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 39 

Natural statistics as inference principles of auditory tuning in biological and artificial midbrain networks 40 

 41 

Abstract 42 

Bats provide a powerful mammalian model to explore the neural representation of complex sounds, as 43 

they rely on hearing to survive in their environment. The inferior colliculus (IC) is a central hub of the 44 

auditory system that receives converging projections from the ascending pathway and descending 45 

inputs from auditory cortex. In this work, we build an artificial neural network to replicate auditory 46 

characteristics in IC neurons of the big brown bat. We first test the hypothesis that spectro-temporal 47 

tuning of IC neurons is optimized to represent the natural statistics of conspecific vocalizations. We 48 

estimate spectro-temporal receptive fields (STRF) of IC neurons and compare tuning characteristics to 49 

statistics of bat calls. The results indicate that the FM tuning of IC neurons is matched with the statistics. 50 

Then, we investigate this hypothesis on the network optimized to represent natural sound statistics and 51 

to compare its output with biological responses.  We also estimate biomimetic STRF's from the artificial 52 

network and correlate their characteristics to those of biological neurons. Tuning properties of both 53 

biological and artificial neurons reveal strong agreement along both spectral and temporal dimensions, 54 

and suggest the presence of nonlinearity, sparsity and complexity constraints that underlie the neural 55 

representation in the auditory midbrain. Additionally, the artificial neurons replicate IC neural activities 56 

in discrimination of social calls, and provide simulated results for a noise robust discrimination. In this 57 

way, the biomimetic network allows us to infer the neural mechanisms by which the bat's IC processes 58 

natural sounds used to construct the auditory scene. 59 

 60 

Significance Statement 61 

Recent advances in machine learning have led to powerful mathematical mappings of complex data. 62 

Applied to brain structures, artificial neural networks can be configured to explore principles underlying 63 

neural encoding of complex stimuli. Bats use a rich repertoire of calls to communicate and navigate their 64 

world, and the statistics underlying the calls appear to align with tuning selectivity of neurons. We show 65 

that artificial neural network with a nonlinear, sparse and deep architecture trained on the statistics of 66 

bat communication and echolocation calls results in a close match to neurons from bat's inferior 67 

colliculus. This tuning optimized to yield an effective representation of spectro-temporal statistics of bat 68 

calls appears to underlie strong selectivity and noise invariance in the inferior colliculus. 69 

 70 

1. Introduction 71 

Biological neural circuits are believed to provide an efficient code of the sensory world, which allow us 72 

to process complex and dynamic stimulus information from our surroundings. Perception of an auditory 73 

scene is created by neural activity filtered through several stages of feed-forward and feedback sensory 74 

processing. Sound pressure of an acoustic signal is first transduced into a bio-electrical signal in the 75 

cochlea. Subsequently, the bio-electrical signal is relayed through the auditory pathway. The inferior 76 

colliculus (IC) is an auditory hub that receives ascending inputs from brainstem nuclei and sends 77 
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information through the thalamus to the auditory cortex, while it also receives descending inputs from 78 

auditory cortex (Casseday et al., 2002). The IC encodes complex auditory features such as frequency 79 

sweep rate (Williams and Fuzessery, 2010) and patterning (Gordon and O’Neill, 1998) that are necessary 80 

for identification of complex auditory objects and therefore plays a key role in representing these 81 

objects in a natural listening environment. 82 

  Echolocating bats build a representation of their surroundings by emitting ultrasonic vocalizations and 83 

processing the features of returning echoes to compute the location and features of targets and 84 

obstacles in the environment. Bats must rapidly process sonar echoes while concurrently parsing 85 

environmental noise and calls emitted by conspecifics. In this complex and rapidly changing auditory 86 

scene, the bat’s brain efficiently encodes acoustic stimuli and allows the animal to accurately track prey, 87 

avoid obstacles, and communicate with conspecifics while dynamically navigating a three-dimensional 88 

environment. Humans and other animals face similar challenges in the course of their natural acoustic 89 

behaviors. With the goal of elucidating principles underlying auditory scene analysis in the midbrain, we 90 

examine the relationship between statistics of the rich acoustic repertoire of bat calls and neural 91 

response patterns in the bat's IC to explore artificial networks tuned to map natural statistics in these 92 

calls and identify emergent properties that match responses in the IC. 93 

  Here, we test the hypothesis that the bat’s auditory midbrain is optimized to accurately represent the 94 

natural statistics in the sounds and echoes that exist in the bat’s environment (particularly social and 95 

echolocation calls). Past research has suggested that the IC plays a major role in the representation and 96 

mapping of communication sounds that give rise to specialized encoding of natural sounds along the 97 

ascending auditory system (Aitkin et al., 1994; Suta et al., 2003). An earlier study in the Mexican free 98 

tailed bat suggested a possible correspondence between tuning characteristics of individual IC neurons 99 

and properties of natural calls from conspecific sounds (Andoni et al., 2007; Brimijoin and O’Neill 2005). 100 

In the current study, we corroborate this relationship in a different species and further probe constraints 101 

and implications of such optimal encoding of natural sounds on auditory signal processing in a complex 102 

scene. 103 

  We recorded vocalizations from socially housed bats and analyzed the spectro-temporal statistics of 104 

natural sounds (e.g. frequency modulation (FM) velocity, directionality). Using the database of collected 105 

statistics, we built an artificial network, which projects sounds onto a latent space that efficiently 106 

represents statistics of these natural sounds in a strategy of signal reconstruction (Smith and Lewicki, 107 

2006). This computational model offers a biomimetic architecture whose main operation is to capture 108 

the statistics of natural bat calls, without information about the function of biological neurons. We then 109 

ask: Does the emergent tuning of this artificial network match properties of biological neurons in the big 110 

brown bat inferior colliculus? To answer this question, we also recorded responses to sound stimuli, 111 

spectro-temporal ripples, from individual neurons in the IC of big brown bats. 112 

  It is known that the spectro-temporal receptive fields (STRF's) suggest a reasonable linear-113 

approximation of neural responses as a transfer function from acoustic stimuli and those are usually 114 

used to explore auditory characteristics of the neurons (Andoni et al., 2007; Depireux et al., 2001; Elhilali 115 

et al., 2013). We extracted STRF's from IC and artificial neurons and calculated auditory characteristics 116 

from these neural response functions (Kowalski et al., 1996; Poon and Yu, 2000). The spectro-temporal 117 

tuning characteristics of biological neurons were then compared to both the statistics of natural calls as 118 

well as emergent tuning of artificial neurons. By varying the configuration of the artificial network, we 119 
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employed the theoretical network as springboard to examine possible constraints on the configuration 120 

of midbrain networks, and gauge the validity of the hypothesis linking biological encoding in the 121 

mammalian midbrain to efficient representation of natural sound statistics. While various artificial 122 

neural networks can be optimized to reconstruct an input sound from compressed feature on latent 123 

space, finding an architecture that closely emulates the biological network provides insights into the 124 

underlying functional role of certain brain nuclei. Here, we examine the relationship between the 125 

optimal encoding of natural statistics in bat calls and its role in facilitating robust selectivity across sound 126 

classes in the repertoire. The graphical abstract in Fig. 1 shows an overview of the approach taken in this 127 

work. 128 

 129 

2. Materials and Methods 130 

2.1. Collection of Bat’s vocalization 131 

2.1.1. Animals 132 

Big brown bats (Eptesicus fuscus) were collected from an exclusion site under a state permit. All 133 

experimental procedures were carried out in accordance with a protocol approved by an Institutional 134 

Animal Care and Use Committee. A total of approximately 100 bats were housed in our Lab and used for 135 

vocal data recordings, and four (2 male, 2 female) bats were used for neurophysiological data collection. 136 

 137 

2.1.2. Audio recordings for training the biomimetic network  138 

A bat call library was built from audio recordings of bats housed in a vivarium room where the 139 

temperature is kept at 70-80 oF, and humidity is kept at 30-70 %. This room holds approximately 100 140 

bats in groups of 1-6 separated in mesh cages. The recordings were made for two days using an Avisoft 141 

CM16/CMPA ultrasonic microphone and the Avisoft-RECORDER software. Mono audio was recorded at a 142 

sampling rate of 300 kHz. 143 

  Natural call recordings from big brown bats were processed to extract meaningful segments. An 144 

energy-based signal activity detection was performed on the entire database to remove the silences 145 

between calls and to split the recordings into segments containing bat calls (Park et al., 2014). As a 146 

result, we constructed species specific databases containing 17,713 calls (about 10 min) for big brown 147 

bats. This call database was used for training artificial networks. The data was divided into a training set 148 

(15,000 randomly selected calls) to learn network parameters and test set (remaining 2,713 calls) for 149 

verifying the network. 150 

 151 

2.1.3. Social calls for natural sound representation 152 

To investigate discriminability in the artificial network, we used a social call database that includes 26 153 

audio clips for 8 different types of bat calls (Fig. 2). These types include six calls, as defined in (Wright et 154 

al., 2013), specifically, Echolocation (Echo), Frequency Modulated Bout (FMB), Upward Frequency 155 

