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A computationally efficient one-shot approach with a low memory footprint is presented for unsteady
optimization. The proposed technique is based on a novel and unique approach that combines local-in-time and
fixed-point iteration methods to advance the unconverged primal and adjoint solutions forward and backward in
time to evaluate the sensitivity of the globally time-integrated objective function. This is in some ways similar to the
piggyback iterations in which primal and adjoint solutions are evaluated at a frozen design. During each cycle, the
primal, adjoint, and design update problems are solved to advance the optimization problem. This new coupled
approach is shown to provide significant savings in the memory footprint while reducing the computational cost of
primal and adjoint evaluations per design cycle. The method is first applied to an inverse design problem for the
unsteady lid-driven cavity. Following this, vortex suppression and mean drag reduction for a circular cylinder in
crossflow is considered. Both of these objectives are achieved by optimizing the rotational speeds for steady or
periodically oscillating excitations. For all cases presented in this work, the proposed technique is shown to provide
significant reductions in memory as well as computational time. It is also shown that the unsteady optimization
problem converges to the same optimal solution obtained using a conventional approach.

Nomenclature
B = preconditioning or Hessian matrix
f = rotational frequency
I = objective function
J = Jacobian of transformation from physical to computa-

tional space
K = excitation parameter
L = Lagrangian functional
M, N = number of subintervals and time steps, respectively
Q = vector of primal or state solutions
R = vector of residuals of the primal solver
r = radius
Sr = Strouhal number
T = time span or the length of the design interval
t = time
u, v = Cartesian components of the velocity vector
x = vector of design variables
λ = vector of adjoint or costate solutions
ξ, η = parametric coordinates corresponding to the !x; y"

Cartesian coordinates
ψ = stream function
ω = vorticity
Ω = rotational speed of cylinder

I. Introduction

A DJOINT-BASED optimization has become a standard tech-
nique in aerospace engineering. In this approach, the adjoint

equations are derived by adjoining the linearized primal or state
equations. These equations are then solved to obtain the costate
solutions that can be adopted to evaluate the gradients. This specific
form of the adjoint method is often referred to as the discrete adjoint

technique [1–6], which is the focus of the present work. Normally, it
is assumed that each designwould determine a unique solution for the
primal equations. Therefore, the objective function at each design
cyclewould only be a function of the designvariables, thus leading to
an unconstrained optimization problem. This approach is usually
referred to as nested analysis and design or a reduced space in which
the constraint for the existence of the state solution is treated implic-
itly. Alternatively, a full-space method has been proposed in which
the optimality conditions are solved for the primal, adjoint, and
design variables all at the same time [7], thus treating the constraint
for the existence of the state solution explicitly. Since the primal
and adjoint solutions are directly incorporated into the design opti-
mization problem, this monolithic approach is referred to as the
simultaneous analysis and design (SAND), which is also known as
the one-shot method. For steady adjoint-based design optimization,
the one-shot method can be easily implemented using an iterative
fixed-point solver [8,9]. Additionally, Ta’asan [10] and Hazra et al.
[11,12] proposed a simultaneous pseudo time-stepping approach to
solve the three equations (primal, adjoint, and design) derived from
the optimality conditions.
While adjoint methods have been widely used for aerodynamic

design problems involving steady flows, their usage has been hin-
dered in real-world applications that exhibit unsteady or even chaotic
fluid flows [13–26]. By design, the discrete adjoint method works by
transposing the Jacobian of the linearized governing (or primal)
equations with respect to the flow variables. This means that the
adjoint-based gradient evaluation process is propagated backward
compared to the forward-propagating primal solution procedures. By
the same logic, it can be easily shown that the application of the
adjoint method to an unsteady flow problem would require a back-
ward time-integration process as opposed to a forward-in-time loop
used to approximate the primal solutions. Therefore, unsteady adjoint
methods can become very computationally demanding while also
having a huge memory footprint to store all the intermediate primal
solutions [27,28].
Efforts have been made to address the substantial memory over-

head issues of the unsteady adjoint problems. More specifically, a
checkpointing technique has been introduced by Griewank and
Walther [29] and Wang et al. [30] that was based on a divide-and-
conquer strategy proposed byGriewank [31]. In this approach, only a
few snapshots of the primal solutions are stored at certain time
instances (or checkpoints) during the optimization time interval.
Recently, Hückelheim andMüller [32] have proposed a new “gappy”
checkpointing approach that can offer greatermemory reductionwith
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little to no increase in computational cost at the expense of reduced
model fidelity. It must be noted that the checkpointing technique is
not specific to unsteady problems but can also be used for steady
design cases to reduce the memory footprint associated with the
adjoint method [29].
In general, unsteady design problems aim to minimize a time-

integrated objective function over a desired time interval using a
technique often referred to as global in time [33,34]. In an approach
similar to checkpointing, Yamaleev et al. [35], proposed dividing this
time interval into several smaller subintervals in which primal and
adjoint calculations are performed forward and backward in time,
respectively. Thismethod is referred to as local in time and has shown
to significantly reduce the memory overhead, since it only requires
the storage of a limited number of primal solutions every time the
adjoint equations aremarched backward in time [36]. Beran et al. [37]
have also proposed the use of a data-reduction approach based on the
proper orthogonal decomposition method for memory reduction.
More recently, Günther et al. [38] have proposed a modified fixed-
point iteration approach that enables the use of the single-step one-
shotmethod.While this fixed-point iteration approach can reduce the
computational cost of the one-shot method for unsteady design
problems, it still requires a significant amount of storage in the
memory.
The present work aims at combining thememory efficiency of the

local-in-time (LiT) approach and the computational robustness of
the fixed-point iteration (FiP) approach in developing a highly
efficient adjoint-based optimization technique for unsteady design
problems. The proposed technique is similar to the SAND approach
with piggyback iterations in which the primal and the adjoint
equations are solved simultaneously by freezing the design varia-
bles [8]. However, the method proposed in this work requires
significantly lower memory storage due to the use of smaller sub-
intervals to calculate the sensitivities of a global-in-time objective.
The combination of the local-in-time and fixed-point iteration
approaches, reported for the first time in the literature, leads to
robust time-accurate adjoint-based optimization for two-dimen-
sional incompressible laminar flow cases considered in this work.
Initially, the proposed technique is applied to an inverse design
problem involving the excitation parameter calibration for the lid-
driven cavity flow with an unsteady lid velocity. Next, the proposed
technique along with several other leading approaches in unsteady
design are used to suppress vortex shedding and to reduce the mean
drag for a circular cylinder subject to steady rotation or rotationally
oscillating motion. In the following sections, details of the one-shot
approach for steady and unsteady design problems as well as the
governing equations for the primal CFD solver are presented,
followed by the optimization results.

