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An elegant and robust approach for discrete adjoint-based automatic differentiation of the Fortran codes is
proposed in this work. The technique aims at bridging the gap within the Fortran programming language that
currently lacks certainmetaprogramming paradigms that are readily available at compile time inC/C++ codes.More
specifically, the present work uses an expression-based tape approach, which is the first-of-its-kind implementation
in Fortran programming language, that can significantly reduce the memory footprint while improving the
computational efficiency of the adjoint-based automatic differentiation (AD). The proposed expression-template-
based approach is incorporated in our in-house AD toolbox, which currently is the only Fortran-based tool in the
literature that uses a fixed-point-type operator-overloading adjoint sensitivity analysis. The improved version of the
fast automatic differentiation using operator-overloading technique toolbox is then coupled with the in-house
unstructured parallel compressible (UNPAC) flow solver for a robust design optimization framework (DOF),
called UNPAC-DOF. The efficiency and robustness of the proposed technique and the resulting framework are
tested for aerodynamic shape optimization problems applied to airfoil and wing geometries.

Nomenclature
A = airfoil cross-sectional area
b = wing semispan
CD = drag coefficient for the airfoil or wing geometry
CL = lift coefficient for the airfoil or wing geometry
CM = moment coefficient for the airfoil or wing geometry
e = span efficiency of the wing
f!x" = unary operation with operand x
g!x; y" = binary operation with operands x and y
I = objective or cost function
L = Lagrangian function
S = reference semispan wing area
ti = ith active and passive variables in the expression tree
U = vector of the computational fluid dynamics solutions

(conservation variables)
v = adjoint tape entries or variables
x = vector of design variables
xi = ith active variable in the expression tree
x = adjoint of the x variable based on the objective func-

tion I; that is, x # !∂I∕∂x"
α = angle of attack
γ = wing twist angle
ϵ = small perturbation parameter for finite difference

approximations
Λ = wing aspect ratio
λ = Lagrange multiplier or adjoint solution
ξ; η; ζ = parametric coordinates corresponding to the !x; y; z"

Cartesian coordinates

I. Introduction

P RESENTED in thiswork is the development and application of a
first-of-its-kind approach to automatically compute discrete

adjoint sensitivities for computational fluid dynamics (CFD) codes
written in Fortran programming language. The toolbox developed
herein that mimics the “expression-template metaprogramming” can
be directly and rapidly coupledwithmany legacy flow solvers used in
the aerospace industry. The motivation and the need for this research
will be discussed in detail in what follows.
With the advances in computational science and technologies,

aerodynamic shape optimization has become a viable tool for design-
ing efficient systems that involve optimized topologies satisfying
certain aerodynamic objectives. In particular, gradient-based design
optimization techniques that rely on accurate gradient or sensitivity
information have grown in popularity due to their robustness in
determining an “optimal” solution in a handful of design cycles.
However, developing an efficient gradient-based design optimization
framework in terms of computational and memory requirements can
be very challenging.
The introduction of the adjoint methods [1,2] in control theory and

their application to fluid dynamics problems [3] have provided an
efficient tool for gradient and sensitivity calculations. The adjoint
method can be implemented in two different forms depending on the
order withwhich the discretization and variation steps are performed.
In the continuous adjoint approach [4,5], the variations are taken first
before discretizing the resulting set of equations, whereas in the
discrete adjoint approach [6,7], the computational process is
reversed. Of particular interest in the present work is the discrete
adjoint method where the cost function is first augmented with the
flow equations, using the Lagrange multipliers, before taking their
variations. The latter step is generally performed using automatic or
algorithmic differentiation (AD), which systematically applies the
chain rule of differentiation to the discretized equations.
Depending on the direction in which the derivatives are propa-

gated, the automatic differentiation can be performed in 1) forward/
tangent or 2) reverse/adjoint modes. It must be noted that both modes
of AD provide nonapproximative and highly accurate gradient infor-
mation for all design variables involved in the optimization problem.
In the present context, we focus on the reverse mode of AD because
its computational cost is around three to five times that of the primal
solver (i.e., the flow solver) and independent of the number of design
variables. However, the reverse ADmode requires the reversal of the
entire expression tree for the primal solver, which makes it more
challenging to implement. In terms of programming, the reverse AD
mode can be performed using source-code transformation [8,9] or
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operator overloading (OO), with the latter technique being the focus
of the present work. The interested reader is referred to Ref. [10] for
the details of both approaches.
In the OO/AD approach, the entire expression tree is recorded in a

derived-type class called the tape, which is used at a later stage for
adjoint evaluations. Many OO/AD tools are available, depending on
the programming language that is used, with ADOL-C [11], Adept
[12], CppAD [13], and CoDiPack [14] being the most commonly
used tools for C/C++ programs and ADF [15], ADOL-F [16],
AUTO_DERIV [17], DNAD [18], and dco/Fortran [19] being the
most commonly used tools for Fortran programs. More recently,
Djeddi and Ekici [20] have developed a novelOO/AD toolbox, called
the FDOT (which stands for fast automatic differentiation toolbox
based on operator-overloading technique), for automatically differ-
entiating Fortran programs. The FDOTuses the operator-overloading
capabilities of the modern Fortran language to provide an efficient
and fully automated framework for gradient and sensitivity calcula-
tions. Coupled with an in-house computational fluid dynamics
solver, the FDOT toolbox has been effectively used in gradient-based
optimization problems for designing optimal airfoil and wing
topologies [21].
It is worth noting that the in-house FDOT toolbox is the only

available OO/AD tool with advanced memory handling for Fortran
programs, and it is proven to be very efficient, both in terms of
memory and CPU requirements [20,21]. However, due to the limi-
tations of the Fortran programming language, the original version of
the FDOTwas at a disadvantage compared tomore advancedOO/AD
tools developed for C/C++ programs such as CoDiPack [14]. More
specifically, the use of “expression templates” as ametaprogramming
paradigm in C++ language has enabled CoDiPack to significantly
reduce the memory footprint associated with the operator-overload-
ing-based automatic differentiation.
In this work, a modified and more robust version of the FDOT

toolbox is developed. This enhanced version of the FDOT uses a
novel expression-based tape approach, which greatly improves the
memory and computational efficiency of the OO/AD toolbox. The
improved toolbox is then incorporated into a design optimization
framework called UNPAC-DOF [which stands for unstructured par-
allel compressible (UNPAC) design optimization framework (DOF)]
[21] to efficiently and accurately calculate the sensitivity information
of a cost function with respect to any design variable. Together with
our in-house CFD solver as well as a gradient-based optimization
algorithm, the UNPAC-DOF offers a robust aerodynamic shape
optimization framework for improving the design of airfoils and
wings. In the following sections, details of the novel approach used
in the FDOT toolbox as well as the design optimization framework
are described. Finally, the method is applied to a set of different
aerodynamic shape optimization problems.