Modulated (UFM), Long Frequency Modulated (LFM), Short Frequency Modulated (SFM), and Chevron-156 

Shaped (CS); in addition to two additional calls types, Long-Wave and Hook, which resemble a hook in 157 

time-frequency space. All audio clips were up-sampled from 250 kHz to 300 kHz. 158 
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 159 

2.2. Neurophysiological Inferior Colliculus data 160 

Recordings of neural responses from IC neurons were used to perform two separate analyses: (1) 161 

characterize receptive field tuning of IC neurons; and (2) examine discriminability of IC neurons to 162 

different con-specific calls. Methods for receptive field analysis are described next in section 2.2.4, while 163 

data used for discriminability analysis are described in section 2.2.5. 164 

 165 

2.2.1. Receptive field recordings 166 

A head-post was adhered to the skull of bats for head fixation as described in (Macias et al., 2018). The 167 

inferior colliculus was located using skull and brain landmarks and a surgical drill was used to make a ≤ 1 168 

mm diameter craniotomy preserving dura. The neurophysiological recordings were performed in a 169 

sound-attenuating and electrically shielded chamber (Industrial Acoustics Company, Inc.). Each bat was 170 

restrained individually in a custom-made foam mold and the head was fixed by the head-post. Recording 171 

sessions were carried out over 3 to 5 consecutive days, each one lasting no more than 4 hours. Water 172 

was offered to the bats every 2 hours. No drugs were administered during recordings. During recordings 173 

a silver wire for grounding was placed in between muscle and skull about 5mm rostral to the craniotomy 174 

site. The 16-channel recording probe (Neuronexus A1x16-5mm-50-177-A16) was inserted into the brain 175 

using a micromanipulator. The surface of the brain was registered as 0 m for depth reference and the 176 

probe was advanced in 10 m steps using a hydraulic microdrive (Stoelting Co.). Recordings were taken 177 

at least 100 m apart. An OmniPlex D Neural Data Acquisition System recording system (Plexon, Inc.) 178 

was used to obtain neural responses with 16-bit precision and 40 kHz sampling rate. A transistor-179 

transistor-logic (TTL) pulse for each stimulus presentation was generated with the National Instrument 180 

card used for stimulus presentation and was recorded on channel 17 of the analog channels of the 181 

acquisition system for synchronization of acoustic stimuli and neural recordings. The stimuli were 182 

recorded on channel 18 of the acquisition system to corroborate synchronization. 183 

 184 

2.2.2. Moving ripple stimuli 185 

A set of ripple stimuli was generated to estimate STRFs of IC neurons (Kowalski et al., 1996; Depireux et 186 

al. 2001; Andoni et al., 2007). Ripples are modulated noise stimuli that are dynamic both in time and 187 

frequency. Each ripple can be described as 188 

𝑆(𝑡, 𝑥) = 1 + ∆𝐴 × sin⁡(2𝜋(𝜔𝑡 + Ω𝑥) + 𝜙)  (1) 189 

where 𝑡 and 𝑥 are indices for time and octave scaled frequency. ∆𝐴 and 𝜙 are amplitude and a phase, 190 

respectively. And 𝜔 and Ω represent modulation rates along temporal (Hz) and spectral (cyc/oct) axes. 191 

The temporal and spectral modulation parameters were varied from -176 - 176 Hz in steps of 32 Hz and 192 

0.0 - 1.5 cyc/oct in steps of 0.15 cyc/oct spectrally (Fig. 3A). Each ripple spanned 6.66 octaves from 1.2 193 

kHz to 121 kHz and was 300 ms in duration. 194 

 195 

2.2.3. Audio playbacks for neural recordings 196 
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Extracellular recordings from the inferior colliculus of awake animals were taken while they passively 197 

listened to broadcast of either ripple stimuli, or pure tones at 70 dB. All stimuli were generated at a 198 

sampling rate of 250 kHz using a National Instruments card (PXIe 6358) and transmitted with a 199 

calibrated custom-made electrostatic ultrasonic loudspeaker connected to an audio amplifier (Krohn-200 

Hite 7500). The loudspeaker was placed at 60 cm (for all ripple and pure tones stimuli)} from the bat’s 201 

ear. The frequency response of the loudspeaker was compensated by digitally filtering the playback 202 

stimuli with the inverse impulse response of the system as described in (Luo and Moss, 2017). 203 

  Frequency tuning curves were built by recording neural responses to pure tones of 5 ms duration (with 204 

0.5 ms ramping rise and fall). The tones ranged between 20 and 90 kHz (in 5 kHz steps) and the sound 205 

pressure levels ranged from 20 to 70 SPL (10 dB steps). At each recording site first, we played 20 206 

repetitions of the randomized ripple stimulus and then 15 repetitions of each of the randomized pure 207 

tones at a different SPL. 208 

 209 

2.2.4. Analysis of neuronal responses 210 

For the analysis of auditory tuning in response to ripple and pure tone stimuli, responses were sorted 211 

offline, then single units were detected using the program ‘Wave_clus’ (Quiroga et al., 2004). Each 212 

individual waveform was inspected and the acceptance threshold for clusters was less than 10% of 213 

spikes with < 3 ms inter-spike interval, consistent with the neuronal refractory period. Any sites that 214 

showed no response to ripple stimuli were excluded from the spike sorting and further analysis in line 215 

with procedures used in other studies (Poon and Yu, 2000; Escabi and Schreiner, 2002; Andoni et al., 216 

2007). After spike sorting, the Euclidian distance error between the mean and variance of number of 217 

spikes across trials was computed. Units whose error is less than 1.0 were selected for further analysis, 218 

following a Poisson model of spike representation (Corrado et al., 2005; Schwartz et al., 2006). This 219 

analysis resulted in 108 single units used for the current study. 220 

  Neurophysiological STRFs: At each recording site, ripple stimuli were repeated 10-20 times in a 221 

randomized order for each repetition. A PST histogram was calculated from the spike time sequence of 222 

each ripple; then histograms were folded into 32-point periods. The strength and phase of the response 223 

to each ripple were estimated directly from the fundamental component obtained by applying a 32-224 

point Fast Fourier Transform (FFT) to the period histogram. Magnitude and phase responses to each 225 

ripple were combined together into a magnitude matrix 𝑀(Ω,𝜔)  and a phase matrix ⁡𝛷(Ω, 𝜔) , 226 

respectively. To derive a Ripple Transfer Function (RTF), which is a representation of a STRF in the 227 

modulation domain, 𝑀(Ω,𝜔) and (, ) were expanded to four quadrants in the modulation domain 228 

spanning from -176 Hz and -1.5 cyc/oct to 176 Hz and 1.5 cyc/oct as 𝑀𝑒(Ω, 𝜔) = 𝑀𝑒
∗(−Ω,−𝜔) =229 

𝑀(Ω,𝜔) and 𝛷𝑒(Ω, 𝜔) = 𝛷𝑒
∗(−Ω,−𝜔) = 𝛷(Ω,𝜔) based on a symmetric property around the origin 230 

(Depireux et al., 2001; Andoni et al., 2007). As a result, the RTF was formulated as 231 

𝑇(Ω,𝜔) = 𝑀𝑒(Ω, 𝜔)𝑒
𝑗𝛷𝑒(Ω,𝜔)  (2) 232 

where 𝑗 = √−1. Finally, a STRF was obtained by performing 2D inverse FFT on the RTF as 233 

𝑆𝑇𝑅𝐹(𝑥, 𝑡) = ⁡𝐹𝑡,−𝑥
−1 [𝑇(Ω, 𝜔)]   (3) 234 

where 𝐹−1 designates the 2D inverse FFT along each axis in the modulation domain. 235 
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 236 

2.2.5. Neural discriminability of con-specific calls 237 

In order to examine selectivity of IC neurons to calls from the bat's natural repertoire, we re-used neural 238 

data previously collected in an earlier study (Salles et al., 2020), where we collected neuronal responses 239 

to Echolocation calls (Echo) versus Frequency-Modulated Bout (FMB) social calls. The study followed the 240 

same methodology for data collection as described here. ‘Wave_clus’ was used to detect and classify 241 

single units from the recordings. The spikes responding to either FMB or Echo were counted in windows 242 

of 25 ms duration, starting 5ms after stimulus onset. Some units with an average of less than five spikes 243 

over 20 times recordings were excluded because they were considered as a non-responsive unit to the 244 

stimulus. Multi-unit activity was determined from inter-spike intervals with < 3ms that were inconsistent 245 

with neuronal refractory period; and units with greater than 10% of spikes with < 3ms inter-spike 246 

interval were excluded from analysis. As a result, total 575 units were finally obtained and their 247 

responses are used in the present work to contrast neural discriminability between Echo and FMB calls 248 

with artificial neurons. 249 

 250 

2.3. Responses in artificial neurons 251 

2.3.1. Artificial network front-end processing 252 

To develop a biomimetic architecture, a biologically-inspired auditory spectrogram is used as input for 253 

the network (Shamma, 1985a; Shamma, 1985b; Yang et al., 1992; Wang and Shamma, 1994). The 254 

auditory spectrogram incorporates four processing stages that emulate peripheral processing in the 255 

mammalian system: cochlear filtering, auditory-nerve transduction, hair cell responses, and lateral 256 

inhibition (Chi et al., 2005). Briefly, an incoming acoustic waveform is analyzed along a bank of constant-257 

