five responses because they had the same answer for all relationships, or had
183 only completed part of the matrix, indicating they were unreliable responses. We grouped
184 respondents according to livelihood and gender, resulting in four primary groups: government
185 workers (n=7), women farmers (n=7), men farmers (n=13), and scientists (n=3). These groups
186 were organized *a priori* to reflect a gradient of local to scientific knowledge. One woman was
187 present in the government worker group, and one in the scientist group. We transformed the

188 categorical data into numeric values, where a strong relationship was +/-0.75, a weak relationship
189 was +/-0.25, 'No impact' was 0, and 'I don't know' was NA. We then calculated the mean and
190 standard error for each relationship to identify where respondent groups had the highest internal
191 agreement regarding which variables had the strongest impact on the system. High agreement
192 occurred when the 95% confidence interval did not include zero, indicating that most respondents
193 felt the relationship was either strongly negative or strongly positive.

194 At a third workshop in August 2019, 37 participants reviewed and revised the mental
195 models created for their small group. They discussed the uncertain relationships in the aggregated
196 mental models, attempted to resolve their differences, and produced a single new matrix for the
197 small group following their discussions. We divided the men farmers into two smaller groups to
198 facilitate conversations with more equal participation from everyone involved. Farmers living in
199 communities 16, 6, 05, and 20 were in the "near Guassa" group, while all others were in the "far
200 from Guassa" group (Figure 1). On the second day of this workshop, we came together as a large
201 group to discuss the most significant differences among groups.

202 In our analysis, we first aggregated the 25 variables into eight broad categories to show
203 general relationships between concepts across the different group models. We calculated the
204 percent of strong relationships (+/- 0.75) assigned between each concept to illustrate patterns of
205 influence between concepts using Sankey diagrams. We then digitized the five small group mental
206 models in the online software Mental Modeler (mentalmodeler.org). Mental Modeler uses graph-
207 theory based analysis (Gray et al. 2012) to quantify which variables have the strongest and most
208 frequent influence on other variables in the system (outdegree centrality) and which variables are
209 most strongly and frequently influenced by other variables (indegree centrality). Outdegree
210 centrality is the row sum of absolute values in the matrix, while indegree centrality is the sum of
211 column absolute values. Larger values indicate a larger number of connections between variables

212 as well as stronger relationships between them (Gray et al. 2012). We used these two metrics to
213 compare across mental models, referring to variables with high outdegree centrality as “key
214 drivers” in the system and variables with high indegree centrality as “key sensitivities”. We ranked
215 the variables in descending order of indegree and outdegree centrality to identify the key drivers
216 and key sensitivities according to each group.

217 **3. Results**

218 **3.1 Individual and Aggregate Mental Models**

219 Workshop participants identified 19 variables influencing the sustainability of Guassa (Table 1),
220 with human population ($S=0.92$), rainfall ($S=0.86$), and community awareness ($S=0.84$) as the most
221 influential variables with the highest Salience values.

Variable	Description	Salience	Concept Grouping
Human population	The number of people living around Guassa	0.92	Social
Rainfall	Amount of precipitation in and around Guassa	0.86	Abiotic
Community awareness	The level of awareness community members have about the importance of protecting Guassa	0.84	Knowledge
Unemployment	The number of people without land, livestock, or wage labor	0.79	Economic
Illegal users	The number of people who cut guassa grass and shrubs outside the agreed-upon time	0.67	Management
Livestock population	The number of livestock belonging to the people living around Guassa	0.65	Livelihood
Political instability	The degree of uncertainty about future actions the government might take	0.57	Political
Temperature	Temperature in and around Guassa	0.56	Abiotic
Firewood consumption	The amount of firewood used by households	0.55	Livelihood
Uncoordinated protection	The degree of independent actions taken by community members regarding Guassa	0.54	Management
Agricultural expansion	The expansion of agricultural lands into previously uncultivated areas	0.49	Livelihood
Invasive plants	Plants (both native and exotic) that are rapidly expanding their range into previously unoccupied areas	0.42	Biotic
Fire	Wildfire in and around Guassa	0.41	Abiotic
Deforestation	Harvesting trees from native and plantation forests	0.4	Livelihood
Leadership	The strength of local leadership	0.38	Political
Animal diseases	The presence of animal diseases	0.36	Biotic
Plant diseases	The presence of plant diseases	0.23	Biotic
Regime change	A change in the ruling party or change in the structure of the national government	0.17	Political
Research	Scientists (Ethiopian and foreigners) conducting research in and around Guassa	0.13	Knowledge
Freshwater	The amount of freshwater originating from Guassa	---	Abiotic
Guassa grass	The amount of guassa grass occurring in Guassa	---	Biotic
Crops	The amount of crops produced by farmland	---	Livelihood
Income	Household income	---	Economic
Wildlife population	The number of wildlife living in and around Guassa	---	Biotic
Tourism	The number of non-residents visiting the area	---	Social

223 **Table 1.** Workshop participants identified, defined, and ranked 19 variables with the highest
224 perceived impact on the sustainability of Guassa. Six additional variables were added based on
225 locally-valued ecosystem services in the region, which were not included in the ranking and do not
226 have Salience values. Variables were grouped into eight broad concepts during analysis.