II. Discrete Adjoint-Based Sensitivity Analysis
As discussed in the previous section, the FDOT toolbox developed

by Djeddi and Ekici [20] is capable of efficient and accurate evalu-
ation of the gradient information for any given primal solver. Simply,
it uses the concept of discrete adjoint sensitivity analysis and the
object-oriented programming paradigms. At its core, the FDOT tool-
box introduces a new derived type for real-typed variables, called
AReal, while overloading all unary and binary operations and
intrinsic functions handling any combination of AReal and other
types of variables. This enables one to couple any numerical solver
with the FDOT toolbox to obtain the gradients or sensitivities of the
output (objective) function(s) with respect to all independent (design)
or intermediate variables. The process of gradient calculation
involves an “adjoint evaluation” process, and its computational cost
is only a small multiple of that of the primal solver [22,23].
Due to the fact that the FDOT uses the reverse mode of automatic

differentiation, the derivatives are propagated in the reverse direction
compared to the primal flow solver. Normally, this would require the
complete time history of the primal flow equations to be stored in the
memory aswhat is often called the tape. During the adjoint evaluation
process, the recorded tape is executed in the reverse order while the

derivatives are accumulated based on the recorded adjoint informa-
tion. This process is common to almost all OO/AD tools and is a
significant factor that affects the efficiency and efficacy of the auto-
matic differentiation toolbox. More specifically, the memory foot-
print of the recorded tape can become intractable for a large-scale
three-dimensional flow solver that involves a significant number of
expressions being executed at run time.
To the best of the authors’ knowledge, the FDOT is the first OO/AD

tool developed for Fortran programming language that reduces the
memory requirements by incorporating an iterative process similar to a
fixed-point iteration approach originally proposed by Christianson
[24,25]. For a successful implementation of this idea, the FDOT tool-
box takes advantage of the fact that most CFD solvers are made up of
three major parts including 1) a preiterative process that handles grid
preprocessing and flow initialization, 2) an iterative process that solves
the flow equations, and 3) a postiterative process that computes the
cost function based on the converged flow solution. Since the iterative
stage is known to be the most complex part of any CFD solver, using a
fixed-point iteration approach can eliminate the need for the repeated
evaluations of the steady flow solution and recording unnecessary
information in the tape. Therefore, the memory footprint of the tape
can be greatly reduced by recording only a single pass of the adjoint
solver, provided that the CFD solver is fully converged. This iterative
approach for adjoint accumulation is described in more details in a
previous work [21].
One of many attractive features of the FDOT toolbox that makes it

a robust OO/AD tool is that it requires minimal changes to an already
existing primal solver in order to obtain the adjoint counterpart of that
solver. By declaring the flow solution variablesUwhile alsomarking
the start and end of the iterative part using a “checkpointing” func-
tion, the FDOT toolbox can be efficiently used for adjoint evaluations
while being fully automated with minimal user interventions. The
overall scheme demonstrating the process required for coupling the
primal solver to the FDOT is depicted in Fig. 1.
The main goal of the present work is to improve the computational

and memory efficiencies of operator-overload-based adjoint analyses
using the Fortran programming language. This would enable the
application of the approach to large-scale CFD solvers written in
Fortran. As the first step, it is necessary to review the adjoint evaluation
process using the FDOT OO/AD tool. When the expression tree is

Fig. 1 Flowchart for the FDOT toolbox and its integration into the
primal CFD solver (adopted from the works of Djeddi and Ekici
[20,21]).
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recorded into the operation stack, known as the “OP stack,” the
indices of the arguments (one for unary and two for binary opera-
tions) are also recorded. As an example, let us assume the following
unary and binary operations:

c1 # f!x" to OP stack
$$$$$$$$$$$$!

index!x"; tag!f!□""; value!c1"; adjoint!c1"

(1)

c2 # g!x; y" to OP stack
$$$$$$$$$$$$!

index!x; y"; tag!g!□;Δ""; value!c2";

adjoint!c2" (2)

Itmust be noted thatwith the preceding format, each tape entrywill
require 27 B of memory, of which 4 B are used for each of the
argument indices, 1 B is used for an operation tag, 1 B is used for an
“iterative” flag, 1 B is used for a “passive” flag, and 16 B are used for
storing the primal and adjoint values (for double-precision compu-
tations). The recorded tape is then used during adjoint evaluations to
calculate the adjoint values for all active variables involved in the two
operations, i.e.,

x # x% ∂g

∂x
c2 (3)

y # y% ∂g

∂y
c2 (4)

x # x% ∂f

∂x
c1 (5)

whichmeans ∂f∕∂x, ∂g∕∂x, and ∂g∕∂y derivatives should be defined
as a function of the input arguments. This can be easily done for any
differentiable function that handles unary or binary operations. Since
the adjoint evaluations for steady design optimization are performed
following a fully converged primal flow solution, even the nondiffer-
entiable functions would be locally differentiable. For example,
functions such asmin andmax, which are nonsmooth and nondiffer-
entiable at certain points, can be viewed as simple assignment
operations, depending on the known values for their two passed
arguments.
Needless to say, different functions and operations would have

their own derivatives defined with respect to their input arguments.
Therefore, during the adjoint evaluations, for each tape entry,we need
to use a switch/case, which will determine the exact derivative (i.e.,
∂f∕∂x, ∂g∕∂x, or ∂g∕∂y), depending on the tag stored in the tape.
This process can slow down adjoint evaluations, especially in cases
where the length of the recorded tape is very large.
In this work, a new approach is proposed to calculate the partial

derivative information that can greatly enhance the performance of
the adjoint evaluation process. By using this new approach, the length
of the tape can be significantly reduced while also reducing the
memory footprint per tape entry. Additionally, the switch/case struc-
ture is eliminated, which improves the performance of the iterative
adjoint calculation significantly. To motivate the development of the
proposed method, let us assume that the entire CFD solver can be
written as a set of functions applied to a number of independent
(design) variables as well as intermediate variables to finally achieve
the objective function. Therefore, we can write

vn%1 # fn!v1; v2; v3; : : : ; vn" (6)

where v1 through vn correspond to k independent and one inter-
mediate variables (with n # k% 1) leading to vn%1, which can be
assumed to be the objective or cost function, i.e., I # vn%1. By
applying the chain rule of differentiation to the preceding expres-
sion, we can calculate the adjoints of the independent and inter-
mediate variables as

∂I

∂vm
# ∂vn%1

∂vm
#

Yn

i#m

∂vi%1

∂vi
for any m ≤ n (7)

The preceding formula is nothing but a repeated application of the
chain rule of differentiation, which is the cornerstone of the automatic
or algorithmic differentiation technique. In a CFD solver, each inter-
mediate variable is calculated using an assignment operation (#) that
can be defined on a single line ormultiple (broken-down) lines of code.
Each of these assignment operations can be viewed as an expression
where on the left-hand side (LHS), we have vi, and on the right-hand
side (RHS), we have independent and/or intermediate variables vj that
have been defined previously, i.e., j < i. Ultimately, the result of the
operations performed on all the prior variables vj is then assigned to the
LHS variable vi. Therefore, we can write

vi # fi!v1; v2; : : : ; vj" for j < i (8)

Now, using Eq. (7) and the adjoint formulation [20], we can define
the adjoints of independent and intermediate variables as

vj # vj %
∂fi
∂vj

vi for j < i (9)

