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Abstract—In this paper, we coin a new concept of tensor-
computing, which is based on tensor theory and designed for fu-
ture sixth generation (6G) wireless communication systems. Two
different types of tensors, namely spectrum-tensor and system-
tensor, are defined and analysed to develop a new spectrum
usage framework for 6G. The spectrum-tensor encapsulates high
dimensional spectrum big data into the format of a compact
tensor. The system-tensor summarizes key system performance,
including data rate, bandwidth, delay, spectral efficiency, and
energy efficiency, into a multi-dimension tensor. The concepts
of spectrum-tensor and system-tensor enable unique tensor-
based computing and analysis with the help of high efficiency
tensor-computing tools, such as tensor completion and tensor
decomposition. In the new spectrum usage framework, a value-
based spectrum fusion scheme is designed. The maximum system
value is achieved under the constraint that the individual value
of single user should be guaranteed. The proposed tensor-
computing framework builds a bridge between 6G wireless
functions with real-world high dimension data processing tools,
such as TensorFlow and Tensor Processing Unit (TPU). The
authors hope this paper will shine a beam of tensor theory in
and open a new research field of tensor-computing for future 6G
wireless communications.

Index Terms—Tensor, tensor-computing, spectrum-tensor,
system-tensor, spectrum usage framework, 6G.

I. INTRODUCTION

Tensor theory has been widely used in many research fields,
such as physics, mathematics, chemometrics, signal processing
and so on [1]–[3]. Different from tensor field in physics
and mathematics, the notation of ”tensor” here refers to
multidimensional array, which encapsulates high dimensional
big data information in a compact format. Tensor provides
an efficient way to represent high dimensional data, which is
prevalent in future wireless communication systems, such as
the sixth generation (6G) wireless communication systems.

The vision, concept, and development of 6G wireless com-
munication systems have attracted growing interests in the
research community [4]–[9]. Compared to 5G systems, it is ex-
pected that 6G systems will have three distinctive new features:
artificial intelligence (AI) enabled computing, very large scale
and high dimensional data, and extremely aggressive spectrum
reuse and sharing. It is expected that the development of 6G
systems will face several unique limiting factors, including

limited computing resources, limited data storage, and limited
spectrum. This necessitates the development of new system
architecture and spectrum usage frameworks that are tailored
for the unique challenges faced by the developed of 6G
systems.

We propose to apply tensor theory to develop new system
architecture and spectrum usage framework for 6G systems.
Tensor theory can provide efficient solutions to the new feature
and challenges faced by 6G systems. For example, tensor has
been widely used in the AI community as an elementary data
structure, and the application of tensor is a natural selection
of AI-enabled computing. Regarding limited storage, tensor
can be used to efficiently encapsulate and condense the large
scale data into a compact format. Tensor-based spectrum usage
framework can provide efficient and scalable solutions to
spectrum sharing, spectrum aggregation, and spectrum fusion
[10]. Therefore, the unique features and challenges of 6G
systems can benefit tremendously from the application of
tensor theories in the design and analysis of 6G systems.

Tensor theory provides an efficient way to handle multidi-
mensional array based on the following three facts [11]–[13]:

• efficient data storage based on compact tensor represen-
tation;

• AI-enabled computing with tensor-computing tools such
as tensor completion tensor decomposition;

• leveraging connections between applications and process-
ing hardware.

Tensor can be considered as the extension of random matrix
with multiple dimensions. Random matrix theory has found
lots of applications in wireless communications [14], [15].
Based on matrix completion, tensor completion has found
some useful applications in signal processing and wireless
communications [13], [16]. Tensor decomposition provides an
efficient way to analyze big data by decomposing a tensor into
multiple low-rank tensors or matrices. A whole tensor can also
be analyzed from a specific dimension [1], [3]. Like random
matrix theory, tensor rank and tensor eigenvalue are still useful
tools to analyze tensors [17], [18]. However, till now the rank
of a specific tensor is tough to be determined and tensor rank
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has completely different meaning with matrix rank [1], [19].
The determinations of tensor rank and tensor eigenvalue are
still open problems for researchers.