II. One-Shot Method for Optimization
Although the focus of this paper is on the unsteady optimization,

for the sake of simplicity, the one-shot approach for the steady
optimization problem is presented first. Let us consider the minimi-
zation problem for an objective function I!x;Q!x"", defined as

min I!x;Q!x"" subject to R!x;Q!x"" # 0 (1)

where x is the vector of design variables, Q is the vector of flow
solutions, and R is the vector of residuals for the steady primal
governing equations. Using the method of Lagrange multipliers,
the minimization problem in Eq. (1) can be reformulated as an
unconstrained minimization of a Lagrangian functional such that

minL!x;Q; λ" # I!x;Q!x"" $ λTR!x;Q!x"" (2)

where λ is the vector of adjoint or costate solutions. An optimal
solution exists for the minimization of the augmented Lagrangian
functional if the Karush–Kuhn–Tucker (KKT) optimality conditions
are satisfied such that

∂L
∂Q

# 0 →
∂L
∂Q

# ∂I
∂Q

$ λT
∂R
∂Q

# 0 → ∇QL!x;Q; λ" # 0 (3)

∂L
∂x

# 0 →
∂L
∂x

# ∂I
∂x

$ λT
∂R
∂x

# 0 → ∇xL!x;Q; λ" # 0 (4)

∂L
∂λ

# 0 →
∂L
∂λ

# R!x;Q!x"" # 0 → R!x;Q!x"" # 0 (5)

As discussed earlier, in the one-shot approach, the resulting system
of governing equations is solved simultaneously for the primal,
adjoint, and design variables. Thus, using a Newton’s method, the
system of equations can be linearized as

2

6664

∂2I
∂Q2

∂2I
∂Q∂x

∂R
∂Q

T

∂2I
∂Q∂x

∂2I
∂x2

∂R
∂x

T

∂R
∂Q

∂R
∂x 0

3

7775

2

664

ΔQ

Δx

Δλ

3

775 #

2

664

−∇QL!x;Q; λ"

−∇xL!x;Q; λ"

−R!x;Q!x""

3

775 (6)

to determine the updates for the state, costate, and design solutions all
in the same fully coupled framework. To reduce the computational
cost of solving Eq. (6), Hazra [12] suggested that terms ∂2I∕∂Q2

and ∂2I∕∂Q∂x can be ignored with little to no effect on accuracy.
Therefore, the simplified systemof one-shot governing equations can
be written as

2

6664

0 0 ∂R
∂Q

T

0 ∂2I
∂x2

∂R
∂x

T

∂R
∂Q

∂R
∂x 0

3

7775

2

664

ΔQ

Δx

Δλ

3

775 #

2

664

−∇QL!x;Q; λ"

−∇xL!x;Q; λ"

−R!x;Q!x""

3

775 (7)

In the preceding equation, the Hessian of the objective function
∂2I∕∂x2 used for the quadratic programming can be approximated
using a few different approaches. According to Hazra et al. [11,12]
and Özkaya [8], the Hessian can be simply replaced by 1) a diagonal
matrix for a linear steepest descent optimization or 2) a BFGS-like
(named after the work of Broyden-Fletcher-Goldfarb-Shanno [39])
approximation of the Hessian based on the gradient information
∂I∕∂x from two subsequent design cycles for a superlinear conver-
gence to the optimal solution.Next, the one-shotmethod for unsteady
adjoint problems is discussed.

III. Unsteady Adjoint-Based Optimization
For unsteady optimization problems, the global objective function

is often defined as a time-integrated quantity such that

!I # 1

T

Z
T

0
I!x;Q!t; x"" dt (8)

where the transient objective function is time-averaged over an
interval of %0; T&, with T being the final time. Similar to the steady
design optimization problem, the objective function at any given time
can be defined as the instantaneous difference between a quantity of
interest and its target value. In contrast to the steady problem, the
unsteady governing equations for the primal CFD solver will also
include a time derivative (transient) term so that

∂Q
∂t

$ R!x;Q!t; x"" # 0 ∀ t ∈ !0; T& (9)

Therefore, the minimization problem for the time-integrated objec-
tive function is defined as
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min !I # 1

T

Z
T

0
I!x;Q!t; x"" dt

subject to
∂Q
∂t

$ R!x;Q!t; x"" # 0 ∀ t ∈ !0; T&

with Q # Qinit for t # 0 (10)

where the second constraint is simply the initial condition for the
unsteady primal solution. The semidiscretized unsteady governing
equations shown in Eq. (9) are solved using classical dual-time-
stepping schemes where, depending on the order of the temporal
discretization, different numbers of primal solutions from earlier time
steps are used. As an example, the first-order backward difference
(BDF1) and the second-order backward difference (BDF2) schemes
are written as

Qn −Qn−1

Δt
$R!x;Qn!x"" # 0 (11)

3Qn − 4Qn−1 $Qn−2

2Δt
$R!x;Qn!x"" # 0 (12)

where Δt is the time step. Assuming that the time span %0; T& is
divided intoN equally spaced intervals, the time-integrated objective
function, also known as the global-in-time objective, can be approxi-
mated as

!I # 1

T

Z
T

0
I!x;Q!t; x""dt ≈ 1

T

XN

n#1

I!x;Qn!x""Δt (13)

For the sake of brevity, let us only focus on the BDF1 approach and
rewrite the minimization problem for the objective function
[Eq. (13)] constrained by the discretized governing equations
[Eq. (11)] as well as the initial condition.

min !I # 1

T

XN

n#1

I!x;Qn!x""Δt

subject to
Qn −Qn−1

Δt
$ R!x;Qn!x"" # 0 for n # 2; 3; : : : ; N

with Q1 # Qinit (14)

Similar to the steady design optimization problem, a Lagrangian
functional can be defined for the preceding minimization problem
where

L!x;Q;λ" # 1

T

!XN

n#1

I!x;Qn!x""Δt

$
XN

n#2

%λn&T
"
Qn −Qn−1

Δt
$Rn

#
Δt$ %λ1&T!Q1 −Qinit"

$

(15)

Once again, the KKT optimality conditions are used to derive the
primal, adjoint, and design equations. In fact, considering the last
optimality condition (i.e., ∂L∕∂λ # 0) will result in the primal or
state equations

Qn −Qn−1

Δt
$ Rn # 0 for n # 2; 3; : : : ; N (16)

Q1 −Qinit # 0 → Q1 # Qinit (17)

which are also the constraints of the unsteady minimization problem.
Similarly, the first optimality condition (i.e., ∂L∕∂Q # 0) will result
in the adjoint or costate equations given as

λN

Δt
$
!
∂RN

∂QN

$
T

λN #−
∂IN

∂QN terminal condition; !n#N" (18)

λn − λn$1

Δt
$
!
∂Rn

∂Qn

$
T

λn #−
∂In

∂Qn intermediate states;

!n# 2;: : : ;N− 1" (19)

λ1 − λ2

Δt
#−

∂I1

∂Q1
initial condition; !n# 1" (20)

As seen from Eqs. (16–20), the adjoint solution process involves a
backward time integration as opposed to the forward-in-time solution
process of the primal system. Therefore, it is necessary to store the
primal solutions Qn for the entire time period (n # 1; : : : ; N) in the
memory. These primal solutions are then used in the backward-in-
time integration of the adjoint equations to determine the unsteady
adjoint vectors (i.e., λn) over the entire time period (n # N; : : : ; 1), as
depicted in Fig. 1. It must be noted that the right-hand-side vector in
Eqs. (18–20) can be evaluated by automatically differentiating (AD)
the subroutine that calculates the instantaneous objective function In

as a function of the flow solutionQn. This can be done using source
code transformation AD tools like TAPENADE‡ [40] or operator
overloading tools like Fast automatic Differentiation based on
the Operator-Overloading Technique (FDOT) [6], which was devel-
oped recently by the authors. Also note that the primal and adjoint

Fig. 1 Forward-in-time procedure to obtain the primal solutions followed by the backward-in-time solution for the adjoints in a typical unsteady design
problem over the time interval [0, T].