The idea here is to calculate and store the partial derivatives for any
expression as they appear in the adjoint solver. This feature has been
incorporated into the FDOT toolbox [20,21] such that any time an
assignment operator (=) is executed, it is assumed that one full expres-
sion has been defined. Thus, the recorded tape for that specific expres-
sion tree is replayed in the reverse direction to calculate the partial
derivatives. This partial derivative information is then recorded into a
new derived-type class, called the “ET stack” (which stands for
expression tape stack), along with the indices of the RHS variables
(independent and intermediate) aswell as the indexof theLHSvariable
(result of the expression). As an example, the recording process for the
ET stack is described in the following for the expression shown in
Eq. (8):

vi # fi! : : : ; vj; : : : " for each j < i

to ET stack
$$$$$$$$$$$$!

index!RHS # vj;LHS # vi"; adjoint
!
vj #

∂fi
∂vj

"

(10)

This leads to a memory footprint per tape entry of only 16 B (for
double precision, this will include 4 B for the LHS and RHS indices
and 8 B for the partial derivative value) compared to the 27 B of the
original approach, whereas the length of the tape has also been reduced
since only active variables will be accounted for. To fully understand
the difference between independent and intermediate variables, let us
look at the following expression:

c # f!x1; x2; x3; x4" # !!x1 % x2" × !x3 − x4""2 (11)

where four independent variables, x1 through x4, are involved, result-
ing in the LHS variable c. The preceding expression is recorded in the
original FDOT toolbox as four assignment operations (#), i.e.,

t1 # x1; t2 # x2; t3 # x3; t4 # x4

one binary addition (%), one binary subtraction (−), and one binary
multiplication (×), i.e.,

t5 # t1 % t2

t6 # t3 − t4

t7 # t5 × t6

and, ultimately, one unary power (^) and a final assignment (#)
operation, i.e.,
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t8 # t27

t9 # t8

Clearly, recording the tape for the expression shown in Eq. (11) to
compute c leads to nine entries in Fortran as opposed to only four
entries that will be recorded in the ET stack for each independent
variable of x1 through x4. It is worth noting that these four independent
variables have been defined before this expression, whereas the other
variables are simply compiler-defined “intermediate” variables whose
adjoints will not be useful beyond the scope of this expression. In
general, any expression that involves n overloaded operators can result
in ωn tape entries where ω can be viewed as a computational effort
factor [26]. This is mainly due to the fact that compilers use temporary
or intermediate variables at run time to execute unary and binary
operations before reaching the end of an expression defined by an
assignment operator. It is worth noting that ω is usually between three
and fivewhen averaged for all expressions involved in a nominal CFD
solver [26,27].
Having the partial derivative information, we can now move on to

the actual adjoint evaluation process. Here, the adjoint of each
independent and intermediate variable is defined using the repeated
use of the adjoint formula applied to Eq. (8) to get

vk # vk %
∂fi
∂vk

vi; where k # 1; : : : ; j and j < i (12)

As discussed earlier, each expression or statement in a CFD solver
leads to the recording of ωn tape entries, with n being the number of
operations involved and ω the computational effort factor. However,
only a single adjoint value corresponding to the variable on the left-
hand side of each expression is ultimately required. Therefore, the
adjoints of the intermediate variables do not need to be included,
which results in a vector that simply stores a single adjoint value per
statement (or expression). The length of this vector, with an 8 B
memory footprint per entry for double precision, becomes much
shorter compared to the expression tape (ET stack). The first-of-its-
kind scheme demonstrating the proposed expression-based approach
for adjoint evaluations is shown in Fig. 2. In summary, the following
tapes are defined in the FDOT toolbox:
1) The OP stack, also known as the operation stack, records one

entry per “operation.” In the original implementation of the FDOT
[20], this is the only recorded tape, which is used for adjoint evalu-
ations (memory footprint: 27 B per entry for double precision).

2) The ET stack, also known as the expression tape, records one
entry per active variable per expression (memory footprint: 16 B per
entry for double precision).
3) The AD vector, also known as the adjoint vector, records one

entry per independent/intermediate variable (memory footprint: 8 B
per entry for double precision).
It must be noted that the approach used here is, in someways, very

similar to the expression templates implemented in some OO/AD
tools based onC++ programming language. The use of C++ template
metaprogramming paradigms has enabled the developers of OO/AD
tools such as CoDiPack [14] to significantly enhance the adjoint
evaluation performance by using expression templates at compile
time.However, none of these capabilities and paradigms are available
for Fortran programming language. Nonetheless, the present work
focuses on addressing these issues by using a very robust adjoint
evaluation process that is shown to improve the computational and
memory efficiency of this AD tool.

III. UNPAC-DOF: Design Optimization Framework
Developing a robust and advanced CFD solver for complex and

high-fidelity aerodynamic simulations is vital for a design optimiza-
tion framework. UNPAC is a grid-transparent Reynolds-averaged
Navier–Stokes solver based on a vertex-based finite volume discre-
tization approach [10,28]. This in-house solver is coupled to the
FDOT toolbox to automatically generate the adjoint versions of the
primal solver (UNPAC-AD). Additionally, a gradient-based optimi-
zation wrapper program, called UNPAC-OPT, is developed to auto-
mate the aerodynamic shape optimization process. TheUNPAC-OPT
program uses a quasi-Newton method for optimization in both
unbounded and bound constrained modes subject to upper and/or
lower bounds for the design variables. The schematic of the UNPAC
design optimization framework is provided in Fig. 3.
It must be noted that the optimization framework seeks optimal

designs via an iterative process that involves 1) calculation of the flow
solution using the UNPAC solver, 2) evaluation of the gradient
information using the UNPAC-AD solver, and finally 3) solution of
the quasi-Newton optimization problem using the UNPAC-OPT
program. Aerodynamic shape optimization is performed by either
using the surface points or shape parametrization based on a free-
form deformation (FFD) box approach [29].

A. Unconstrained Drag Minimization
Generally speaking, an aerodynamic design optimization prob-

lem seeks to iteratively determine the optimal solution for the set of
design variables x that minimizes an objective function I!x". Let us
assume that the goal is to minimize the drag coefficient for an airfoil
or a wing where the geometry is parametrized using an FFD box
defined by a set of control points x. This optimization problem can
be written as

min
x

CD!x" (13)

where x is the vector of N control points or design variables. In the
UNPAC-DOF framework, this optimization problem is solved
using the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm [30].

