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Abstract—Future view prediction for a 360-degree video
streaming system is important to save the network bandwidth
and improve the Quality of Experience (QoE). Historical view
data of a single viewer and multiple viewers have been used for
future view prediction. Video semantic information is also useful
to predict the viewer’s future behavior. However, extracting video
semantic information requires powerful computing hardware
and large memory space to perform deep learning-based video
analysis. It is not a desirable condition for most of client devices,
such as small mobile devices or Head Mounted Display (HMD).
Therefore, we develop an approach where video semantic analysis
is executed on the media server, and the analysis results are
shared with clients via the Semantic Flow Descriptor (SFD) and
View-Object State Machine (VOSM). SFD and VOSM become
new descriptive additions of the Media Presentation Description
(MPD) and Spatial Relation Description (SRD) to support 360-
degree video streaming. Using the semantic-based approach, we
design the Semantic-Aware View Prediction System (SEAWARE)
to improve the overall view prediction performance. The eval-
uation results of 360-degree videos and real HMD view traces
show that the SEAWARE system improves the view prediction
performance and streams high-quality video with limited network
bandwidth.

I. INTRODUCTION

360-degree videos provide a richer multimedia experience

than conventional videos by allowing viewers to watch any

angle in the 360 content and have access within a fraction of

a second to multiple views of a scene instead of a single view

only. Like Video-on-Demand (VoD) streaming services, 360-

degree videos can be streamed over the Internet. However, to

deliver high-quality content, 360-degree videos require more

bandwidth and lower latency than conventional videos. It

was shown that 360-degree video viewers see 20% of the

viewing area at one time because of the limited viewing angle,

and the server needs to transmit the 360-degree videos with

higher resolution than conventional videos to provide similar

Quality of Experience (QoE). However, the bandwidth can be

saved by transmitting the pixels of the desired view if the

server can receive the client’s view information in real-time.

Nevertheless, due to the network latency between the server

and the client, it is difficult for the server to receive the clients’

desired view information in real-time. Therefore, future view

prediction is necessary for the 360-degree video streaming

systems to overcome the latency problem and improve QoE.

Historical viewing patterns of 360-degree video content,

gathered either from a single viewer [1] or from multiple

viewers [2], are important information for the prediction

of future views. Linear Regression [3][4] using the single

viewer’s past viewing pattern is useful to predict the near-

term future view since most viewers tend to move their head

continuously. In addition, a view prediction method using

multiple viewers’ view history information is introduced in

[2]. Since viewers are attracted to the interesting parts of

videos, multiple viewers may have similar viewing patterns.

In [5], the Navigation Graph (NG) describes both the temporal

relationship among 360-degree video segments and the spatial

relationship among 360-degree video tiles using both a single

viewer’s and multiple viewers’ viewing patterns. NG achieves

better prediction performance than other history-based 360-

degree video view prediction algorithms. However, these view

prediction algorithms rely only on viewing history data and

cannot effectively utilize the correlation between video seman-

tic information and viewing patterns.

Video semantic information describes objects or events

within a 360-degree video, and it can improve future view

prediction since viewers are attracted by objects or events

in the video. For example, in a monster movie [6], the

monster may attract viewers’ interest and guide their head

movement. A deep-learning-based view tracking algorithm

[7] is introduced to analyze video content and to predict a

user’s movement. However, object detection and view track-

ing require a powerful computing machine to execute deep

learning algorithms. Moreover, the view tracking approaches

in [7][8][9][10] provide possible future trajectories, but they

are more suitable for auto-pilot applications. They require

additional processing to be combined with a tiled-video rate

adaptation algorithm [11][12][13], while other existing view

prediction systems [1][2][3][4][14] can be efficiently com-

bined with the existing video streaming platforms.

Dynamic Adaptive Streaming over the HTTP (DASH) [15]

has been successfully used for many existing video streaming

platforms because of its client-centric structure. DASH clients

can control video quality based on the network condition

and their device’s features, such as display size, playback

buffer status, and battery condition. The media server is only
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required to provide Media Presentation Description (MPD)

and the client’s request bitrates for video segments described

in the MPD. As 360-degree videos are becoming more popu-

lar, Spatial Relationship Descriptor (SRD) [16] is introduced

to support tile-based encoding [17][18]. The high-resolution

video frames are cut into smaller tiles. and the tiles are

encoded independently using legacy video encoders, such as

HEVC [19]. SRD includes the tile configurations to allow the

client to render a view from the received tiles. However, there

is no descriptor to describe the semantic information of the

videos, so the client devices are solely responsible for video

analysis to predict future views.

