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ABSTRACT

An algorithm is proposed to detect and classify a change in the dis-
tribution of a stochastic process that has periodic statistical behavior.
The problem is posed in the framework of independent and peri-
odically identically distributed (i.p.i.d.) processes, a recently intro-
duced class of processes to model statistically periodic data. It is
shown that the proposed algorithm is asymptotically optimal as the
rate of false alarms and the probability of misclassification goes to
zero. This problem has applications in anomaly detection in traffic
data, social network data, ECG data, and neural data, where peri-
odic statistical behavior has been observed. The effectiveness of the
algorithm is demonstrated by application to real and simulated data.

Index Terms— Quickest change detection and identification,
ECG arrhythmia detection and identification, traffic congestion
mode detection.

1. INTRODUCTION

In the classical problem of quickest change detection [1], [2], [3],
a decision maker observes a stochastic process with a given dis-
tribution. At some point in time, the distribution of the process
changes. The problem objective is to detect this change in distri-
bution as quickly as possible, with minimum possible delay, subject
to a constraint on the rate of false alarms. This problem has appli-
cations in statistical process control [4], sensor networks [5], cyber-
physical system monitoring [6], regime changes in neural data [7],
traffic monitoring [8], and in general, anomaly detection [8], [9].

In many applications of anomaly detection, the observed pro-
cess has periodic or regular statistical behavior (see Fig. 1). Some
examples are as follows:

1. Arrhythmia detection in ECG Data: The electrocardiography
(ECG) data has an almost periodic waveform pattern with a series
of P waves, QRS complexes, and ST segments (see Fig. 1a). An
arrhythmia can cause a change in this regular pattern [10].

2. Detecting changes in neural spike data: In certain brain-
computer interface (BCI) studies [11], an identical experiment
is performed on an animal in a series of trials leading to similar
firing patterns. An event or a trigger (which is part of the ex-
periment) can change the firing pattern after a certain trial (see
Fig. 1b).

3. Anomaly detection in city traffic data: Vehicle counts at a street
intersection in New York City (NYC) have been found to show
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(a) ECG data from MIT-BIH
database [10].

(b) Neural spike data from a
mice BCI experiment [11].

(c) Vehicle counts observed
through a CCTV camera in
NYC [8].

(d) Instagram message counts
posted near a CCTV camera in
NYC [8]

Fig. 1: Real data from applications in medicine, neuroscience, and
traffic exhibiting statistical periodicity.

regular patterns of busy and quiet periods [8,9,12–15]. A conges-
tion or an accident can cause a drop or increase in these vehicle
counts (see Fig. 1c).

4. Social network data: The count of the number of Instagram mes-
sages posted near a CCTV camera in NYC has also been found to
show approximately periodic behavior [8,9,12–15] (see Fig. 1d).

5. Congestion mode detection on highways: In traffic density esti-
mation problems, it is of interest to detect the mode (congested
or uncongested) of the traffic first before deciding on a model to
be used for estimation [16]. Motivated by the NYC data behav-
ior, the traffic intensity in this application can also be modeled as
statistically periodic.

In each of the above-mentioned applications, an event or anomaly
can cause the statistical properties of the data to change. It is of in-
terest to not only detect when this change occurs but also to classify
the nature or type of change. In the ECG application, it is of interest
to identify the nature or type of arrhythmia. In the BCI experiment, it
is of interest to know the approximate time at which the firing pattern
changes. In traffic application, we may be interested in knowing the
location where the traffic is congested or an accident may have oc-
curred. The anomaly detection problem in these applications can be
posed as the problem of detecting deviations from this regular or pe-



riodic statistical behavior. In this paper, we extend our work in [12]
on quickest detection to joint quickest detection and classification.

At the outset, it may not be clear how to mathematically define
statistical periodicity. This is discussed in Section 2.1. The precise
joint change detection and classification problem is stated in Sec-
tion 2.2 with the solution and optimality discussed in Section 3. In
Section 4, we apply the algorithm to real and simulated data.