B. Lift-Constrained Drag Minimization

The unconstrained drag minimization problem is commonly used
in aerodynamic shape optimization where the sole objective is to
determine the optimal topology so as to minimize the overall drag
coefficientCD. However, minimizing drag can also lead to a reduced
overall lift coefficient CL in many cases. This ultimately leads to a
reduced efficiency, CL∕CD. To circumvent this issue, the drag min-
imization problems are often constrained to a fixed-lift condition. In
these cases, the angle of attack α is also treated as one of the design
variables and the optimization problem is redefined as

Fig. 2 Flowchart for the expression-based adjoint evaluation in the
improved FDOT toolbox.
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min
x;α

CD!x; α" (14)

subject to

CL!x;α" # C&
L

where C&
L is a user-defined target value for the lift coefficient. As

the first step, the constrained optimization problem [Eq. (14)] is
rewritten as

L!x; α; λ" # CD!x;α" − λ
#
C&
L − CL!x; α"

$
(15)

where λ is the Lagrange multiplier. Therefore, to minimize the
Lagrangian, the following Karush–Kuhn–Tucker conditions [31]
must hold:

∂L
∂x

# ∂CD

∂x
% λ

∂CL

∂x
# 0 (16)

∂L
∂α

# ∂CD

∂α
% λ

∂CL

∂α
# 0 (17)

∂L
∂λ

# CL!x; α" − C&
L # 0 (18)

Clearly, the last condition of optimality described in Eq. (18) is the
actual constraint defined in the original minimization problem [see
Eq. (14)]. By rearranging Eq. (17), one can isolate the Lagrange
multiplier such that

λ # −
∂CD

∂α

!
∂CL

∂α

"−1
# −

∂CD

∂CL
(19)

which also satisfies Eq. (16). This results in the Lagrangian dual
problem described as

min
x;α

L!x;α" # CD!x; α" %
∂CD

∂CL
!C&

L − CL!x; α"" (20)

For fixed-lift drag minimization problems, UNPAC-DOF solves
Eq. (20) using the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno Bound-constrained (L-BFGS-B) optimizer [30,32]. The
optimization is handled in two stages. First, the angle of attack
αnew is updated through

αnew # α%
!
∂CL

∂α

"−1
!C&

L − CL!x;α"" (21)

where a finite difference approach is used to approximate the sensi-
tivity of the lift coefficient to the angle attack, i.e.,

∂CL

∂α
≈
CL!α% ϵ" − CL!α"

ϵ
(22)

where ϵ is a small value set to 10−8 in this work. At the same time,
perturbing the angle of attack by ϵ, the sensitivity of the drag
coefficient to the lift coefficient can also be approximated in a similar
fashion, i.e.,

Fig. 3 Flowchart of the UNPAC-DOF; adopted from the work of Djeddi and Ekici [21].
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∂CD

∂CL
≈
CD!α% ϵ" − CD!α"
CL!α% ϵ" − CL!α"

(23)

Next, this sensitivity is incorporated into the objective function
[Eq. (20)] to minimize the drag coefficient. It is worth noting that the
unconstrained minimization problem described in Eq. (20) can be
also viewed as a “penalty” method with a variable penalty factor for
various design stages. At each optimization cycle, current design
variables x as well as the gradient vector and the value of the cost
function are passed to the L-BFGS-B optimizer, which outputs the
updates for the design variables xnew.

C. Lift-Constrained Drag Minimization with Additional Solution-
and Geometric-Based Constraints

In the past couple of decades, the number of design parameters as
well as the complexity of the CFD-based simulation and design tools
have both increased dramatically. Therefore, aerodynamic shape
optimization problems have sought optimal designs that are subject
tomultiple constraints over amore restrictive design space.As shown
earlier, when only equality constraints are present, the method of
“Lagrange multipliers” can be used to convert the design problem
into an unconstrained problem. However, in more advanced aerody-
namic shape optimization problems, one may need to deal with
inequality constraints. As an example, a lift-constrained drag mini-
mization problem can be further constrained by 1) solution-based
inequality constraints, e.g., a minimum moment coefficient must be
maintained; and 2) geometric-based inequality constraints, e.g., a
minimum airfoil area (in two dimensions) or wing volume (in three
dimensions) must be maintained.
Such an aerodynamic design optimization problem can be

described via

min I!x" # CD!x" −
∂CD

∂CL

%
Ctarget
L − CL!x"

&
(24)

with respect to

x; α

subject to

CM!x" ≥ Cmin
M

A!x" ≥ Areamin

where, as described earlier, the original objective function (i.e., drag
coefficient) is augmented by the lift constraint.
In such cases, the problem will be characterized in terms of the

Karush–Kuhn–Tucker as well as the “geometric optimality,” and
“Fritz John” conditions [31]. Here, the quadratic programming prob-
lemwould require the additional gradient information for the equality
and inequality constraints with respect to the design variables. As
described earlier, the FDOT uses the fixed-point iteration approach
by recording one pass of the CFD solver in a tape. As the first step in
the tape evaluation process, the adjoint of the objective function is set
to “one” and the tape is rewound to calculate the sensitivity informa-
tion. The recorded tape is reused for calculating the additional
gradient information in the process described in the following:
1)During the tape recording process, the objective function aswell

as the equality and inequality constraints aremarked (their location or
index in the tape is stored).
2) Since the geometric-based constraints are often only a function of

the computational grid, their sensitivities only rely on the “preiterative”
portion of the tape that handles grid preprocessing. Therefore, by
simply rewinding the preiterative portion of the tape, the sensitivity
information for the geometric-based constraints is evaluated.
3) Solution-based constraints (e.g., moment coefficient constraint),

however, are most often handled similarly to the objective function
(e.g., drag coefficient). Therefore, the iterative tape evaluation process
is executed once for the objective function [CD or the augmented

functional, CD − !∂CD∕∂CL"!C
target
L − CL"] and repeated for each

additional solution-based constraint.
The described procedure for calculating the entire gradient infor-

mation is also shown in Fig. 4. Here, the adjoint information in the
tape is reset after each gradient evaluation before reevaluating the
tape for the next quantity of interest. The UNPAC-DOF uses a
sequential least-squares quadratic programming (SLSQP) optimizer
[33] for the constraint optimization problems described here.

IV. Aerodynamic Shape Optimization Results
In this section, the UNPAC-DOF framework is used for aerody-

namic shape optimization of various airfoil and wing geometries.
The novel memory-efficient version of the FDOT toolbox is used to
perform adjoint-based sensitivity analysis. The new expression-
based approach in the FDOT toolbox is compared to the original
implementation via performance gain studies in terms of memory
footprint and CPU times. Initially, the lift-constrained drag minimi-
zation problem with additional constraints involving the moment
coefficient and airfoil area is considered for the turbulent transonic
flow past the RAE 2822 airfoil. Next, the aerodynamic shape opti-
mization of three-dimensional wing geometries is considered. In this
regard, the drag minimization problem for the transonic ONERAM6
wing at a target lift coefficient is studied. Finally, the lift-constrained
drag minimization problem with respect to the twist angle distribu-
tion along the wing span is considered for a rectangular NACA 0012
wing geometry.