‡TAPENADE is anAutomatic Differentiation Engine [40] that can perform
tangent, adjoint, and hybrid modes of AD based on the source-code-trans-
formation approach.
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equations using the BDF2 time-marching scheme can be derived in a
similar approach.
Finally, by considering the second optimality condition (i.e.,

∂L∕∂x # 0), the design equation can be derived as

∂L
∂x

# 1

T

XN

n#1

∂In

∂x
Δt

$ : : : :

!
∂QN

∂x

$
T
"
λN

Δt
$

!
∂RN

∂QN

$
T

λN $ ∂IN

∂QN

#

|%%%%%%%%%%%%%%%%%%%%%%%{z%%%%%%%%%%%%%%%%%%%%%%%}
#0 Eq:!18"

Δt

$ : : :
XN

n#2

!
∂Qn

∂x

$
T
"
λn − λn$1

Δt
$

!
∂Rn

∂Qn

$
T

λn $ ∂In

∂Qn

#

|%%%%%%%%%%%%%%%%%%%%%%%%%%%%%{z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%}
#0 Eq:!19"

Δt

$ : : :

!
∂Q1

∂x

$
T
"
λ1 − λ2

Δt
$ ∂I1

∂Q1

#

|%%%%%%%%%%%%{z%%%%%%%%%%%%}
#0 Eq:!20"

Δt −
!
∂Qinit

∂x

$
T

λ!1"

$ : : :
XN

n#2

!
∂Rn

∂x

$
T

λnΔt (21)

From Eqs. (18–20), the three terms inside the parentheses in the
preceding equation vanish. Therefore, the simplified form of the
second optimality condition reads

∂L
∂x

# 1

T

XN

n#1

∂In

∂x
Δt$

XN

n#2

!
∂Rn

∂x

$
T

λnΔt −
!
∂Qinit

∂x

$
T

λ1 (22)

which provides the sensitivity of the Lagrangian functional with
respect to the design variable. It must be noted that if the primal
solutions are solved according to Eqs. (16) and (17), then the
Lagrangian functional would be the same as the original time-
averaged objective function !I defined in Eq. (8):

∂L
∂x

# ∂ !I
∂x

# 1

T

XN

n#1

∂In

∂x
Δt$

XN

n#2

!
∂Rn

∂x

$
T

λnΔt −
!
∂Qinit

∂x

$
T

λ1 (23)

This original one-shot approach for unsteady design optimization
is referred to in this work as the global-in-time (GiT) technique.

A. Local-in-Time Approach for Memory Efficiency

In order tomotivate the LiTapproach developed in this work, let us
first describe the piggyback-iterations technique. Initially, the primal

equations are solved forward in time, and the solutions at each time
step are stored in memory. Next, the adjoint equations are solved
backward in time using the stored primal solutions, followed by the
calculation of the total sensitivity of the time-integrated objective
function [Eq. (23)] based on the calculated primal and adjoint
solutions. Using a sequential quadratic programming (SQP)
approach, the design variables can be updated by

xc$1 # xc −B−1
c

"
∂ !I
∂x

#

c

(24)

where c is the design cycle number andB is a preconditioning matrix
that approximates the Hessian of the augmented Lagrangian [see
Eq. (15)] or, in the case of the piggyback iterations, the time-inte-
grated objective given in Eq. (8) with respect to the design variables.
As discussed earlier, following the technique originally proposed by
Yamaleev et al. [35], the time span %0; T& is divided into M smaller
subintervals where

interval m: !m− 1"×
"
T

M

#
≤ t ≤ m ×

"
T

M

#
for m# 1; : : : ;M

(25)

Therefore, the primal equations [Eqs. (16) and (17)] and adjoint
equations [Eqs. (18–20)] can be solved over each subinterval instead
of the entire time period, as shown in Fig. 2. This approach leads to a
100 × %N − !N∕M"&∕N% reduction in the memory footprint for stor-
ing primal solutions, which increases if more subintervals are used
over the time period.

B. Fixed-Point Iteration for Improved Computational Efficiency

As discussed before, the idea of fixed-point iterations for evaluat-
ing the adjoints is not limited to the unsteady design problems and
has also been used for steady applications [6]. Additionally, a one-
shot optimization approach based on the fixed-point iterations for
unsteady design problems was originally proposed by Günther et al.
[38,41]. To motivate this approach, let us once again consider the
minimization of a time-averaged objective function according to
Eq. (10) where the unsteady partial differential equation (PDE)
constraint is temporally discretized using a BDF1 scheme. The
constraint for this minimization problem can be rewritten in the
following form:

Qn −Qn−1

Δt
$ R!x;Qn!x"" # R 0!x;Qn!x";Qn−1!x"" # 0

for n # 2; 3; : : : ; N (26)

Fig. 2 Design time interval [0, T] is divided into M subintervals for the local-in-time approach. Here, t1 ! "T∕M#, t2 ! 2"T∕M#, and
tM ! "M − 1#"T∕M#.
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where R 0 is the total residual of the unsteady primal equations. In
the approach proposed by Günther et al. [38], the unsteady primal
equations [Eq. (26)] are solved via a fixed-point iteration so that

loop 1 : for n # 1; : : : ; N

loop 2 : for k # 1; : : :

Qn
k$1 # Fp!x;Qn

k!x";Qn−1!x"" (27)

whereFp is the primal fixed-point iterator designed in such away that

for k → ∞ :Qn
k$1 # Fp!x;Qn

k!x";Qn−1!x"" # Qn
'

where R 0!x;Qn
'!x";Qn−1!x"" # 0 (28)

It is worth noting that in Eq. (27), the first loop is based on physical
time stepping to advance the solution forward in time, while the
second loop is based on fixed-point iterations (or inner iterations) that
advance the solution in pseudotime. The idea of one-shot approach
based on fixed-point iteration is to simply swap the two iteration
loops in Eq. (27), whichmeans that the primal solutions are advanced
in physical time, even though the inner iterations have not converged
yet. Günther et al. [38,41] mathematically proved that the conver-
gence of the fixed-point iteration is guaranteed as long as Eq. (27) is
convergent.
While the idea of using a fixed-point iteration for solving the

adjoint equations was proposed in the literature [41], this work
focuses on the direct solution of the adjoint equations. Since the
adjoint equations are linearized, their convergence is guaranteed for a
convergent primal solution. In the first stage of the FiP approach, a
single step of the primal fixed-point iteration is solved for all physical
time steps while storing the primal solutions in the memory. This is
followed by solving the adjoint equations [Eqs. (18–20)] backward in
time. The primal and adjoint solutions are then used to update the

design variables according to the SQP formulation [Eq. (24)], and the
process is repeated until the optimality conditions are satisfied. The
schematic of the FiP approach is provided in Fig. 3 for clarity. Aswill
be demonstrated in the Sec. V, the use of the fixed-point iteration
approach can greatly reduce the computational cost of the primal
solver for each design cycle. On the other hand, this approach may
increase the number of design cycles required to reach an optimal
solution. However, the savings in computational cost are significant
enough to make this an efficient and robust unsteady adjoint-based
optimization technique.

C. New Hybrid Approach

Following the two approaches described earlier, themain objective
of this work is to couple the local-in-time gradient evaluation for
memory efficiency and fixed-point iterations for improved computa-
tional efficiency. Based on our state-of-the-art knowledge, this is the
first reportedwork in the literature that successfullymerges these two
techniques. The idea, referred to as the LiT/FiP approach, is straight-
forward in the sense that each time-advance loop based on the fixed-
point iteration is also divided into smaller subintervals for forward
and backward time integration (primal and adjoint) to significantly
reduce the memory footprint. The solution process for the proposed
technique is depicted in Fig. 4. Itmust also be noted that this approach
is, in some ways, similar to a checkpointing technique. However,
unlike the checkpointing approach, the backward-in-time adjoint
solutions for each subinterval are initialized using terminal condi-
tions from the previous design cycle without the need for the recal-
culations of the missing primal solutions. Therefore, the proposed
hybrid approach can provide both computational and memory sav-
ings at the same time without sacrificing one for the other.
To better understand the proposed hybrid approach for unsteady

one-shot design, the entire procedure is described in Algorithm 1. As
can be seen, the proposed technique involves two main loops, where
the outer loop searches for the optimal design while also repeating

Fig. 3 Progressing unconverged primal solutions forward in time for each fixed-point iteration over the entire time interval [0, T], followed by direct
solutions of the linear adjoint equations in the FiP approach.