Q filters spanning a logarithmic scale. Then, each frequency channel undergoes a high-pass, nonlinear 258 

compression and low-pass filtering followed by lateral inhibition across frequency, following the 259 

implementation available in the NSL toolbox (Chi and Shamma, 2005) with the following settings: The 260 

frame length was set to 0.2 ms without overlap, and each octave was represented with 24 channels (i.e. 261 

128 channels over 5.33 octaves). Octave-scaled center-frequencies were represented as 𝑓𝑐 = 440 ×262 

2((𝑐−32)/24+𝛾) where 𝑓𝑐 is a center frequency of the 𝑐𝑡ℎ channel, and 𝛾 is a constant factor of octave 263 

shift (𝛾 = 4.38). Inputs to the artificial network were sampled as square patches of the spectrogram 264 

spanning 128 frequency channels (i.e. 5.33 octaves) and 160 time-samples (i.e. 32 ms). 265 

 266 

2.3.2. Structure of artificial network 267 

An artificial neuron, i.e. node mimicking a biological neuron, is mathematically modelled by a linear 268 

combination of pre-node outputs and a non-linear activation function. An artificial network is 269 

constructed by connecting a large number of nodes to each other. Using nonlinear activation functions 270 

enables the network to perform nonlinear computations on feedforward propagation. For this study, we 271 

favored a generative architecture using an autoencoder composed of an encoder, which compresses 272 

original data into a compact code; and a decoder, which reconstructs the original signal from that code 273 

(Baldi, 2012; Doersch, 2016). The intuition is to directly test our hypothesis that the network would infer 274 
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a statistical model of the training dataset of natural calls, and if successful should allow a faithful 275 

reconstruction of the inputs. 276 

  The proposed architecture is shown in Fig. 4. First an encoder stage E is composed of convolutional 277 

layers, pooling layers, and a fully connected layer. A latent vector represents compressed features 278 

learned from the input data. A decoder stage D composed of reverse operations using transposed 279 

convolutions, reconstructs the input features from a latent vector. A sampling stage, interposed 280 

between the encoder and decoder, emulates neural activity yielding sparse binary activations. 281 

  Using the same general building block composed of convolution and pooling layers, this study 282 

investigates various configurations of the network by varying: (1) depth, which is the number of blocks. 283 

In Fig. 4, the black-flow shows a double stacking structure as an example. A deeper network can be 284 

constructed by stacking more blocks, on the other hand, a shallow network can be created by removing 285 

a block; (2) nonlinearity, by varying the slope of nonlinear activation function employed; and (3) sparsity, 286 

by controlling the density of sampling in the latent space. 287 

  The encoder architecture E follows a convolutional neural network (CNN) framework in order to reduce 288 

the number of trainable parameters, hence controlling for over-fitting issues and generalizability to 289 

unseen data (Dietterich, 1995). The convolutional layers compute output feature maps using 2D 290 

convolutions between input feature maps and several filters as 291 

𝐼𝑜
𝑙 [𝑓, 𝑡, 𝑘] = ∑ 𝐼𝑖

𝑙[𝜉, 𝜏,𝑚]𝜉,𝜏,𝑚 𝑓𝑙[𝜉 − 𝑓, 𝜏 − 𝑡,𝑚, 𝑘]  (4) 292 

where 𝑓, 𝑡, 𝑙, 𝑘 and 𝑚 are indices for spectral, temporal, layer, channel of output feature map, and 293 

channel of input feature map respectively. 𝐼𝑖, 𝐼𝑜, and 𝑓𝑙 are feature maps for input and output, and 294 

convolutional filter applied in the 𝑙𝑡ℎ  layer, respectively. Multi-scale filters are employed in each 295 

convolutional layer to balance broad span (in time and frequency) vs. localized analyses. Then, output 296 

feature maps concatenate filter outputs using multi-sized filters (Fig. 5A) (Szegedy et al., 2015). Specifics 297 

of both filter composition and dimensions of intermediate feature maps are summarized in Table 1.  298 

Neural activation by an acoustic feature is emulated by applying a nonlinear function after convolution 299 

as 300 

𝐼𝑎
𝑙 [𝑓, 𝑡, 𝑘] = max⁡(𝐼𝑜

𝑙 [𝑓, 𝑡, 𝑘], 𝛼 × 𝐼𝑜
𝑙 [𝑓, 𝑡, 𝑘])  (5) 301 

where 𝛼 is a constant within an interval [0, 1] (Maas et al., 2013). Next, pooling layers compress the 302 

output from the previous convolutional layer by extracting a maximum among some values enclosed by 303 

a non-overlapping window (i.e. max-pooling) 𝐼𝑙 (Scherer et al., 2010). As a result, the width and height 304 

of the output are reduced by half. At the top of the encoder, a fully connected layer is applied for 305 

mapping into a latent space, which involves natural statistics requiring to reconstruct original input, as 306 

𝑣𝑐 = 𝑊𝑙
𝑇 × 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(𝐼𝐿) where 𝐼𝐿 is a feature map in the last pooling layer, 𝑊 is weight matrix in the 307 

fully connected layer, and 𝑓𝑙𝑎𝑡𝑡𝑒𝑛(. ) is a reshape function from a 3D tensor to a vector. 308 

  In the middle stage, a binary code vector 𝑣𝑏 is generated by performing a Bernoulli sampling process. A 309 

sigmoid function is applied to the latent vector to calculate prior probabilities. Thus, the output of the 310 

middle stage is represented as 𝑣𝑏 = 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜎(𝑣𝑐)) where 𝜎(. ) is a sigmoid function. 311 

  The decoder D is composed of a fully connected layer and transposed convolution layers. In the fully 312 

connected layer, a latent vector is expanded into an initial space as 𝑣̂ = 𝑊𝑙 × 𝑣𝑏, and the vector 𝑣̂ is 313 
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reshaped to a 3D tensor as a set of initial feature maps as 𝐼𝑙 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒(𝑣̂). From initial feature maps, a 314 

transposed convolution using multi-scale filters is sequentially performed until the output has the same 315 

dimensions as the input patch (Shelhamer et al., 2017; Radford et al., 2015). Convolutional filters used in 316 

the encoder are applied for transposed convolution after transposing input channel from output 317 

channel dimension as 𝑓̇𝑙[𝑓, 𝑡, 𝑘,𝑚]. A transposed convolution using multi-scale filters is performed in 318 

three steps (Fig. 5B). First, the input feature map 𝐼𝑙 is split into submaps, [𝐼1
𝑙 , 𝐼2

𝑙 , … , 𝐼𝑁
𝑙 ], as many as the 319 

number of filters. Second, transposed convolution is individually performed for each pair of submap and 320 

filter. Finally, a set of output feature maps is obtained by averaging the results of the second step. 321 

 322 

2.3.3. Training artificial network 323 

The network was trained using the cost function: 324 

𝐿 =
1

2
∑ [(𝑥𝑛 − 𝐷(𝐸(𝑥𝑛)))

2 + 𝜆(𝜌 − ∑ 𝜎(𝑣𝑐𝑖)𝑖 )2]𝑛   (6) 325 

where 𝑥𝑛 is an input patch with respect to the 𝑛𝑡ℎ index, 𝐸(. ) represents an encoder function while 326 

𝐷(. ) is for a decoder, and 𝜌 means the average number of active nodes. The first term represents the 327 

mean square error between an input patch and its reconstruction by the autoencoder. The sparse 328 

constraint prevents overfitting as well as emulates sparsity of active neurons in the brain. Let 𝑌 be a 329 

random variable representing the number of active nodes by the Bernoulli process. Then, the 330 

distribution known as the Poisson binomial distribution is denoted as 331 

Pr(𝑌 = 𝜌) = ∑ [∏ 𝜎(𝑣𝑐𝑖)𝑖∈𝐴 ∏ (1 − 𝜎 (𝑣𝑐𝑗))𝑗∈𝐴𝑐 ]𝐴   (7) 332 

where 𝐴 is a set whose elements are possible combination for choosing 𝜌 nodes from 𝑁 nodes. This 333 

distribution can be approximated by 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁, 𝜇/𝑁) where 𝜇 = ∑ 𝜎(𝑣𝑐𝑖)𝑖 ⁡(Choi and Xia, 2002). The 334 

network training was implemented using TensorFlow (Abadi et al., 2016). AdamOptimization was 335 

applied for an optimizer with 1.0𝑒 − 4 learning rate. And, 𝜆 was set to 1.0𝑒 − 4. For more details, 336 

readers can find the implementation on http://www.github.com/JHU-LCAP/BioSonar-IC-model /. 337 

