
Automated Bug Localization in JIT Compilers

HeuiChan Lim
Department of Computer Science

The University Of Arizona

Tucson, AZ 85721, USA

hlim1@email.arizona.edu

Saumya Debray
Department of Computer Science

The University Of Arizona

Tucson, AZ 85721, USA

debray@cs.arizona.edu

Abstract

Many widely-deployed modern programming systems
use just-in-time (JIT) compilers to improve performance.
The size and complexity of JIT-based systems, combined
with the dynamic nature of JIT-compiler optimizations,
make it challenging to locate and fix JIT compiler bugs
quickly. At the same time, JIT compiler bugs can result
in exploitable security vulnerabilities, making rapid bug
localization important. Existing work on automated bug
localization focuses on static code, i.e., code that is not
generated at runtime, and so cannot handle bugs in JIT
compilers that generate incorrect code during optimiza-
tion. This paper describes an approach to automated
bug localization in JIT compilers, down to the level of
distinct optimization phases, starting with a single ini-
tial Proof-of-Concept (PoC) input that demonstrates
the bug. Experiments using a prototype implementa-
tion of our ideas on Google’s V8 JavaScript interpreter
and TurboFan JIT compiler demonstrates that it can
successfully identify buggy optimization phases.

CCS Concepts: ❼ Security and privacy → Soft-
ware security engineering; Web application security .

Keywords: Program Analysis, Debugging, Bug local-
ization, Dynamic Code, Self-Modifying Code

ACM Reference Format:

HeuiChan Lim and Saumya Debray. 2021. Automated Bug

Localization in JIT Compilers. In Proceedings of the 17th
ACM SIGPLAN/SIGOPS International Conference on Vir-
tual Execution Environments (VEE ’21), April 16, 2021,
Virtual, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3453933.3454021

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided

that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

VEE ’21, April 16, 2021, Virtual, USA

➞ 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8394-3/21/04. . . ✩15.00
https://doi.org/10.1145/3453933.3454021

1 Introduction

Many widely-deployed modern programming systems in-
clude a language interpreter, which provides portability,
together with a just-in-time (JIT) compiler, which pro-
vides performance: examples range from JavaScript code
executed in web browsers to enterprise software written
in Java. Such systems typically consist of multiple sophis-
ticated interacting components (e.g., an interpreter; a
runtime system including a profiler, a garbage collector,
etc.; a JIT compiler), and as a result tend to be large
and complex, and thus may be prone to bugs.

Bugs in the JIT compiler that can be particularly chal-
lenging to diagnose and fix are those that result in the
generation of incorrectly JIT-optimized application code,
causing the application to compute incorrect results or
crash. When a buggy JIT compiler emits incorrect code,
the problem manifests itself, not in the code that con-
tains the bug (the JIT compiler), but elsewhere, in the
application code being optimized. Moreover, the opti-
mized code generated by the JIT compiler is not available
for static analysis, as with conventional compilers, but
is created dynamically and may be modified multiple
times during execution. At the same time, incorrectly
optimized code resulting from JIT compiler bugs can
result in security problems.

For example, Rabet describes a JIT compiler bug in
the Chrome web browser’s V8 JavaScript engine that
causes some initialization code in the application pro-
gram to be (incorrectly) optimized away, resulting in an
exploitable vulnerability (CVE-2017-5121) [34].

The widespread adoption of systems that use JIT
compilers, combined with the potential for security vul-
nerabilities arising from JIT compiler bugs, makes it
important to locate and fix such bugs quickly.

There is a considerable body of research on automated
bug localization: Section 7 gives a deeper discussion. To
the best of our knowledge, all of this work focuses on
static code, i.e., where code is not created or modified
during execution.

Crucially, these approaches do not track dependencies
arising from the act of runtime code generation, e.g.,
where code A generates code B at runtime and a bug in
A can result in an incorrect instruction sequence gener-
ated for B. As a result, existing work on automatic bug



VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

localization is inapplicable to the situation we consider:
namely, where a bug in the JIT compiler is manifested
as buggy behavior in the dynamically generated code.
To address this situation, we propose an approach that
explicitly models the JIT compilation process and uses
it to reason about the JIT compiler’s behavior.

Experimental results from a prototype implementation
of our ideas, evaluated using bug reports for the Turbo-
Fan JIT compiler [40] used in Google’s V8 JavaScript
Engine, indicate that our approach is effective in localiz-
ing JIT compiler bugs.

The remainder of this paper is organized as follows.
Section 2 briefly summarizes some background on in-
terpreters and JIT compilers. Section 4 discusses our
research ideas for bug localization. Section 5 describes
experimental results from a prototype implementation of
our ideas. Section 6 discusses these results and possible
future improvements. Section 7 summarizes related work,
and Section 8 concludes.

2 Background

This section briefly discusses some key concepts relevant
to our ideas. It may be skipped by readers familiar with
this material.

2.1 Interpreters and JIT Compilers

An interpreter implements a virtual machine (VM) in
software. Programs are expressed using the VM’s in-
struction set, with each VM instruction represented as a
data structure in the interpreter’s memory. To mitigate
the runtime performance overheads typically incurred by
interpreters, they are often coupled with Just-in-Time
(JIT) compilers, which dynamically optimize frequently
executed code fragments into native code. The over-
all structure of typical interpreter/JIT-compiler system
is therefore as follows: the input program is read in
and translated into an intermediate representation (IR),
which is then used to quickly generate byte-code or un-
optimized native code. Subsequently, as the program is
executed, frequently executed code fragments are iden-
tified and JIT-compiled to more efficient code. Some
JIT compilers support multiple levels of optimization,
where dynamically generated code from one set of opti-
mizations may subsequently be subjected to additional
rounds of optimization [37].

Commonly used IRs have a tree or graph structure,
e.g., abstract syntax tree or control flow graph. For
concreteness in this discussion, we will assume that the
IR is a graph and thus contains a collection of nodes
[18]. Each such node can be thought of as having a set
of (system-dependent) properties, e.g., its type, the set
of its inputs, its register color (if graph coloring is used
for register allocation), etc.

