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Abstract
Models pre-trained on multiple languages have shown sig-
nificant promise for improving speech recognition, particu-
larly for low-resource languages. In this work, we focus on
phoneme recognition using Allosaurus, a method for multilin-
gual recognition based on phonetic annotation, which incorpo-
rates phonological knowledge through a language-dependent al-
lophone layer that associates a universal narrow phone-set with
the phonemes that appear in each language. To evaluate in a
challenging real-world scenario, we curate phone recognition
datasets for Bukusu1 and Saamia2, two varieties of the Luhya
language cluster of western Kenya and eastern Uganda. To
our knowledge, these datasets are the first of their kind. We
carry out similar experiments on the dataset of an endangered
Tangkhulic language, East Tusom, a Tibeto-Burman language
variety spoken mostly in India. We explore both zero-shot and
few-shot recognition by fine-tuning using datasets of varying
sizes (10 to 1000 utterances). We find that fine-tuning of Al-
losaurus, even with just 100 utterances, leads to significant im-
provements in phone error rates.3

Index Terms: multilingual speech recognition, low-resource
languages, phonology

1. Introduction
While speech recognition has made great strides, ASR over lan-
guages with very little transcribed text is still a daunting task.
One of the most promising directions in low-resource speech
processing involves pre-training models, both to improve low-
resource ASR itself and to use ASR as an auxiliary task to im-
prove results in other low-resource task settings. For example,
Wiesner et al. [1] explore pre-training by back-translation for
end-to-end ASR, while Stoian et al. [2], Bansal et al. [3] use
ASR as an auxiliary task to improve results for low-resource
speech-to-text translation. Recently, Baevski et al. [4] intro-
duced wav2vec 2.0, which can be used to achieve good ASR
performance by fine-tuning on as little as 10 minutes of tran-
scribed audio. Further, pre-training has been combined with
multi-lingual learning; Wang et al. [5] improve cross-lingual
transfer learning for ASR with speech translation, while Hsu et
al. [6] formulate ASR for different languages as different tasks
and use a model agnostic meta-learning algorithm (MAML) to
learn the various initialization parameters.

Nonetheless, effective multilingual learning of acoustic and
language models is difficult, given the underlying differences
between languages in pronunciation and lexicon respectively.

1Bukusu data.
2Saamia data.
3Fine-tuning code on github.

To help alleviate issues caused by pronunciation differences, Li
et al. [7] have recently proposed a model (Allosaurus; details
in §2), that calculates a language-universal phone distribution
using a standard ASR encoder, then converts it to a language-
specific phoneme distribution. Phonemes are sounds that sup-
port lexical contrasts in a particular language; phones are the
sounds that are physically spoken (which are largely language
independent); and allophones are the set of phones that corre-
spond to a particular phoneme. This method showed promise
both for recognition on the datasets on which the model was
pre-trained, and also for zero-shot adaptation to new languages,
where it was tested on languages for which no training data was
available.

However, in realistic low-resource settings, it is common
to have a small amount of training data in the language to
which we would like to adapt. Our work examines the ques-
tion: “given a pre-trained acoustic model and phone recognizer
based on universal phone representations, how quickly can it
be adapted to perform reasonable phone recognition in a new
language?” To examine this question, we perform both zero-
shot recognition and fine-tuning using datasets of sizes varying
between 10 and 1000 utterances. As an important second con-
tribution, we curate phone recognition datasets for Bukusu and
Saamia, two varieties of Luhya, a cluster of Bantu languages
largely spoken in Kenya and Uganda; to our knowledge these
are the first datasets of their type. Using these datasets we per-
form fine-tuning experiments and find both respectable zero-
shot results, and rapid improvements with very small amounts
of adaptation, demonstrating the utility of fine-tuning of univer-
sal phonetic representations as a method for building very low-
resource ASR models. We also carry out similar experiments on
the dataset of an endangered Tangkhulic language, East Tusom,
a Tibeto-Burman language variety spoken mostly in India.
Briefly summarized, with this work we:
• provide a phoneme recognition benchmark on Bukusu and