Fig. 4 The proposed hybrid approach for unsteady design in interval [0, T] withM subintervals based on the fixed-point approach.
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the fixed-point iterations that are performed at each design cycle.
On the other hand, the inner loop follows the subintervals for the
local-in-time approach where, in each subinterval, the forward
and backward time-marching loops are performed that lead to the
accumulation of the total derivatives of the augmented Lagrangian
functional with respect to the vector of design variables. Ultimately,
this total derivative is used in a Newton’s update formula that
advances the design variables toward the optimality condition. This
process is continued until all optimality (KKT) conditions are
satisfied, which at the same time would result in the convergence
of the fixed-point iterations for the primal flow equations.
Once again, it must be noted that the adjoint equations presented in

this section are all based on the BDF1 time-marching scheme. How-
ever, in this work, a second-order BDF2 dual-time-stepping approach
is used, resulting in higher temporal accuracy in capturing unsteady
flow featureswith rapid transience.Therefore, the adjoint equations for
the BDF2 scheme will be described in the following section, and they
simply replace Eqs. (18–20) described in this section as well as in
Algorithm 1 for updating the adjoint solution λ in each designwindow.

IV. Governing Equations for the Primal
and Adjoint CFD Solver

Before presenting the unsteady design optimization results, the
governing equations for the primal and adjoint CFD solvers are
provided in this section. An in-house code, GENESIS, solves the
stream function and vorticity form of the two-dimensional incom-
pressible Navier–Stokes equations written in a generalized coordi-
nate system through a transformation from Cartesian coordinates
!x; y" to computational coordinates !ξ; η" such that [42]

∂ω
∂t

$ J

"
∂ψ
∂η

∂ω
∂ξ

−
∂ψ
∂ξ

∂ω
∂η

#

−
1

Re

"
α
∂2ω
∂ξ2

$ 2γ
∂2ω
∂ξ∂η

$ β
∂2ω
∂η2

$ P
∂ω
∂ξ

$Q
∂ω
∂η

#
# 0 (29)

α
∂2ψ
∂ξ2

$ 2γ
∂2ψ
∂ξ∂η

$ β
∂2ψ
∂η2

$ P
∂ψ
∂ξ

$Q
∂ψ
∂η

# −ω (30)

where J # ∂!ξ; η"∕∂!x; y" # !xξyη − xηyξ"−1 is the Jacobian of the
transformation, and the auxiliary coefficients (i.e., α, β, γ, P, andQ)
are described in Ref. [42]. GENESIS uses second-order finite
differences for the spatial derivatives, resulting in a semidiscrete form
written as

∂Q
∂t

$ R!Q" # 0 (31)

where Q is the vector of flow variables defined as Q # %ψ ω&T .
Here, the residual of the primal CFD solver R!Q" includes the
linearized form of the spatially discretized governing equations
[i.e., R!Q" # A ⋅ ΔQ − S!Q"], whereA is the Jacobian matrix that
can be analytically derived for a second-order linearization in space.
Note that Eq. (31) is the constraint PDE for theminimization problem
as described earlier via Eq. (9). It is important to note that while the
system of governing equations is written in the form of Eq. (31), the
time derivative should only be applied to the vorticity transport
equation. Since a BDF2 scheme is used for temporal discretization,
the adjoint equations will become slightly different from those pre-
sented in Eqs. (18–20). Therefore, based on the KKT optimality
condition for the state solution, the costate equations for the adjoint
vector λ#%λψ λω &T are derived as

λNω
Δt

$
!
∂RN

∂QN

$
T

λNω #−
∂IN

∂QN terminal condition; !n#N"

(32)

λN−1
ω −λNω
Δt

$
!
∂RN−1

∂QN−1

$
T

λN−1
ω #−

∂IN−1

∂QN−1 semiterminal condition;

!n#N−1" (33)

3λnω−4λn$1
ω $λn$2

ω

2Δt
$
!
∂Rn

∂Qn

$
T

λnω#−
∂In

∂Qn intermediate states;

!n#2;: : : ;N−2" (34)

3λ1ω − 4λ2ω $ λ3ω
2Δt

# −
∂I1

∂Q1
initial condition; !n # 1" (35)

where λω is the adjoint of the vorticity field. Since the stream function
equation [Eq. (30)] does not have an unsteady term, the adjoints of the
stream function λω can be directly evaluated by

!
∂Rn

∂Qn

$
T

λnψ # −
∂In

∂Qn for n # N; : : : ; 1 (36)

As discussed before, the preceding equations are solved backward
in time to obtain the adjoint solutions. Finally, the global sensitivity of
the augmented Lagrangian will be evaluated using Eq. (23).
The boundary conditions for the case of flow inside the cavity are

straightforward, and the reader is referred to Ref. [42] for more
details. However, extra care must be given to the treatment of the
boundary conditions in the case of a cylinder. The boundaries for
the cylinder in crossflow involve the freestream at the far field and the
no-slip wall on the surface of the cylinder, where the former dictates
a zero vorticity and a constant freestream velocity at the far field
such that !u∞; v∞" # !U∞; 0.0". Assuming a unit velocity at the far
field (i.e., U∞ # 1.0), and based on the definition of the stream
function, the flow variables at the far-field boundary are defined as

ω∞ # ω!η # 1.0" # 0.0 ψ∞ # ψ!η # 1.0" # y (37)

Furthermore, the no-slip wall condition requires a constant stream
function value on the surface of the cylinder (i.e., ψ!η # 0.0" #
constant), which is conveniently set to zero inmany cases. Therefore,

Algorithm 1: New hybrid LiT/FiP approach

Result:Optimal solution xopt for unsteady design in interval t # %0; T&withM
subintervals
“initialize” or “hot-start” flow
while optimal solution has not reached do

start of the first subinterval, m # 1

while m ≤ M do
start forward-in-time pass with n # !m − 1" ×

&
T
M

'

while n ≤ m ×
&
T
M

'
do

update primal solution Qn
k$1 using a single fixed-point iteration

[Eq. (28)]
write flow solution to disk
increment time step (n # n$ 1)

end
start backward-in-time pass with n # !m" ×

&
T
M

'

set terminal condition [Eq. (18)] based on λ values from previous
design cycle

while n ≥ !m − 1" ×
&
T
M

'
do

read flow solution from disk
update adjoint solution λ using Eqs. (18–20)
decrement time step (n # n − 1)

end
add contributions to ∂L

∂x [Eq. (23)]
goto next interval (m # m$ 1)

end
update design vector x [Eq. (24)] using the piggybacked total derivative
check optimality conditions [Eqs. (3–5)]
goto next design cycle

end
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∂ψ
∂ξ

((((
η#0.0

# 0.0

reducing Eq. (30) to

ω!η # 0.0" $ β
∂2ψ
∂η2

((((
η#0.0

$Q
∂ψ
∂η

((((
η#0.0

# 0 (38)

The preceding equation can be rearranged to solve for the vorticity
value on the surface of the cylinder. Additionally, for the rotating
cylinder cases considered in this work, the angular surface velocity
can be written in a generalized coordinate system as

uθ # −
∂ψ
∂r

# −
!
∂ψ
∂ξ

∂ξ
∂r

$ ∂ψ
∂η

∂η
∂r

$
(39)

The first termon the right-hand side of the preceding equationmust
vanish due to a constant stream function value on a solid wall, thus
simplifying it as

uθ # −
!
∂ψ
∂η

"
∂η
∂x

∂x
∂r

$ ∂η
∂y

∂y
∂r

#$
→

∂ψ
∂η

# −
uθ

ηx cos!θ" $ ηy sin!θ"
(40)

where polar to Cartesian coordinate transformations [i.e.,
x # r cos!θ" and y # r sin!θ"] are used to replace the ∂x∕∂r and
∂y∕∂r terms. Ultimately, the rotational velocity on the surface of the
cylinder urotational # uθ can be prescribed as

urotational # Ω for the steady rotation case
urotational # Ω sin!2π ⋅ f ⋅ t" for the periodic rotation case

where Ω is the amplitude of rotation and f is the nondimensional
forcing frequency, which is analogous to the Strouhal (Sr) number
defined as

Sr # 2r ⋅ f
U∞

(41)

for a cylinder with a unit diameter (i.e., r # 0.5) subject to a unit
freestream velocity U∞ # 1.0.