The main contributions of this paper can be summarized as
follows:

1) a new concept of tensor-computing has been proposed
with tensor theory. The tensor-computing provides a
potential connection between the practical applications
and the hardware in the physical layers;

2) a new spectrum usage framework for 6G systems has
been designed. The spectrum-tensor and system-tensor
have been defined to deal with spectrum big data and
system big data;

3) a spectrum fusion scheme has been proposed for spectrum
usage framework. The proposed spectrum fusion scheme
tries to achieve the maximum system value under the
constraint that each user value is guaranteed. The tensor-
computing provides an efficient way to analyze spectrum-
tensor with a specific dimension like value.

II. MATH PRELIMINARIES AND SYSTEM MODELS

A. Math Preliminaries

1) Spectrum-tensor and System-tensor Definitions: Let
X ∈ R

I1×I2×I3×I4×I5 denote a fifth-order 1 spectrum-tensor
of sizes I1 × I2 × I3 × I4 × I5, where I1 = U, I2 = V, I3 =
T, I4 = S, and I5 = F denote the numbers of users, value,
time, space, and frequency, respectively.

A vivid schematic of X is indicated in Fig.1, where the sizes
are U = 3, V = 4, T = 2, S = 2, F = 2 and there are in total
12 third-order sub-spectrum-tensors. When u = 3 and v = 3,
the third-order sub-spectrum-tensor is M = X (3, 3, :, :, :),
which is shown in Cartesian coordinates with t, s, and f .
In the sub-spectrum-tensor M, a T × S spectrum matrix
Nt×s = X (3, 3, :, :, 1) can be generated and the spectrum
entry is defined as xi1i2i3i4i5 = pα, where pα is the power
of the received signal α. In Fig. 1, x3,3,2,1,2 = pα when
i1 = 3, i2 = 3, i3 = 2, i4 = 1, i5 = 2 for a specific spectrum
entry in a fifth-order spectrum-tensor. With the spectrum-
tensor X , the whole information of the received signal α can
be determined from five dimensions. In particular, X can be
regarded as an elementary computing unit for 6G systems.

A fifth-order system-tensor is defined as Y ∈
R

J1×J2×J3×J4×J5 with the sizes of J1 × J2 × J3 × J4 × J5,
where J1 = D, J2 = B, J3 = L, J4 = Θf , and J5 = Θe

denote data rate, bandwidth, time-delay, spectrum-efficiency,
and energy efficiency, respectively. The system entry is in the
form of a discrete value and defined as yj1j2j3j4j5 ∈ {0, 1},
where 1 and 0 denote whether there exists a specific system
performance at a given position in a system-tensor Y . For
simplicity, the schematic of the system-tensor is not presented
here.

1also refer to the dimensions of a tensor as modes (ways) and the order is
the number of modes, i.e., a third-order tensor refers equally to a three-mode
tensor.

Fig. 1: Schematic of a 5th-order spectrum-tensor.

2) Tensor-computing: In this paper, we coin a novel
concept of tensor-computing. The key point of the tensor-
computing is that both the spectrum-tensor and the system-
tensor are processed as single units instead of multiple dis-
tributed entries in the future 6G systems, which will es-
sentially enhance system computing efficiency. To fulfill the
core concept, the spectrum-tensor and system-tensor should be
constructed from spectrum big data and system big data from
multiple dimensions. In this process, the completion operation
will be carried to fill spectrum big data and system big data
by the process of detection and estimation. Both spectrum-
tensor and system-tensor should be sparse even after data
completion. Therefore, some key tensor characteristics such
as eigenvalues or eigenvectors of spectrum-tensor and system-
tensor are required to evaluate the target tensors.