  Comparisons between the biological neurons and artificial neurons were performed to infer the 338 

network configuration that best matches the characteristics of IC neurons (as explained next). The best 339 

configuration composed of a triple stacking network, a parameter of nonlinearity 𝛼 = 0.2 in (5), and 10% 340 

sparsity constraint in (6). 341 

 342 

2.3.4. Biomimetic STRFs 343 

Once trained, the network was interrogated following the same procedure as biological neurons. The 344 

same ripple stimuli were given as input to the network and activity of the nodes before applying the 345 

sigmoid activation and the Bernoulli sampling, 𝑣𝑐  in Fig. 4 was characterized. Each ripple was 346 

transformed into an auditory spectrogram (as described earlier). A sequence of input patches for each 347 

ripple were then composed by applying a sliding window (window length: 160 frames) in every 2 ms 348 

(sliding step: 10 frames) (Fig. 3B). Input patches in the sequence were consecutively fed into the pre-349 

trained encoder, then a latent vector 𝑣𝑐 was obtained every 2 ms. The same procedure for extracting 350 
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biological STRF's was followed (See. Section 2.2.4). To find the magnitude 𝑚 and phase 𝜙 of the 351 

responses, we performed a 32-point Fast Fourier Transform (FFT) and derived the magnitude and 352 

unwrapped phase of the fundamental component (Fig. 3C). By repeating this procedure for all ripples, 353 

the magnitude and phase were collected in a matrix 𝑀(Ω,𝜔) and a Φ(Ω,𝜔), respectively (Fig. 3D). 354 

These modulation responses were then converted into time-frequency STRF profiles by performing a 2D 355 

inverse FFT on the RTF (Fig. 6). Note that, in this study, all network architectures employed a total 100 356 

artificial neurons (spanning a 100-dimensional latent space) so that 100-biomimetic STRFs were used for 357 

analysis. 358 

 359 

2.4. Analysis of auditory characteristics 360 

2.4.1. Natural statistics and Auditory characteristics 361 

Frequency Modulation (FM) velocity (statistics of bat calls): To characterize conspecific vocalizations, we 362 

calculated FM velocities of each call segment in our database. Since moving ripples were used as bases 363 

components of the Fourier modulation domain (Singh and Theunissen, 2003), we derived auditory 364 

spectrograms of each call, then performed a 2D FFT after mean subtraction to remove constant 365 

components. 𝑇𝑐(Ω, 𝜔) = 𝐹𝑓,𝑡[𝑆(𝑓, 𝑡) − 𝑆̅] where 𝐹𝑓,𝑡[. ] is the 2D FFT, 𝑆 is an auditory spectrogram of a 366 

bat call, and 𝑆̅ is its mean over the time and frequency axes. A velocity line was estimated by performing 367 

a line fitting on the magnitude of 2D FFT result. Finally, the FM velocity of a bat call was acquired by 368 

calculating the slope of the velocity line. 369 

  Best Velocity (BV): We defined a best velocity as the center of mass with respect to response power in a 370 

magnitude plot. To estimate the center of mass, we performed a Gaussian surface fitting on the 1st 371 

quadrant of magnitude plot. After normalization as 𝑀̅𝑒 = 𝑀𝑒/[∑ 𝑀𝑒∆Ω∆𝜔Ω,𝜔 ]where ∆𝜔 and ∆Ω are 372 

respectively step size of temporal and spectral modulation rate, the fitting was performed to estimate 373 

mean vector and covariance matrix, by minimizing a square mean error function as 374 

𝐸𝑟𝑟 =
1

2
∑ (𝑙𝑛(𝑀̅𝑒) − 𝑙𝑛(𝐺𝜇,Σ))

2
Ω,𝜔 , where 𝐺𝜇,Σ  is a Gaussian distribution with mean vector 𝜇  and 375 

covariance matrix Σ. By performing the Least Square Error (LSE) estimator iteratively (Kay, 1993), we 376 

derived the Gaussian mean vector and covariance matrix. Best Velocity was defined as the slope of the 377 

mean vector (Fig. 7). 378 

  Orientation (Ori): To characterize velocity selectivity, we defined orientation as the angle between a 379 

line connecting the origin to the center of mass and a dominant eigenvector of the Gaussian covariance 380 

matrix. Note that the dominant eigenvector indicates the dominant direction of magnitude spread at 381 

the center of mass (Fig. 7) (Andoni et al., 2007). 382 

  Inseparability (Ins): Singular value decomposition (SVD) is applied to each STRF for calculating 383 

inseparability (Depireux et al., 2001). This approach decomposes the STRF into a linear combination of 384 

rank-1 matrices; in other words, 𝑆𝑇𝑅𝐹 = ∑ λ𝑖𝒖𝑖𝒗𝑖
𝐻

𝑖 , where 𝒖𝑖 and 𝒗𝑖 are respectively left- and right- 385 

eigenvectors (column vector) corresponding to a singular value λ𝑖, and 𝐻 means Hermitian transpose 386 

(Strang, 2009). Based on this definition, a STRF is called separable if the STRF can be approximated by 387 

summation of just a few matrices otherwise it is inseparable. We measured inseparability of a STRF 388 

calculated as 𝐼𝑛𝑠 = 1 − 𝜆1
2/∑ 𝜆𝑖

2
𝑖 , where 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯. Note that the inseparability is bounded 389 

within the interval [0,1] where the 𝐼𝑛𝑠 is equal to 0 for separable STRFs otherwise it goes to 1. 390 
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  Direction Selectivity Index (DSI): To investigate direction selectivity of STRF’s, we compared total power 391 

in the 1st and the 2nd quadrant of the RTF. If a STRF favors downward-moving ripples, total power in 392 

the 1st quadrant of magnitude plot is larger than the other since the 1st quadrant is composed of 393 

responses evoked by downward-sweeping ripples. From this perspective, a DSI was defined as 394 

𝐷𝑆𝐼 = (𝑃2 − 𝑃1)/(𝑃2 + 𝑃1) where 𝑃𝑖  is a power in the 𝑖𝑡ℎ quadrant of RTF, and it is calculated by 395 

𝑃𝑖 = ∑ |𝑇(Ω,𝜔)|(Ω,𝜔)∈𝑄𝑖  where 𝑄𝑖 means the 𝑖𝑡ℎ quadrant. Since the power on each quadrant is a non-396 

negative value, the DSI is bounded within the interval [-1,1] where downward/upward selectivity is 397 

represented to negative/positive DSI while 0 represents no selectivity in the direction. DSI for natural 398 

vocalizations was derived using the Fourier representation described to derive FM velocity. 399 

  Best Frequency (BF): To investigate frequency selectivity of STRFs, we defined a BF as the frequency of 400 

the maximum peak of absolute STRF, |𝑆𝑇𝑅𝐹| over the entire time and frequency spans. Best frequency 401 

(spectral peak) of natural calls was computed by finding the peak frequency of the average spectrum. 402 

 403 

2.4.2. A bootstrap for statistical comparison} 404 

We performed a bootstrap analysis to evaluate similarity between distributions of characteristics (e.g. 405 

FM velocity, BV) comparing natural calls, IC neurons, and artificial neurons. The procedure selects 406 

random 30 samples from natural calls in each iteration with replacement. For IC neurons, random 407 

samples from each of the 4 bats are used in each iteration to maintain a balanced representation across 408 

bats. In case of artificial neurons, we trained 10 independent-networks (using different initialization 409 

procedures) and combined the neurons from each network into a complete set that was then sampled 410 

during the bootstrap procedure. For each comparison and each bootstrap repetition, the distance 411 

between means was noted. 1000 repetitions were used to generate a distribution of mean distances 412 

𝑑(𝜇,σ) where 𝜇 and σ are the mean and standard deviation. The p-value for accepting null hypothesis 413 

was calculated as 𝑝 = 1 − 2∫ 𝑑(0,σ)(𝑥)𝑑𝑥
|𝜀|

0
 where 𝑑(0,σ) is a zero-mean Gaussian distribution with 414 

same variance σ, and 𝜀 was a real number satisfying 𝑑(0,σ)(𝜀) = 𝑑(𝜇,σ)(𝜀). 415 

 416 

2.5. Natural sound representation with artificial neurons 417 

2.5.1. Analysis of response selectivity in artificial neurons 418 

We explored response selectivity to bat calls in biomimetic neurons. To replicate the study performed 419 

on IC neurons (Salles et al., 2020), FMB and Echo calls in the sound database were used to measure 420 

responses on artificial neurons. Each audio clip was fed into the network after converting to auditory 421 

spectrogram (See, Section 2.3.1), then we obtained activation probabilities for 100-nodes due to the 422 

stimulus as 𝜎(𝑣𝑐) in Fig. 4. We averaged the activation probabilities over the same type of calls, and 423 

placed the results for 100-nodes onto a 2D scatter plot. Since the IC neurons are categorized into 3-424 

groups such FMB selective, Echo selective, and Non-selective (Salles et al., 2020), we performed k-425 

means clustering (k=3) on the principal axis by the principal component analysis (PCA). 426 

 427 

2.5.2. Social call representation with artificial neurons 428 
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We explored bat's call representation with the biomimetic network. In order to perform stochastic 429 

analysis, we made 10-copies for each audio clip in the natural sound database (See. Section 2.1.3) by a 430 

data augmentation based on temporal shift so that 260 audio clips were ready for the response analysis 431 

on artificial network. After converting the audio clips for 8 types of bat call to auditory spectrogram (See, 432 