A. Constrained Drag Minimization: Transonic RAE 2822 Airfoil

The first optimization test case studied in this work deals with the
constrained drag minimization of the RAE 2822 airfoil in turbulent
transonic flow. As discussed earlier in Sec. III, the additional con-
straints for the optimization problem require the calculation of extra
gradient information that will be provided to the SLSQP optimizer.
As a result, this case can provide insights into the performance of the
original and improved versions of the FDOT toolbox in evaluating
sensitivity information.
The freestream Mach number for this case is 0.734 at a Reynolds

number of 6.5 million. A hybrid grid with 22,842 cells is considered,
which consists of 4800 quadrilateral elements in the near-field region
and 13,937 triangular elements for the rest of the domain that is
extended for 100 chord lengths away from the airfoil surface. The
goal of the optimization problem is to minimize the drag coefficient
while maintaining a target lift coefficient. As discussed before,

Fig. 4 Procedure for calculating the necessary gradient information for
solving the constrained optimization problem described in Eq. (24).
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the lift-constrained dragminimization problem can be redefined as an
unconstrained optimization problemwith the addition of the angle of
attack to the list of design variables while also augmenting the
objective function by the “equality” lift coefficient constraint. For
this case, however, two “inequality” constraints are also considered
with the optimization problem defined as

min I!x" # CD!x" −
∂CD

∂CL
!Ctarget

L − CL!x"" (25)

with respect to

x; α

subject to

CM!x" ≥ −0.092

A!x" ≥ Abase

where the target lift is set to Ctarget
L # 0.824, which initially requires

an angle of attack of 2.9209 deg to be satisfied. It must be noted that
the area of the original RAE 2822 airfoil is Abase # 0.077845c2,
which is used as the minimum area of the airfoil during the shape
optimization process. Here, a free-form deformation box is used to
parametrize the airfoil geometry. The FFD box tightly encloses the
RAE 2822 airfoil, and the degrees of the Bernstein polynomials in
the ξ and η directions are taken to be 15 and 1, respectively. To fix the
leading and trailing edges of the airfoil during the shape optimization
cycles, the first and last rows of the FFDbox control points are frozen.
Also, the control points of the FFD box are only allowed to move in
the y direction. Therefore, the y coordinates of the remaining 28
control points are considered as the geometrical design variables x.
With the addition of the angle of attack as an extra variable, the total
number of designvariables for this constrained optimization problem
would be 29.
Before presenting the design optimization results, the effective-

ness of the proposed expression-based approach in reducing the
memory footprint of the FDOT toolbox is studied. In this regard,
the length of the recorded tape as well as the memory footprint are
compared for both approaches, with the results shown in Table 1. It
must be pointed out that the ET-stack approach used in the improved
version of the FDOT toolbox results in a much shorter adjoint tape
compared to the original implementation. Clearly, the memory foot-
print per entry of the adjoint tape is reduced by more than 40% in the
ET-stack approach, which proves the robustness of the proposed
approach. This reduction results in a very significant reduction in
the overall memory footprint of the adjoint solver.
The accuracy of the gradient evaluations using the original FDOT

toolbox has been studied in previous works [10,20]. Additionally,
since the proposed expression-template approach is theoretically a
preaccumulation procedure, it is expected to achieve the same level of
accuracy from the improved version of the FDOT toolbox compared
to the original implementation. To examine this, the sensitivity of the
drag coefficient with respect to the angle of attack is considered. As
shown inTable 2, the sensitivity values obtained from the original and
improved versions of the FDOT toolbox are compared to the finite
difference approximations using a first-order backward difference as
well as a second-order central difference scheme. The presented
results show the accuracy of the gradient evaluations using the FDOT
toolbox. Additionally, it is shown that the proposed technique, while

being extremely efficient in terms of memory footprint, has essen-
tially no effect on the accuracy of the gradient calculations.
Note that for the present constrained optimization problem,

according to the discussion in Sec. III and the flowchart shown in
Fig. 4, the entire tape needs to be evaluated twice for the augmented
objective function, i.e., the drag coefficient with the lift constraint as
well as the moment coefficient. Additionally, the preiterative portion
of the tape needs to be reevaluated for the geometric-based constraint,
i.e., the airfoil area. However, since the originally recorded tape is
reused for these evaluation processes, the tape length and the sub-
sequent memory footprint will not be increased at all. While this
feature makes FDOT a robust sensitivity analysis tool for
constrained optimization problems, improving the tape recording
and adjoint evaluation procedure by breaking down the tape struc-
tures into three smaller stacks is the subject of an ongoing research to
further improve the computational efficiency of the adjoint solver.
Having presented the performance test results for the improved

FDOT toolbox, we can now focus our attention to the aerodynamic
design optimization results. First, the convergence histories of the
objective function and the constraints for this optimization problem
are presented. These results are shown for the drag count, lift coef-
ficient, moment coefficient, and the airfoil area in Fig. 5. As shown
here, the drag count has been steadily reduced during the design
optimization cycles while the target lift coefficient of 0.824 is closely
maintained. Additionally, the moment coefficient is not only kept
above the minimum requirement for all design cycles but is also
increased slightly. Finally, the area of the airfoil is kept almost
unchanged during the design optimization cycles. It must be noted
that the present constrained drag minimization problem has led to a
more than 37% reduction in the drag count while maintaining the
target lift coefficient. As a result, the efficiency of the RAE 2822
airfoil has been increased by about 60%.
Next, the airfoil shape and the surface pressure coefficient distri-

butions are compared for the original and optimized geometries.
These results are shown in Fig. 6. For this case, the strength of the
shock on the suction side is significantly reduced. However, the
shock is not fully eliminated, which can be associated with the fact
that the present drag minimization problem is constrained by the lift
and moment coefficients as well as the airfoil area. As shown in
Fig. 6, the shock can be completely eliminated if only the lift con-
straint is enforced. In a similar optimization study, Lee et al. [34] have
shown that by using a lower degree for theBernstein polynomials, the
shock can be further alleviated or even eliminated even in the
presence of all constraints. However, it must be noted that using
fewer number of design variables can, in some cases, lead to pressure
oscillations on the bottom surface of the RAE 2822 airfoil [34].
The weakening of the shock during the design optimization proc-

ess can also be shown via the Mach number contour plots for the
original and optimized cases. These results are shown in Fig. 7 and
exhibit a weaker shock-/boundary-layer interaction for the deformed
RAE2822 airfoil, which results in a reduced drag count for this airfoil

Table 1 Comparison of tape length and memory footprint for the original and improved FDOT toolboxes (transonic RAE 2822
constrained drag minimization problem)

FDOT toolbox Stack/vector type Stack/vector length Memory per entry, B Memory breakdown, GB Total memory, GB Reduction, %
Original OP stack 326,909,670 27 8.22 8.22 ——
Improved ET stack 221,958,575 16 3.30 4.28 47.3

AD vector 130,534,725 8 0.98

Table 2 Comparison of the drag sensitivity
calculations with regard to angle of attack
(∂CD∕∂α) for the RAE 2822 airfoil case

Calculation Value
Finite difference (first order) 0.2784870397
Finite difference (second order) 0.2784903021
FDOT (original) 0.27849028033512
FDOT (improved) 0.27849028033517
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Fig. 5 Convergence history of the objective function (CD) as well as the constraints for the drag minimization of the RAE 2822 airfoil.
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Fig. 6 Comparison of RAE 2822 airfoil shape and the surface pressure coefficients for the original and optimized geometries.

a) Original design b) Optimized design with CL, CM, and A
constraints

c) Optimized design with CL constraint

Fig. 7 Contour field of Mach number for the turbulent transonic flow past RAE 2822 airfoil.