V. Results
In this section, the proposed one-shot approach is used for

unsteady design optimization. The first test case involves the inverse
design in the framework of a lid-driven cavity flow solver. Next,
vortex suppression and mean drag reductions are sought for a cylin-
der in crossflow subject to steady and oscillatory rotations.

A. Inverse Design in a Lid-Driven Cavity

As the first test case to demonstrate the performance of various
unsteady primal/adjoint solution techniques, the determination of the

excitation parameter for the unsteady lid velocity is targeted. For the
lid-driven cavity flow, the unsteady lid velocity is described as

Ulid!t" #
1

sin−1!K"
sin−1!K sin!2πft"" (42)

whereK is the excitation parameter and f is the excitation frequency,
taken to be f # 1 in this work. The excitation parameter is defined
between 0 ≤ K ≤ 1. For smaller values of the excitation parameter
(i.e., K → 0), the lid velocity will have a sinusoidal form, while for
K → 1, a triangular waveform with sharp crests is achieved. The
primal governing equations are solved for the lid-driven cavity
flow at a Reynolds number of Re # 100 on a rectangular grid with
101 × 101 equally spaced nodes and Δt # 0.05. The primal solu-
tions of the CFD solver for a single period T # 1∕f # 1.0 are
presented in terms of the vorticity fields at t # 0.25, 0.5, 0.75, and
1.0 and are shown in Fig. 5.
For the purpose of the unsteady design optimization, the inverse

design problem for the excitation parameter is considered. The time-
integrated objective function is defined as

!I # 1

T

Z
t#T

t#0

1

2
!ω!t" − ωtarget!t""2 dt #

1

T

XN

n#1

1

2
!ωn − ωn

target"2Δt

(43)

where the vorticityω and its target valueωtarget are both defined at the
midpoint of the lid boundary. The target time history of the unsteady
vorticity response is taken to be the one obtained usingK # 0.9999.
Also, the initial value of the excitation parameter is taken to be
K # 0.8, which corresponds to a semisinusoidal transient response.
First, we consider the adjoint solutions at four time instances

during the interval of interest. These are taken to be at t # 0.25,
0.5, 0.75, and 1.0,which correspond to the primal solutions presented
earlier in Fig. 5. The adjoint solutions at these time instances are
presented in Fig. 6. Since the objective function is dependent on the
vorticity solution at the midpoint on the lid boundary, the adjoint
solution field is also focused around this point. Additionally, the flow
reversal phenomenon, which is typically seen in the adjoint solution,
causes the sensitivities to backpropagate into the computational
domain from the source of the objective function.
In all cases studied here, the design cycles are continued until the

objective function has reached a 0.0001 threshold. The convergence
of the time-integrated objective function using the four different
approaches described earlier as well as the convergence of the
excitation parameter K are presented in Fig. 7. As can be seen, the
convergence of the FiP approach is very similar to that of the classical
one-shotmethod,with a slight difference during the last portion of the
convergence. It must be noted that the current design optimization
problem is bound constrained so that infeasible values of the excita-
tion parameter (i.e., K > 1.0) are not admissible. In fact, the upper
bound for the design variable is activated after 18 design cycles, at
which point the convergence behavior of the minimization problem
changes and it is no longer superlinear. On the other hand, the two
cases with the local-in-time approach both have a lower convergence

a) t = 0.25 b) t = 0.5 c) t = 0.75 d) t = 1.0

Fig. 5 Primal solutions of the vorticity field at four time steps during one period of excitation, T ! 1.0.
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rate as they slowly drive the excitation parameter from its initial value
to the target. Overall, this results in a slower convergence to the
optimal value, while the convergence behavior does not change.
Furthermore, the computational cost associated with each method

can be inferred from the convergence plot shown in Fig. 8 as a
function of the wall-clock time. As can be seen, the fixed-point
iteration approach results in the fastest convergence of the design

variable to its optimal solution, followed by the proposed hybrid
approach that also uses a local-in-time technique with 10 subinterv-
als. Additionally, normalized CPU times and memory footprints are
presented in Table 1 for the different approaches used in the inverse
design of the cavity flow. These results show the robustness of the
proposed technique for one-shot unsteady design. It is apparent that
the approach results in significant performance gains in terms of both
computational cost and memory efficiency.
It must be noted that for the LiT and LiT/FiP approaches, cases

with 2, 4, and 10 subintervals are considered, while only the results
with 10 subintervals were presented in Fig. 7. To study the effects of
the number of subintervals on the performance of the unsteady one-
shot design optimization approach, cases with different numbers of
subintervals are compared next. These results are presented in Figs. 9
and 10 in terms of the objective function and excitation parameter
convergence for the LiT and LiT/FiP approaches where the local-
in-time technique is used. Interestingly, for both the LiTand LiT/FiP

a) Convergence of I b) Convergence of K

Fig. 7 Convergence of a) the time-integrated objective function and b) the excitation parameter for the unsteady design optimization problemusing four
different approaches.

a) t = 0.25 b) t = 0.5 c) t = 0.75 d) t = 1.0

Fig. 6 Adjoint solutions of the vorticity field at four time steps during one period of excitation, T ! 1.0.
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LiT - 10 Intervals
FiP
LiT/FiP - 10 Intervals

Fig. 8 Convergence of the excitation parameter (design variable) for the
unsteady design optimization problemusing four different approaches in
terms of wall-clock time.

Table 1 Normalized CPU times and memory footprints for
different unsteady one-shot approaches used for the inverse

design of the cavity flow

One-shot
approach

Normalized
time

Normalized
memory footprint

Reduction,
%

Classical 1.0 1.0 ——
LiT, 10 intervals 1.04 0.1 90
FiP 0.317 1.0 ——
LiT/FiP, 10 intervals 0.355 0.1 90
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approaches, cases with 10 subintervals lead to faster convergence
while also providing an almost 90% reduction in memory footprint.
Finally, the time history of the vorticity at the midpoint of the

lid boundary for the original (K # 0.8), optimized, and target
(K # 0.9999) are compared against each other, and the results are
presented in Fig. 11. It is seen that the inverse design optimization
leads to a vorticity distribution that perfectly matches the target by
calibrating the excitation parameter. We remind the reader that all
four approaches ultimately converge to the same target value of
K # 0.9999, and hence only the optimal solution from the LiT/FiP
approach is presented in Fig. 11.
More importantly, the FiP approach provides a more than 40%

reduction in CPU time for the evaluation of primal and adjoint
solutions for the entire time interval. Combining this computational
efficiencywith thememory efficiency of the LiTapproach has shown
to provide significant reductions in both CPU time and memory
footprint. Therefore, the LiT/FiP approach presented in this work
has the potential of providing a robust and highly efficient framework
for time-accurate design optimization.