227

228 Results from the second workshop and aggregated small group models revealed a more nuanced
229 interpretation of system dynamics across participant groups (Table A1, Appendix). Of the 600
230 possible relationships between variables, women farmers agreed only 120 of them were strong
231 (20%), men farmers agreed on 212 (35.3%), scientists agreed on 288 (48%), and government
232 workers agreed on 332 (55.3%). This resulted in a more complicated aggregated mental model for
233 government workers compared to the other groups. Overall, women farmers agreed on the lowest
234 number of impactful variables compared to other groups.

235 **3.2 Co-Produced Mental Models**

236 During the third workshop, government workers again created the most complicated model, while
237 scientists created the least complicated mental model. Both groups of men farmers (near and far)
238 and government workers created models that defined relationships between almost every single
239 variable in the system, while scientists and women farmers only defined about half of the possible
240 relationships. This could indicate differences in how these groups think about the complexity of the
241 system, or merely differences in how these groups respond to requests for information. Scientists
242 also identified the largest number of relationships (n=26) that represented critical uncertainties in
243 the system (i.e., by marking them “I don’t know”); they were most uncertain about the potential
244 impacts of invasive plants and regime change on social variables like community awareness and
245 uncoordinated protection (Table A2, Appendix).

246 Examining patterns in the conceptual relationships revealed the strongest relationships across
247 groups seem to occur between the social, economic, livelihood, political, and knowledge concepts
248 (Figure 3). However, this analysis does not account for women farmers, who did not emphasize the
249 impact of certain concepts over others, with diagrams showing roughly even influence across
250 concepts (Figure 3). Scientists, on the other hand, clearly considered political and economic
251 concepts to have the strongest impacts in this system, with economic, livelihood, and management
252 concepts on the receiving end. Government workers identified social and knowledge concepts as
253 the most influential, primarily impacting social and economic concepts. Men farmers near to Guassa
254 considered the social concept to have the strongest impacts in the system, with knowledge,
255 economic, and livelihood concepts the most impacted. Men farmers far from Guassa did not assign
256 many strong relationships at all, but those they identified focused on knowledge as the most
257 influential concept and political as the most sensitive. Finally, this analysis revealed that while
258 government workers made the most complicated model overall, most of the relationships they
259 defined were weak to moderate and therefore do not appear in the conceptual diagrams.

260

261 Figure 3. Sankey plots illustrate how key concepts influence one another. Line thickness indicates a
 262 higher percent of strong relationships between concepts (+/- 0.75).

263 Delving into individual variables and relationships of all strengths, we found limited agreement
264 across groups regarding the key drivers and sensitivities in the Guassa system. Three variables
265 emerged as key drivers with high mean outdegree centrality across groups, indicating they are
266 thought to frequently impact other variables in the system: human population, unemployment, and
267 political instability (Figure 4). Similarly, three variables emerged as key sensitivities with high
268 mean indegree centrality across groups, indicating they are frequently impacted by other variables
269 in the system: income, wildlife populations, and guassa grass (Figure 5). These results differ from
270 the conceptual analysis by revealing two biotic variables as key sensitivities, though the emphasis
271 on social, economic, and political variables remains constant.

272 Still, there was considerable range in the relative ranking of each variable by each group. For
273 example, government workers considered research to be the strongest driver of change in Guassa,
274 while women farmers considered it the weakest driver. Three groups (men farmers near/far and
275 government workers) considered regime change one of the strongest drivers of the system, while
276 women farmers and scientists considered it a relatively weak driver of change in the system. There
277 was somewhat better agreement regarding the key sensitivities of the system, but large disparities
278 still appeared. For example, women farmers considered human population to be the most sensitive
279 variable in the system, while scientists ranked it as one of the least sensitive.

282 **Figure 4.** Variables are presented in order of declining mean outdegree centrality across groups,
 283 with the relative ranks of each small group presented as colored circles. Mean and standard
 284 deviation outdegree centrality are given in parentheses next to the variable names. Solid black
 285 boxes indicate a variable that received the same rank across two or more small groups, while
 286 dashed black boxes indicate a variable that received similar ranks across three or more groups.