Section 2.3.1), the spectrograms were fed into the network to obtain the network's responses, the 𝑣𝑐 in 433 

Fig. 4. Then, we estimated the Gaussian distributions for the responses to each call type, and measured 434 

a distance between two distributions by using the Jensen-Shannon divergence (JSD) as 𝐽𝑆𝐷(𝑃‖𝑄) =435 

(𝐾𝐿𝐷(𝑃‖𝑀) + 𝐾𝐿𝐷(𝑄‖𝑀))/2 where 𝑃 and 𝑄 represent two target distributions, 𝐾𝐿𝐷 is the Kullback-436 

Leibler divergence (KLD), and 𝑀 = (𝑃 + 𝑄)/2 (Endres and Schindelin, 2003). Unlike the KLD, the JSD is 437 

bounded within the interval [0,1] where 0 means that two distributions are equal. Finally, we quantified 438 

a discriminability across the classes by averaging JSDs of all cases choosing 2 of 8. In evaluation, we 439 

calculated the averaging JSDs with 10-models for each configuration that were trained on different 440 

initial values and summarized the mean and standard deviation of the 10 results. Additionally, we 441 

explored the noise effect on the sound representation with simulated audios produced by adding 442 

Gaussian random noise to each of the 260 audio clips depending on signal to noise ratio (SNR). 443 

  To compare with neural data, we performed this analysis between FMB and Echo responses. In the 444 

same manner, we calculated JSD based on the networks. We adopted neural data used in the previous 445 

study (Salles et al., 2020). Among 575 neurons, we chose 351 neurons which were recorded with same 446 

version of stimuli, and constructed 351-dimensional vector to represent response pattern across the 447 

neurons by concatenating the number of spikes on each neuron. Once the vector is projected onto 100 448 

dimensional space based on PCA, we estimated Gaussian distributions for FMB and Echo responses. 449 

Then, we calculated JSD between the distributions. 450 

 451 

3. Results 452 

3.1. Database of natural big-brown bat calls 453 

Acoustic recordings of bat calls emitted while socially housed in the laboratory yielded a data set of 454 

natural calls containing a wide range of vocalization types. Fig. 8 shows the time-frequency 455 

representation of several types of vocalizations in the database. The bat vocalizations include isolated 456 

(non-overlapping) calls representing communication (Fig. 8A-C) or echolocating (Fig. 8D-G) sounds as 457 

well as overlapping calls from two distinct bats (Fig. 8G-H). Best Velocity (BV) values reflect the broad 458 

range of FM energies in these social communication calls (BV = 18 oct/s, 43 oct/s and 140 oct/s for Fig. 459 

8A, B and C respectively). Echolocation calls show even higher FM energies with shorter signals (BV = 460 

274 oct/s and 333 oct/s for Fig. 8D and E respectively). In Fig. 8G and H, we note presence of multiple 461 

calls though the statistics derived from that segment are largely influenced by the dominant call (BV = 462 

381 oct/s and 410 oct/s for Fig. 8G and H respectively). The natural complexity in the animal’s auditory 463 

environment was maintained in this study and no supervised curation of this data set was performed 464 

beyond removal of silence segments (see Methods). We also note presence of ambient background in all 465 

recordings as a result of the cage environment and recording setup used to collect this data. 466 

 467 

3.2. Auditory characteristics of biological STRF's 468 
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To explore auditory characteristics of big brown bat midbrain, we calculated STRF’s from neural 469 

recordings of IC neurons. Fig. 9A highlights examples from 6 neurons, revealing a downward sweep 470 

selectivity, with excitation and inhibition represented as red and blue areas, respectively. The best 471 

frequency (BF) is also shown as red dashed line indicating the maximum peak, positive or negative, of 472 

the STRF. We evaluated auditory characteristics across all neural recordings with respect to BV, DSI 473 

(direction selectivity), orientation, and inseparability (Fig. 10, yellow histograms). Using a bootstrap 474 

procedure, we compared the auditory characteristics of IC neurons to properties of natural calls (Fig. 10, 475 

gray background regions for standard deviation). The analysis revealed that the distribution of BVs in IC 476 

neurons is statistically equivalent to that of natural calls (𝜇=-1.63, 𝜎=17.13, p-value=0.9622, Fig. 10A). A 477 

match was also observed for direction selectivity 𝜇 =-0.01, 𝜎=0.03, p-value=0.8789, Fig. 10B). This result 478 

is consistent with the hypothesis that IC neurons have consistent tuning to the statistics of conspecific 479 

vocalizations (Andoni et al., 2007). We noted that the majority of IC neurons (93.6%) favored downward 480 

sweeps (Fig. 10B) (Gittelman et al., 2009) while their orientation is centered around 0 deg. Most IC 481 

neurons yield higher than rank-one STRF’s (average inseparability index 0.49 ± 0.09). 482 

  The distribution of frequency tuning (BF) of IC neurons tended to fall between 10 and 30 kHz. 483 

Particularly, BF's of 87% of neurons are below 30 kHz (Fig. 11B). In contrast, spectral peaks observed in 484 

the vocalization database revealed a higher spectral peak (37.17 ± 5.62) as shown in Fig. 11A. This 485 

profile is likely driven by the strength of the first harmonic component in vocalization which tends to be 486 

stronger than other components. As seen from the examples in Fig. 8, most vocalizations contain 487 

multiple harmonic peaks with higher energy in the first component resulting in a difference between the 488 

BF of IC neurons and spectral peaks of the calls database (𝜇=-12.58, 𝜎=1.82, p-value=0).  489 

 490 

3.3. Auditory characteristics of artificial STRF's 491 

Using natural calls, an artificial network was trained to best represent the statistics of the vocalization. 492 

Characteristics of model neurons were analyzed in the same way as biological neurons using spectro-493 

temporal receptive fields. The distribution of model characteristics is shown in Fig. 10, overlaid in blue. 494 

Compared to natural calls, model neurons reveal a statistically matching distribution with respect to BV 495 

(bootstrap 𝜇=-2.62, 𝜎=19.85, p-value=0.9473) and DSI (bootstrap 𝜇=-0.005, 𝜎=0.01, p-value=0.9382). 496 

Model neurons also match the spectral peak of natural calls (bootstrap 𝜇=-0.49, 𝜎=4.75, p-value=0.9592, 497 

Fig. 11C). These results are not surprising given that the model was trained to mimic the statistics of 498 

these calls. Still, the model was not specifically configured to match specific directionality or velocity 499 

patterns but rather represent the time-frequency profile of the calls as a whole. 500 

  In parallel, the comparison between model and biological neurons reveal remarkable agreement. A 501 

bootstrap procedure was performed to compare all auditory characteristics of these STRF's, and results 502 

are shown in inset panels in Fig. 10. We note that characteristics of biomimetic neurons match the 503 

properties of IC neurons including BVs (𝜇=2.92, 𝜎=16.61, p-value=0.9300), DSI (𝜇=0.01, 𝜎=0.07, p-504 

value=0.9358), orientation (𝜇=1.34, 𝜎=3.26, p-value=0.8370), and inseparability (𝜇=-0.02, 𝜎=0.04, p-505 

value=0.8079). The BFs of artificial neurons are statistically different from IC neurons (bootstrap 𝜇=12.10, 506 

𝜎=4.44, p-value=0.1731), even though there is substantial overlap at the range of 0-40 kHz. The BFs of 507 

artificial neurons are more broadly distributed over the entire frequency range with about 14% of 508 

artificial neurons having high BF (above 60 kHz) (Ferragamo et al., 1997). 509 
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 510 

3.4. Architecture of the biomimetic network 511 

While results reported so far focus on the ‘best’ biomimetic network, we also investigated how changing 512 

the architecture of the model affects the tuning parameters of artificial neurons. We systematically 513 

varied the model in terms of structural complexity (the number of stacking blocks), sparsity of the latent 514 

space and non-linearity of the activation function. Fig. 12A shows the mean and standard deviation of 515 

characteristics of model neurons across 10-network validations for each pair of complexity and sparsity 516 

(𝛼 = 0.2). The mean FM velocities and orientation in the natural calls database are represented by a 517 

black line on each panel; while the grey regions represent 95% confidence intervals for each mean. The 518 

results show that a very shallow model (mono-stacking) results in a greatly biased negative orientation, 519 

as well slower BV estimates. By increasing the model depth, there is an increased match between the 520 

model’s spectro-temporal configuration (represented by BV and orientation) and that of natural 521 

statistics. Furthermore, extremely low or high sparsity values also result in over or under-estimating 522 

statistics of natural calls; with 10% sparsity results in a great match with average statistics of the natural 523 

calls. 524 

  Using the triple stacking network with 10% sparsity, we investigated the effect of the model non-525 

linearity on the same auditory characteristics of model neurons (Fig. 12B). Setting the non-linearity 526 

parameter to 1.0 results in a fully linear processing which clearly produces in a mismatch between the 527 

model and call characteristics. By increasing the degree of non-linearity (decreasing alpha), we note a 528 

closer match between the two. 529 

  It should be noted that across all the different configurations of the model, all architectures were able 530 

to converge (i.e. minimize the reconstruction error between the spectrogram of a given call sound and 531 

its reconstruction using the model’s latent space). Fig. 12C shows the average reconstruction error over 532 

the 10 models for each parameter set. While all models successfully converge to reconstruct natural 533 

calls and encode statistics of in the database, only a few configurations result in a reasonable match to 534 

the spectro-temporal characteristics of model neurons. As a matter of fact, the model was not 535 

constrained to match these properties in its latent space; it is merely trained to represent the call 536 

spectrograms as faithfully as possible. This requirement has multiple plausible solutions, and only 537 

certain configurations result in a close match with velocity and orientation characteristics of natural calls. 538 