Figure 1. V8 Pipeline[16]

Optimizations within a JIT compiler are typically or-
ganized as a sequence of phases, where each phase refers
to a specific optimization to the IR (e.g., constant prop-
agation) together with any supporting program analyses
[1, 10]. The effect of performing an optimization is to
modify the program’s IR. We can use the properties
associated with the nodes in the IR to reason about the
effect of optimization on a program.

2.2 JavaScript Engine Pipeline

JavaScript engine is an interpreter and JIT compiler
system that is implemented specifically for JavaScript
language. The JavaScript engines that we can easily
found are V8 in Google Chrome[12], Chakra in Mi-
crosoft Edge[13], SpiderMonkey in Mozilla Firefox[31],
and JavaScriptCore in Apple Safari[11], etc. Internally,
each engine has different implementations, but they all
follow the general pipeline.

When a JavaScript engine receives input code, it first
parses to it to generate the abstract syntax tree for the
interpreter. The interpreter generates byte-codes based
on the input syntax tree. Then, while running the byte-
code, the engine evaluates concurrently to identify which
code is being repeatedly executed (a.k.a hot code). If the
engine evaluated some code is “hot”, then it invokes the
compiler to compile and optimize the byte-code to native
code [9, 30]. While the optimized is being executed, it
performs a check on each piece of a code’s assumption
that “what needs to be done.” If this check fails, it
deoptimizes the code and returns to the byte-code stack
frame [30, 36]. Figure 1 illustrates Google Chrome’s V8
engine pipeline.



Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

var a, b; // should be var

for (var i = 0; i < 100000; i++) {

b = 1;

a = i + -0;

b = a;

}

print(a === b); // true

gc();

print(a === b); // false

Figure 2. An example of a PoC for a V8 JIT compiler
bug

3 A Running Example

Figure 2 shows an example of a “Proof-of-Concept”
(PoC) for a V8 JIT compiler bug [27] that we will use as
a running example. In this program, the high iteration
count of the for loop triggers JIT compilation. The JIT
compiler has a bug at the simplified lowering phase that
gets triggered by the line of code a = i + -0, but this
is not visible until a garbage collection occurs (in this
example, forced via the call gc()). In the resulting JIT-
optimized code, the value for a is incorrectly written to
a memory location where it is supposed to be protected
by the write barrier.

4 Research

We make the following assumptions about the JIT com-
piler under analysis:

1. The optimization phases within the JIT compiler,
and the function(s) that implement each such
phase, are known.

2. We can obtain a machine-instruction-level execu-
tion trace of the JIT compiler. There is enough
symbol table information available in the JIT com-
piler executable to map each machine instruction
executed to the function it belongs to. This al-
lows us to determine the sequence of optimization
phases executed for any given input program.

3. We can identify the input program’s IR and deter-
mine the values of the properties of IR nodes.

We assume that we have a bug report that contains
a Proof-of-Concept (PoC) input program that demon-
strates the JIT compiler’s buggy behavior. Such PoCs are
typically submitted when a bug is found and reported.
This section discusses how we use this information to
identify the optimization phase that most likely contains
a JIT compiler bug.

4.1 Overview

Our approach to automated bug localization, starting
from this PoC, consists of the following steps:

1. We begin by automatically modifying this PoC to
create a set of new input programs.

2. We run each of these programs Pi and collect an
instruction-level trace of their executions.

3. We analyze these execution traces to determine
whether or not Pi manifested the bug and to iden-
tify Pi’s intermediate representation (IR) within
the JIT compiler together with the optimization
phases executed while optimizing Pi.

4. From the information so gathered, we pick out the
candidates of where the bug may reside among the
tracked optimization phases.

5. Finally, we rank these candidates to identify the
most likely phase for where the bug is located.

The use of an instruction-level trace, rather than a higher-
level trace obtained using system-specific options or tools
(e.g., using V8’s --trace-turbo-graph) is motivated
by two considerations. First, the use of system-specific
features can inhibit portability across systems. Second,
these higher-level traces may not provide sufficiently
detailed information about how the JIT compiler manip-
ulates IR nodes. However, it does have the downside that
the collection of instruction-level traces can be expensive
in both time and space.

The remainder of this section describes each of these
steps in more detail.

4.2 Modified PoC Generation

Conceptually, we can think of the process of automatic
bug localization as taking the code involved in a buggy
execution and determining which portions of it might
contain the bug and which portions definitely do not.
The greater the amount of code that can be excluded
as “definitely not buggy” the better the bug localization.
To do this, we need a way to distinguish possibly-buggy
code from definitely-not-buggy code. For manual debug-
ging, software developers might use their knowledge of
the application code and/or programming language to
do this, but this does not seem easily automatable. A
more easily automated approach, pioneered by Liblit
[23–25], is to compare a set of buggy program executions
with a set of non-buggy executions to identify execution
behaviors that are common to the buggy executions but
not the non-buggy ones. This requires multiple program
executions, which requires multiple inputs.

In our case, unfortunately, we have only a single PoC
input.1 To deal with this situation, we modify the original
PoC input to create a set of additional input programs.
This modification process is guided by the following
constraints.

1It is of course possible that there may be multiple PoC inputs sub-
mitted for a particular JIT compiler bug, but this is not something

we can count on in general.



VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

1. To ensure that the newly generated programs are
syntactically correct, we modify the abstract syntax
tree (AST) of the original PoC rather than its
source code. We apply tree transformations that
ensure that the result is also a valid AST, then
map the modified AST back to source code.

2. To ensure semantic similarity between the newly
generated programs and the original PoC, all AST
node modifications are constrained to preserve the
type of the node. Specifically, this means that a
literal can only be replaced by another literal; a
binary arithmetic operator can only be replaced
by another binary arithmetic operator; an integer
constant can only be replaced by another integer
constant; a string can only be replaced by another
string; etc.