290 **Figure 5.** Variables are presented in order of declining mean indegree centrality across groups,
 291 with the relative ranks of each small group presented as colored circles. Mean and standard
 292 deviation indegree centrality are given in parentheses next to the variable names. Solid black boxes
 293 indicate a variable that received the same rank across two or more small groups, while dashed
 294 black boxes indicate a variable that received similar ranks across three or more groups.

296 Focusing on just the strongest drivers and most sensitive components of each group model enables
 297 a more nuanced comparison of these highly complicated models (Figure 6, Tables A3 and A4 in
 298 Appendix). Due to identical indegree/outdegree values on several variables, the number of
 299 variables in these simplified models ranged from seven to ten. Social, economic, and livelihood

300 variables were found in all simplified group mental models (Figure 6), demonstrating the primacy
301 of these concepts. Income was the only variable found across all five models. Women farmers
302 identified human population as both the strongest driver and the most sensitive component in the
303 Guassa system, potentially reflecting the traditionally domestic role of women in Ethiopian culture.
304 Meanwhile, men living far from Guassa identified income as both the strongest driver and the most
305 sensitive aspect of the system. Women farmers were the only group to include all three of the
306 highly influential variables identified in the first workshop (human population, rainfall, and
307 community awareness). All groups except scientists included a knowledge variable (i.e., community
308 awareness or research). All groups except women considered a political variable (i.e., leadership,
309 political instability, or regime change) a key driver of the system. Government workers did not
310 consider political variables to have strong impacts on many other variables as evidenced by our
311 conceptual analysis (Figure 3), yet they considered regime change and political instability to have
312 low to moderate influence on almost every other variable in the system - thus earning these
313 variables high outdegree centrality in the network.

317 each mental model, and key sensitivities (highest indegree centrality) are placed on the bottom
318 row. In cases where variables were identified as both drivers and sensitivities, they are placed in
319 the center (i.e., in all three farmers' models).

320

321 Although political and economic variables were nearly ubiquitous across group models, the
322 relationships between these variables were not consistent across groups. Government workers and
323 scientists viewed these as mutually negative relationships – they perceived that an increase in
324 income would cause a decrease in political instability/regime change, and an increase in political
325 instability/regime change would likewise cause a decrease in income. Men farmers from both
326 groups agreed that a regime change would cause a decrease in income, but they believed an
327 increase in income would lead to higher likelihood of a regime change, which differed from how
328 government workers and scientists thought about this relationship.

329 The large group discussion shed light on why relationships differed across groups. For example,
330 women farmers and men farmers far from Guassa agreed that as human population increases,
331 income also increases because there is more work available when there are more people around.
332 The other groups felt that an increasing human population would decrease income because limited
333 resources would have to be shared among more people, and the increased pressure on Guassa
334 would result in lower income opportunities from it. Another key difference in understanding
335 related to the influence of leadership on regime change. Scientists and government workers agreed
336 that strong leadership would decrease the likelihood of regime change because people would be
337 less likely to revolt when their needs are met. Men and women farmers disagreed, saying that good
338 leadership brings about increasingly democratic processes and equal power sharing so that regime
339 change is more likely when there is good leadership. These descriptions reflect significantly

340 different understandings of governance among participant groups and help clarify why conflicting
341 relationships were reported between political and economic variables.

342 As the discussion continued, small groups became more likely to change their answers to reflect the
343 opinions of the other groups. Women farmers often had the only dissenting opinion, and scientist
344 facilitators halted the conversation when we realized the women were immediately changing their
345 answers without offering a rationale for their original perspective.

346 **3.3 Learning Experienced by Workshop Participants**

347 Over the course of the three workshops, participant interview responses became increasingly more
348 nuanced as the mental modeling exercises became more complex. There were 29 participants who
349 completed all three post-workshop interviews, six participants with two interviews each, and two
350 participants with only one interview each (total = 37 participants). In the first workshop, one of the
351 common themes in farmers' responses was the importance of identifying threats to Guassa (n=20,
352 54.1%), often with additional insights into how this can assist in future planning. One farmer
353 commented, "By ranking the variables, I learned that if we prioritize the problems early it can help
354 our future preparedness." However, some respondents took a more extreme interpretation,
355 focusing on the need to "control all the threats to Guassa" rather than reflecting on the general
356 importance of identifying threats. Women reported experiencing this type of learning more than
357 either group of men farmers, while government workers did not report this kind of learning. The
358 focus on envisioning a sustainable future for Guassa in the first workshop prompted a second
359 common theme surrounding the novelty and need for long-term planning (n=22, 59.5%), which
360 was reported by all three conservation officers and over half of men farmers living near Guassa.
361 "We are used to planning for five years but not twenty," remarked a conservation officer.