For spectrum-tensor and system-tensor with high-order, say
more than three, the system feature in a specific dimension
can be obtained by tensor decomposition. The operation of
tensor decomposition can transfer a tensor into multiple low-
order sub-tensors, matrices, slices, and fibers. Consequently
the existing analysis techniques for matrix and vectors can
be utilized to analyse the whole tensors. As shown in Fig.
1, the 5th-order spectrum-tensor X can decomposed into 12
3rd-order 2 × 2 × 2 sub-tensors. For the sub-spectrum-tensor
M, a 2 × 2 spectrum matrix N can be generated with three
fixed modes u = 3, v = 3, f = 1. Consequently, the system
performance can be obtained by a specific spectrum matrix
or a spectrum vector with fixed dimensions. Furthermore, the
spectrum-tensor can also be decomposed into other formats
with matrices and vectors. In the same way, the system-tensor
Y can be completed from system big data and some key
characteristics can be obtained by tensor decomposition.

B. System Models

A novel spectrum usage framework for 6G systems is shown
in Fig. 2, where a spectrum fusion engine (SFE) is designed
to sense, record, regulate and utilize all available spectrum in-
cluding licensed bands, unlicensed bands, and potential bands.
The spectrum information in the form of spectrum-tensor
and the system information in the form of system-tensor are
processed in the SFE. The key functions of tensor-computing
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Fig. 2: Spectrum usage framework for 6G systems.

in the SFE are used to analyze spectrum-tensor and system-
tensor to obtain the characteristics of spectrum and system.
Some sophisticated techniques such as deep reinforcement
learning can be potentially used to determine the optimal
spectrum usage police.

The SFE utilizes spectrum-tensor and system-tensor to
determine the available spectrum that is stored in a spec-
trum database. The macro-base station (MBS) and the small
base station (SBS) with their mobile users (MUs) and non-
cell MUs (N-MUs) are authorized to access the spectrum
by a central processor. Some new and more unforeseeable
applications will be fulfilled in 6G operation scenarios, which
should be extended from existing 5G applications including
massive Machine Type Communications (mMTC), enhanced
Mobile Broadband (eMBB), and Ultra Reliable Low Latency
Communications (uRLLC). Currently, people have imagined
some potential 6G applications, such as new total intrusive
experience, new human-machine, new AI applications, and
new holographic communications [7]–[9], all of which will
require large amount of spectrum and new spectrum usage
model.

III. TENSOR-COMPUTING FOR 6G

A. Tensor Completion and Decomposition

The completion and decomposition operations are both hot
topics in the research field of tensor theory. From the view of
big data, completion and decomposition seem much important
due to the intrinsic essence of deficiency and sparsity for
original big data.

For a M th-order spectrum-tensor X with some missing
or incomplete entries, the completion can be formulated by
solving the following optimization [12]

min
X

[
M∑

m=1
γm‖X(m)‖∗

]
s.t. XΦ = TΦ

(1)

where the constant γm ≥ 0 and
M∑

m=1
γm = 1,

X(m) ∈ R
Im×I1I2···Im−1Im+1···IM denotes the mode-m

matricization of X , ‖X(m)‖∗ := trace
√
X(m)X(m)

T =
min{Im,I1I2···Im−1Im+1}∑

i=1

[
σi

(
X(m)

)]
is the trace norm (also

known as nuclear norm) and σi is the i-th singular value
of X(m), TΦ is also a M th-order spectrum-tensor with the
identical size of each mode with X and some of its entries
are filled by a known spectrum data set Φ and other entries are
unknown or missing. Note that (1) provides a general tensor
completion scheme based on tensor matricization with total
M modes and single value decomposition on each matrix. A
convex combination of M unfolded matrices of X is fulfilled
with (1), which essentially aims to calculate the minimum
rank of rank (X ). The determination of the rank of a high-
order (say, M > 3) tensor goes to a NP-hard problem [19].
This is the reason why the matricization or decomposition
schemes are used to tackle tensor completion under the
given constraints [12]. The known spectrum data in Φ are
indicated at the same position in XΦ and TΦ. With the ex-
isting decomposition schemes like CANDECOMP/PARAFAC
decomposition (CPD), Tucker decompostion (TD), and Tensor
train decomposition (TTD), the spectrum-tensor XΦ can be
decomposed into low rank tensors (matrices) and more simple
completion schemes can be designed.

