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Abstract—This paper proposes a new spatial image segmen-
tation algorithm for breast cancer detection in terahertz (THz)
images of freshly excised human tumors. Region classifications
of fresh tissue with 3 or more regions, such as cancer, fat, and
collagen, remain a challenge for cancer detection. We propose to
tackle this problem by exploiting the spatial correlation among
neighboring pixels in THz images, that is, pixels that are close
to each other are more likely to belong to the same region. The
spatial correlation among pixels is modeled by using Markov
random fields (MRF). A Gaussian mixture model (GMM) with
expectation maximization (EM) is then used to represent the
statistical distributions of the THz images in both the frequency
and spatial domain. Experiment results demonstrated that the
proposed spatial image segmentation algorithm outperforms
existing algorithms that do not consider spatial information.

I. INTRODUCTION

Terahertz (THz) imaging has been demonstrated as a
promising technique in a plethora of biomedical applications,
such as brain injury evaluation [1], glioma [2], prostate can-
cer [3], and breast cancer detection [4]–[6]. Various signal
processing and machine learning techniques have been used
in THz imaging. For instance, [2] applies fuzzy c-means
clustering for the detection of ex vivo rat glioma with good ac-
curacy. Other approaches explore machine learning techniques
for THz image segmentation such as support vector machine
(SVM) [1], [3], K-nearest neighbors [1], [6], random forest
[1], and artificial neural networks [6].

Unlike the animal trials performed in [1], [2], this paper
focuses on the detection of breast cancer within human tumors,
which are far more heterogeneous and complex compared to
their mice counterparts. Specifically, this paper presents results
on freshly excised samples. In our previous work [5], a low-
dimension ordered orthogonal projection (LOOP) method with
Gaussian mixture model was proposed to perform image seg-
mentation of THz imaging of freshly excised human samples.
However, in [5], all pixels are assumed to be statistically
independent of each other, which is in general not the case in
practice. Since the pixels are collected by scanning the tumor
with steps of 200µm, it is natural to consider that neighboring
pixels have a higher probability of belonging to the same
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region. Motivated by this fact, we propose a new spatial image
segmentation algorithm that exploits the spatial correlation
among pixels. The spatial correlation is modeled by applying
Markov random field (MRF) on Gaussian mixture model
(GMM), and the expectation maximization (EM) algorithm is
then applied to the statistical models to classify the different
regions in the THz image.

II. METHOD

This work focuses on human sample # ND15588, which
was obtained from National Disease Research Interchange
(NDRI). The experimental setup for the collection of the
reflected THz data per pixel can be found in [5]. Once the
THz image is obtained, the low-dimension ordered orthogonal
projection (LOOP) method [5] is first applied to the raw data
to reduce the dimension of THz waveform for each pixel.
In the LOOP algorithm, the high-dimensional signals in the
frequency domain are projected onto a lower dimensional
space with minimum loss of information. To achieve this, the
LOOP algorithm utilizes a modified Gram-Schmidt process to
create an orthonomal basis, which span a subspace containing
the most important features in the THz dataset.

Unlike our previous work that assumed statistical inde-
pendence among pixels in the spatial domain [5], the newly
proposed spatial image segmentation approach considers the
spatial correlation among pixels. Specifically, it is assumed
that pixels within a certain neighborhood, that is, a cluster of
pixels that are close to each other, are correlated with each
other by following certain prior distributions.

Let Y = [y1, . . . , yN ] denote the classification labels for
the N pixels in the THz image, where yi ∈ {1, 2, . . . ,K},
and K represent the number of regions (e.g. cancer, fat,
collagen, etc.). The spatial correlation among the pixels can
be represented by a Gibbs prior to the labels as [7]

P (Y ) =
1

Z
exp

(
−
∑
c∈C

Vc(Y )

)
, (1)

where Z is a normalization constant, C corresponds to the
clique within the defined neighborhood, Vc(yi, yj) = β(1 −
Iyi,yj

), and Iyi,yj
= 1 if yi = yj or 0 otherwise. In this

paper, we consider neighborhoods of sizes 4, 8, and 24 directly
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(a) (b) (c)

Fig. 1: Fresh sample ND15588. (a) Morphed pathology [5]. (b)
Segmentation results from 1D MCMC [5]. (c) Segmentation
results from 2D EM with 8-nearest neighbors.
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Fig. 2: ROC curves for fresh sample ND15588.

surrounding each pixel of interest. Finally, this new objective
function is solved by using expectation maximization (EM)
and Gaussian mixture model (GMM), as reported in [5].

III. RESULTS

The results in this paper are obtained by applying the newly
proposed spatial image segmentation algorithm to the same
sample used in [5]. Fig. 1a shows the morphed pathology
obtained through mesh morphing [4], which represents our
ground truth. Fig. 1b presents the classification results obtained
through a one dimension (1D) GMM with Markov chain
Monte Carlo (MCMC) as described in [8]. Fig. 1c shows
the classification results using the 2-dimensional (2D) spatial
EM approach proposed in this paper. In these figures, we can
observe that the spatial model presents better region correlation
with the morphed pathology than the 1D MCMC model.

Fig. 2 shows the receiver operating characteristic (ROC)
curves of the classification models, which provide the quanti-
tative evaluation of these models in the form of true vs. false
detection rate for each region within the tissue. As shown in
Fig. 2, the spatial model performs better than the 1D MCMC
approach for all regions. This can be further confirmed in Table
I, which presents the areas under the ROC curves. As shown
in Table I, we can observe that the area under these curves
slightly increases as the number of neighbors increases.

TABLE I: Areas under the ROC curves for sample ND15588
fresh.

Method Cancer Collagen Fat
1D MCMC 0.6338 0.6521 0.7372
Spatial EM - 4 neighbors 0.7092 0.7400 0.7721
Spatial EM - 8 neighbors 0.7099 0.7401 0.7726
Spatial EM - 24 neighbors 0.7126 0.7408 0.7750

IV. CONCLUSION

This paper presents a spatial image segmentation approach
based on MRF and GMM for breast cancer detection in
THz imaging. The proposed approach moderately improves
the performance of breast cancer detection by exploiting the
spatial correlation among neighboring pixels in THz images.
Experimental results on freshly excised human tissue have
demonstrated that the spatial GMM model achieves better
detection rates when compared to 1D MCMC. Finally, it
was proved that increasing the neighborhood size represents
minimal improvement on the areas under the ROC curves for
all the regions within the sample.
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