Saamia, two under-resourced Luhya language varieties, as
well as East Tusom, an endangered Tibeto-Burman language
variety,

• show that fine-tuning of Allosaurus can lead to phone error
rate (PER) reductions of more than 40%, and

• show that few-shot fine-tuning using only 100 transcribed ut-
terances can lead to up to 59% PER reductions

2. Methodology
2.1. Allosaurus Layer

Allosaurus, (Figure 1; [7]), comprises a language independent
encoder and phone predictor, and a language dependent al-
lophone layer and a loss function associated with each lan-

https://github.com/Witty-Kitty/An-Orthography-and-Phone-Transcribed-Dictionary-Audio-Dataset-for-Bukusu
https://github.com/Witty-Kitty/A-Phonetic-Bible-Dataset-for-Saamia
https://github.com/Witty-Kitty/Phoneme-Recognition-through-Fine-Tuning-of-Phonetic-Representations


Figure 1: Allosaurus (a multilingual pre-trained phoneme
recognition model) predicts over a shared phone inventory, then
maps into language-specific phonemes with an allophone layer.

guage. This combination makes Allosaurus appropriate for
multilingual phoneme recognition, because it allows it to handle
phonemes while modeling the underlying phones, unlike other
traditional multilingual models. The encoder first produces the
distribution h ∈ R|Puni| over the universal phone inventory Puni,
then the allophone layer transforms h into phoneme distribution
gi ∈ R|Qi| of each language. The allophone layer uses a train-
able allophone matrix W i ∈ R|Qi|×|Puni| to describe allophones
in a way similar to the signature matrix Si = {0, 1}|Qi|×|Puni|

which describes the association of phones and phonemes in
each language Li. The allophone matrix W i is first initialized
with Si, and is allowed to be optimized during the training pro-
cess. An L2 penalty is added to penalize divergence from the
original signature matrix Si. The allophone layer computes its
logit distribution gi by finding the most likely allophone real-
ization in Puni with maxpooling.

gij = max({wi
j,k · hk; 1 ≤ k ≤ |Puni|}), (1)

where gij ∈ R is the logit of j-th phoneme in gi for language Li,
wi

j,k ∈ R is the (j, k) cell of the allophone matrix W i, hk ∈ R
is the logit of k-th phone in h. Intuitively, if the j-th phoneme
has the k-th phone as an allophone, wi

j,k would be near 1, other-
wise wi

j,k would be near 0. Therefore, the phoneme logit of gij
is decided by the largest allophone logit hk. The phoneme dis-
tribution gi is further fed into the loss function. This method for
phoneme prediction can be used with any underlying multilin-
gual ASR system. Here the parameters are optimized by min-
imizing CTC loss, Graves et al. [8], for all training languages,
with the addition of regularization of the allophone layer con-
trolled by hyperparameter α.

L =
∑︂

1≤i≤|L|

(Li
ctc + α∥W i − Si∥22). (2)

2.2. Universal Phone Recognition

Not only does the allophone layer abstract away from the
language-specific phonemes, which contributes to the improve-
ment in the multilingual acoustic modeling, the model also
gives us the capability to predict universal phones themselves.
By applying a greedy decoding strategy over the phone distri-
bution h, we can obtain a phone sequence in which all phones

Puni in the training languages are candidates. Combined with
large training language sets, the universal inventory covers most
common narrow phones appearing in most languages.

Furthermore, this protocol can take into account phone in-
ventories that have already been created for many languages in
the world by linguists. For example, PHOIBLE [9] is a database
of phone inventories for more than 2000 languages and dialects,
allowing our model to be applied to these languages with some
degree of accuracy. If the phone inventory for language Li is Pi,
we can restrict the decoder to only produce phones in Pi ∩ Puni

by filtering out other phones. When the universal inventory Puni

covers most frequent phones in the world, we could expect that
Pi ≈ Pi ∩ Puni.