3. JIT compiler optimizations are sensitive to the
structure of the code being optimized, and large
changes to the input program can result in sub-
stantially different JIT compiler behavior, making
it less useful for automatic bug localization. To
this end, we keep the number of edits to the PoC
code small. For example, the prototype implemen-
tation described in Section 5 uses only a single
AST modification to generate each new program.

The second and third constraints produce programs
that are generally similar to the original PoC. This makes
it likely that the JIT optimizations they experience will
resemble the original PoC (though in generali, they will
not be identical).

Example 4.1. Consider the PoC code shown in Figure
2. The following are three of the new PoCs generated
using the modification process described above:

New program 1:
var a, b;

for (var i = 0; i < 100000; i++) {

b = 1;

a = i + +0; // Changed from ’-’ to ’+’.

b = a;

}:

print(a === b);

gc();

print(a === b);

New program 2:
var a, b;

for (var i = 0; i < 100000; i++) {

b = 1;

a = i + -1; // Changed from ’0’ to ’1’.

b = a;

}

print(a === b);

gc();

print(a === b);

New program 3:
var a, b;

for (var i = 0; i < 100000; i++) {

b = 1;

a = i & -0; // Changed from ’+’ to ’&’.

b = a;

}

print(a === b);

gc();

print(a === b);

□

4.3 Correct and Incorrect Execution of PoCs

After generating new PoCs as described in the previous
step, we execute each generated program P twice: once
with JIT optimization turned off (i.e., using only the
interpreter) and one with JIT optimization turned on.
Since this work is concerned only with JIT-compiler bugs,
the interpreter-only execution is considered to be “cor-
rect.” Thus, if P has the same observable behavior with
and without JIT optimization, the JIT compiler’s execu-
tion on input P is deemed to be non-buggy; otherwise it
is deemed to be buggy.

The approach discussed above assumes that the AST
modifications will generate a PoC variant that executes
correctly. While this cannot be guaranteed with abso-
lute certainty, the likelihood of obtaining a variant that
executes without errors can be increased by running the
PoC generator a large number of times. This issue is
discussed further in Section 6.

4.4 Representing Optimization IR in Graphs

As mentioned earlier, we assume that the function(s)
implementing each JIT-compiler optimization phase is



Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

known to the bug localization tool. Given an execution
trace T for a JIT compiler, we define the scope of a
phase ϕ in T as a subtrace of T that begins at the first
instruction where a function implementing the phase ϕ is
entered and ends at the instruction where that function
call returns. A phase may have multiple distinct scopes
in a trace, and a scope for a phase may be nested within
(i.e., be a subtrace of) scope for another trace.

We collect a machine-instruction-level trace of the
JIT compiler’s execution on each PoC code and analyze
the trace to determine (i) the sequence of optimization
phases executed, and (ii) how these phases manipu-
late the input program’s IR during JIT optimization.
Algorithm 1 shows the algorithm for this. The algorithm
proceeds as follows. For each instruction in the trace, we
use the symbol table information in the JIT compiler
binary to map it to the corresponding function name.
We use this to identify the entry into and return from
the functions that implement each phase and thereby
identify the scope of each phase. This process of phase
identification is important as we are grouping the IR
nodes and the optimization activities when any modi-
fication to the IR happened within the specific phase
scope. We scan the execution trace T and identify the
instructions that generate or modify an IR node for each
phase and we update the graph G appropriately. We
also identify instructions that change any property of an
IR node and update G to record this information. Our
current implementation only considers the property of a
node that was removed from the IR and disabled so that
it will not be converted to a machine code. At the end
of the analysis, this produces an undirected graph that
represents the IR that the JIT compiler has generated
and optimized. The resulting graph G is then passed to
next step for analysis.

Example 4.2. Figure 3 illustrates the phase graphG for
the PoC code shown Figure 2. A point to note is the large
number of IR nodes, and the density and complexity of
their structure, even for such a small and simple program.
This complexity is one of the factors that makes bug
localization in JIT compilers challenging. □

4.5 Phase Graph Analysis

The next step of our analysis is to compare the phase
graphs constructed in the previous step to identify differ-
ences between the phase graphs for buggy and non-buggy
executions of the JIT compiler. As noted in Section 4.2,
the different PoC codes we consider are obtained by mak-
ing a set of minimal edits to the original PoC, and so
are structurally very similar to the original PoC. Ideally,
given two structurally similar input programs where one
results in a buggy execution in the JIT compiler while
the other gives a non-buggy execution, the difference(s)

Algorithm 1: Optimization tracking on a
graph

Input: An execution trace T
Result: Undirected graph G that represents

optimized IR for T

1 function current phase(I):
2 f = function that instruction I belongs to

3 if f ≠ ⊥ and f implements a phase p then
4 if I is the entry to function f then
5 push p on PhaseStack

6 return p;

7 else if I is a return from function f

then
8 p = pop(PhaseStack)

9 return p;

10 else if PhaseStack is not empty then
11 return top(PhaseStack)

12 else
13 return ⊥

14 begin
15 V = ∅; /* the set of vertices of G in the

order of generation */

16 E = ∅; /* the set of edges of G */

17 G = (V,E)

18 PhaseStack = empty stack

19 for each instrucion I in T do
20 if I generates a new IR node then
21 create a new vertex v corresponding

to this new node

22 v.properties = ∅

23 add v to V in the order of generation

24 else if I adds a node u to an existing

node v then
25 add an edge (u, v) to E

26 else if I removes a node u from an

existing node v then
27 remove the edge (u, v) from E

28 else if I changes a property q of an

existing node v then
29 p = current phase(I)

30 add (q, p) to v.properties

between these execution behaviors—and, therefore, in
the corresponding phase graphs—should arise only from
the effects of the bug, thereby allowing us to localize
the bug. However, the situation is complicated by the
fact that the behavior of a JIT compiler can be highly





Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

Table 1. Bug reports considered for our evaluation

Report# Date V8 version Problem summary

5129 June 2016 8.3.1 MachineOperatorReducer changes x - y < 0 to x < y which is not
safe when x - y can overflow [4]

8056 Aug. 2018 7.0.0 Function reducer assumes that the prototype is an initial one and has
no element, but does not implement a check for this assumption [5].