In this paper, we propose the advanced media presentation

description method and a semantic-aware view prediction

algorithm. We show that the client devices can perform view

prediction more efficiently and accurately if the media server

provides the semantic information, because the viewers will

”see where” interesting objects are located. The proposed

Semantic-Aware View Prediction System (SEAWARE) per-

forms the video semantic analysis and records the semantic

information on the server. The server provides a part of the

semantic information to the clients when the clients request

the information. Client devices perform future view prediction

using the information provided by the server.

We can summarize the contributions of this work as follows.

(1) We propose the advanced media presentation description

method that encapsulates the semantic information of 360-

degree video contents via the Semantic Flow Description

(SFD) and View-Object State Machine (VOSM). (2) SEA-

WARE works on top of the DASH standard and utilizes MPD,

SRD, SFD and VOSM information in a coordinated manner.

(3) The SEAWARE system utilizes more computing power on

the server-side to get more accurate video analysis data. (4)

The experimental results show that the SEAWARE system has

more efficient and accurate view prediction performance than

previous approaches.

This paper is organized as follows. Section II details the

semantic-aware 360-degree video streaming systems. Section

III presents our view prediction algorithm using advanced meta

data. Section IV presents experimental results, and Section V

concludes the paper.

II. SEMANTIC-AWARE VIEW PREDICTION SYSTEM

A. Semantic Information of 360-degree Videos

There are many methods to analyze semantic information

of videos, but this information is rarely utilized for view

prediction. Some works [7], [20] use a deep learning al-

gorithm to analyze the video and utilize this information to

predict viewers’ motion, but most of mobile devices are not

powerful enough to process deep learning algorithms in real-

time. Moreover, the server has whole video segments with

the original video quality, while the clients rarely have high

quality video segments. The server can provide much accurate

semantic information for future segments. Figure 1 shows

the relationship of view patterns and objects in the videos.

The videos are encoded with 12 column tiles in this specific

No Content Length Category

1 Conan 2’44” Performance
2 Ski 3’21” Sport
3 Help 4’53” Film

4 Conan 2’52” Performance
5 Tahiti Surf 3’25” Sport
6 The fight for Falluja 10’55” Documentary

7 Cooking Battle 7’31” Performance
8 LOSC Football 2’44” Sport
9 The Last of the Rhinos 4’53” Documentary

Table I: Video Dataset [21]

Figure 1: Viewing Patterns and Semantic Information

example. We cut the videos in a vertical direction only to see

how objects are moving in a horizontal direction. The first

column of Figure 1 shows the real viewing patterns while a

viewer is watching the videos [21] (listed on Table. I), where

the yellow tiles represent the visible tiles and dark blue tiles

represent non-visible tiles. The second column of Figure 1

shows the object appearances in the videos. Tiles including

objects are color-coded to show where the objects appear. The

different colors of tiles represent different objects and tiles in

dark blue have no object.

Video-1 and 4 are Conan’s talk show videos, therefore,

the most objects (persons) are shown on stage during the

whole video. Video-2 is a Skiing video recorded by one of the

skiers and many other skiers appear and disappear frequently

in the video. Video-6 is a Football video, therefore, there

are many objects in the video and their movements are also

very dynamic. Video-3 is a monster movie that has a monster

chasing a woman and a police man. We can roughly see how

major characters are moving in the video in the second column

of the Figure 1. Video-9 is a documentary film and a Rhino

is the major object in the video. We can observe that the

viewers of video-1 and video-4 usually watch the tiles located

in the center of the videos. The viewer of video-1 and video-

4 tends to stay in the center of the video because there are

objects on stage to watch. The viewer of video-2 also stays

in the center of video most of the time, but it is difficult to

determine whether the viewer is interested in watching objects

or more interested in watching other parts of the video, such
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Figure 2: SEAWARE System

Figure 3: Server-Side Media Descriptive Layers

as mountain or sky, because there are too many objects in the

video. The viewer of video-3 has a dynamic viewing pattern,

but we can find that the viewer’s movement is correlated with

objects’ movements in the video. The viewing pattern and the

object appearance are very similar to video-9, which means

that the Rhino object in the video attracts the viewer the most.