2.3. Fine-tuning of Universal Phonetic Representations

In Li et al. [7], the universal phonetic representations were
tested in a zero-shot setting, where the model was used as-is
on languages not occurring in the training data. However, in
many cases a small amount of labeled data does exist in the
target language we wish to recognize. In this paper, we fur-
ther propose and demonstrate results for fine-tuning of univer-
sal phone representations as an efficient and expedient way to
utilize this data. Depending on the type of transcriptions that
are available for the new language (phonetic or phonemic), we
can fine-tune either using only the shared universal phone out-
put layer, or create a new allophone layer for the new language
and use a language-specific loss. In this work, we fine-tune the
encoder which produces a distribution over the universal phone
inventory.

We fine-tune with a small learning rate, 0.01, to avoid
catastrophic forgetting [10] for a maximum of 250 epochs, and
choose the best performing model based on a small validation
set. We use simple stochastic gradient descent as the optimiza-
tion algorithm.

3. Phoneme Recognition Benchmark for
Luhya Language Varieties

In this section we describe the background and the data sources
for our Luhya phoneme recognition benchmarks and the data
source for the East Tusom benchmark.
3.1. Background

Bukusu and Saamia are members of the Luhya cluster of ∼25
Bantu languages. Though Luhya languages are spoken in both
western Kenya and eastern Uganda, “Luhya” typically refers to
the ∼19 Kenyan communities that were politically united in the
first half of the 20th century.4 Luhya is used as a label of both
ethnicity and language for this group of culturally, politically,
and linguistically heterogeneous communities.

Together, Kenyan Luhya communities number around 6.8
million people and are the second-largest ethnic group in
Kenya.5 Bukusu is the largest Kenyan Luhya community with
more than 1 million members; there are more than 85,000 mem-
bers of the Saamia community in Kenya, and another 279,000
in Uganda.6

Marlo et al. [12] provide a recent classification of Luhya
languages, showing that despite their diversity, the Luhya lan-
guage varieties are indeed more closely related to one another

4See MacArthur [11] for a recent statement about modern Luhya
history.

5Details here: 2019 Kenya Census. Retrieved March 2020.
6Details here: 2002 Uganda Census. Retrieved October 2020.

https://www.knbs.or.ke/?wpdmpro=2019-kenya-population-and-housing-census-volume-iv-distribution-of-population-by-socio-economic-characteristics&wpdmdl=5730&ind=7HRl6KateNzKXCJaxxaHSh1qe6C1M6VHznmVmKGBKgO5qIMXjby1XHM2u_swXdiR
https://www.ubos.org/wp-content/uploads/publications/03_20182002_CensusPopnCompostionAnalyticalReport_(1).pdf


than they are to their nearest Bantu neighbors to the west and
south. All modern linguistic studies such as Mutonyi [13] and
Botne et al. [14] on Saamia focus on the languages of individual
sub-communities, who are each recognized to have their own
distinct speech form. Whether each language variety should be
considered as a “dialect” or a “language” is a matter of debate,
but see Angogo [15] for a study of mutual intelligibility among
Kenyan Luhya varieties.

Early missionary activity introduced competing orthogra-
phies for Luhya languages. Despite some standardization ef-
forts, there are not universally agreed upon orthographic con-
ventions for writing all Luhya varieties, which are linguistically
diverse and have different sound systems.
3.2. Access to Data

An inescapable aspect of working in low-resource languages is
identifying suitable data.

The CMU Wilderness Multilingual Speech Dataset covers
over 700 languages providing audio, aligned text and word pro-
nunciations. Saamia, one of the Luhya varieties, is available
in the CMU Wilderness dataset. On average each language
has around 20 hours of sentence-length transcriptions. Data is
mined from reading of the New Testament from Bible.is.7

The co-author Michael Marlo, who has ongoing documen-
tation projects on several Luhya language varieties, also pro-
vided access to recordings from his unpublished dictionary of
Bukusu. Most recordings include two or more pronunciations
of the same word. Similarly, the East Tusom dataset, composed
of transcribed audio from a comparative wordlist was made
available by the co-author David Mortensen through his doc-
umentation work of the language.