B. Vortex Suppression and Mean Drag Reduction for Cylinder in
Crossflow

The flow past a circular cylinder has been studied extensively in
the literature due to the fact that it provides essential understand-
ing of the vortex dynamics in the wake of general bluff bodies. The

characteristics of the wake flow are directly related to the Reynolds
number, with rows of vortices forming inside the wake as the
Reynolds number is increased beyond a critical value of Recrit > 47
in a so-called Kármán vortex street [43].
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b)  LiT/FiP approach

Fig. 9 Effects of the number of subintervals on the convergence of the time-integrated objective function for the unsteady design optimization problem
using the a) LiT and b) LiT/FiP approaches.
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Fig. 10 Effects of the number of subintervals on the convergence of the excitation parameter for the unsteady design optimization problem using the
a) LiT and b) LiT/FiP approaches.
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Fig. 11 Comparison of unsteady vorticity solutions for the original
(K ! 0.8), optimized, and target (K ! 0.9999) designs of the cavity flow
with unsteady lid velocity.
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With a deeper understanding of the flow features in thewake of the
cylinder, focus has been shifted toward controlling the vortex shed-
ding by rotating the cylinder. It has been understood that certain
conditions lead to vortex suppression [44,45]. The experimental
work of Tokumaru andDimotakis [46] proved that finding an optimal
rotational velocity for the cylinder in crossflow may result in signifi-
cant mean drag reductions. This effect has been also studied numeri-
cally by Kang et al. and He et al. [47,48] for various Reynolds
numbers. Additionally, in the area of unsteady adjoint-based design,
several studies have focused on vortex suppression or mean drag
minimization for a circular cylinder via constant or time-periodic
rotation of the cylinder [19,49,50].
In this work, the use of the proposed unsteady one-shot approach

is investigated to identify an optimal rotational velocity that can
either lead to vortex suppression in the wake or a reduction in the
mean drag coefficient. Here, flow past the circular cylinder with a
unit diameter at Re # 100 is considered. For the case with steady
rotation, the physical domain is discretized by an O-type grid with
177 × 81 nodes in the circumferential ξ and normal η directions,
respectively. The computational domain is extended for 100 diam-
eters, and the grid in the vicinity of the cylinder is shown in Fig. 12a.

1. Vortex Suppression via Steady Rotation

The first optimal control problem considers a steady rotation.
Here, the cylinder rotational velocity is defined as urotational # Ω,
which is chosen as the design variable. As mentioned earlier, the goal
of this test case is to study vortex suppression via steady rotation.
Here, we follow an approach similar to the one proposed byHomescu
et al. [49] in which a target stream function distribution is considered
in the framework of a flow-tracking procedure. For this reason, the
flowfield at Re # 2 with a steadily rotating cylinder at Ω # 2 is
chosen [49]. With that, the objective function for the flow-tracking
approach can be written as

!I # 1

T

Z
T

0

1

2

Z

V
%ψ − ψ target&2 dV dt (44)

where V refers to the entire computational domain and ψ target is the
stream function field for the target solution (i.e.,Re # 2 andΩ # 2).
The present choice of the objective function is significantly more
straightforward when compared to the mean drag coefficient. How-
ever, as shown by Homescu et al. [49], this can lead to an ill-posed
problem in which the optimal rotational speed would continually
increase. Therefore, a regularization function, similar to that pro-
posed by Homescu et al. [49], will be used to resolve the ill-posed-
ness. The regularization function limits the rotational velocity on the
surface of the cylinder by augmenting the objective function such that

!I # 1

T

Z
T

0

1

2

Z

V
%ψ − ψ target&2 dV dt

$ RF
1

T

Z
T

0

1

2

I

S
%urotational&2 dS dt (45)

where S refers to the cylinder surface boundary andRF is a constant
that controls the regularization function. It must be noted that the
addition of the regularization function is, in many ways, similar to a
penalty-function approach. Homescu et al. [49] have shown that a
trial and error technique can be used to determine the regularization
factor for various Reynolds numbers. A similar approach has been
adopted here leading toRF # 1500 for theRe # 100 case presented
in this section.
First, the primal flowfield with Ω # 1.0 is solved for 150 s with a

time step of Δt # 0.02 to achieve quasi-steady-state conditions.
Next, the unsteady design optimization problem is hot started, and
a 20 s time interval is chosen as the design window. However, before
presenting the design optimization results, it is important to make
sure that the primal solutions are spatially and temporally converged
by conducting a grid and time-step convergence study. In this regard,
the grid resolution is doubled in both the radial and circumferential
directions to achieve a finer (353 × 161) grid. Also, the time step is
halved to study the temporal accuracy. The resulting lift coefficient
time histories using the doubled spatial and temporal resolutions are
compared to the nominal grid resolution and time step during the
design interval. These results are shown in Fig. 13, which clearly
exhibits the convergence of the primal solutions in both space
and time.

a) 177 × 81 grid b) 265 × 129 grid

Fig. 12 Computational grids with node clustering in the wake region used for the flow past the circular cylinder with a) steady and b) periodic rotation
settings.
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Fig. 13 Spatial and temporal convergence analysis based on the
unsteady lift history in interval [0, 20] (cylinder in crossflow with steady
rotation).
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In addition to the qualitative convergence study presented herein, a
quantitative study is also performed in terms of the mean lift coef-
ficients as well as the Strouhal numbers. These results are presented
in Table 2 and once again prove that the primal solutions are con-
verged both spatially and temporally. It must be noted that this
convergence study is crucial for any unsteady simulation. Addition-
ally, the accuracy of the discrete adjoint solutions is directly related to
the accuracy of the primal flow solutions, thus making the conver-
gence study presented herein even more crucial for the validity of the
unsteady design solutions sought in this work.
Similar to the lid-driven cavity optimization that was presented

earlier, the efficacy of the proposed hybrid technique (LiT/FiP) is
investigated. For the local-in-time approach, varying numbers of
subintervals are tested. Here, for the design window of %0; 20&, the
number of subintervals is taken to be M # 2, 4, 10, and 25 for both
the LiT and LiT/FiP approaches. With the choice of RF # 1500, the

sequential least-squares quadratic programming method converges
to an optimal rotational velocity amplitude of Ωopt # 1.8932. The
convergence histories of the optimizer using the classical approach
(GiT), the LiT method with 25 intervals, the FiP approach, and the
proposed LiT/FiP technique also with 25 subintervals are presented
in Fig. 14. As can be seen, all four approaches converge to the same
optimal solution, while the cases using a local-in-time approach
exhibit a slightly slower convergence during the early design cycles.
This behavior is associated with the fact that the LiT approach is
prone to slight errors in early stages, mainly because of the disconti-
nuities present in the backward-in-time procedure. Simply, the ter-
minal conditions for these equations rely on adjoint solutions from
the next subinterval that are yet to be determined. As such, an error is
introduced, but that error gets smaller with the number of design
cycles.
Next, the effect of the number of subintervals on the convergence

behavior of the unsteady one-shot techniques is studied. Here, the
LiTand LiT/FiP approacheswith various numbers of subintervals are
considered, and the results are presented in Fig. 15. As can be seen,
while all techniques converge to the same optimal solution, the
increase in the number of subintervals can have a slight degradation
of the convergence behavior at the early stages.
To further study the performance of different unsteady one-shot

techniques, the optimality condition is plotted during the optimiza-
tion process, and the results are shown in Fig. 16. Here, it is interest-
ing to note that in all cases, the gradients of the time-averaged
objective function are reduced significantly. Additionally, the LiT

Table 2 Spatial and temporal convergence study for the cylinder
with steady rotation at Re ! 10 0