362 By the third workshop, both men and women farmers' responses focused more on the complexity
363 of the Guassa system rather than threats to it (n=19, 51.4%). One farmer commented, "I learned
364 that everything is connected, and that harming one aspect may cause unintended consequences."
365 Another farmer similarly exclaimed, "the guassa grasses are dependent on so many things!"
366 Another common theme in the third workshop was the importance of discussion as the source of
367 learning (n=18, 48.6%). "Discussion is always better for our community," reported a priest.

368 Discussion offered some participants the opportunity to understand other people's perspectives
369 without a need to find consensus. One woman reflected, "it is always better to see things and ideas
370 in different ways." However, four respondents valued discussion specifically for the opportunity to
371 reach a consensus. One man explained, "Before the discussion, there were different ideas. After the
372 discussion, we came to one idea. Discussion makes us change our ideas."

373 Across workshops, participants frequently reported changing the way they thought about one
374 another's ideas and perceptions of the Guassa system, though this was typically a general statement
375 without concrete examples. One changing bias emerged from the responses of just a few
376 government workers. At the first workshop, a conservation officer commented that he felt there
377 were "gaps in understanding between government officials and the public." Then, at the second
378 workshop, a government worker commented that another man had "surprised me a lot, because he
379 put forward constructive ideas even though he is a farmer." This was one of the only types of
380 learning commonly reported by government workers. These biases were not observed in
381 interviews from the third workshop, where participants tended to focus on differences in individual
382 ideas and perspectives rather than group-level assumptions or stereotypes.

383 The value of the women's participation in the workshop was a common theme in the women's
384 interviews, with nearly half the women (n=5, 45.5%) saying something about the importance of
385 including women in these types of meetings. These responses may reflect growing within-group

386 support for stronger women voices in Guassa management. However, no men made any remarks in
387 their interviews regarding the importance of including women.

388 **4. Discussion**

389 In this paper, we described an iterative process of constructing and revising mental models at both
390 individual and small group levels over the course of a year in a community-based conservation area
391 in the Ethiopian highlands. We compared mental models of the conservation area across groups
392 involved in management to identify commonalities and differences in the way people conceptualize
393 the area, using interviews to understand the kinds of learning experienced throughout the process.
394 Our results advance theoretical understanding of mental modeling and social learning processes
395 alongside improved place-based understanding of this social-ecological system, with insights for
396 facilitating successful collaborative environmental management.

397 **4.1 Individual vs. culturally-shared knowledge**

398 Insights from cognitive anthropology reveal that all the knowledge about a culture cannot be stored
399 within a single brain, and so there is a division of labor in who knows what – certain social positions
400 or experts will know more than others (D'Andrade 1981). Therefore, it is reasonable that mental
401 models would vary even among groups that share a dominant culture depending on the everyday
402 activities and values of the individual participants, as people will tend to focus on variables and
403 processes that are of direct importance to them (Klein et al. 2014). Our mental modeling process
404 revealed that all groups involved in managing Guassa focused primarily on social components as
405 the drivers of change in the system, while ecological elements were more commonly perceived as
406 sensitivities or vulnerable elements. Despite this general agreement at a conceptual level, we found
407 very high diversity when considering specific variables and their relationships to one another. The
408 lack of internal agreement within small groups and wide disparities in group mental models reveal

409 that relying on a small number of representatives from different social groups is insufficient to
410 capture widespread cultural knowledge through mental modeling in this context. Rather, our
411 results point to the need to more closely examine the relative influence of individual and group-
412 level processes on social learning (Järvelä et al. 2010), and to recognize there will be heterogeneity
413 in system understanding even among highly similar individuals.

414 For example, the influence of individuals is illustrated most clearly by comparing the two groups of
415 men farmers. While the farther communities are less involved in day-to-day Guassa management,
416 participants in these two groups still belong to the same general social group. Yet their co-produced
417 mental models of the system overlap very little, indicating that individual experiences may be a
418 stronger driver of system understanding at this scale than cultural knowledge. Meanwhile, women
419 participants in our study showed the least internal agreement as individuals and had co-produced
420 models that diverged most frequently from the other groups. They insisted this was not due to a
421 lack of understanding about the mental modeling process, but rather differences in the way they
422 think about these variables and Guassa.

423 These findings emphasize the need for conceptual modeling and discussion among specific
424 management groups so that the individuals involved clearly understand one another's perspectives
425 in relation to a particular system or problem (Etienne et al. 2011). It also suggests that high
426 turnover in the individuals involved in environmental management may be detrimental to effective
427 collaboration, as it disrupts the development of mutual understanding and trusting relationships
428 among competent managers (Fabricius and Collins 2007). However, individuals involved in
429 management must also represent diverse socio-cultural groups to avoid the disenfranchisement of
430 certain groups, and we encourage future researchers to carefully consider how they approach
431 stakeholder identification (Butler and Adamowski 2015).