791245 Dec. 2017 6.5.0 Write barrier to heap is sometimes incorrectly eliminated [27]
961237 May 2019 7.6.0 null is truncated to +0 even in contexts such as -0 == null because

it was not handling the TypeCheck correctly [6]
1072172 April 2020 8.4.0 In the Typer phase Math.max and Math.min generate the wrong type

by mistakenly removing the Type::MinusZero property of the input
nodes. [7]

and Φnonbuggy , corresponding to the buggy and non-
buggy executions respectively, we use this graph analysis
to compute, for each gi ∈ Φnonbuggy and gj ∈ Φbuggy , the
size of the difference set between gi and gj . To identify
the set of possible optimization phases that may contain
the bug, we select a pair (gi, gj) whose difference set is the
smallest among all such pairs. The resulting difference set
is taken to be the set of possible buggy phases. We select
a pair of phases with the smallest number of differences
because we want to find the graphs that are closest to
each other in terms of computation and optimization
such that one corresponds to the correct execution of the
JIT compiler while the other corresponds to an incorrect
execution. If there are multiple pairs with minimum
values, we choose one of them arbitrarily.

Example 4.3. Suppose that our set of phase
graphs is {G1, G2, . . . , G9}, where Φbuggy =
{G1, G2, G3, G4, G5, G6} and Φnonbuggy = {G7, G8, G9}.
In the table T shown below, the value in the cell T (i, j)
represents the size of the difference set between the
graphs gi ∈ Φnonbuggy and gj ∈ Φbuggy . For example,
graphs G1 and G7 differ in 11 optimization phases.

Φbuggy

T G1 G2 G3 G4 G5 G6

Φnonbuggy

G7 11 12 4 8 17 19
G8 13 7 9 12 16 14
G9 7 4 6 22 21 11

Each entry in this table is computed using Algorithm
2. We can see that i = 7 and j = 3 minimizes the value
of T (i, j). Thus, the set of possible buggy phases is given
by the difference set between G7 and G3. □

4.7 Ranking the Candidates

The ranking of candidate phases from most likely to the
least likely phase where the bug may reside is decided
by two criteria:

1. If a phase ϕ ∈ C, where C is a set of candidate
phases, such that ϕ ∈ Gx and ϕ /∈ Gz, then ϕ

is ranked higher than other candidates. This is
the most straightforward case because this miss-
ing phase is the one that makes difference in the
output. For example, let’s say Gx is a graph from
incorrectly executed code and Gz is a graph from
the correctly executed graph. Then, it is somewhat
clear that the additional phase ϕ execution caused
the incorrect output as not having this phase exe-
cuted gave correct execution.

2. If there are more than one missing phases or no
missing phases that are in C, then we rank them
by the order that the phase was executed. This
is because there is a possibility that the following
phases in the candidate are impacted by the first
place of the phase that has a bug as a result from
one phase flows to the next.

4.8 A Concrete Example

This section discusses a concrete example of the applica-
tion of the bug localization steps discussed above in the
context of our prototype bug localization tool, which is
described in Section 5.1. We focus on the bug discussed
in Section 3 (bug report 791245 [27]).

4.8.1 PoC Generation. The first step of the process
is to generate a number of input programs that are
variants of the original PoC, as described in Section
4.2; for our experiments, we specify a maximum of 20
such variants. Since we want each such variant to be only
minimally different from the original PoC, we specify that
each such variant should be only one edit different from
the original. This ensures that, although the variant PoC
codes are all different from each other, the computations
of the JIT-compiler are nevertheless close to each other.
In practice, the number of variant PoCs generated may
be less than the limit of 20 because it is possible for a
particular variant to be generated more than once, in
which case duplicates are discarded.



VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

4.8.2 Graph Generation and Analysis. The next
part of the prototype is to generate phase graphs from
the execution traces for each newly generated input PoC
codes, as described in Section 4.4. These graphs represent
the IR that the JIT compiler generates and optimizes.
In our experiment, we generated a total of 20 graphs,
of which 8 correspond to non-buggy executions of the
JIT-compiler and 12 correspond to buggy executions.
We then analyze pairs of phase graphs, from the buggy
and non-buggy executions, to identify the differences
between their optimization phases (Section 4.5). For the
particular bug report under discussion, the smallest dif-
ference sets obtained by this analysis had two candidate
buggy phases while the largest difference sets had five
candidate buggy phases.

4.8.3 Selecting the Candidates. The smallest
difference set obtained from the previous step con-
tains the following two candidate buggy phases:
SimplifiedLowering and GenericLowering. The
largest difference set contains the following five candidate
phases: Inlining, LoopPeeling, SimplifiedLowering,
GenericLowering, and EffectControlLinearization.
Our algorithm selects the smallest set as the set of
possible buggy phases, namely: {SimplifiedLowering,
GenericLowering}.

The other phases that occur in the largest differ-
ence set but not in the smallest one, e.g., Inlining
or LoopPeeling, arise due to different optimizations
applied by the JIT compiler due to differences in the
execution behaviors of some of the PoC variants created
by our tool. Our goal is to identify optimization phases
that are consistently analyzed as differences across all
the PoC variants. For this reason, we choose the phases
occurring in the smallest difference set.

4.8.4 Ranking the Candidates. The final step is
to rank the candidate buggy phases identified in the
previous step. We use the ranking algorithm discussed
in Section 4.7 for this. We first check each optimization
phases in the minimum candidate phases to find out
whether any of them is missing in one phase graph but
captured in the other. In our result, both phases are
found to occur in both graphs. We next check the execu-
tion order of the phases: a phase that is executed earlier
is ranked higher. In this example, SimplifiedLowering
is found to be executed before GenericLowering. The
ranking on the candidate phases generated by our tool
is therefore

1. SimplifiedLowering
2. GenericLowering

We checked the bug report and the Github repository
commit to find out whether this result matches

the phases where the bug was fixed. In this exam-
ple, it turns out that the actual buggy phase is
SimplifiedLowering, i.e., the top-ranked candidate
output by our tool: the bug reporter has reported
that this bug is an optimization bug that has to
do Simplified-lowererer IrOpcode::kStoreField,

IrOpcode::kStoreElement [27].