Case
Mean
CL

%
difference Sr

%
difference

177 × 81—Δt # 0.02 1.38935 —— 0.165046 ——

177 × 81—Δt # 0.01 1.38989 0.0388 0.165026 0.0121
353 × 161—Δt # 0.02 1.38626 0.2224 0.166121 0.6513
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Fig. 14 Convergence of the quadratic programming problem for the
optimal steady rotation rate of the cylinder in crossflow at Re ! 100.
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Fig. 15 Effects of the number of subintervals on the unsteady design optimization using the a) LiT and b) LiT/FiP approaches.
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Fig. 16 Optimality condition for the quadratic programming used in
determining the optimal steady rotation rate of the cylinder in crossflow
at Re ! 100.
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and LiT/FiP techniques, which rely on a local-in-time approach,
exhibit a different behavior at the late stages due to the possible
undershooting and overshooting of the optimizer close to the optimal
solution. In fact, Rumpfkeil and Zingg [19] have shown that the
design space for this control problem has various local optima that are
close to each other, leading to such behavior.
As discussed earlier in this paper, the FiP approach can provide

significant reductions in CPU time, since the number of inner iter-
ations for the primal solver at each time step is reduced down to
one. This computational saving can be clearly seen in Fig. 17, which
presents the wall-clock times for different unsteady one-shot
approaches used in this work. As can be seen, both the FiP and the
proposed LiT/FiP techniques lead to considerable reductions in
computational time. On the other hand, the LiT approach is shown
to provide consistent reductions in memory footprint as the number
of subintervals is increased. The results in terms of computational and
memory savings are presented in Tables 3 and 4. As can be seen, the
proposed LiT/FiP approach can provide up to a 65% reduction in the
computational time as well as a more than 90% reduction in memory
footprint. It must be noted that both of these significant improve-
ments are achieved while the LiT/FiP maintains the accuracy, with
the quadratic programming problem converging to the same optimal
solution as the classical approach.
It must be noted that Homescu et al. [49] have used a similar design

approach that has led to an optimal rotation amplitude of Ω # 1.84.
On the other hand, Kang et al. [47] have reported Ω # 1.9 as the
optimal solution, which they achieved by gradually increasing the
rotational velocity amplitude until the drag variations are signifi-
cantly reduced. As can be seen, the optimal solution obtained in this
work, Ωopt # 1.8932, is in very good agreement with the values
reported in the literature.
To better understand the effect of optimal rotational speed in

suppressing vortex shedding and subsequently reducing the mean
drag coefficient, time histories of lift and drag force coefficients are
shown in Fig. 18. As mentioned earlier, the unsteady optimization
problem is hot started by using the periodic flow solution after 150 s.
This means that the time interval of %0; 20& used as the design window
is in fact the time interval between %150; 170& s. Once again, it can be
seen that the variations in drag coefficient aswell as themean drag are
significantly reduced. At the same time, and as expected, the higher
rotational velocity leads to a higher lift coefficient.
Finally, the vorticity fields and the streamlines around the cylinder

with the original and optimal surface rotational velocities are shown
in Fig. 19. It can be clearly seen that the vortex street is completely
suppressed in the controlled case in which the cylinder is rotated at a
steady rate ofΩopt # 1.8932, which is found to be the optimal value.
It must be noted that this value is a function of the regularization
parameter, which limits the maximum value of the rotational speed.
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Fig. 17 CPU times for different unsteady one-shot techniques used in
this work for the optimal control of the vortex shedding of a circular
cylinder at Re ! 100 via a steady rotation.

Table 3 Normalized CPU times for different unsteady one-shot
approaches used for the optimal control of the cylinder vortex

shedding via steady rotation

One-shot
approach

Normalized
time

One-shot
approach

Normalized
time

Classical 1.0 FiP 0.36
LiT, 2 intervals 1.0 LiT/FiP, 2 intervals 0.33
LiT, 4 intervals 1.04 LiT/FiP, 4 intervals 0.35
LiT, 10 intervals 1.05 LiT/FiP, 10

intervals
0.36

LiT, 25 intervals 1.08 LiT/FiP, 25
intervals

0.38

Table 4 Normalized memory footprints for different unsteady one-
shot approaches used for the optimal control of the cylinder vortex

shedding via steady rotation

One-shot approach
Normalized memory

footprint
Reduction,

%
Classical 1.0 ——
FiP 1.0 ——
LiT and LiT/FiP, 2 intervals 0.5 50
LiT and LiT/FiP, 4 intervals 0.25 75
LiTand LiT/FiP, 10 intervals 0.1 90
LiTand LiT/FiP, 25 intervals 0.04 96
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Fig. 18 Time histories of lift and drag coefficients for original (uncontrolled with Ωorig ! 1.0) and optimal (controlled with Ωopt ! 1.8932) cases of
cylinder in crossflow at Re ! 100 with steady rotation.
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2. Mean Drag Reduction via Time-Periodic Rotation

Having presented the results of the unsteady design optimization
pertaining to the vortex suppression of a steadily rotating cylinder
in crossflow, we now shift our attention to the case in which the
cylinder is rotationally oscillated. As discussed before, this oscilla-
torymotion can be defined via the rotational velocity on the surface of
the cylinder defined as a time-periodic function [i.e., urotational #
Ω sin!2π ⋅ f ⋅ t"], where Ω is once again the rotational velocity
amplitude and f is the forcing frequency. Here, both Ω and f are
chosen as the design variables, with their initial values set toΩorig #
1.4 and forig # 0.3. However, the flowfield used for hot starting the
design process corresponds to the natural vortex shedding of the
stationary cylinder atRe # 100. For the present test case, a finer grid
with 265 × 129 nodes, shown in Fig. 12b, is used to better capture the
flow physics in the highly unsteady wake. The design window or
the time interval for the primal and adjoint calculations is taken to be
%0; 20& s, and a physical time step of Δt # 0.01 is used.
Unlike the previous test case, in which vortex suppression was the

main objective, the goal here is to minimize the mean drag for the
oscillating cylinder. Therefore, the time-integrated quantity of inter-
est being minimized is defined as

!I # 1

T

XN

n#1

CD!xn;Qn!x""Δt (46)

where CD is the drag coefficient calculated based on the instanta-
neous flow solution and the design variables (i.e., oscillation param-
eters Ω and f). It must be noted that a similar approach was adopted
by other researchers to reduce the mean drag for an oscillating
cylinder at various Reynolds numbers [19,47,48,50].
In this work, the TAPENADE automatic differentiation toolbox

[40] is used to calculate the sensitivities of the drag coefficient with

respect to the flow solution and the design variables. Therefore, the
automatically differentiated functions are called during backward-
in-time adjoint solutions to obtain ∂Cn

D∕∂Qn and ∂Cn
D∕∂xn terms

based on the current flow solutions and design variables at time level
n. As discussed earlier, the sensitivities of the objective function with
respect to the flow variables (i.e., ∂I∕∂Q) are used on the right-hand
side of the adjoint equations [see Eqs. (32–35)] to propagate the
solutions backward in time. At the same time, the sensitivities of the
objective functionwith respect to the designvariables (i.e., ∂I∕∂x) are
included in the total derivative accumulation according to Eq. (23).
Once again, the primal flow solver is run for 100 s with the

stationary cylinder to capture the natural vortex shedding, and the
solution at t # 100 s is used to hot start the design optimization
process for the %100; 120& time interval, which, for brevity, will be
presented as the %0; 20& design window. The physical time step is
taken to beΔt # 0.01, whichmeans 2000 time steps are taken during
the design window. Similar to the previous test case, different one-
shot techniques (i.e., GiT, FiP, LiT, and LiT/FiP) are applied to solve
this unsteady optimization problem. Additionally, only 25 subinterv-
als are used for the LiTand LiT/FiP approaches, whichwould require
80 time steps during each subinterval and can provide a more than
90% reduction in the memory footprint.
First, the convergence behaviors for both design variables (i.e., Ω

and f) are presented in Fig. 20 using the classical (GiT), LiT, and FiP
techniques, as well as the proposed hybrid technique (i.e., LiT/FiP).
As can be seen, there are some noticeable differences in the con-
vergence behavior of the LiT-based techniques compared to the
classical (GiT) and FiP approaches. This is more significant for the
forcing frequency and can be once again attributed to the disconti-
nuities in restarting the adjoint solutions in each subinterval using an
approximate terminal condition. Nevertheless, all cases ultimately
converge to the same optimal solutions for both design variables,
which are Ωopt # 1.986 and fopt # 0.486.
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Fig. 20 Convergence of the quadratic programmingproblem for rotational velocity amplitudeΩ and forcing frequencyf in the optimal periodic rotation
of the cylinder in crossflow at Re ! 100.