The spectrum-tensor can be decomposed into low-rank
tensors or their combinations with decomposition schemes
like CPD, TD, TTD, etc. The M -order spectrum-tensor X ∈
R

I1×I2×···×IM can be decomposed into R rank-one tensors
with the CPD scheme [1], [2]

X ≈
R∑

r=1

a(I1)r ◦ a(I2)r ◦ · · · ◦ a(IM )
r (2)

= [[A(I1),A(I2), · · · ,A(IM )]]

where R is the rank of X , a(Im)
r ∈ R

Im is the r-th vector with
the length of Im, A(Im) ∈ R

Im×R, the symbol “◦” denotes
the vector outer product. The TD can be formulated as

X ≈ G ×1 A
(I1) ×2 A

(I2) · · · ×IM A(IM ) (3)
= [[G;A(I1), · · · ,A(IM )]]

where G ∈ R
I1×I2×···×IM denotes the core tensor. When G

is superdiagonal and I1 = I2 = · · · = IM , the CPD can be
considered as a special case of the TD [1].

B. Tensor Rank and Tensor Eigenvalues

The rank of a tensor X is denoted by rank (X ). The
properties of tensor and matrix ranks are different [1]. For
a specific tensor, the rank determination is NP-hard problem
[19] and only some upper bounds for high-order tensor can
be determined. Moreover, the rank of a practical tensor may
be different over real number field R and complex number
field C. Till now, it is still an open problem to determine an
efficient algorithm for calculating the rank of a specific tensor.
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For a square matrix A ∈ RM×M , the eigenvalues can be
determined by

Aξ = λξ (4)

where λ denotes the eigenvalue and ξ denotes an M×1 eigen-
vector. For a full-rank matrix M = rank(A), the M ordered
eigenvalues can be written as λ1 ≥ λ2 ≥ · · · ≥ λM . In random
matrix theory, the eigenvalues are widely used in many fields
such as estimation and detections. Like tensor rank, tensor
eigenvalues are more difficult to be determined due to obscure
knowledge of tensor rank. For an M -th order supersymmetric

tensor X ∈ R

N ×N × · · · ×N︸ ︷︷ ︸
M with unchanged entries under

permuting indices, the tensor eigenvalue λ can be determined
[17], [18]

X ×1 v ×2 v ×3 · · · ×M v = λv (5)

where v ∈ R
N is the corresponding eigenvector and λ is

an eigenvalue. Note that ”supersymmetric” is a very strict
constraint for a practical tensor with big data.

C. Tensor Processing Unit and TensorFlow

The big data in the form of tensors can be tackled with TPU
in hardware and TensorFlow in software both developed by
Google. The TPU is a tensor-based AI accelerator application-
specific integrated circuit (ASIC) chip, which is designed for
TensorFlow framework and specially used for neural network
machine learning [20]. TensorFlow is a free and open-source
software library for big data analysis and processing. Both
TPU and TensorFlow provide tensor-based spectrum big data
analysis from the view of hardware and software. In this paper,
the system-tensor and spectrum-tensor can be designed to be
processed with TPU and TensorFlow.

IV. SPECTRUM USAGE FRAMEWORK AND TENSOR-BASED
SPECTRUM FUSION

A. New Spectrum Usage Framework

The 6G systems will require large amount of spectrum
including licensed, unlicensed, shared licensed, and potential
spectrum. Based on the spectrum framework for 6G systems
shown in Fig. 2, the SFE is the core part and its functions
mainly include sensing (learning), recording (providing), reg-
ulating (scheduling), and utilizing (adapting) and so on. New
spectrum usage mode should be considered to fulfill huge
spectrum requirements for 6G systems. For the new appli-
cations in 6G systems like new holographic communications,
multiple kinds of spectrum should be jointly used to fulfill
their rigid system requirements in terms of time latency and
data rate.

For the SFE, the spectrum-tensor X ∈ R
U×V×T×S×F can

be updated by sensing its each entry

X0

xi1i2i3i4i5=pa−−−−−−−−−−−−−−−−−−−−−−−−−→
i1=1:I1,i2=1:I2,i3=1:I3,i4=1:I4,i5=1:I5

X1 (6)

where pa denotes the power of the received signal a at a
specific entry. We use the energy of the received signal to

indicate the state of the required entry. Following this point
of view, a spectrum-tensor can be evaluated with received
signal energy and a vivid M -dimension energy tensor can be
achieved.