5 Evaluation

5.1 A Prototype Implementation

We evaluated our ideas using a prototype implemen-
tation and ran our experiments on a machine with 32
cores (@ 3.30 Ghz) and 1 TB of RAM, running Ubuntu
20.04.1 LTS. We used a dynamic analysis tool built on
top of Intel’s Pin software (version 3.7) [28] for program
instrumentation and collecting instruction-level execu-
tion traces; and XED (version 8.20.0) [19] for instruction
decoding [19]. Additionally, we used esprima-python [14]
to generate the syntax-tree for JavaScript code; and es-
codegen [38] to regenerate the JavaScript code from the
syntax-tree.

Our prototype targets Google’s JavaScript engine V8,
focusing in particular on TurboFan, V8’s JIT compiler.
The objective of our experiments is to determine the
accuracy of our algorithm in automatically localize bugs
to phase level in such a large and complex JIT com-
piler system. We used a number of bug reports from
the V8 bug report site, bugs.chromium.org, to check
whether the candidate buggy phases identified by our
prototype match the place where the bug has been fixed
as mentioned in the reports.

The bug reports we selected for our evaluation fo-
cused on incorrect optimized code generated by the JIT
compiler; in our experience, such bugs are especially
challenging to localize and can potentially benefit the
most from automatic localization. They were based on
the following criteria.

1. The bug resides in the JIT compiler source code.
In other words, the misbehavior (i.e. system crash
or incorrect output) is not caused by the bug in
other parts of the system, such as interpreter or
parser, etc.

2. An extension criteria from the first one, we selected
a bug report that produces different output behav-
ior in the optimized code from the interpreted code.
For example, the interpreted execution returns a
boolean value true while the optimized code returns
a value false. This confirms that the problematic
behavior is in fact due to incorrect optimization
by the JIT compiler.

3. If a bug causes a crash during the optimization
process, we exclude the bug report; whereas we



Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

Table 2. Accuracy of bug localization
Report no. Possible buggy phases identi-

fied by our tool (in descend-
ing order of rank)

Actual buggy phase

5129

1. Inlining
2. SimplifiedLowering
3. GenericLowering
4. EarlyOptimization

EarlyOptimization

8056
1. Inlining
2. TypedLowering
3. LoopPeeling

Inlining

791245
1. SimplifiedLowering
2. GenericLowering

SimplifiedLowering

961237

1. SimplifiedLowering
2. GenericLowering
3. EffectControlLinearization
4. LoopPeeling

SimplifiedLowering

1072172
1. Typer
2. SimplifiedLowering

Typer

select the bug report that indicated that the crash
happens during the execution of optimized code.
This is because if the system crashes during the
optimization process, it usually gives a stack trace
from the crashed function, which is, not easy, but
somewhat straightforward to localize the bug. How-
ever, if the system crashes during the execution of
optimized code, it is not so trivial to localize the
bug in the optimizer as the information about who
optimized the crashed code is not sufficient.

4. Finally, the misbehavior in the optimized code is
due to incorrect optimization on the IR nodes. This
is because we are comparing the differences in the
IR nodes. If the bug resides outside of the IR node
generation or modification, our algorithm is not
suitable. Therefore, we studied the fixes that the
V8 team has made, and if the fix was made on
the code that has to do with the IR node then we
select the bug report.

The bugs we considered in our evaluation are described
in Table 1. For each such bug report, we proceeded as
follows.

1. We compiled the appropriate version of V8 and
confirmed that we could manually replicate the
buggy behavior described in the PoC given as part
of the bug report.

2. We used our tool to generate a ranked list of pos-
sible buggy phases.

3. We obtain the ground truth of the actual location
of the bug using the next released version of V8
where the bug has been fixed. We use two different
approaches for this:
a. We compare the fixed source code in the new

version with the buggy code in the old version to

identify code changes, and thereby determine the
location of the buggy phase. This is done with
code where it is straightforward to identify the
phase, e.g., if the fixed code is under simplified-
lowering or typer file, etc.

b. The second approach is to locate the source
code where the bug was fixed and add a marker
that can be used to identify that code fragment
in an instruction-level execution trace of the
progam trace. A marker is a value that is (a)
very unlikely to naturally generated during the
program execution (e.g., unsigned long long

xyz = 0x3f4f5f6f where xyz is a new variable);
and (b) that does not change the program’s ex-
ecution behavior. We then collect an execution
trace, use the marker to find the code fragment
that was marked, and use the current phase func-
tion shown in Algorithm 1 to determine its phase.
This approach is used to confirm that first phase
identification was correct and for cases where the
same functions are used multiple times across
different phases.

4. We compare the possible bug locations obtained
from our tool with the ground-truth location of
the fixed bug.

5.2 Accuracy of Bug Localization

Table 2 compares the ranked list of candidate buggy
phases obtained from our tool against the actual buggy
phases identified from examining the code of the fixed
versions. The first column is the report number identify-
ing the bug. The second column of the table shows the
output from our tool giving the possible buggy phases
in descending order of rank. The third table gives the



VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

ground truth location of the bug at the phase level. In
this table, the number of candidate bug locations (col-
umn 2) is different for different bugs considered. This is
because (a) different inputs result in the invocation of
different optimizations, e.g., loop-peeling is not triggered
for code without loops; (b) the number of differences
found between the graphs for buggy and non-buggy ex-
ecutions of the JIT compiler are different for different
inputs; and (c) we only select the smallest difference set.