2. MODEL AND PROBLEM FORMULATION

2.1. Model for Statistical Periodicity

An independent and identically distributed (i.i.d.) process is a se-
quence of random variables that are mutually independent and have
the same distribution. An independent and periodically identically
distributed (i.p.i.d.) processes is defined as follows [12]:

Definition 1. Let {Xn} be a sequence of random variables such
that the variableXn has density fn. The stochastic process {Xn} is
called independent and periodically identically distributed (i.p.i.d)
if Xn are independent and there is a positive integer T such that the
sequence of densities {fn} is periodic with period T :

fn+T = fn, ∀n ≥ 1.

We say that the process is i.p.i.d. with the law (f1, · · · , fT ).

The law of an i.p.i.d. process is completely characterized by the
finite-dimensional product distribution involving (f1, · · · , fT ). Our
objective in this paper is to develop an algorithm that can observe the
process {Xn} in real-time and detect changes in the distribution as
quickly as possible, subject to a constraint on the rate of false alarms.
The proposed algorithm will also help classify or identify the post-
change distribution with a low probability of misclassification.

2.2. Joint Detection and Classification Formulation

We assume that in a normal regime, the data can be modeled as an
i.p.i.d. process with the law (g

(0)
1 , · · · , g(0)T ). At some point in time

ν, called the change point in the following, the law of the i.p.i.d.
process is governed not by the densities (g(0)1 , · · · , g(0)T ), but by one
of the densities (g(`)1 , · · · , g(`)T ), ` = 1, 2, . . . ,M , with

g
(`)
n+T = g(`)n , ∀n ≥ 1, ` = 1, 2, . . . ,M.

Specifically, at the time point ν, the distribution of the random vari-
ables change from {g(0)n } to {g(`)n }:

Xn ∼

{
g
(0)
n , ∀n < ν,

g
(`)
n ∀n ≥ ν, for some ` = 1, 2, . . . ,M.

(1)

We want to detect the change described in (1) as quickly as pos-
sible, subject to a constraints on the rate of false alarms and on the
probability of misclassification. Mathematically, we are looking for
a pair (τ, δ), where τ is stopping time, i.e.,

{τ ≤ n} ∈ σ(X1, X2, . . . , Xn),

and δ is a decision rule, i.e., a map such that

δ(X1, X2, . . . , Xτ ) ∈ {1, 2, . . . ,M}.

Let P(`)
ν denote the probability law of the process {Xn} when the

change occurs at time ν and the post-change law is (g(`)1 , · · · , g(`)T ).

We let E(`)
ν denote the corresponding expectation. When there is

no change, we use the notation E∞. The problem of interest is as
follows [17]:

min
τ,δ

max
1≤`≤M

sup
ν≥1

ess supE(`)
ν [(τ − ν + 1)+|X1, · · · , Xν−1],

subj. to E∞[τ ] ≥ β,

and P
(`)
1 [τ <∞, δ 6= `] ≤ aβ E

(`)
1 [τ ], ` = 1, 2, . . . ,M,

where log a−1
β ∼ log β, as β →∞.

(2)

Here ess sup is used to denote the supremum of the random vari-
able E

(`)
ν [(τ − ν + 1)+|X1, · · · , Xν−1] outside a set of measure

zero. Here and below, for two functions h(β) and f(β) of β, we
use f(β) ∼ h(β), as β → ∞, to denote that the ratio of the two
functions goes to 1 in the limit. Further motivation of this and other
problem formulations for change point detection and isolation can
be found in the literature [2], [17], [18].