Based on spectrum-tensor, the spectrum state can evaluated
by two schemes. First, the total energy of a M -th order
spectrum-tensor X can be calculated

EX =

I1∑
i1=1

· · ·
IM∑

iM=1

|xi1···iM |2 = ‖X‖2 (7)

where ‖·‖ denotes the norm and the energy of I1×I2×· · ·×IM
entries are summarized. Secondly, for a specific dimension or
mode ik, the energy of the “slice” X(ik) can be calculated

E
X(ik) = ‖X(ik)‖2 (8)

=

I1∑
i1=1

I2∑
i2=1

· · ·
Ik−1∑

ik−1=1

Ik+1∑
ik+1=1

· · ·
IM∑

iM=1

|xi1···ik···iM |2.

The above formulation can also be expressed as

E
X(ik) =

∑
∀(i1,i2,···ik−1,ik+1,··· ,iM )∩(ik=β)

|xi1···ik···iM |2 (9)

where ik is fixed value and β ∈ [1 : Ik]. For a spectrum-
tensor X ∈ R

U×V×T×S×F shown in Fig. 1, the corresponding
energy calculated by (7) indicates the total power distribution
for all five modes. If we want to check the status of a specific
dimension (say v = 1), the power can be calculated by

EX(v=1) =
U∑

u1=1

T∑
t=1

S∑
s=1

F∑
f=1

|xu1tsf |2. (10)

When U = 3, V = 4, T = 2, S = 2, F = 2 in Fig.1,
EX(v=1) denotes the power of three cubes located in the
bottom line. With this scheme, the power of a specific mode
(or dimension) can be evaluated. We can calculate the signal
power of a specific user (fixed u) or a specific spot (fixed
s). For other functions shown in Fig. 2 such as recording,
utilizing, and regulating, the corresponding new functions can
also be defined with the spectrum-tensor, leading to a simple
and compact expression.

B. Tensor-based Spectrum Fusion Scheme

Based on spectrum sharing and spectrum aggregation, a new
spectrum usage framework has been discussed in [10], which
jointly use spectrum sharing and spectrum aggregation for an
enhanced cognitive radio networks. In this paper, a value-
based spectrum fusion scheme is proposed for 6G systems.
A spectrum-tensor with five modes has been indicated in Fig.
1, in which the spectrum information can be evaluated with
a specific dimension. For example, we can obtain the specific
spectrum information with a fixed mode, say v = 1.

In the new spectrum fusion scheme based on spectrum-
tensor, we can jointly analyze the spectrum with varying
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modes, such as time, space, user, and value. The proposed
spectrum fusion scheme can be formulated as

max
X

[
U∑

u=1
Vu (X )

]
s.t. Vu (X ) ≥ Vth

(11)

where the value function Vu (X ) calculates the value of the
user u with X and Vth denotes a value threshold for a user.
For 6G systems, the spectrum fusion scheme tries to achieve
the maximum value for all users in a tensor space spanned
by five modes. Different from spectrum sharing and spectrum
aggregating, the proposed spectrum fusion scheme aims to
maximize the spectrum value in a fixed system under the
constraint that each user’s spectrum value should be larger
than a given value threshold.

We use the tensor decomposition scheme to fulfill the value
function Vu (X ). Based the CPD scheme shown in (2), a
spectrum-tensor X ∈ R

U×V×T×S×F can be decomposed into
five matrices as

X ≈
R∑

r=1

a(U)
r ◦ a(V )

r ◦ a(T )
r ◦ a(S)

r ◦ a(F )
r (12)

= [[A(U),A(V ),A(T ),A(S),A(F )]]

where the rank R can be determined numerically [1] and the
dimensions of these matrices are also determined. The tensor-
spectrum can be further evaluated from five separated modes.
Let’s take the value matrix A(V ) ∈ R

V×R as an example to
construct the value function Vu (X ),

Vu (X ) =
V∑

v=1

βv‖A(V )(v, :)‖2 (13)

where βv ∈ [0, 1] denotes the coefficient for the vth value and
A(V )(v, :) ∈ R

V×1 denotes the vth vector of A(V ). The value
factor βv can be jointly determined by the spectrum value in
terms of data rate or spectrum efficiency.