It can be seen from Table 2 that for each of the five
bugs considered, the actual buggy phase is in fact iden-
tified as one of the possible locations by our tool. For
four out of the five bugs, the phase containing the actual
bug is in fact ranked at the top of the list of possible
bug locations obtained using our tool. For the fifth bug
(report no. 5129 [4]), the actual buggy phase is ranked
fourth in the ranked list of candidates given by our tool.
The reason for this is that our ranking algorithm priori-
tizes candidate buggy phases in terms of their relative
execution order. For this bug, the EarlyOptimization
phase was executed after other phases, resulting in its
lower ranking. An additional possible source of impreci-
sion in our tool in this example is that the buggy func-
tion, MachineOperatorReducer::Reduce(), was also in-
voked by the other higher-ranked phases to modify the
input program’s IR. We are currently working on im-
proving and refining our ranking algorithm.

There are roughly 30 optimization phases in TurboFan
(the exact number differs between different V8 versions).
Out of these 30 or so phases, our tool is able to isolate
just a small number as being the potentially buggy ones;
and in four out of the five bug reports we considered,
our tool accurately lists the actual buggy phase at the
top of its list of candidates.

As noted earlier, TurboFan is a large, complex, and
mature software system. To provide some context for the
accuracy numbers from the previous section, it is useful
to consider the size of the code under consideration. The
complexity of the code base makes it nontrivial to give
static line counts for the source code. Instead, Table
3 gives dynamic instruction counts from the execution
traces we collected. The columns in this table are as
follows:

∙ Sum: the total number of instructions executed over
all optimization phases.

∙ Max: the maximum number of instructions executed
by any single phase across all optimization phases.

∙ Med: the median number of instructions executed by
any single phase

∙ Min: the minimum number of instructions executed
by any single phase.

∙ Phases: the total number of optimization phases exe-
cuted during the JIT compilation.

It can be seen that while the minimum instruction counts
are small, the median instruction count for the opti-
mization phases ranges from 35K to 57K instructions.
Overall, the optimization phases in the JIT compiler
incur between 3.2M and 8.6M instructions. Additionally,
although not all optimization phases apply optimizations
to the IR nodes, all the phases get executed to evaluate
the node to decide whether the evaluated node requires
optimization or not. And, these executed, but did not
perform optimization, phases still take large portions
of the instructions. Moreover, it is not clear which op-
timization phases were executed to actually optimize
the IR nodes until we analyze the IR, which our im-
plementation identifies all the executed phases (approx.
30-ish) and identifies only those that actually performed
optimizations to the IR nodes (approx. 9 to 12-ish) and
narrow down to the potentially buggy phases (approx. 1
to 5-ish).

6 Discussion

As the evaluation results from the previous section indi-
cate, our algorithm is effective in localizing JIT compiler
bugs down to the level of individual optimization phases.
It would be desirable, however, to be able to further nar-
row the possible bug location, e.g., down to the function
level. This is a limitation of our algorithm that we are
currently working on improving.

6.1 Ambiguity in Function Calls

There are two main reasons our algorithm is currently
unable to localize bugs to the level of individual functions.
The first is that, while we are able to identify clearly the
entry and exit points for optimization phases, call-return
relationships between functions can sometimes be tricky
to resolve. For example, GCC’s sibling call optimization
(which is enabled by default at optimization levels -O2
and higher) can replace some function calls with jumps,
where control does not come back to the originating
function. Additionally, assigning function-level blame
for IR node modifications can be tricky. For example,
suppose we have the following function call chain that
results in the buggy modification of an IR node within
the function h():

f() → g() → h()

In this case, the bug may be that g() incorrectly calls
h(), but it is also possible that the problem really is in
the function f().

Moreover, further narrowing down the buggy loca-
tion can also be done by learning more about the node
properties. So far, we are only identifying the properties
of a node by the function names. V8 has some specific
functions that access node to add/remove/modify the



Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

Table 3. Size of Phases per V8 Bug Report PoC(dynamic instruction count)
Dynamic instruction counts

Report# Sum Max Med Min Phases
5129 5,628,850 269,335 35,393 950 29
8056 5,456,457 326,382 30,944 516 30

791245 3,237,583 406,720 57,374 696 33
961237 5,591,942 271,468 35,687 401 33
1072172 8,650,393 383,706 53,329 1380 34

properties. We seek these functions and identify which
node that it’s accessing to add/remove/modify the node
properties. However, some node properties can be modi-
fied directly without calling the modifier functions, which
we are facing difficulties to capture the pattern in the
trace instructions. Thus, we are continuing our research
to come up with a solution that can capture the node
properties in general to solve this problem.

6.2 Scope of the Current Approach

Additionally, our approach has a scope where the bug
resides in the optimization phase functions that optimize
the IR nodes. As mentioned in the evaluation section,
where it discusses how the bug reports were selected,
our approach has limitations in localizing the bug in
the JIT compiler where it does not generate or modify
the IR node. More explicitly, for example, if the bug
is in the JIT compiler code where it generates some
faulty object that is not related to the IR node, but will
be used in the optimized code, then our tool won’t be
able to recognize such bug. Therefore, we are currently
investigating improving our approach to recognizing all
declared objects not only the IR nodes, which are in fact
just special kind of objects, and analyze them. This can,
possibly, be done by recognizing the patterns of memory
allocation and manipulations for objects in the low-level
instructions.

6.3 Assumption in the Correct Execution

Finally, our approach currently assumes that at least one
modified PoC will execute correctly. While this was true
for the experiments described, it cannot be guaranteed
in general. Possible solutions to this include allowing
more than one edit operation to the AST of the original
PoC (our tool currently limits itself to a single edit).
This is a problem we are currently investigating.

7 Related Work

There is a considerable body of work on automated bug
localization, which we summarize below. To the best of
our knowledge, none of this work considers code that is
dynamically generated, as in the case of JIT compilers,
and so is inapplicable to the problem we address in this

paper. The issue with JIT compiler bugs is that they
result in the generation of incorrect code that causes
the application being optimized to crash or compute
incorrect results. It seems to us that, in order to effec-
tively localize bugs in such systems, the bug localization
system needs to model the causal dependencies between
the data manipulated by the JIT compiler (e.g., the pro-
gram IR being optimized) and the execution behavior
of the resulting dynamically generated application code.
Existing approaches to automated bug localization do
not do this.