432 **4.2 Conceptual learning**

433 In the space of a two-day workshop, participants were able to identify gaps in the way they were
434 thinking about the Guassa system (i.e., not recognizing threats) and use other people's ideas and
435 perspectives to fill those gaps. The focus on "threats" in the first workshop may have arisen through
436 issues with translation, as words like "variables" or "system components" did not retain their
437 meaning when translated into Amharic and we used words like "threats" and "benefits" to help
438 generate the list of important variables. However, there was a clear tendency for participants to
439 focus on threats over benefits, as evidenced by the kinds of variables included in the initial list and
440 the interview results. These kinds of changes are an indication of single-loop or conceptual
441 learning, filling in gaps in their cause-and-effect understanding of the system and constituting a re-
442 structuring of participants mental models (Pahl-Wostl et al. 2009; Baird et al. 2014).

443 Women, more than any other group, reported experiencing this type of learning, perhaps because
444 their historical role on the periphery of Guassa management has prevented them from these types
445 of discussions in the past (Ashenafi and Leader-Williams 2005). For example, women differed from
446 other groups in their belief that increasing human populations would have a positive impact on the
447 guassa grasses, demonstrating that they did not initially conceive of humans as a threat to the
448 ecological system the way other groups did. After hearing the explanations of other groups, women
449 agreed that higher human populations would likely result in more harvesting of guassa grasses,
450 which they had not considered. However, women did not share their ideas about why human
451 population would lead to higher guassa grasses – perhaps because they were uncomfortable being
452 the sole dissenting opinion. These results highlight a need for good facilitation and adequate
453 representation from marginalized groups so that outside perspectives are not immediately
454 assumed to be incorrect (Reed et al. 2008). This need is particularly strong in cultures where
455 consensus is highly valued, as the cultural pull towards universal agreement may override the
456 expression of valid and valuable system understanding.

457 **4.3 Shifting planning to forward-thinking strategies**

458 Psychological research suggests that people rarely think about the future beyond five years
459 (D'Argembeau et al. 2011), and have particular difficulty imagining the future beyond 15-20 years
460 (Boschetti et al. 2015). In our study, participants reported increasing the timeframe they used to
461 think about Guassa planning, which is an aspect of improved "systems thinking" or double loop
462 learning (Dyball et al. 2007). This shift in the time frame used to think about the future is notable
463 because the way humans perceive time has been shown to impact their goals and strategies for
464 action. For example, socioemotional selectivity theory asserts that time horizons influence
465 motivations, and particularly goals related to knowledge acquisition and regulating emotional
466 states (Carstensen 2006). When time is perceived as open-ended, or on longer time horizons, and
467 individual's goals will more likely revolve around planning, gathering information, and expanding
468 the breadth of their knowledge. When short time horizons are perceived, as is typically the case
469 when people age, an individual will more likely prioritize goals and actions that optimize their
470 psychological or emotional well-being (Carstensen 2006).

471 While individuals from all groups reported expanding their planning time frame, it was more
472 common among men farmers and government workers compared to women farmers. This might be
473 because men are more central to Guassa decision making processes. Differences in how individuals
474 experience learning about time horizons must be considered in environmental management given
475 the potential impacts to decision making and planning processes. For example, if Guassa managers
476 are commonly only considering five years into the future, they might be more likely to support
477 activities that result in unsustainable resource use over longer time spans (e.g., more frequent
478 guassa grass harvests). Therefore, while mental modeling processes do not necessarily need to
479 include discussions of time horizons, we found this to be a valuable social learning outcome.
480 However, we did not set out explicitly to examine attitudes towards the future, which arose due to

481 our discussion about threats to the Guassa area. We therefore encourage a more systematic
482 approach to facilitating this type of learning, potentially through the use of established
483 questionnaires (Boschetti et al. 2016).

484 **4.4 Relationship building**

485 Our study was strengthened by the iterative process that allowed individuals and small groups to
486 reflect on their own understanding and share it with others. Participants' descriptions of how
487 discussion enhanced their learning underscores the "social" component of social learning, as
488 participants valued the opportunity to compare and evaluate their individual and shared
489 knowledge. While this was an intensely time-consuming process, it was valuable to explore and
490 understand the diversity of knowledge and system understanding at the early stages of our
491 collaborative research efforts. One distinct advantage was the increased communication among
492 members of the management team, as discussion appeared to facilitate the development of more
493 trusting and open relationships. As a critical element of successful collaborative research (Dietz et
494 al. 2003; Lang et al. 2012), this communication and the increased mutual respect and
495 understanding that emerged from it are promising indicators for future adaptive management of
496 Guassa (Fazey et al. 2014; Fujitani et al. 2017). In particular, the observed social divisions between
497 men farmers and government workers stand out as an example of relationship building that
498 occurred during this process. These groups had the most similar mental models, yet post-workshop
499 interviews indicated that they did not recognize how much they had in common until discussions
500 revealed their shared perspectives.