a) Original box b) Deformed (optimized) box with CL,
CM, and A constraints

c) Deformed (optimized) box with CL
constraint

Fig. 8 Original and deformed FFD boxes that parametrize the RAE 2822 airfoil for the constrained drag minimization problem.
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at the present flow conditions. Once again, the case with only the lift
constraint is also considered, which shows a complete elimination of
the shock that used to form on the suction side of the airfoil. Next, the
FFD box deformation as well as the interior mesh deformation are
presented in Fig. 8 for this case. It is shown that this particular
optimization leads to the maximum deformation of the FFD box
around the quarter-chord of the airfoil.
Finally, the efficiency of the FDOT toolbox using the original and

the improved approaches is studied. The computational costs of
running the adjoint solver using the original and improved FDOT
toolboxes are described in terms of normalized CPU times with
respect to that of the primal solver, and the results are presented in
Table 3. As discussed before, with the additional constraints used for
this optimization problem, it is required to reevaluate the recorded
tape several times. Therefore, the overall computational cost of the
adjoint solver will be linearly scaled by the number of solution-based
constraints. However, the computational cost of a single adjoint
evaluation is still only a small multiple of that of the primal flow
solver. Additionally, the proposed technique provides an almost 18%
improvement in the CPU time.
It must be noted that the computational time in the early stages of

the adjoint solver, which involve recording the OP stack and evalu-
ating the partial derivatives for the ET stack, will be increased due to
the preaccumulation procedure proposed in thiswork. However, with
the significant reduction of the tape size, it is possible to achieve huge
time savings in the adjoint evaluation process. The breakdowns of the
relative CPU times are shown in Fig. 9, which shows the increase in
CPU time during stack recording and a decrease in computational
time during adjoint evaluations. Since the stack recording process
takes only a fraction of the time required for running the adjoint
solver, it would be possible to have overall savings in CPU time using
the proposed expression-template-based approach.

B. Fixed-Lift Drag Minimization: Transonic ONERAM6Wing

Next, the fixed-lift drag minimization problem for the inviscid
transonicONERAM6wing is investigated. The aerodynamics of this
wing involve a region of supersonic flow including a special shock
formation known as the lambda shock [35,36]. The geometry of the
transonic M6 wing is based on the symmetric airfoil sections of the
ONERA D type, which have a maximum thickness-to-chord ratio of
10%. The M6 wing has a sweep angle of 30 deg at the leading edge
and an aspect ratio of 3.8, and it is tapered with a ratio of 0.562. The

flow conditions are set according to the experiments carried out by
Schmitt and Charpin [37] with a freestream Mach number of 0.8395
and an angle of attack of 3.06 deg. It must be noted that the transonic
flow past the ONERA M6 wing has been used in the literature as a
standard benchmark test case for the purpose of validation and
verification of the CFD solvers, whereas the unconstrained or lift-
constrained drag minimization of this wing has also been studied
extensively [38–40].
The computational grid used for this study consists of a rectangular

outer boundary that extends about 10 mean chord lengths on each
side. The far-field and near-field views of the grid used for this test
case are shown in Fig. 10. The fully unstructured grid is made of
108,396 nodes and 582,752 tetrahedral elements with 38,756 tri-
angular elements on the surface of the wing. Here, a symmetry
boundary condition is used on the root plane, and far-field boundary
conditions are used for the rest of the outer boundaries.
Before presenting the optimization results, the performance met-

rics of the FDOT toolbox in terms of the memory footprint as well as
the tape length are presented in Table 4. Once again, the new
approach used in the FDOT toolbox, where the expression and
adjoint tapes are used, results in significant reductions in both the
tape length and the memory footprint of the adjoint solver. More
specifically, the expression-based approach leads to 32% reduction in
the tape length with a memory footprint reduction of almost 52%.
This proves that the proposed technique is capable of dramatically
improving the memory efficiency of the FDOT toolbox for adjoint
sensitivity analysis.
Once again, for the design optimization problem, the wing geom-

etry is parametrized using a hexahedral free-form deformation box.
The FFD box is swept in order to tightly enclose the ONERA M6
wing that has different sweep angles on the leading and trailing edges.
The degrees of the Bézier curves in (ξ; η; ζ) directions are taken to be
!10; 8; 1", which translate to 11, 9, and 2 control points in each
parametric coordinate. For the constrained optimization problem
studied in this work, the target value for the lift coefficient is set to
C&
L # 0.268. The convergence histories of the drag and lift coeffi-

cients are plotted for major design cycles in Fig. 11. Here, a steady
drop in the objective function is observed with the drag coefficient
being reduced by 27.4% after 30 major design cycles. Since the lift
coefficient is constrained atC&

L # 0.268, the efficiency of thewing is
also increased by almost 38%. These results are also presented in
Table 5.
Next, the numerical results obtained using the original ONERA

M6 wing geometry are compared against the experimental data of
Schmitt andCharpin [37]. These solutions are reported at six different
sections along the span of thewing and the distribution of the surface
pressure coefficient at each section. These results are presented in
Fig. 12, which shows a good agreement between the UNPAC solver
results and the experimental data.
Additionally, the surface solutions at the last three spanwise sec-

tions are compared for the original and optimized geometries, and the

Table 3 Normalized CPU time comparisons between
the original and the modified (present) FDOT toolboxes

for a single adjoint evaluation process

FDOT toolbox Normalized CPU time Reduction, %
Original 3.11 ——
Improved (present) 2.56 17.7
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Fig. 9 Breakdowns of the relative time factors for the original and improved versions of the FDOT toolbox (RAE 2822 airfoil constrained optimization).
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distributions of the surface pressure coefficients at each section are
shown in Fig. 13. As shown here, the strong shock close to the tip of
the wing is completely eliminated for the optimized geometry. This
strong shock is the main contributor to the drag, and its elimination
has proved to drastically reduce the drag coefficient. It isworth noting
that the slight oscillations that occur around the leading edge of the
wing are mainly due to the number and location of the FFD box
control points.
Next, the contour plots of the surface pressure are presented for the

original and optimized M6 wings. These results are presented in
Fig. 14 and clearly show the elimination of the lambda-shock feature
from the transonic ONERA M6 wing. Also, the original and
deformed FFD boxes for this unconstrained drag minimization prob-
lem are presented in Fig. 15.
Finally, the computational performance of the adjoint solver using

the FDOT toolbox is studied in terms of CPU time. Here, the original

and the improved versions of the FDOT toolbox are compared against
each other with the results presented in Table 6. As shown here, the
CPU time for the adjoint solver using the original implementation of
the FDOT toolbox is around 4.2 times that of the primal CFD solver.
However, using the proposed technique in the improved version of
the FDOT toolbox, this normalized CPU time is reduced by almost
22% to only 3.3 times that of the primal CFD solver. This result once
again proves the computational efficiency of the improved FDOT
toolbox for adjoint-based sensitivity analysis.