3.3. Data Preparation

Saamia Data The CMU Wilderness GitHub repository8 con-
tains code to download data directly from the Bible.is website as
they do not have permission to redistribute this data. It contains
18.2 hours of Saamia data. Alignments, short waveforms plus
transcripts, can then be reconstructed for each language from a
packed version contained in the GitHub repository.
Bukusu Data The dictionary recordings contain a word ut-
tered several times in various forms, e.g. noun recordings in-
clude variations of the headword, singular and plural forms of
the word while verbs include variations of the headword, infini-
tive and stem. The recordings also include pronouns, adjectives,
adverbs, numerals and conjunctions. The dictionary contains
3.7 hours of data. The preparation process for these recordings
included using SoX9 to change the sampling rate and in some
cases the sampling encoding. We used the WebRTC10 voice ac-
tivity detection tool to split the audios on silences, and manually
inspected the result to ensure all segments and transcriptions
matched up properly.
East Tusom Data This recently published dataset, Tu-
som202111, was prepared explicitly for the task of phone recog-
nition and therefore needed no pre-processing. It contains 55.3
minutes of audio data.
Orthography-to-Phone Mapping While the Bukusu and East
Tusom transcriptions were already in the International Phonetic
Alphabet (IPA), it was necessary to develop an orthography to

7Bible.is website
8CMU Wilderness GitHub repository
9SoX-Sound eXchange

10python interface to the WebRTC Voice Activity Detector
11East Tusom Github repo
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Figure 2: Dataset sizes against PERs curves at training epoch
40 for Bukusu, Saamia and East Tusom.
phone (IPA) mapping for Saamia to enable us obtain phonetic
transcriptions of our data using Epitran [16]. These mappings
were developed in collaboration with linguists and will be re-
leased as additions to the Epitran IPA transcriber [16].

4. Experiments
The experimental splits used for the datasets were as follows:
• Bukusu: 6442 (train), 1001 (dev), 2458 (test)
• Saamia: 7254 (train), 1000 (dev), 1500 (test)
• East Tusom: 1600 (train), 400 (dev), 392 (test)

4.1. Experimental Setting

Given a pre-trained acoustic model and phone recognizer based
on universal phone representations, we are interested in under-
standing how much data leads to improvements in model perfor-
mance via fine-tuning. We thus create datasets of different sizes;
10, 25, 50, 100, 250, 500 and 1000. This selection of dataset
sizes is intended to be an approximately doubling progression.
These datasets are transcribed with phones, we therefore eval-
uate using phone error rate during fine-tuning of the languages
and use the same test set across different dataset sizes for each
language. All fine-tuning is done on one model therefore using
the same encoder, a 6-layer stacked bidirectional LSTM with
hidden size of 1024 in each layer. Fine-tuning in each instance
is carried out for 250 epochs, beyond which we noted no signif-
icant variation.

4.2. Experimental Results

Table 1 shows top-line PER results of inferences in various con-
ditions; the results of zero-shot inference using the pre-trained
Allosaurus model, the results when the allophone layer is con-
strained to phones found in the respective languages, the best
results after fine-tuning using a 100-sized dataset, the best re-
sults after fine-tuning using a 1000-sized dataset and the results
after fine-tuning using the entire training set of each language
dataset. We deduce that fine-tuning, even with just 100 utter-
ances, leads to significant improvements in PER.

Figure 2 shows the variation of PERs across various dataset
sizes at training epoch 40 for all 3 languages. We note that as
expected, the PER mostly decreases as dataset size increases,
particularly for Saamia.

Figure 3 shows the accuracy over training epochs for
dataset sizes 10, 100 and 1000. Across all varieties (and when
an adequate number of training instances are available) fine-
tuning quickly improves the PER after a few epochs. We note
that smaller fine-tuning datasets, of just 10 or 100 instances in
Bukusu and 10 instances in East Tusom, only require a hand-

http://www.bible.is/
https://github.com/festvox/datasets-CMU_Wilderness
http://sox.sourceforge.net/
https://github.com/wiseman/py-webrtcvad
https://github.com/dmort27/tusom2021/tree/main/data


Table 1: Fine-tuning of Allosaurus (even with just 100 utterances) leads to significant improvements in PER. The PER improvements
(∆) reported are a percentage relative to the language-constrained baseline.