A more sophisticated spectrum-tensor analysis scheme uti-
lizes tensor eigenvalues or matrix eigenvalues, which indicate
the essential characteristics of spectrum-tensors or matrices
decomposed by CPD or TD. Based on (5), we can potentially
calculate M eigenvalues for a M -th order tensor X . However,
to the best of our knowledge, only the eigenvalues of low order
(say 3) supersymmetric tensor can be theoretically determined
with different results in terms of real and complex [17]. The
determination of eigenvalues for high-order tensors are still an
open problem to us.

However, the eigenvalues of matrix have been well studied
and the distributions of eigenvalue have been widely used in
wireless communications and signal processing [21]. For a
matrix A(V ) ∈ R

V×R decomposed from a spectrum tensor
X , a Wishart matrix W ∈ R

K×K (K = min{V,R}) can be
generated by

W = A(V ) ×
(
A(V )

)T
(14)

Fig. 3: A 3-order spectrum-tensor of received signal (5dB).

Fig. 4: A 3-order spectrum-tensor of received signal (2dB).

where T denotes transpose and suppose V ≤ R. For W, K
ordered eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λK can be determined.
Till now, lots of existing results including eigenvalue, con-
dition number in random matrix theory can be applied for
spectrum analysis.

V. NUMERICAL RESULTS AND EVALUATIONS

In this section, we provide some vivid illustrations of high
order tensors and their decomposed matrices. Moreover, a
spectrum sensing scheme based on spectrum-tensor is illus-
trated.

A 3-order spectrum-tensor X ∈ R
T×S×F is shown in Fig.

3, in which T = S = F = 5 and the area of blue circles
denotes the power of received signal and noise, the SNR of
the signal is set to 5dB. The T × S × F = 125 entries of
the spectrum-tensor X indicate the power of signal and noise
at specific dimension (t, s, f). Let yt,s,f = h ∗ zt,s,f + nt,s,f

denote the received signal z with the flat channel h and the
noise n. The area of the blue circle at t, s, f denote the power
of signal and noise |yt,s,f |2. We can see that Fig.3 provides a
3-dimension model for the spectrum-tensor X .

A more vivid spectrum-tensor is shown in Fig. 4, in which
the power of the received signal (2 dB) and noise is indicated
with varying color. With this figure, we can see directly the
power distribution of the received signal in a whole spectrum-
tensor. Note that a cube from (0, 0, 0) to (1, 1, 1) is used to
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Fig. 5: A spectrum sensing scheme based on spectrum-tensor
with 2dB received signal.

illustrate a specific entry of the spectrum-tensor X ∈ R
T×S×F

and its color is used to denote its corresponding signal power.
As for the application of spectrum-tensor, we illustrate a

spectrum sensing scheme based on the received signal power
in Fig. 5. A hypothesis test is still used in this scheme
and the power (tensor norm) of received signal is used to
construct the detector. We compare the detectors based on a
6-order spectrum-tensor and a 3-order spectrum-tensor. Both
detectors can achieve high sensing performance and the 6-
order spectrum-tensor based scheme outperforms that of the 3-
order spectrum-tensor. With this scheme, the spectrum sensing
performance for a specific dimension (say time or space) can
be evaluated. Furthermore, the energy performance of the slice
or matrix of the spectrum-tensor can be achieved by tensor
decomposition.

VI. CONCLUSIONS

In this paper, a new concept of tensor-computing has been
proposed and discussed for the future 6G systems. The new
spectrum-tensor and system-tensor have been designed. A new
spectrum usage framework based on the proposed tensor-
computing has been designed. A spectrum fusion scheme
based on total system value and single user value has also
be proposed to achieve higher spectrum efficiency. Some key
tensor operations such as completion, decomposition, eigen-
value calculation have been discussed for spectrum-tensor and
system-tensor. The authors hope that the newly coined tensor-
computing can provide a sharp tool for the coming 6G wireless
communication systems.
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