Automated bug localization approaches can be broadly
classified as either static or dynamic. Static bug local-
ization approaches typically use information retrieval
techniques [29, 35, 43]. We are not aware of applications
of static bug localization to software systems such as JIT
compilers that generate code during execution. Dynamic
bug localization techniques, by contrast, use the dynamic
analysis to monitor the execution behavior of the pro-
gram on buggy and non-buggy inputs [8, 15, 20, 21, 23–
26]. The work described in this paper falls in the latter
category. More recently, there has been a great deal of in-
terest in the application of machine learning techniques
to automatic bug localization [22, 32, 33, 41, 42]. As
noted above, these works do not consider systems that
generate code during program execution.

Research on debugging optimized code has been car-
ried out by a number of researchers [2, 3, 17], but to
the best of our knowledge all of this works are to debug
an optimized code at source-level. The approaches in-
clude mapping the binary to source-level, modifying the
compiler to produce more information about the opti-
mizer, or deoptimizing the optimized code to retrieve the
source-level code, etc. However, these approaches are not
very suitable when they have to debug optimized code
that was generated by JIT compilers, which compiles
byte-code, as they won’t be able to retrieve the source-
level code from the optimized code. Instead, they will
have to figure out the mappings between the optimized
code to byte-code, then again mapping the byte-code to
source-level, which such an approach is not implemented
in any of the papers.

Tice and Graham proposed another method of debug-
ging the optimized codes. Instead of directly mapping



VEE ’21, April 16, 2021, Virtual, USA HeuiChan Lim and Saumya Debray

the optimized code, which is in binary, to the original
source code, it generates a new source code that rep-
resents optimized code[39]. Nonetheless, this approach,
again, shows the limitation as (1) JIT compilers does not
generate code from the source code, but from byte-codes,
so it won’t be able to regenerate the source code that
represents the optimized code and (2) the complexity of
optimization has increased hugely since the paper was
written.

8 Conclusion

Many widely-deployed modern programming systems use
just-in-time compilers to improve performance. However,
we are not aware of any existing automated systems to
automatically locate JIT compiler bugs in a large and
complex JIT-based system. This paper discusses how this
problem can be addressed by automatically capturing
the patterns of the JIT compiler’s optimization phases
and the intermediate representations that it generates
and optimizes as well as analyzing them by comparing
the captured IRs and rank them in the order of most
likely location to least likely locations for the bug.

Although there are plenty of spaces for improving
our algorithm and the implementation to more precisely
localizing the bug, our experiments with a prototype
implementation on a number of real-world examples
show that re-generating JIT compiler’s IRs and analyzing
them to rank the optimization phases led to localizing
the bug to a smaller part of the system.

Acknowledgments

This research was supported in part by the National
Science Foundation under grant no. 1908313.

References

[1] Mohammed Aboullaite. 2017. Understanding JIT compiler

(just-in-time compiler). https://aboullaite.me/understanding-

jit-compiler-just-in-time-compiler/
[2] Ali-Reza Adl-Tabatabai and Thomas Gross. 1996. Source-

Level Debugging of Scalar Optimized Code. In SIGPLAN
Notices. 33–43.

[3] Gary Brooks, Glibert J. Hansen, and Steve Simmons. 1992.

A new approach to debugging optimized code. PLDI ’92:
Proceedings of the ACM SIGPLAN 1992 conference on Pro-

gramming language design and implementation (1992), 1–11.

[4] bugs.chromium.org. 2016. Issue 5129: Turbofan changes x−

y < 0 to x < y which is not equivalent when (x− y) overflows.

https://bugs.chromium.org/p/v8/issues/detail?id=5129

[5] bugs.chromium.org. 2018. Issue 8056: [turbofan] Optimized
Array#indexOf and Array#includes ignore a prototype that

is not initial. https://bugs.chromium.org/p/v8/issues/detail?

id=8056
[6] bugs.chromium.org. 2019. Issue 961237: Security: jit difference

on comparison in d8. https://bugs.chromium.org/p/chromium/
issues/detail?id=961237

[7] bugs.chromium.org. 2020. Issue 1072171: Security: missing
the -0 case when intersecting and computing the Type::Range

in NumberMax. https://bugs.chromium.org/p/chromium/

issues/detail?id=1072171
[8] Trishul M Chilimbi, Ben Liblit, Krishna Mehra, Aditya V

Nori, and Kapil Vaswani. 2009. HOLMES: Effective statistical
debugging via efficient path profiling. In 2009 IEEE 31st
International Conference on Software Engineering. IEEE,

34–44.
[9] Adam C. Conrad. 2018. How JavaScript Engines Work.

https://adamconrad.dev/blog/how-javascript-engines-work

[10] Max Copperman. 1992. Debugging Optimized Code Without
Being Misled.

[11] Apple developers. [n.d.]. JavaScriptCore. https://developer.

apple.com/documentation/javascriptcore
[12] Google V8 developers. [n.d.]. V8. https://v8.dev/

[13] Microsoft Chakra developers. [n.d.]. ChakraCore. https:

//github.com/chakra-core/ChakraCore
[14] JS Foundation. [n.d.]. esprima-python. https://github.com/

Kronuz/esprima-python
[15] Neelam Gupta, Haifeng He, Xiangyu Zhang, and Rajiv Gupta.

2005. Locating faulty code using failure-inducing chops. In
Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering. 263–272.

[16] Franziska Hinkelmann. 2017. Understanding V8’s Byte-
code. https://medium.com/dailyjs/understanding-v8s-bytecode-
317d46c94775

[17] Urs Holzle. 1992. Debugging optimized code with dynamic
deoptimization. ACM Sigplan Notices 27 (1992). Issue 7.

[18] Fedor Indutny. 2015. Sea of Nodes. https://darksi.de/d.sea-

of-nodes/
[19] Intel Corp. [n.d.]. Intel XED. https://intelxed.github.io.