B. SEAWARE System Architecture

We introduce the SEAWARE system to perform the view

prediction using semantic information. SEAWARE is DASH-

based 360-degree video streaming system using advanced

meta data descriptors. Figure 2 shows a server and a client

of SEAWARE. The server of SEAWARE analyzes videos to

generate the Semantic Flow Descriptor (SFD), which records

semantic information of 360-videos. The View-Object State

Machine (VOSM) is added at the server to build a statistical

model of viewers’ movements, led by the objects. VOSM

models the viewers’ behaviors, captured by SFD, to understand

which objects attract more viewers.

Figure 3 shows the new media presentation layers of the

360-degree video streaming system. Most of the existing video

streaming systems including DASH have MPD files to provide

video segments encoding (bitrate) information to the clients.

MPD allows clients to request subset of the media to produce

a ”full 360 View” with video segments at the clients’ desired

bitrates. As 360-degree video has become more popular, SRD

was introduced to stream tiled-media. By using SRD, clients

can request a subset of tiles in the video segments to render a

viewport and save bandwidth. However, SRD does not include

any information about viewing patterns of viewers or semantic

information of the videos (e.g., objects or scenes). Therefore,

clients perform their view predictions by using their past view

history.

Clients of SEAWARE are the same as DASH clients, but the

control heuristic is much more advanced. SEAWARE clients

receive MPD, SRD and SFD with VOSM information from

the server to perform the individual rate control. Since clients

can extract the semantic description regarding objects and

scenes from SFD and VOSM, they do not need to analyze the

video content themselves. Using VOSM per video segment,

clients predict objects/scenes in the future view. Using SRD,

clients map the future objects/scenes to tiles, gaining tile-based

representations of future views, and pass the future tile-based

view information to their rate selection modules. The clients’

rate selection modules use MPD to request the appropriate

quality of tiles in future segments from the server.

C. Semantic Flow Descriptor (SFD)

As shown in Figure 1, the view transition is correlated

with object trajectories in the videos since the viewers tend

to follow interesting objects/scenes of the video. An exper-

iment in [2] shows that some tiles are more popular than

other tiles because they encompass interesting points in the

videos, which could be interesting objects, a salient part,

and/or vanishing points. To find these points, machine learning

technologies are mostly used that require a very powerful

hardware performance, which is usually not available at mobile

devices. The videos are stored at the servers which have better

computing power than the mobile devices. Storing the whole

video from the start to the end is another server’s advantage

when executing video analysis prior to any content viewing,

while clients have only partial video segments that viewers

watch during their content viewing. Therefore, it is a realistic

assumption that the server performs video analysis when it

receives any new 360-video content and prior to any content

viewing by clients. The server can then encode the important

semantic paths, and provide the semantic information to the

clients right after the clients request the video segments. This

semantic information aids clients to predict future views more

efficiently without performing complicated video analysis at

clients’ sides.

We encode the information as a set of tiles in each segment.

Therefore, when the clients receive the semantic information,

clients directly identify which tiles have certain semantic

information. It is different from using bounding boxes to

indicate the object or event information. All tiles having

overlap with bounding boxes should be received by clients

to recover the objects. Therefore, encoding the information

as a set of tiles helps reducing the amount of information

to transmit and reduce the processing time to find overlaps

between tiles and bounding boxes at the client-side. It is

also compatible with DASH segments and tiles. Therefore,

we define the Semantic Flow Descriptor (SFD) as a set of

tiles in a segment that include objects. SFD is an advanced

meta data that has an additional semantic information, the
objects description. Therefore, the clients can get semantic

information of the video by receiving SFD from the server.

SFD indicates which objects exist in the segment and which

tiles are required to display those objects. Figure 4 shows

an example of SFD generation for three objects over three

consecutive video segments. Every object is labeled with a

set of tiles including this object. As the clients receive the

SFD, clients identify which tiles have the objects in the
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Figure 4: SFD

segment. Moreover, clients can find out whether the current

view includes tiles which include objects that the viewer is

most likely interested in. Two objects are encoded as SFDs

in the segment i − 2. To locate the objects, SFDi−2
j stores

a set of tiles including the object j. These objects move to

a new location in the following segment i − 1, therefore,

SFDi−1
j , ∀j have the same object index but a different set of

tiles representing different locations. A new object can appear

and an existing object can disappear in the future segments.