 539 

3.5. Natural call representation with the biomimetic network 540 

So far, the results suggest that a deep nonlinear architecture with high sparsity to achieve an optimal 541 

representation of the statistics of natural bat vocalizations is capable to replicate auditory characteristics 542 

of the bat's midbrain. We next examined the implications of this mapping to facilitate discrimination of 543 

the large variety in the call repertoire. A study revealed that tuning characteristics of bat IC neurons 544 

differentially encode different sound categories in the bat vocalizations, specifically echolocation calls 545 

and food-claiming FMB (frequency-modulated bout) social calls (Salles et al., 2020). We examined 546 

whether the artificial network, trained simply to emulate natural statistics in the bat repertoire (without 547 

knowledge of different sound classes) also yields distinct activations of these different groups. Fig. 13A 548 

top replicates the response selectivity of biological IC neurons, showing a scatter plot of average 549 



 

 16 

activation probabilities for each neuron in response to FMB calls (x-axis) vs. Echolocation (echo) calls (y-550 

axis), projected on the principal axis by PCA. The figure inset shows the original neural responses before 551 

data projection. Fig. 13B-D depict a similar analysis of call selectivity for the mono, double and triple 552 

artificial network, respectively. Note that each panel from B to D was produced by one network of 10-553 

models for example. The top panels show a scatter. Across the 3 network configurations, we note that 554 

the mono stacking model induces mostly non-selective activation across its neural population (Fig. 13B) 555 

while the double stacking model yields biased responses in favor of Echo calls (Fig. 13C). The triple 556 

stacking model reveals a more balanced activation from Echolocation and FMB social call types (Fig. 13D) 557 

that closely matches biological selectivity. 558 

  We extend the analysis of call selectivity in the artificial network to other classes of calls in the bat 559 

repertoire. We evaluated discriminability across 8 types of calls using the Jensen-Shannon divergences 560 

(JSDs) (Endres and Schindelin, 2003). Fig. 14 shows the results for various network depths, linearity and 561 

sparsity for the calls in the database (clean) as well as with additional simulated additive noise with 562 

decreasing signal-to-noise (SNR) ratios. The triple stacking model (with high sparsity and nonlinear 563 

activation) produces the most discriminable responses, as well as more robust discrimination even in 564 

presence of noise. Shallower architectures are clearly affected by presence of resulting in reduced 565 

discriminability. Linear activations and low sparsity appear to also affect discriminability and robustness 566 

to noise albeit not at the same rate. These results suggest that the optimal representation of call 567 

statistics likely plays a role in facilitating the identification of different sound classes even in presence of 568 

noise. Similarly, a study with guinea pigs has shown the robust discrimination in the responses to 569 

communication sounds (Souffi et al., 2020). Such hypothesis aligns with earlier reports (Chechik et al., 570 

2006) but remains to be validated in the IC of the big brown bat. As reference, we computed JSD for the 571 

two echo and FMB call classes (Fig. 14) for both artificial and biological neurons. Both measures reveal a 572 

close agreement and high discriminability that far surpasses selectivity from shallower architectures. 573 

 574 

4. Discussion 575 

The biomimetic artificial network provides a nonlinear response model of neural selectivity 576 

To examine the tuning of auditory neurons, each cell can be considered as a system with a mapping 577 

function 𝐹 that represents a relation between stimulus 𝑠 and neural response 𝑟 i.e. 𝑟 = 𝐹(𝑠). While 578 

characterizing the full system function may be theoretically or experimentally nearly impossible, 579 

linearized models using STRF are often used to build a computational response model as 𝑟(𝑡) =580 

∫ 𝑠(𝑡, 𝑓) ∗ ℎ(𝑡, 𝑓)𝑑𝑓 where 𝑡 and 𝑓 is respectively time and frequency index, 𝑠(𝑡, 𝑓) is spectro-temporal 581 

representation for a stimulus, * is a convolution operator, and ℎ(𝑡, 𝑓) represents a spectro-temporal 582 

receptive fields (STRF’s) (Depireux et al., 2001; Elhilali et al., 2013; Machens et al., 2004; Fritz et al., 583 

2003). This model is often applied with reasonable success to predict neural responses to other sound 584 

classes including conspecific vocalizations or other natural sounds. Although the linear model is a 585 

reasonable approximation for mimicking neural responses in the brain, it is limited in its ability to inform 586 

nonlinear transformations that are usually observed in between stimulus and response (Escabi and 587 

Schreiner, 2002; Theunissen et al., 2000). One of the main advantages of including nonlinear activations 588 

in a feed-forward propagation in the proposed neural network is that it implicitly incorporates the 589 

effects of these nonlinear mappings in the propagation of activity throughout the network. Still, we are 590 

able to evaluate the linearized portion of the response (via STRF's of artificial neurons) without explicitly 591 
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incorporating the nonlinear terms in the STRF model itself. This black-box approach to incorporate 592 

complexities of neural mapping via deep neural networks opens the possibility to more intricate 593 

readouts of the representation of artificial networks. We anticipate that such biomimetic artificial 594 

network can be used to build a system mimicking the bat’s ability for object shape recognition using its 595 

bio-sonar. 596 

 597 

Midbrain responses are optimized to represent the statistics of natural calls in a bat's soundscape 598 

In this study, we explored the hypothesis that the bat’s IC neurons are tuned to represent the FM 599 

velocity and spectro-temporal structure of conspecific vocalizations. Evidence in support of this Sender-600 

Receiver matching has been previously reported in the pallid bat (Fuzessery, et al., 2006) and Mexican 601 

free-tailed bat (Andoni et al., 2007), as well as other species such as zebra finches (Woolley et al., 2005) 602 

(also see (Woolley and Portfors, 2013). Here, we report similar findings in the big brown bat, and 603 

establish a close correspondence between acoustic characteristics of natural calls and tuning of spectro-604 

temporal receptive fields of IC neurons of the big brown bat. Going beyond this relationship, an artificial 605 

network trained independently on these natural calls reveals tuning properties that not only conform 606 

with spectro-temporal features of the calls (which they were trained on), but also unveils IC-like tuning 607 

structure and complexity (e.g. separability) that the model was not specifically trained on (Fig. 10). This 608 

result hints that the midbrain architecture gives rise to tuning configurations that leverage the spectro-609 

temporal richness of the bat's repertoire to not only represent these features with high fidelity but also 610 

enable selective responses to discriminate between classes of natural calls.  611 

  The artificial network used in the current study shows that the neural encoding of an incoming stimulus 612 

gives rise to a response across neural populations that enables it to faithfully reconstruct this stimulus, 613 

revealing a high fidelity mapping without loss of information. While not explicitly happening in the brain, 614 

this stimulus reconstruction from the internal latent space is the basis for training the artificial network 615 

which yields emergent tuning that matches the biology. It is important to note that tuning properties of 616 

artificial neurons were derived using moving ripples which invoke the principle of signal decomposition 617 

by separating each conspecific call into a sum of ripples with different orientations, rates and phases, in 618 

line with the Fourier theory of signal representation. While the network was never trained on these 619 

ripples, its response to each ripple spectral motion pattern both in terms of magnitude and phase (both 620 

needed for STRF reconstruction) suggest a quantitative correspondence with the downward-sweeping 621 

signals that are prominent in the bat repertoire. It is also important to note that not all known coding 622 

properties of the bat midbrain are represented in STRFs (Brimijoin and O’Neill, 2010) and that future 623 

steps to test time varying response properties (such as an adaptation) would further validate the ability 624 

of this network to replicate the biology of the bat IC (Lesica and Grothe, 2008; Rabinowitz et al., 2013; 625 

Lohse et al., 2020). 626 

 627 

A deep architecture with sparsity is best suited to model the statistics of natural calls 628 

Varying the architecture of the network led to different latent spaces to represent the characteristics of 629 

the database of natural calls. Specifically, changing the complexity of the network (in terms of depth), 630 

sparsity and nonlinearity converged on different solutions for representing conspecific sounds. Under all 631 
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configurations, the networks were able to reconstruct the input spectrogram with minimal error 632 

indicating that its latent space is sufficiently informative about the statistics in the training database (Fig. 633 