501 Women farmers also experienced important relationship building, both within their group and with
502 other members of the management team. Women farmers experienced the least internal agreement
503 regarding strong relationships in their aggregated group models, yet they identified the highest
504 number of strong relationships when allowed to discuss and co-produce a single group model. The

505 strong influence of social context on women farmers' models reinforces the idea that individual and
506 group-level mental modeling exercises are different, yet complementary processes that cannot
507 simply be substituted for one another (Gray et al. 2014). Furthermore, these results emphasize the
508 need for careful facilitation of group mental modeling processes to ensure certain groups do not
509 dominate over others (Reed et al. 2008). Although our results support the claim that group-level
510 modeling is more likely to encourage social learning (Gray et al. 2014; Henly-Shepard et al. 2015),
511 we believe individual-level modeling should be included when possible as it can provide much-
512 needed points of clarification when group models are hampered by socio-cultural barriers such as
513 disagreement in a group discussion, power asymmetry among participants, or resistance in the
514 identification of knowledge gaps or uncertainty. Finally, although only women participants
515 reported their presence being a valuable outcome of the workshops, this theme from the interviews
516 might be indicative of a normative change or triple-loop social learning just beginning. However, it
517 is too soon to tell for sure whether other groups will place the same value on women's participation
518 in Guassa management in the years to come.

519 **5. Conclusions**

520 Considering their long history on the periphery of Guassa management, it is perhaps unsurprising
521 that women farmers produced mental models that differed more frequently from the other groups.
522 Yet, the differences we observed even among highly similar groups of men farmers indicate that
523 individual experiences were more influential during these mental modeling exercises than shared,
524 cultural knowledge. Despite some differences in which groups experienced what types of social
525 learning, it appears this mental modeling process has encouraged stronger, more open
526 relationships among the management team overall. Our findings point to the complementarity of
527 both individual and group-level mental modeling for nuanced system understanding, and
528 emphasize the need for diverse perspectives in collaborative environmental management in order

529 for holistic understanding of both problems and solutions (Tengö et al. 2014; Hoffman et al. 2017).
530 We encourage further long-term research into the relationship between mental modeling and social
531 learning, with particular attention to how socio-cultural context that influences individual learning.
532

533 **References**

534 Argyris, C. and D. A. Schön. 1978. *Organizational Learning: A Theory of Action Perspective*. Addison-
535 Wesley Publishing Company: Reading, Massachusetts

536 Armitage, D., M. Marschke, and R. Plummer. 2008. Adaptive co-management and the paradox of
537 learning. *Global Environmental Change* 18(1):86–98.

538 Ashenafi, Z. T., and N. Leader-Williams. 2005. Indigenous common property resource management
539 in the central highlands of Ethiopia. *Human Ecology* 33(4):539-563.

540 Baird, J., R. Plummer, C. Haug, and D. Huitema. 2014. Learning effects of interactive decision-making
541 processes for climate change adaptation. *Global Environmental Change* 27:51–63.

542 Biggs, D., Abel, N., Knight, A.T., Leitch, A., Langston, A. and Ban, N.C., 2011. The implementation crisis
543 in conservation planning: could “mental models” help?. *Conservation Letters*, 4(3), pp.169-183.

544 Borgatti, S.P. 1996. *ANTHROPAC 4.0*. Analytic Technologies, Natick, Massachusetts, USA.

545 Boyatzis, R. E. 1998. *Transforming Qualitative Information: Thematic Analysis and Code*
546 *Development*. SAGE.

547 Boschetti, F., Fulton, E.A. and Grigg, N.J., 2015. Citizens' views of Australia's future to
548 2050. *Sustainability*, 7(1), pp.222-247.

549 Boschetti, F., Walker, I. and Price, J., 2016. Modelling and attitudes towards the future. *Ecological*
550 *Modelling*, 322, pp.71-81.

551 Butler, C. and Adamowski, J., 2015. Empowering marginalized communities in water resources
552 management: Addressing inequitable practices in Participatory Model Building. *Journal of*
553 *Environmental Management*, 153, pp.153-162.

554 Carstensen, L.L., 2006. The influence of a sense of time on human development. *Science*, 312(5782),
555 pp.1913-1915.