In this example, the person disappears, the car remains, and a

new person appears in the segment i.

D. View-Object State Machine (VOSM)

We use a state machine to build a view transition model in-

corporating objects’ descriptions and states. A goal of VOSM

is to build a viewing behavior model using semantic informa-

tion of the video. In other words, VOSM is built to understand

and record which objects the viewers’ are interested in within

a certain segment, and how viewers change their interests in

the following segments. The states in the VOSM represent

the set of objects the viewers are interested in, and transition

probabilities between states represent the probabilities that the

viewers change the state in the following segment.

Figure 5 shows an example of VOSM for three consecutive

segments. Every segment has a different number of possible

View-Object states with three objects, O1, O2 and O3, which

appear and disappear in the three segments. The View-Object

states are indicating the objects in viewers’ views, where the

NULL state means that there is no objects in the view. There

can be a maximum of eight states when there are three objects,

but states are only generated when at least one viewer had

visited the state. We assume that the viewers are interested in

the object j when the view has an overlapping region with

SFDj . For example, at segment i− 2, let us assume that 10

viewers watch the segment i− 2. Two viewers’ views include

none of the objects, three viewers’ views include an object

O2 only, and five viewers’ views include two objects O1 and

O2. Therefore, three states exist in the segment i − 2, which

are si−2
0 = {Φ}, si−2

1 = {O2}, and si−2
2 = {O1, O2}. In

the following segment i − 1, one viewer’s view include the

object O1 and the object O2 at the same time, the object O2

attracts three viewers, five viewers are watching O1 only, and

one viewer is not watching any object. Therefore, there are

four states generated for the segment i−1. Since there is only

Figure 5: VOSM Generation

one object shown by viewers in the segment i, there are two

possible states, which are si0 = {Φ} and si1 = {O3}.

When a server receives a new 360-degree video, it can

process the video to generate MPD, SRD, and SFD informa-

tion. The server starts to generate the VOSM when viewers

start to watch the 360-degree video. As more users watch the

video, the VOSM can gather more data. Every video will have

their distinctive VOSM to record viewers’ viewing patterns

regarding the objects in the videos.

Between states, the transition probability is defined as a

probability that viewers change their states to other states in

the following segment. Pi is a transition matrix from segment

i− 1 to i and we show Pi next as an example if Figure 5.

Pi =

{
p(si0|si−1

0 ) p(si0|si−1
1 ) p(si0|si−1

2 ) p(si0|si−1
3 )

p(si1|si−1
0 ) p(si1|si−1

1 ) p(si1|si−1
2 ) p(si1|si−1

3 )

}

(1)

where the transition probabilities are defined as

p(sim|si−1
c )

=
number of clients change their state from si−1

c to sim
number of clients visiting si−1

c

.

(2)

VOSM is stored in the media server and updated every

time the server receives the view information from the clients.

Multiple viewers’ views information is required to build the

transition probability matrix. The transition matrix Pi is pro-

vided to the clients as part of VOSM when the clients request

segment i to inform clients how other viewers changed their

state when they watched segment i− 1 and segment i.

III. VIEW PREDICTION ALGORITHM

Client devices can predict movement of view from segment

i, which is the current segment that viewer is watching, to

the view in the future segment i+ 1 by referring to SFD and

VOSM received from the media server. VOSM models the

behaviors of viewers in terms of the objects they have watched.

Therefore, VOSM can also provide future information, i.e.,

it can assist in determining which objects the viewer will

probably watch under the condition that the viewer is watching

certain objects currently. To predict the tiles to be required for

rendering future view, SFD helps to identify tiles including

the objects the viewer is going to watch. However, it is not

sufficient to predict the visible tiles in the future, because SFD

only provides the index of the tiles that will include the objects,

but actual view of the viewer could include background or

surrounding tiles that represent the real view. Therefore, we

introduce the View Motion Vector (VMV) that captures motion
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Figure 6: Future State Prediction using VOSM

directions of objects and therefore can move the current view

and generate the future views.