C. Drag Minimization Subject to Twist Distribution: Rectangular
NACA 0012 Wing

The last optimization problem studied in this work is the drag
minimization of an untwisted and untapered rectangular wing with a
NACA 0012 cross section. The rectangular wing has a sharp trailing
edge with a semispan of 3.06c, where the last 0.06c consists of a

Table 4 Comparison of tape length and memory footprint for the original and improved FDOT toolbox (transonic ONERAM6
fixed-lift drag minimization problem)

FDOT toolbox Stack/vector type Stack/vector length Memory per entry, B Memory breakdown, GB Total memory, GB Reduction, %
Original OP stack 560,731,841 27 14.1 14.1 ——
Improved ET stack 381,297,651 16 5.68 6.81 51.7

AD vector 151,666,032 8 1.13
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Fig. 11 Convergence histories for the drag and lift coefficients for the fixed-lift drag minimization of the ONERAM6 wing.
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Fig. 10 Volume and surface meshes used for the transonic flow past the ONERAM6 wing.
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rounded tip created from revolving the NACA 0012 profile around
the tip camber line. This wing is subject to an inviscid subsonic flow
at a 0.5 freestream Mach number. The optimization problem is
described as

min CD!γ!y"" (26)

with respect to

γ!y"

subject to

CL!γ!y"" # 0.375

where γ!y" is the spanwise distribution of the twist angle, which is
described about the trailing edge. Here, the equality constraint for the
target lift describes a fixed-lift drag minimization problem. The goal

here is to optimize the twist angle distribution along the wing span to
minimize the tip vortex that can lead to a reduction in the induced
drag. This case has been studied by Bisson and Nadarajah [41] and
Lee et al. [34], as well as more recently by Yang and Da Ronch [42]
based on the descriptions provided by the Aerodynamic Design
Optimization Discussion Group (ADODG).
As reported in the literature, the computational mesh for this case

has a direct effect on the prediction of the induced drag. As a result,
Bisson and Nadarajah [41] have used computational grids with more
than 13 million nodes, whereas Lee et al. [34] have even used
structured grids with more than 87 million nodes to study this case
that involves an inviscid subsonic flow. Therefore, in this work,
different grid resolutions are considered to closely study the effects
of computational mesh on the primal CFD solutions as well as the
design optimization results. To reduce the number of degrees of
freedom for the computational mesh, a hybrid grid generation
approach is used where pyramid cells are used close to the wing
surface with tetrahedral elements filling the remainder of the compu-
tational domain. Three computational meshes (named G1, G2, and
G3) are generated with the grid statistics provided in Table 7.
Once again, the FFD box approach is used to parametrize thewing

geometry for the purpose of design optimization. The FFD box is
taken to be a simple rectangular parallelepiped that tightly encloses
the rectangular wing including the rounded tip. Unlike the previous
applications of the FFD box, where equally spaced control points
were used in parametric coordinates, the η planes for the present FFD
box are defined at the specific locations defined by the ADODG

Table 5 Optimization results for the transonic ONERAM6 fixed-lift
drag minimization problem

Geometry CD Reduction, % Efficiency Improvement, %

Original 1.1734E-2 —— 24.37 — —
Optimized 8.5201E-3 27.4 33.56 37.7
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Fig. 12 Surface pressure coefficients for the inviscid transonic flow past ONERAM6 wing compared to experimental data [37].

98 DJEDDI AND EKICI

D
ow

nl
oa

de
d 

by
 U

N
IV

ER
SI

TY
 O

F 
TE

N
N

ES
SE

E 
on

 Ju
ly

 2
8,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I: 

10
.2

51
4/

1.
J0

59
50

5 



benchmark guidelines for reporting the twist angles (see Fig. 16).
This results in an unequally spaced distribution of the FFD box
control points along the wing span with the degrees of the Bernstein
polynomial taken to be (4,8,1) in (ξ; η; ζ) parametric directions.
During the design optimization process, the FFD box control

points on each η plane are rotated about the trailing edge according

to the twist angle at that specific station. According to the ADODG
guidelines for this optimization test case, the angle of attack will be
fixed and the only design variables used will be the twist angles at
the η # 0, 20, 40, 60, 80, 90, 95, and 100% spanwise locations,
which means that the wing is allowed to be twisted at the root.
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Fig. 13 Comparison of the surface pressure coefficients between the original and optimized geometries for the fixed-lift dragminimization of the inviscid
transonic ONERAM6 wing.

a) Original design b) Optimized design

Fig. 14 Contour field of pressure on the surface of the ONERAM6 wing for the fixed-lift drag minimization problem.

a) Original box b) Deformed (optimized) box

Fig. 15 Original and deformed (optimized) FFD boxes parametrizing the ONERAM6 wing for the fixed-lift drag minimization problem.

Table 6 CPU timings for the primal and adjoint solvers for the
fixed-lift drag minimization of the ONERAM6 wing

Solver type CPU time, m Normalized CPU time Reduction, %
Primal (CFD) 17.21 1.0 — —
FDOT (original) 72.28 4.2 — —
FDOT (improved) 56.80 3.3 21.9

Table 7 Grid statistics and parameters for the rectangular NACA
0012 wing drag minimization problem

Grid
no.

No. of
nodes

No. of
elements

Tetrahedral
cells

Pyramid
cells

Minimum wall
spacing

G1 126,204 686,396 674,516 11,880 4.0 × 10−3

G2 287,934 1,570,050 1,543,230 26,820 2.0 × 10−3

G3 533,721 2,935,147 2,887,387 47,760 1.0 × 10−3
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Additionally, the twist angle at the last η plane (i.e., η # 102%) is set
to be equal to that of the η # 100% plane to avoid any twist within
the rounded tip region. Since the angle of attack is kept fixed for this
optimization problem, the equality lift constraint must be incorpo-
rated directly into the SLSQP optimizer. This would require the
calculation of the sensitivities of the lift coefficient in addition to the
gradient information of the objective function (i.e., the drag coef-
ficient), which results in two adjoint evaluation processes during
each design cycle.
Initially, the performance of the FDOT toolbox in terms of the

memory efficiency is studied with the memory footprint and tape
length information presented in Table 8 using the original and the
improved (present) approaches. Note that only the finest grid (G3) is
used for this memory-efficiency study because the tape length and
memory footprint are directly related to the number of degrees of
freedom of the CFD solver. Once again, it is shown that the proposed
ET-stack approach offers a significant reduction in the tape length,
which consequently lowers the memory footprint of the adjoint
solver. Moreover, the memory footprint reductions for the three-
dimensional test cases happen to be more significant compared to
the two-dimensional tests. Overall, the ET-stack approach proposed
in this work can providemore than a 35% reduction in the tape length
and an almost 60% reduction in the memory footprint of the adjoint
solver.
Next, the optimization results are presented for the drag minimi-

zation of the rectangular NACA 0012 wing with respect to the
spanwise twist angle distribution. As explained earlier, three grid
levels are used to solve the design optimization problem while using
the same FFD box and shape parametrization settings. Avery impor-
tant factor to determine the performance of a three-dimensional wing
is “span efficiency.” This parameter is defined as

e # C2
L

πΛCD
(27)

where Λ is the wing aspect ratio, which is Λ # b2∕!2S" # 6 for the
present case, with S being the reference semispan area that will be
used for nondimensionalization as well as for the calculation of the
lift and drag coefficients. Results in terms of drag count and the span
efficiency for the present twist optimization problem using the three
grid resolutions are presented in Table 9. Also, the convergence
histories for the drag count and the span efficiency for the three
computational grids used in this study are shown in Fig. 17.
As shown in Table 9, the lift coefficient is maintained within