[20] Lingxiao Jiang and Zhendong Su. 2007. Context-aware sta-

tistical debugging: from bug predictors to faulty control flow
paths. In Proceedings of the twenty-second IEEE/ACM in-

ternational conference on Automated software engineering.
184–193.

[21] Guoliang Jin, Aditya Thakur, Ben Liblit, and Shan Lu. 2010.

Instrumentation and sampling strategies for cooperative con-

currency bug isolation. In Proceedings of the ACM interna-
tional conference on Object oriented programming systems

languages and applications. 241–255.

[22] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and
Tien N Nguyen. 2017. Bug localization with combination of
deep learning and information retrieval. In 2017 IEEE/ACM
25th International Conference on Program Comprehension

(ICPC). IEEE, 218–229.
[23] Benjamin Liblit. 2004. Cooperative Bug Isolation. Ph.D.

Dissertation. University of California, Berkeley.
[24] Ben Liblit, Alex Aiken, Alice X Zheng, and Michael I Jordan.

2003. Bug isolation via remote program sampling. ACM
Sigplan Notices 38, 5 (2003), 141–154.

[25] Ben Liblit, Mayur Naik, Alice X Zheng, Alex Aiken, and
Michael I Jordan. 2005. Scalable statistical bug isolation.
Acm Sigplan Notices 40, 6 (2005), 15–26.

[26] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P
Midkiff. 2005. SOBER: statistical model-based bug local-

ization. ACM SIGSOFT Software Engineering Notes 30, 5

(2005), 286–295.
[27] lokihardt. 2017. Issue 791245: Security: V8: JIT: Simplified-

lowererer IrOpcode::kStoreField, IrOpcode::kStoreElement op-

timization bug. https://bugs.chromium.org/p/chromium/
issues/detail?id=791245



Automated Bug Localization in JIT Compilers VEE ’21, April 16, 2021, Virtual, USA

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. 2005. Pin: Build-
ing Customized Program Analysis Tools with Dynamic In-

strumentation. In Proc. ACM Conference on Programming
Language Design and Implementation (PLDI). Chicago, IL,

190–200.
[29] Stacy K. Lukins, Nicholas A. Kraft, and Letha H. Etzkorn.

2010. Bug localization using latent Dirichlet allocation. In-

formation and Software Technology 52, 9 (2010), 972 – 990.
[30] Benedikt Meurer. 2017. An Introduction to Speculative Opti-

mization in V8. https://ponyfoo.com/articles/an-introduction-

to-speculative-optimization-in-v8
[31] Mozilla. [n.d.]. SpiderMonkey: The Mozilla JavaScript

runtime. https://developer.mozilla.org/en-US/docs/Mozilla/

Projects/SpiderMonkey
[32] Zhendong Peng, Xi Xiao, Guangwu Hu, Arun Kumar Sanga-

iah, Mohammed Atiquzzaman, and Shutao Xia. 2020. ABFL:

An autoencoder based practical approach for software fault
localization. Information Sciences 510 (2020), 108–121.

[33] Sravya Polisetty, Andriy Miranskyy, and Ayşe Başar. 2019.
On Usefulness of the Deep-Learning-Based Bug Localization

Models to Practitioners. In Proceedings of the Fifteenth Inter-
national Conference on Predictive Models and Data Analytics
in Software Engineering. 16–25.

[34] Jordan Rabet. 2017. Browser security beyond sand-
boxing. Microsoft Windows Defender Research.
https://cloudblogs.microsoft.com/microsoftsecure/2017/

10/18/browser-security-beyond-sandboxing.

[35] Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and De-
wayne E Perry. 2013. Improving bug localization using struc-

tured information retrieval. In 2013 28th IEEE/ACM In-
ternational Conference on Automated Software Engineering

(ASE). IEEE, 345–355.
[36] Jaroslav Sevcik. 2016. Deoptimization in

V8. https://docs.google.com/presentation/d/

1Z6oCocRASCfTqGq1GCo1jbULDGS-w-nzxkbVF7Up0u0/
htmlpresent

[37] Jim Smith and Ravi Nair. 2005. Virtual machines: versatile
platforms for systems and processes. Elsevier.

[38] Yusuke Suzuki. [n.d.]. Edcodegen. https://github.com/

estools/escodegen
[39] Caroline Tice and Susan L. Graham. 1998. OPTVIEW: A New

Approach for Examining Optimized Code. In Proceedings of

ACM SIGPLAN Workshop on Program Analysis for Software
Tools and Engineering. ACM.

[40] Ben L. Titzer. 2015. Digging into the TurboFan JIT.

https://v8.dev/blog/turbofan-jit.
[41] Geunseok Yang, Kyeongsic Min, and Byungjeong Lee. 2020.

Applying deep learning algorithm to automatic bug local-

ization and repair. In Proceedings of the 35th Annual ACM
Symposium on Applied Computing (SAC ’20). 1634–1641.

[42] Sai Zhang and Congle Zhang. 2014. Software Bug Local-
ization with Markov Logic. In Companion Proceedings of

the 36th International Conference on Software Engineer-
ing. Association for Computing Machinery, 424–427. https:
//doi.org/10.1145/2591062.2591099

[43] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where
should the bugs be fixed? more accurate information retrieval-
based bug localization based on bug reports. In 2012 34th
International Conference on Software Engineering (ICSE).

IEEE, 14–24.


	Abstract
	1 Introduction
	2 Background
	2.1 Interpreters and JIT Compilers
	2.2 JavaScript Engine Pipeline

	3 A Running Example
	4 Research
	4.1 Overview
	4.2 Modified PoC Generation
	4.3 Correct and Incorrect Execution of PoCs
	4.4 Representing Optimization IR in Graphs
	4.5 Phase Graph Analysis
	4.6 Candidate Selection
	4.7 Ranking the Candidates
	4.8 A Concrete Example

	5 Evaluation
	5.1 A Prototype Implementation
	5.2 Accuracy of Bug Localization

	6 Discussion
	6.1 Ambiguity in Function Calls
	6.2 Scope of the Current Approach
	6.3 Assumption in the Correct Execution

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