556 Chapin, F. S., S. F. Trainor, O. Huntington, A. L. Lovecraft, E. Zavaleta, D. C. Natcher, A. D. McGuire, J. L.
557 Nelson, L. Ray, M. Calef, N. Fresco, H. Huntington, T. S. Rupp, L. DeWilde, and R. L. Naylor. 2008.
558 Increasing Wildfire in Alaska's Boreal Forest: Pathways to Potential Solutions of a Wicked Problem.
559 *BioScience* 58(6):531–540.

560 D'Andrade, R. G. 1981. The cultural part of cognition. *Cognitive Science* 5(3):179–195.

561 D'Argembeau, A., Renaud, O. and Van der Linden, M., 2011. Frequency, characteristics and functions
562 of future-oriented thoughts in daily life. *Applied Cognitive Psychology*, 25(1), pp.96-103.

563 Demeritt, D. 2002. What is the 'social construction of nature'? A typology and sympathetic critique.
564 *Progress in Human Geography* 26(6):767–790.

565 Dietz, T., E. Ostrom, and P. C. Stern. 2003. The struggle to govern the commons. *Science*
566 302(5652):1907-1912.

567 Dyball, R., V. A. Brown, and M. Keen. 2007. Towards sustainability: Five strands of social learning.
568 *Social learning towards a sustainable world*:181–194.

569 Etienne, M., Du Toit, D. and Pollard, S., 2011. ARDI: a co-construction method for participatory
570 modeling in natural resources management. *Ecology and society*, 16(1).

571 Fabricius, C. and Collins, S., 2007. Community-based natural resource management: governing the
572 commons. *Water Policy*, 9(S2), pp.83-97.

573 Fashing, P. J., N. Nguyen, V. V. Venkataraman, and J. T. Kerby. 2014. Gelada feeding ecology in an
574 intact ecosystem at Guassa, Ethiopia: variability over time and implications for theropith and
575 hominin dietary evolution. *American Journal of Physical Anthropology* 155(1):1-16.

576 Fazey, I., L. Bunse, J. Msika, M. Pinke, K. Preedy, A. C. Evely, E. Lambert, E. Hastings, S. Morris, and M.
577 S. Reed. 2014. Evaluating knowledge exchange in interdisciplinary and multi-stakeholder research.
578 *Global Environmental Change* 25:204–220.

579 Fischer, A., D. T. Wakjira, Y. T. Weldesemaet, and Z. T. Ashenafi. 2014. On the interplay of actors in
580 the co-management of natural resources - a dynamic perspective. *World Development* 64:158-168.

581 Fujitani, M., A. McFall, C. Randler, and R. Arlinghaus. 2017. Participatory adaptive management
582 leads to environmental learning outcomes extending beyond the sphere of science. *Science*
583 *Advances* 3(6):e1602516.

584 Gray, S. R. J., A. S. Gagnon, S. A. Gray, B. O'Dwyer, C. O'Mahony, D. Muir, R. J. N. Devoy, M. Falaleeva,
585 and J. Gault. 2014. Are coastal managers detecting the problem? Assessing stakeholder perception
586 of climate vulnerability using Fuzzy Cognitive Mapping. *Ocean & Coastal Management* 94:74-89.

587 Gray, S., A. Chan, D. Clark, and R. Jordan. 2012. Modeling the integration of stakeholder knowledge
588 in social-ecological decision-making: Benefits and limitations to knowledge diversity. *Ecological*
589 *Modelling* 229:88-96.

590 Halbrendt, J., S. A. Gray, S. Crow, T. Radovich, A. H. Kimura, and B. B. Tamang. 2014. Differences in
591 farmer and expert beliefs and the perceived impacts of conservation agriculture. *Global*
592 *Environmental Change* 28:50-62.

593 Henly-Shepard, S., S. A. Gray, and L. J. Cox. 2015. The use of participatory modeling to promote
594 social learning and facilitate community disaster planning. *Environmental Science & Policy* 45:109-
595 122.

596 Hoffmann, S. C. Pohl, and J.G. Hering. 2017. Exploring transdisciplinary integration within a large
597 research program: Empirical lessons from four thematic synthesis processes. *Research Policy*:15.

598 Järvelä, S., Volet, S. and Järvenoja, H., 2010. Research on motivation in collaborative learning:
599 Moving beyond the cognitive-situative divide and combining individual and social
600 processes. *Educational psychologist*, 45(1), pp.15-27.

601 Johnson-Laird, P. N. 1983. *Mental models*. Cambridge University Press, Cambridge, UK.

602 Jones, N.A., Ross, H., Lynam, T., Perez, P. and Leitch, A., 2011. Mental models: an interdisciplinary
603 synthesis of theory and methods. *Ecology and Society*, 16(1).

604 Keen, M., V. A. Brown, and R. Dyball. 2005. *Social learning in environmental management: towards a*
605 *sustainable future*. Routledge.