'0.001 of the target value for all these cases. Additionally, the drag
count reductions between 7.5 and 9.6% are observed for these cases.
The improvements in terms of the span efficiency are slightly more
pronounced due to the fact that the lift coefficient is maintained while
drag is reduced. It must be noted that the best reduction in drag count
and improvement in span efficiency are achieved for the G2 grid,
whereas the finest grid (G3) provides the highest span efficiency for
the NACA 0012 wing.
Next, the sectional lift (2CL∕b) distributions as well as the twist

angles γ!y" along the wing span are presented for the original and
optimized geometries using the finest (G3) grid resolution. These are
shown in Fig. 18, where the sectional lift distributions are also com-
pared to the elliptic sectional lift distribution. According to the lifting-
line theory, the elliptical wingwith elliptic sectional lift distribution has
the maximum (i.e., 100%) span efficiency. As expected and shown in
Fig. 18, the sectional lift distributions for the optimized wing (with the
optimal twist angle distribution) are very close to the elliptical curve,
except close to the tip of the wing. Additionally, the twist angle
distribution along the wing span shows that the NACA 0012 twisted
upward (positive twist angle) about the trailing edge closer to the root
of the wing to increase the sectional lift. Moreover, the wing is twisted
downward (negative twist angle) after about η # 60% to reduce the
sectional lift, thus reducing the induced drag component.
Next, the pressure contour fields on the top and bottom surfaces of

the NACA 0012 wing for the original and optimized geometries are
plotted, and the results are shown in Fig. 19. Also, the untwisted and
optimally twisted wing geometries as well as the FFD box deforma-
tion are presented in Fig. 20. Clearly, the lift-constrained drag min-
imization problem studied here has been able to find the optimal twist
angle distribution along the wing span that can provide an “almost-
elliptic” lift distribution, resulting in an induced drag reduction.
To further study the effect of the optimal twist distribution on the

tip vortex of the NACA 0012 wing, contours of the Q criterion are
plotted at the η # 100% plane as shown in Fig. 21. The Q criterion
presented here clearly shows that the optimized geometry with a
negative twist angle at the tip of the wing is leading to a weaker tip
vortex that will result in an induced drag reduction and higher span

η = 0%

η = 20%

η = 40%

η = 60%

η = 80%

η = 90%

η = 95%

η = 100%

η = 102%

Fig. 16 Free-form deformation box and its control points used to para-
metrize the rectangular NACA 0012 wing for the twist optimization
test case.

Table 8 Details of tape length and memory footprint: rectangular NACA 0012 wing twist optimization problem using the finest (G3)
grid resolution

FDOT toolbox Stack/vector type Stack/vector length Memory per entry, B Memory breakdown, GB Total memory, GB Reduction, %
Original OP stack 545,558,068 27 13.8 13.8 ——
Improved ET stack 350,793,838 16 5.22 5.7 58.7

AD vector 64,424,509 8 0.48

Table 9 Optimization results for the rectangular NACA 0012 wing twist optimization problem

Grid Geometry CL Drag count Reduction, % Span efficiency Improvement, %

G1 Original 0.3750 12.98 —— 0.5747 ——
G1 Optimized 0.3751 11.88 8.47 0.6279 9.25
G2 Original 0.3750 10.03 —— 0.7438 ——
G2 Optimized 0.3749 9.07 9.57 0.8225 10.58
G3 Original 0.3750 9.56 —— 0.7803 ——
G3 Optimized 0.3750 8.84 7.53 0.8439 8.15
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efficiency. It must be noted that these results are obtained using the
finest (G3) computational mesh.
Finally, the CPU times of the primal and adjoint solvers are studied

using the original (OP stack) and the improved (ET stack) approaches
used in the FDOT toolbox to further study the robustness of the
proposed technique in enhancing the computational efficiency of the
adjoint solver. Here, the computational costs of running the adjoint
solver using the original and improved FDOT toolboxes are
described in terms of normalized CPU times with respect to that of
the primal solver, and the results are presented in Table 10. As
discussed before, with the additional lift coefficient constraint used
for this optimization problem, it is required to evaluate the recorded
tape twice. Therefore, the overall computational cost of the adjoint
solver will be exactly doubled. However, the computational cost of a
single adjoint evaluation is still only a small multiple of that of the
primal flow solver. Moreover, the proposed technique is capable of
providing more than a 17% improvement in the CPU time.
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Fig. 17 Convergence histories for the drag coefficient and the span efficiency for the twist optimization of the rectangular NACA 0012 wing using three
different grid resolutions.
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Fig. 18 Sectional lift (left) and twist angle (right) distributions along the wing span.

Fig. 19 Contour field of pressure on the top (left) and bottom (right)
surfaces of the NACA 0012 wing for the fixed-lift drag minimization
(twist optimization) problem.

a) Original vs twisted wing b) Initial and deformed FFD boxes

Fig. 20 Original and deformed (optimized) geometries of the wing (left) and the deformed FFD box (right), with the deformed geometry shown in red.
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V. Conclusions
In this paper, an improved version of the FDOT toolbox is devel-

oped that uses an expression-template approach for recording the
tape. The use of the expression templates via metaprogramming
paradigms is readily available in the C/C++ programming language,
which has resulted in the development of robust AD tools like
CoDiPack [14]. However, the Fortran programming language is
not equipped with such a feature. Currently, there are still many
CFD solvers and legacy codes that are written in Fortran that rely
solely on source-code transformation for automatic differentiation. In
this work, the idea of the expression template in adjoint sensitivity
analysis has been made possible within the Fortran language via the
improved version of the operator-overloading-based FDOT toolbox.
The proposed technique calculates the partial derivatives for each
expression using the standard adjoint accumulation approach. Here,
only the adjoints of the activevariables on the right-hand sides of each
expression are stored in the tape, and the rest of the intermediate
variables are removed from the memory. This process can signifi-
cantly reduce the length of the tape, thus resulting in significant
reductions of the memory footprint for the adjoint solver.
The enhanced FDOT toolbox is applied to several aerodynamic

design optimization problems with various levels of complexity.
First, the constrained drag minimization problem for the RAE 2822
airfoil subject to turbulent transonic flow is studied where the objec-
tive function minimization is constrained with an equality constraint
involving a target lift coefficient as well as two inequality constraints
that require the moment coefficient and the airfoil area to be kept
greater than desired values. Another test case studied in this work is
the lift-constrained drag minimization of the transonic ONERA M6
wing. Finally, the drag minimization of a rectangular NACA 0012
wing at a constant lift coefficient with respect to the twist angle
distribution along the wing span is sought. It is shown that the
proposed ET-stack approach can effectively improve the computa-
tional and memory efficiency of the FDOT toolbox for all design
optimization problems studied in this work.
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