12C). Nonetheless, only a specific configuration with high sparsity, nonlinearity and sufficient depth is 634 

able to replicate biological tuning properties, giving insights into coding principles underlying 635 

configuration of IC networks probed in this study. Naturally, while this investigation cannot rule out 636 

other configurations that would also reveal a strong match to biology, it can eliminate parameters that 637 

converge on solutions that are far from the biology (e.g. shallow networks, linear models). It is worth 638 

noting that we were unable to train a quadruple stacking network to represent statistics in the database 639 

so we are unable to comment on the extend to which an even deeper network may correlate with 640 

biological tuning. The output of a 4th block could be missing spectro-temporal features due to over-641 

compression. This is an issue that could explored using large input patches or modifying the pooling step. 642 

 643 

Tuning to conspecific natural sounds may underlie selective and robust encoding of auditory objects 644 

We note that directional selectivity to FM sweeps in biological and artificial neurons, results in high 645 

discriminability between different classes of calls. Specifically, these results support the notion that by 646 

having neural sub-population tuned to different subsets of spectro-temporal statistics, the network is 647 

able to encode and differentially respond to different vocalizations and social or echolocation calls. This 648 

discriminability is enhanced in the triple sparse and nonlinear network that best matches biological 649 

tuning and much reduced in other network configurations despite the fact that these other models were 650 

also successfully trained to represent the same natural statistics in the bat call repertoire. This variability 651 

may stem from correlated behavior across the neural population which was previously shown to play an 652 

important role in enhanced discriminability of vocalizations in the auditory midbrain (Schneider and 653 

Woolley, 2010). This encoding selectivity remains fairly stable in presence of stationary ambient noise 654 

suggesting that the high dimensional mapping encoding incoming natural calls results in a noise 655 

invariant representation that is believed to start emerging at the level of the inferior colliculus and 656 

further strengthen in auditory cortex (see, Willmore et al., 2014). 657 

 658 

 659 

 660 

 661 

 662 

  663 



 

 19 

References 664 

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al.. TensorFlow: Large-Scale Machine Learning on 665 
Heterogeneous Distributed Systems; 2016. Available from: http://arxiv.org/abs/1603.04467.  666 

Aitkin L, Tran L, Syka J. The responses of neurons in subdivisions of the inferior colliculus of cats to tonal, 667 
noise and vocal stimuli. Experimental Brain Research. 1994;98(1):53–64.  668 

Andoni S, Li N, Pollak GD. Spectrotemporal Receptive Fields in the Inferior Colliculus Revealing Selectivity for  669 

Spectral Motion in Conspecific Vocalizations. Journal of Neuroscience. 2007;27(18):4882–4893.  670 

Baldi P. Autoencoders, Unsupervised Learning, and Deep Architectures. In: ICML workshop on unsupervised 671 
and transfer learning; 2012. p. 37–49.  672 

Brimijoin WO, O’Neill WE. On the prediction of sweep rate and directional selectivity for FM sounds from two-673 
tone interactions in the inferior colliculus. Hearing Research. 2005;210(1-2):63–79.  674 

Brimijoin WO, O’Neill WE. Patterned tone sequences reveal non-linear interactions in auditory 675 
spectrotemporal receptive fields in the inferior colliculus. Hearing Research. 2010;267(1-2):96–110. 676 

Casseday JH, Fremouw T, Covey E. The Inferior Colliculus: A Hub for the Central Auditory System. In: 677 
Integrative Functions in the Mammalian Auditory Pathway. New York: Springer; 2002. p. 238–318.  678 

Chechik G, Anderson MJ, Bar-Yosef O, Young ED, Tishby N, Nelken I. Reduction of Information Redundancy in 679 
the Ascending Auditory Pathway. Neuron. 2006;51(3):359–368. 680 

Chi T, Ru P, Shamma SA. Multiresolution spectrotemporal analysis of complex sounds. Journal of the 681 
Acoustical Society of America. 2005;118(2):887–906.  682 

Chi T, Shamma S. NSL Matlab Toolbox; 2005. Available from: 683 
http://www.isr.umd.edu/~speech/nsltools.tar.gz.  684 

Choi KP, Xia A. Approximating the number of successes in independent trials : Binomial versus Poisson. The 685 
annals of applied probability. 2002;12(4):1139–1148.  686 

Corrado GS, Sugrue LP, Seung HS, Newsome WT. Linear-Nonlinear-Poisson Models of Primate Choice 687 
Dynamics. Journal of the Experimental Analysis of Behavior. 2005;84(3):581–617.  688 

Depireux DA, Simon JZ, Klein DJ, Shamma SA. Spectro-temporal response field characterization with dynamic 689 
ripples in ferret primary auditory cortex. Journal of neurophysiology. 2001;85(3):1220–1234.  690 

Dietterich T. Overfitting and undercomputing in machine learning. ACM Computing Surveys. 1995;27(3):326–691 
327.  692 

Doersch C. Tutorial on Variational Autoencoders; 2016. Available from: http://arxiv.org/abs/1606.05908.  693 

Elhilali M, Shamma SA, Simon JZ, Fritz JB. A Linear Systems View to the Concept of STRF. Handbook of Modern 694 
Techniques in Auditory Cortex. Nova Science Pub Inc; 2013. p. 33–60.  695 



 

 20 

Endres DM, Schindelin JE. A new metric for probability distributions. IEEE Transactions on Information 696 
Theory. 2003;49(7):1858–1860.  697 

Escabi MA, Schreiner CE. Nonlinear Spectrotemporal Sound Analysis by Neurons in the Auditory Midbrain. 698 
Journal of Neuroscience. 2002;22(10):4114–4131. 699 

Ferragamo MJ, Haresign T, Simmons JA. Frequency tuning, latencies, and responses to frequency-modulated 700 
sweeps in the inferior colliculus of the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology - 701 
A Sensory, Neural, and Behavioral Physiology. 1997;182(1):65–79.  702 

Fritz J, Shamma S, Elhilali M, Klein D. Rapid task-related plasticity of spectrotemporal receptive fields in 703 
primary auditory cortex. Nature Neuroscience. 2003;6(11):1216–1223. 704 

Fuzessery ZM, Richardson MD, Coburn MS. Neural Mechanisms Underlying Selectivity for the Rate and 705 
Direction of Frequency-Modulated Sweeps in the Inferior Colliculus of the Pallid Bat. Journal of 706 
Neurophysiology. 2006;96(3):1320–1336.  707 

Gittelman JX, Li N, Pollak GD. Mechanisms underlying directional selectivity for frequency-modulated sweeps 708 
in the inferior colliculus revealed by in vivo whole-cell recordings. Journal of Neuroscience. 709 
2009;29(41):13030–13041.  710 

Gordon M, O’Neill WE. Temporal processing across frequency channels by FM selective auditory neurons can 711 
account for FM rate selectivity. Hearing Research. 1998;122(1-2):97–108. 712 

Kay SM. Fundamentals of statistical signal processing. Englewood Cliffs, N.J.: Prentice-Hall PTR; 1993.  713 

Kowalski N, Depireux DA, Shamma SA. Analysis of dynamic spectra in ferret primary auditory cortex. I. 714 
Characteristics of single-unit responses to moving ripple spectra. Journal of Neurophysiology. 715 
1996;76(5):3503–3523.  716 

Lesica NA, Grothe B. Efficient temporal processing of naturalistic sounds. PLoS ONE. 2008;3(2).  717 

Lohse M, Bajo VM, King AJ, Willmore BDB. Neural circuits underlying auditory contrast gain control and their 718 
perceptual implications. Nature Communications. 2020;11(1):1–13. 719 

Luo J, Moss CF. Echolocating bats rely on audiovocal feedback adapt sonar signal design. Proceedings of the 720 
National Academy of Sciences of the United States of America. 2017;114(41):10978–10983. 721 

Park J, Kim W, Han DK, Ko H. Voice activity detection in noisy environments based on double-combined 722 
Fourier transform and line fitting. The Scientific World Journal. 2014;2014.  723 

Poon PWF, Yu PP. Spectro-temporal receptive fields of midbrain auditory neurons in the rat obtained with 724 
frequency modulated stimulation. Neuroscience Letters. 2000;289(1):9–12. 725 

Quiroga RQ, Nadasdy Z, Ben-Shaul Y. Unsupervised Spike Detection and Sorting with Wavelets and 726 
Superparamagnetic Clustering. Neural Computation. 2004;16(8):1661–1687. 727 

Rabinowitz NC, Willmore BDB, King AJ, Schnupp JWH. Constructing Noise-Invariant Representations of Sound 728 
in the Auditory Pathway. PLoS Biology. 2013;11(11).  729 

Radford A, Metz L, Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative 730 
Adversarial Networks; 2015. Available from: http://arxiv.org/abs/1511.06434.  731 



 

 21 

Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. In: in ICML 732 
Workshop on Deep Learning for Audio, Speech and Language Processing. vol. 28; 2013. p. 1–6.  733 

Machens CK, Wehr MS, Zador AM. Linearity of cortical receptive fields measured with natural sounds. The 734 
Journal of neuroscience. 2004;24(5):1089–1100. 735 

Macıas S, Luo J, Moss CF. Natural echolocation sequences evoke echo-delay selectivity in the auditory 736 
midbrain of the FM bat, eptesicus fuscus. Journal of Neurophysiology. 2018;120(3):1323–1339.  737 