2.3. Algorithm for Detection when M = 1

When M = 1, i.e., when there is only one post-change i.p.i.d.
law, then an algorithm that is asymptotically optimal for detecting
a change in the distribution is the periodic-CUSUM algorithm pro-
posed in [12]. In this algorithm, we compute the sequence of statis-
tics

Wn+1 =W+
n + log

g
(1)
n+1(Xn+1)

g
(0)
n+1(Xn+1)

(3)

and raise an alarm as soon as the statistic is above a threshold A:

τc = inf{n ≥ 1 :Wn ≥ A}. (4)

Define

I10 =
1

T

T∑
i=1

D(g
(1)
i ‖ g(0)i ), (5)

where D(g
(1)
i ‖ g(0)i ) is the Kullback-Leibler divergence between

the densities g(1)i and g(0)i . Then, the following result is proved in
[12].

Theorem 2.1 ( [12]). Let the information number I10 as defined in
(5) satisfy 0 < I10 <∞. Then, with A = log β,

E∞[τc] ≥ β,

and as β →∞,

sup
ν≥1

ess supEν [(τc − ν + 1+|X1, · · · , Xν−1]

∼ inf
τ :E∞[τ ]≥β

sup
ν≥1

ess supEν [(τ − ν + 1)+|X1, · · · , Xν−1]

∼ log β

I10
.

(6)

Thus, the periodic-CUSUM algorithm is asymptotically optimal
for detecting a change in the distribtion, as the false alarm constraint
β → 0. Further, since the set of pre- and post-change densities
(g

(0)
1 , · · · , g(0)T ) and (g

(1)
1 , · · · , g(1)T ) are finite, the recursion in (3)

can be computed using finite memory needed to store these 2T den-
sities.



3. ALGORITHM FOR JOINT DETECTION AND
CLASSIFICATION

When the possible number of post-change distributions M > 1 and
when we are also interested in accurately classifying the true post-
change law, the periodic-CUSUM algorithm is not sufficient. We
now propose an algorithm that can perform joint detection and clas-
sification.

For ` = 1, . . . ,M , define the stopping times

τ` = inf

{
n ≥ 1 : max

1≤k≤n
min

0≤m≤M,m 6=`

n∑
i=k

log
g
(`)
i (Xi)

g
(m)
i (Xi)

≥ A

}
.

(7)

The stopping time and decision rule for our detection-classification
problem is defined as follows:

τdc = min
1≤`≤M

τ`,

δdc = arg min
1≤`≤M

τ`.
(8)

A window-limited version of the above algorithm is obtained by re-
placing each τ` in (7) by

τ̃` = inf

{
n : max

n−Lβ≤k≤n
min

0≤m≤M,m 6=`

n∑
i=k

log
g
(`)
i (Xi)

g
(m)
i (Xi)

≥ A

}
.

(9)

For 1 ≤ ` ≤M and 0 ≤ m ≤M, m 6= `, define

I`m =
1

T

T∑
i=1

D(g
(`)
i ‖ g

(m)
i ), (10)

and
I∗ = min

1≤`≤M
min

0≤m≤M,m 6=`
I`m. (11)

Recall that we are looking for (τ, δ) such that

E∞[τ ] ≥ β(1 + o(1)), as β →∞, (12)

and

P
(`)
1 [τ <∞, δ 6= `] ≤ aβ E

(`)
1 [τ ], ` = 1, 2, . . . ,M,

where log a−1
β ∼ log β, as β →∞.

(13)

Let
Cβ = {(τ, δ) : conditions in (12) and (13) hold}. (14)

Theorem 3.1. Let the information number I∗ be as defined in (11)
and satisfy 0 < I∗ <∞. Then, with A = log 4Mβ,

(τdc, δdc) ∈ Cβ .

Also,

max
1≤`≤M

sup
ν≥1

ess supE(`)
ν [(τdc − ν + 1)+|X1, · · · , Xν−1]

∼ inf
(τ,δ)∈Cβ

max
1≤`≤M

sup
ν≥1

ess supE(`)
ν [(τ − ν + 1)+|X1, · · · , Xν−1]

∼ log β

I∗
, as β →∞.