a) Uncontrolled case b) Controlled case

Fig. 19 Vorticity contour field and the streamlines for original (uncontrolled with Ωorig ! 1.0) and optimal (controlled with Ωopt ! 1.8932) cases of
cylinder in crossflow at Re ! 100 with steady rotation.
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On the other hand, similar computational and memory savings are
achieved with the FiP, LiT, and the proposed LiT/FiP approaches, as
was shown in the previous test case. The convergence histories in
terms of the CPU times as well as normalized times and memory
footprints are shown in Fig. 21 and Table 5. It is important to once
again note that the reductions in the memory footprint for the local-
in-time approaches are associated with the fact that only a smaller
number of time instances of the primal solution will be stored in the
memory to enable the backward-in-time solution of the adjoint
equations.
Next, the optimality conditions for both design variables are

presented in Fig. 22 using different unsteady one-shot techniques.

Once again, it is shown that the proposed hybrid LiT/FiP approach
does not negatively affect the optimality or convergence behavior of
the quadratic programming. Additionally, in all cases studied here,
the convergence of the optimization problem to the optimal solutions
is guaranteed, although the rate of convergence for this dual-variate
minimization problem is comparably slower than the rate of con-
vergence obtained in the single-variate problem presented in the
previous section.
After presenting the convergence plots for different unsteady one-

shot techniques, let us now focus on the optimal solutions and
changes in vortex dynamics, as well as lift/drag force predictions.
As shown earlier, the optimal values for the two design variables are
obtained as Ωopt # 1.986 and fopt # 0.486. It must be noted that all
of the unsteady one-shot approaches used in this work ultimately
converged to optimal solutions that were within 0.01% of each other.
It is worth noting that the optimal values obtained in this work are

different from the optimal solutions reported by Homescu et al. [49]
(ΩHomescu ≈ 6.5 and fHomescu # 1.13) and He et al. [48] (ΩHe ≈ 6.0
and fHe # 0.75). Interestingly, Rumpfkeil and Zingg [19] and Meh-
mood et al. [50] also report very different optimal values for the
rotational velocity amplitude and the forcing frequency. The former
work also presents an in-depth study of the design space to show that
there are several local optima in the lower range of forcing frequency
and rotation amplitude [19]. Therefore, it can be understood that
the drag minimization of the oscillatory cylinder is a multimodal
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Fig. 21 Convergence histories of the two design variables (Ω and f) in terms of wall-clock times for the optimal periodic rotation of the cylinder in
crossflow at Re ! 100.

Table 5 Normalized CPU times andmemory footprints for different
unsteady one-shot approaches used for the mean drag reduction of the

oscillating cylinder in crossflow at Re ! 100

One-shot
approach

Normalized
time

Normalized memory
footprint

Reduction,
%

Classical 1.0 1.0 ——
LiT, 10 intervals 1.10 0.1 90
FiP 0.395 1.0 ——
LiT/FiP, 10
intervals

0.421 0.1 90
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Fig. 22 Optimality conditions for the quadratic programming used in determining optimal rotational velocity amplitude and forcing frequency of the
oscillating cylinder in crossflow at Re ! 100.
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optimization problem in which, depending on the initial condition, it
is possible to converge to different local optima. It would be interest-
ing to study themultimodality of this problem by considering various
initial conditions. However, the focus of the present paper is on the
use of different unsteady one-shot approaches in solving the design
optimization problem with the goal of efficiency improvements in
terms of CPU time and memory footprint.
Next, the lift and drag force time histories for the original and

optimal designs are shown in Fig. 23. As can be seen, the optimal
oscillation is capable of minimizing themean drag valuewell beyond
the extent of the design window (i.e., %0; 20&), and a similar behavior
was also observed by other researchers [19,48,49]. The detailed
comparisons between the lift and drag variations as well as the
reduction in the mean drag coefficient are presented in Table 6.

Finally, the effect of the optimal periodic rotation of the cylinder on
the vortex dynamics can be seen in the vorticity contour plots shown
in Fig. 24. As can be seen here, unlike the steady rotation design case
presented earlier, a complete suppression of the vortex shedding has
not been achieved. However, the intensity of the vortex shedding in
the wake of the cylinder oscillating with optimal rotation amplitude
and forcing frequency (controlled case) is substantially reduced with
the wake flow being quasisymmetrized [48]. Nevertheless, such an
optimal combination of the rotational amplitude and the forcing
frequency obtained in the present work has led to a significant
reduction of the mean drag coefficient of almost 10%.

VI. Conclusions
In this paper, a new one-shot approach for unsteady adjoint-based

design optimization was presented. The newmethod takes advantage
of the local-in-time approach by breaking down the design window
into a set of smaller subintervals that can significantly reduce the
memory footprint required for storing the primal solutions needed for
solving the adjoint equations backward in time. Additionally, a fixed-
point iteration approach is used that can substantially improve the
computational efficiency in each design cycle. It must be noted that
the proposed hybrid technique was developed as a result of succes-
sive improvements of the numerical procedures starting from the
classical approach. By using the fixed-point and local-in-time tech-
niques separately in the framework of an unsteady design optimiza-
tion problem, it is proven possible to achieve considerable savings in
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Fig. 23 Time histories of the lift and drag coefficients for original (stationary) and optimal (oscillatorywithΩopt ! 1.986, fopt ! 0.486) cases of cylinder
in crossflow at Re ! 100.

Table 6 Comparison of the lift and drag variations and mean drag
reduction between the original (stationary) and optimal oscillatory

rotation of the cylinder at Re ! 100

Cylinder motion
CL

variation
CD

variation
CD
mean

Mean CD
reduction

Stationary (0.24 (0.02 1.3156 ——

Optimal
oscillation

(0.29 (0.055 1.1847 9.94%

a) Uncontrolled (stationary) case b) Controlled (optimal oscillation) case

Fig. 24 Vorticity contour field for original (uncontrolled with natural vortex shedding from the stationary cylinder) and optimal (controlled with
Ωopt ! 1.986, fopt ! 0.486) cases of cylinder in crossflow at Re ! 100.
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terms of computational cost as well as memory footprint. Therefore,
the ultimately proposedmethodwas developed by combining the two
individual techniques into a hybrid approach that can provide both
computational and memory efficiencies. During the development
of this method, it was found that hot starting the adjoint solutions
in the LiTapproach did not have significant effects on the accuracy of
the adjoint calculations. Therefore, the terminal conditions for the
adjoint solutions at the end of each subinterval can simply rely on an
adjoint flow initialization due to the use of a direct linear solution
method to obtain the λ vector at each time step. The proposed hybrid
technique, called LiT/FiP, is used to tackle several unsteady optimi-
zation problems involving the lid-driven cavity flow and a circular
cylinder in crossflow. Unsteady optimization results using the LiT/
FiP technique are compared to those obtained from the classical
approach as well as cases with only the FiP and LiT techniques being
used. It has been shown that the proposed technique can provide up to
a 65% reduction in the computational time by using the fixed-point-
iteration technique. At the same time, the use of the local-in-time
techniquewith varying numbers of subintervals has shown to provide
a more than 95% reduction in memory footprint without sacrificing
the accuracy. Through various test cases presented in this work, it is
shown that, while the memory and computational savings are sub-
stantial, the proposed technique does not significantly change the
convergence behavior of the optimization problem, with the method
ultimately converging to the same optimal solution obtained using
conventional approaches.
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