Bukusu Saamia East Tusom
PER ∆ PER ∆ PER ∆

Allosaurus 72.8 63.7 67.5
+ constraint 52.5 37.4 56.7

+ fine-tuning (100) 41.2 21.5% 15.5 58.5% 44.8 20.9%
+ fine-tuning (1000) 17.3 67.0% 11.7 65.7% 34.6 38.9%
+ fine-tuning (all) 5.2 90.1% 9.2 75.4% 33.1 41.6%

ful of fine-tuning epochs to reach their best performance. In
the case of Bukusu, Figure 3(top) makes apparent that the 10
to 100 dataset size PERs are somewhat consistent, even appear-
ing to worsen as fine-tuning progresses. This is likely due to
the nature of the data, where each training instance is a single
dictionary recording and each audio contains one word. This
means the dataset size is equivalent to the number of words or
utterances in the training set, so dataset sizes 10 to 100 con-
tain very little data. East Tusom exhibits behaviour similar to
Bukusu as shown in Figure 3(bottom) likely due to the fact that
the dataset is also composed of individual utterances. We see
that PERs for the 10 and 100-sized datasets in some of the ini-
tial training epochs become slightly worse than the zero-shot re-
sults with the language-constrained baseline before improving.
In the case of the 10-sized dataset, the improvements over zero
shot results with the language-constrained baseline are negligi-
ble, however when the datasets get bigger, we start to see better
improvements with few training epochs before getting to the
point of early stopping, 45 epochs.

A manual inspection of the differences of the test set out-
puts of the baseline and the fine-tuned models reveal interest-
ing patterns. The Bukusu and Saamia baseline models under-
perform on long vowels, outputting short ones; the Bukusu
fine-tuned model corrects this mistake in over 400 cases (e.g.
the i→i: mistake is corrected 119 times) and the Saamia one
in over 600 cases(e.g. the a→a: mistake is corrected 314
times). The Saamia model also under-performs on consonant
blends(e.g. the d→nd mistake is corrected 294 times and n→nd
mistake is corrected 233 times). The Bukusu baseline model
also seems to confuse the liquids (l, R and r) an issue that fine-
tuning largely addresses. On the other hand, the fine-tuned
model over-recognizes long vowels, and it seems slightly more
likely to drop or insert phonemes spuriously.

In the case of East Tusom, the baseline model appears to
struggle with differentiating the vowels with many of the correc-
tions made by the fine-tuned model being replacing one vowel
with another. (eg. o→u, a→o, e→i, a→õ)

5. Implications and Future Work
We show that fine-tuning of the Allosaurus model is a promis-
ing approach to phone recognition for unseen low-resource lan-
guages. The results indicate improvements over the language-
constrained baseline with as little as 10 training instances (of
course, using more fine-tuning data leads to even further im-
provements).

Future work could include tuning of the parameters of the
Allosaurus model itself, or more sophisticated training tech-
niques such as layer-by-layer adaptation of the encoder or allo-
phone layers [17] and/or use of meta-learning [6]. In addition,
as some language pairs are more closely related than others,
it might be interesting to experiment with further fine-tuning
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Figure 3: Bukusu, Saamia and East Tusom accuracy over train-
ing epochs for dataset sizes 10, 100 and 1000. Due to early
stopping in the case of East Tusom, we plot over 45 epochs in
that instance and over 250 epochs for the others.
on multiple languages from a language group and with mixed
fine-tuning [18] where we sample some data from the original
data and some from the target language. Finally, as many lan-
guages, such as the Luhya languages we covered here, are tonal
it would be interesting to include tones in the pretraining of Al-
losaurus and perform tonal recognition. Finally, while we focus
on phone recognition here, it would be of great utility to incor-
porate similar techniques into a full-fledged speech recognition
systems.
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