(15)

Finally, the window-limited version of the test (9) also satisfies the
same asymptotic optimality property as long as

lim inf
β→∞

Lβ
log β

>
1

I∗
.

Proof. For 1 ≤ ` ≤M and 0 ≤ m ≤M, m 6= `, define

Zi(`,m) = log
g
(`)
i (Xi)

g
(m)
i (Xi)

to be the log likelihood ratio at time i between the measures P(`)
1 and

P
(m)
1 . In the rest of the proof, to write compact equations, we use
Xν−1

1 to denote the vector

Xν−1
1 = (X1, X2, . . . , Xν−1).

For each 1 ≤ ` ≤ M and 0 ≤ m ≤ M, m 6= `, we first show that
the sequence {Zi(`,m)} satisfies the following statement:

sup
ν≥1

ess supP(`)
ν

(
max
t≤n

ν+t∑
i=ν

Zi(`,m) ≥ I`m(1 + δ)n

∣∣∣∣ Xν−1
1

)
→ 0, as n→∞, ∀δ > 0,

(16)

where I`m is as defined in (10).
Towards proving (16), note that as n→∞

1

n

ν+n∑
i=ν

Zi(`,m)→ I`m, a.s. P(`)
ν , ∀ν ≥ 1. (17)

The above display is true because of the i.p.i.d. nature of the obser-
vation process. This implies that as n→∞

max
t≤n

1

n

ν+t∑
i=ν

Zi(`,m)→ I`m, a.s. P(`)
ν , ∀ν ≥ 1. (18)

To show this, note that

max
t≤n

1

n

ν+t∑
i=ν

Zi(`,m)

= max

{
max
t≤n−1

1

n

ν+t∑
i=ν

Zi(`,m),
1

n

ν+n∑
i=ν

Zi(`,m)

}
.

(19)

For a fixed ε > 0, because of (17), the LHS in (18) is greater than
I`m(1 − ε) for n large enough. Also, let the maximum on the LHS
be achieved at a point kn, then

max
t≤n

1

n

ν+t∑
i=ν

Zi(`,m) =
1

n

ν+kn∑
i=ν

Zi(`,m) =
kn
n

1

kn

ν+kn∑
i=ν

Zi(`,m).

Now kn cannot be bounded because of the presence of n in the de-
nominator. This implies kn > i, for any fixed i, and kn → ∞.
Thus, 1

kn

∑ν+kn
i=ν Zi(`,m) → I`m. Since kn/n ≤ 1, we have that

the LHS in (18) is less than I`m(1 + ε), for n large enough. This
proves (18). To prove (16), note that due to the i.p.i.d. nature of the
process

sup
ν≥1

ess supP(`)
ν

(
max
t≤n

ν+t∑
i=ν

Zi(`,m) ≥ I`m(1 + δ)n

∣∣∣∣ Xν−1
1

)

= sup
1≤ν≤T

P(`)
ν

(
max
t≤n

ν+t∑
i=ν

Zi(`,m) ≥ I`m(1 + δ)n

)
.

(20)



The right hand side goes to zero because of (18) and because the
maximum on the right hand side in (20) is over only finitely many
terms.

Next, we show that the sequence {Zi(`,m)}, for each 1 ≤ ` ≤
M and 0 ≤ m ≤M, m 6= `, satisfies the following statement:

lim
n→∞

sup
k≥ν≥1

ess sup P(`)
ν

(
1

n

k+n∑
i=k

Zi(`,m) ≤ I`m − δ
∣∣∣∣ Xν−1

1

)
= 0, ∀δ > 0.