Salles A, Park S, Sundar H, Macias S, Elhilali M, Moss CF. Neural Response Selectivity to Natural Sounds in the 738 
Bat Midbrain. Neuroscience. 2020;434:200–211. 739 

Scherer D, Muller A, Behnke S. Evaluation of Pooling Operations in Convolutional Architectures for Object 740 
Recognition. In: International Conference on Artificial Neural Networks (ICANN); 2010. p. 92–101. 741 

Schneider DM, Woolley SMN. Discrimination of Communication Vocalizations by Single Neurons and Groups 742 
of Neurons in the Auditory Midbrain. Journal of Neurophysiology. 2010;103(6):3248–3265. 743 

Schwartz O, Pillow JW, Rust NC, Simoncelli EP. Spike-triggered neural characterization. Journal of Vision. 744 
2006;6(4):484–507.  745 

Shamma SA. Speech processing in the auditory system I: The representation of speech sounds in the 746 
responses of the auditory nerve. The Journal of the Acoustical Society of America. 1985a;78(5):1612–1621.  747 

Shamma SA. Speech processing in the auditory system II: Lateral inhibition and the central processing of 748 
speech evoked activity in the auditory nerve. The Journal of the Acoustical Society of America. 749 
1985b;78(5):1622–1632.  750 

Shelhamer E, Long J, Darrell T. Fully Convolutional Networks for Semantic Segmentation. IEEE Transactions 751 
on Pattern Analysis and Machine Intelligence. 2017;39(4):640–651.  752 

Singh N, Theunissen F. Modulation spectra of natural sounds and ethological theories of auditory processing. 753 
Journal of the Acoustical Society of America. 2003;106:3394–3411.  754 

Smith EC, Lewicki MS. Efficient auditory coding. Nature. 2006;439:978–982.  755 

Souffi S, Lorenzi C, Varnet L, Huetz C, Edeline JM. Noise-Sensitive but More Precise Subcortical 756 
Representations Coexist with Robust Cortical Encoding of Natural Vocalizations. Journal of Neuroscience. 757 
2020;40(27):5228–5246. 758 

Strang G. Introduction to linear algebra. 4th ed. Wellesley-Cambridge Press; 2009.  759 

Suta D, Kvasnak E, Popelar J, Syka J. Representation of Species-Specific Vocalizations in the Inferior Colliculus 760 
of the Guinea Pig. Journal of Neurophysiology. 2003;90(6):3794–3808. 761 

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings 762 
of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. vol. 07-12-June; 2015. 763 
p. 1–9.  764 

Theunissen FE, Sen K, Doupe AJ. Spectral-temporal receptive fields of nonlinear auditory neurons obtained 765 
using natural sounds. Journal of Neuroscience. 2000;20(6):2315–2331.  766 



 

 22 

Wang K, Shamma SA. Self-normalization and noise-robustness in early auditory representations. IEEE 767 
Transactions on Speech and Audio Process. 1994;2:421–435.  768 

Williams AJ, Fuzessery ZM. Facilitatory mechanisms shape selectivity for the rate and direction of FM sweeps 769 
in the inferior colliculus of the pallid bat. Journal of Neurophysiology. 2010;104(3):1456–1471. 770 

Willmore BDB, Cooke JE, King AJ. Hearing in noisy environments: noise invariance and contrast gain control. 771 
The Journal of Physiology. 2014;592(16):3371–3381.  772 

Woolley SMN, Fremouw TE, Hsu A, Theunissen FE. Tuning for spectro-temporal modulations as a mechanism 773 
for auditory discrimination of natural sounds. Nature Neurosci. 2005;8(10):1371–1379. 774 

Woolley SMN, Portfors CV. Conserved mechanisms of vocalization coding in mammalian and songbird 775 
auditory midbrain. Hearing Research. 2013;305(1):45–56.  776 

Wright GS, Chiu C, Xian W, Wilkinson GS, Moss CF. Social calls of flying big brown bats (Eptesicus fuscus). 777 
Frontiers in Physiology. 2013;4 AUG(August):1–9.  778 

Yang X, Wang K, Shamma SA. Auditory representations of acoustic signals. IEEE Transactions on Information 779 
Theory. 1992;38(2):824–839.  780 

 781 

  782 



 

 23 

Figures and Tables 783 

Fig. 1 Overview of study foci. A database of natural calls from a colony of big brown bats is collected and 784 

analyzed for its auditory characteristics. Shown in the figure is a distribution of FM velocities. Right: 785 

Tuning characteristics of biological neurons from the big brown bat inferior colliculus are derived using 786 

Spectro-Temporal Receptive Field (STRF) method, and properties of biological neurons are derived (e.g. 787 

best velocity, BV). Shown in the figure is a brain slice identifying the location of the IC in the big brown 788 

bat (from Salles et al., 2020). Left: Computational models with various configurations are examined and 789 

emergent tuning properties of artificial networks are derived to compare against statistics of natural 790 

calls as well as biological neurons. 791 

 792 

Fig. 2 Example spectrograms of 8 bat calls in social call database. A, Echolocation (Echo). B, Frequency 793 

modulated bout (FMB). C, Upward frequency modulated (UFM). D, Long frequency modulated (LFM). E, 794 

Short frequency modulated (SFM). F, Chevron shaped (CS). G, Hook. H, Long-wave.} 795 

 796 

Fig. 3 Ripple transfer function extraction. A, A subset of ripple stimuli. B, Input patch sequence 797 

configuration from a ripple stimulus to a code vector for characterizing the network. C, Examples of 798 

responses on each node (each element of the code vector), and definition of magnitude m and phase  799 

in a ripple response. D, Magnitude and phase plots on one of nodes.} 800 

 801 

Fig. 4 Convolutional layered autoencoder structure for biomimetic network. The flow denoted in black 802 

shows a double stacking structure as a standard example. Based on this structure, a deeper structure 803 

can be constructed by stacking more modules, on the other hand, a shallow structure is created by 804 

removing a module on the top of the standard example. 805 

 806 

Fig. 5 Operations using multi-scale filters. A, convolution using multi-scale filters. B, transposed 807 

convolution using multi-scale filters. 808 

 809 

Fig. 6 STRF calculation. A, expanded magnitude and phase matrices which are matching to Fig. 2D. B, 2-810 

Dimensional (above) and 3-Dimensional (bottom) representation of the STRF that is obtained by 811 

performing 64 by 64 interpolation and Gaussian smoothing sequentially. In 2D representation, red area 812 

represents excitation regions while blue represents inhibition regions. 813 

 814 

Fig. 7 Descriptions for best velocity and orientation. A, magnitude plot. B, the result of Gaussian surface 815 

fitting. The red ellipse represents Gaussian mean vector 𝜇 (center) and covariance matrix Σ (rotation), 816 

the best velocity is defined by a slope of Gaussian mean vector and the orientation error is defined by an 817 

angle difference between mean vector and covariance rotation. 818 

 819 
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Fig. 8 Example spectrograms of several types of calls monophonic cases for social communication (A-C), 820 

echolocation (D-F), and polyphonic cases (G-H). Note the differences in frequency content, duration, and 821 

sweep velocity. Note that peak frequency is represented onto each panel as the black dashed line. 822 

 823 

Fig. 9 Examples for biological STRF and biomimetic STRF. A, biological STRFs obtained from bat's IC 824 

neuron. B, biomimetic STRFs obtained from a triple stacking network with 10% sparsity. Note that red 825 

and blue area show excitation and inhibition regions, respectively. 826 

 827 

Fig. 10 Histogram of biological and biomimetic STRFs according to auditory characteristics. A, Best 828 

velocity. B, Direction selectivity index. C, Orientation (The zero-mean is marked as the red line). D, 829 

Inseparability. 830 

 831 

Fig. 11 Analysis of best frequency in dataset, IC neurons, and artificial neurons. A, histogram of peak 832 

frequencies in natural calls, the background grey line represents averaging spectrum envelop of natural 833 

calls. B, BFs on IC neurons. C, BFs on artificial neurons. 834 

 835 

Fig. 12 Best velocity and Orientation of biomimetic STRF's depending on network's configuration. A, for 836 

the number of stacking modules and sparsity (0.2 lReLu). B, for nonlinearity (Triple stacking model with 837 

10% sparsity). C, average reconstruction error over the 10 networks for each parameter set, blue and 838 

red dashed lines are mean of the errors for all configurations at the beginning of training and the end of 839 

the training, respectively. 840 

 841 

Fig. 13 Selectivity to FMB vs. Echolocation call for; A, IC neurons (Salles et al., 2020), spike frequency was 842 

calculated by dividing the number of spikes by total number of spikes starting 5 ms after stimulus onset. 843 

The horizontal axis on the bottom was circularly shifted with zero-centered non-selective neurons. B, 844 

mono-stacking model. C, double-stacking model. D, triple-stacking model.} 845 

 846 

Fig. 14 Natural sound representation by biomimetic network in different SNR conditions 847 

 848 

Table 1. Description of network parameters, midlevel feature maps, and input. 849 
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