606 Klein, J. A., K. A. Hopping, E. T. Yeh, Y. Nyima, R. B. Boone, and K. A. Galvin. 2014. Unexpected climate
607 impacts on the Tibetan Plateau: local and scientific knowledge in findings of delayed summer.
608 *Global Environmental Change* 28:141-152.

609 Lang, D. J., A. Wiek, M. Bergmann, M. Stauffacher, P. Martens, P. Moll, M. Swilling, and C. J. Thomas.
610 2012. Transdisciplinary research in sustainability science: practice, principles, and challenges.
611 *Sustainability Science* 7(S1):25–43.

612 Lave, J., and E. Wenger. 1991. *Situated learning: Legitimate peripheral participation*. Cambridge
613 university press.

614 Liu, J., T. Dietz, S. R. Carpenter, M. Alberti, C. Folke, E. Moran, A. N. Pell, P. Deadman, T. Kratz, and J.
615 Lubchenco. 2007. Complexity of coupled human and natural systems. *science* 317(5844):1513–
616 1516.

617 McCusker, B., and E. R. Carr. 2006. The co-production of livelihoods and land use change: Case
618 studies from South Africa and Ghana. *Geoforum* 37(5):790–804.

619 Moon, K., & Adams, V. M. (2016). Using quantitative influence diagrams to map natural resource
620 managers' mental models of invasive species management. *Land Use Policy*, 50, 341–351.

621 Moon, K., Guerrero, A.M., Adams, V.M., Biggs, D., Blackman, D.A., Craven, L., Dickinson, H. and Ross,
622 H., 2019. Mental models for conservation research and practice. *Conservation Letters*, 12(3),
623 p.e12642.

624 Pahl-Wostl, C. 2009. A conceptual framework for analysing adaptive capacity and multi-level
625 learning processes in resource governance regimes. *Global environmental change* 19(3):354–365.

626 Pahl-Wostl, C., M. Craps, A. Dewulf, E. Mostert, D. Tabara, and T. Taillieu. 2007. Social Learning and
627 Water Resources Management. *Ecology and Society* 12(2).

628 Pepin, N., R. S. Bradley, H. F. Diaz, M. Baraer, E. B. Caceres, N. Forsythe, H. Fowler, G. Greenwood, M.
629 Z. Hashmi, X. D. Liu, J. R. Miller, L. Ning, A. Ohmura, E. Palazzi, I. Rangwala, W. Schöner, I. Severskiy,
630 M. Shahgedanova, M. B. Wang, S. N. Williamson, and D. Q. Yang. 2015. Elevation-dependent warming
631 in mountain regions of the world. *Nature Climate Change* 5(5):424-430.

632 Reed, M. S. 2008. Stakeholder participation for environmental management: A literature review.
633 *Biological Conservation* 141(10):2417–2431.

634 Reed, M., A. C. Evely, G. Cundill, I. R. A. Fazey, J. Glass, A. Laing, J. Newig, B. Parrish, C. Prell, and C.
635 Raymond. 2010. What is social learning? *Ecology and society*.

636 Roberts, J.M. 1964. 'The *Self-Management of Cultures*', in W. H. Goodenough (ed.) *Explorations in*
637 *Cultural Anthropology*, New York, McGraw-Hill, pp. 433–54.

638 Steffen, W., Å. Persson, L. Deutsch, J. Zalasiewicz, M. Williams, K. Richardson, C. Crumley, P. Crutzen,
639 C. Folke, L. Gordon, M. Molina, V. Ramanathan, J. Rockström, M. Scheffer, H. J. Schellnhuber, and U.
640 Svedin. 2011. The Anthropocene: from global change to planetary stewardship. *Ambio* 40:739.

641 Steger, C., G. Nigussie, M. Alonso, B. Warkineh, J. Van Den Hoek, M. Fekadu, P. H. Evangelista, and J.
642 A. Klein. 2020. Knowledge coproduction improves understanding of environmental change in the
643 Ethiopian highlands. *Ecology and Society* 25(2):2.

644 Tengö, M., E. S. Brondizio, T. Elmquist, P. Malmer, and M. Spierenburg. 2014. Connecting diverse
645 knowledge systems for enhanced ecosystem governance: the multiple evidence base approach.
646 *Ambio* 43(5):579-591.

647 Walters, C. J., and C. S. Holling. 1990. Large-Scale Management Experiments and Learning by Doing.

648 *Ecology* 71(6):2060–2068.

649 Woodhill, J. 2010. Sustainability, Social Learning and the Democratic Imperative: Lessons from the

650 Australian Landcare Movement. Pages 57–72 in C. Blackmore, editor. *Social Learning Systems and*

651 *Communities of Practice*. Springer, London.

652

653