(21)

To prove (21), note that due to the i.p.i.d nature of the process we
have

sup
k≥ν≥1

ess sup P(`)
ν

(
1

n

k+n∑
i=k

Zi(`,m) ≤ I`m − δ
∣∣∣∣ Xν−1

1

)

= sup
ν+T≥k≥ν≥1

P(`)
ν

(
1

n

k+n∑
i=k

Zi(`,m) ≤ I`m − δ

)

= max
1≤ν≤T

max
ν≤k≤ν+T

P(`)
ν

(
1

n

k+n∑
i=k

Zi(`,m) ≤ I`m − δ

)
.

(22)

The right hand side of the above equation goes to zero for any δ be-
cause of (17) and also because of the finite number of maximizations.
The theorem now follows from Theorem 4 of [17]. �

Remark 1. The algorithm and optimality are valid for multistream
data as well. We only need to treat the observation process as a
sequence of random vectors.

Remark 2. For faster computation, in the numerical results section
below, we use a recursive version of the algorithm by swapping the
max and min operations in (7).

4. APPLICATIONS TO REAL AND SIMULATED DATA
We first apply our algorithm to ECG data from MIT-BIH database
[10] record number 208 (see Fig. 2). The patient has two types of
arrhythmias: premature ventricular contraction (V) and the fusion
of ventricular and normal beat (F). Gaussian i.p.i.d. processes (joint
Gaussian in each period) were trained using data from each class. In
Fig. 2a and Fig. 2b, samples of ten waveforms from two different
parts of the record are plotted. The normal ECG beats are shown
in blue, the beats with arrhythmia of type V are shown in red, and
the ones with arrhythmia of type F are shown in green. For each
waveform, we computed the statistic

min
0≤m≤M,m 6=`

max
1≤k≤n

n∑
i=k

log
g
(`)
i (Xi)

g
(m)
i (Xi)

(23)

for each class (arrhythmia). The corresponding statistics are in
Fig. 2c and Fig. 2d, respectively. For better visualization, the statis-
tics were only computed for time slots in which the training data
showed any disparity between data from different classes resulting
in spiking behavior of the statistic. Moreover, all statistic values
below a certain level were reset to zero. See also Remark 2. The
statistics for class V are plotted in red and those for class F are plot-
ted in green. The figures show that when there is an arrhythmia of
type V (respectively, F) in the ECG data, there is a spike in the red
(respectively, green) statistics. When the ECG beat is normal, there

(a) ECG data for patient 208
starting beat number 1100.

(b) ECG data for patient 208
starting beat number 1500.

(c) Statistic (23) for data in
Fig. 2a above.

(d) Statistic (23) for data in
Fig. 2b above.

Fig. 2: Application of the proposed algorithm to MIT-BIH ECG
data [10]. See also Remark 2. The spiking nature of the statistic
is explained below (23).

is no spike in either of the statistics. A more comprehensive discus-
sion on this application will be reported in a detailed version of this
paper.

Next, we apply the proposed algorithm to multistream data (see
Fig. 3 and Remark 1 above). We use two streams. For each stream,
the data is i.i.d. N (0, 1) before change and alternates between
N (2, 1) and N (0.5, 1) after change. At the change point (time 50
in Fig. 3a), the distribution in only one stream is affected. We again
compute the statistic (23) for each stream. The data and the corre-
sponding statistics are shown in the same color. In the example taken
here, the red stream is affected post-change. This is reflected in the
change in the drift of the red statistic in Fig. 3b after the change
point.

(a) Multistream i.p.i.d. data for
two channels. The period of the
i.p.i.d. data is T = 2.

(b) Statistic (23) computed
for data from each channel in
Fig. 3a.

Fig. 3: Application of the proposed algorithm to simulated multi-
stream data. See also Remark 1.

5. CONCLUSIONS AND FUTURE WORK
We have developed an asymptotic theory for joint quickest detection
and classification (identification) of changes in i.p.i.d. models. In
our future work, we will thoroughly investigate the application of
the proposed algorithm and its variations to ECG data. We will also
apply the algorithm to traffic data to detect and isolate anomalies or
congestion modes.
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