A. Future State Prediction using VOSM

Figure 6 shows an example of predicting a state in segment

i+1 given the current state si1 at the segment i using VOSM.

The VOSM provides the probability that the viewer will watch

a certain object in the future segment.

The probability that a viewer will change the state from the

current state sic to another state si+1
m for 0 ≤ m ≤ M − 1 is

the column vector of the Pi+1, which is defined as a vector

d = R
1×M whose elements are p(si+1

m |sic), for 0 ≤ m ≤
M −1, where M is the number of states in the segment i+1.

We are also interested in the future states for longer prediction

horizon. To predict a state in the segment i+2, we can perform

a matrix multiplication Pi+2 × d1 to get d2. In general, we

can define a kth future transition probability as

dk = Pi+k × ...×Pi+2 × d1. (3)

Since the state sm consists of multiple objects, the probability

pj of watching the object Oj in future segment i+1 is given

as

pj =
∑

∀m,Oj∈sm

dm (4)

where j is the object index and dm indicates the mth element

of vector d. For example (see Figure 6), the probability of

watching the object O3 is p1 + p2 = p(si+1
1 |si1) + p(si+1

2 |si1)
because both si+1

1 and si+1
2 include the object O3. The

probability of watching the object O4 is p2 = p(si+1
2 |si1),

and the probability the viewer will not watch any object is

p0 = p(si+1
0 |si1).

B. Future View Generation using VMV

By using VOSM, we can predict which objects the viewer

will probably watch in future segments. However, it does not

mean that we can exactly identify which tiles will be shown in

the future view. Therefore, we utilize the current view, which

is a set of visible tiles in the segment i, and move it properly

to include all objects possibly to be shown in the future view

i+1. If the predicted state in the VOSM is NULL state, then

we assume that the viewers have no reason to turn their heads

to watch other parts of the video. However, if the predicted

state includes certain objects, then we assume that the objects

will attract viewers and they will turn their heads to look at the

objects. We can generate the possible future views in segment

i+1 as currentview+ v1 and currentview+ v2, where the

vectors v1 and v2 are the motion directions that can properly

move all the tiles in currentview to the other set of tiles that

Figure 7: View Motion Vector (VMV) for the Future View

Prediction

include the object O1 and O2 respectively, when the predicted

states include O1 and O2.

We define the View-Motion Vector (VMV) as a vector that

describes a motion of the view from current segment to the

future segment to follow the movements of objects. Since the

motions of objects will lead viewers’ movements, we utilize

SFD information to derive and compute VMV. To compute a

VMV for the movement of a view from segment i to segment

i+ 1, the center point of SFDi+1
j is compared to the center

point of SFDi
j to calculate VMV vj for object j.

vj = center(SFDi+1
j )− center(SFDi

j) (5)

Figure 7 shows an example of VMVs. The current view

consists of four tiles and it includes two objects. SFD will

inform clients of which tiles will include the objects in the

future segments. We want to find the VMV that can move the

current view to the future view including tiles that will have

desired objects. In Figure 7 example, a person and a car move

in different directions and stay in different sets of tiles. To

follow the person, we need to move the current view using

a vector v1. To follow the car, we need to move the current

view using vector v2.

Since the VOSM provides the probability of including the

objects in the future view, we can decide the probability wt

that the tile t will be shown in the future segment i+1 using

pj from Equation 4 and futureviewj = currentview + vj ,

where j is the object index. The probability of watching the

tiles that belong to futureviewj in the segment i + 1 is pj .

If the tiles belong to multiple future view in i + 1, then we

have to sum up all pj for all futureviewj including the tile.

wt =
∑

∀j,t∈futureviewj

pj (6)

Since the SFD and VOSM information come from the server,

the clients only require to compute VMV to predict the

required tiles in the future. This information will be used for

rate selection under limited bandwidth.
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Figure 8: View Prediction Performance

IV. PERFORMANCE EVALUATION

Nine videos (Table I) and 48 users’ view traces are used for

the performance evaluation. The data set [21] provides the 360-

degree videos along with view traces. The videos are divided

into 6 by 12 tiles and tiles are encoded independently using

ffmpeg [22] to four different qualities. A segment duration

is 1-second. Objects are found in the video using YOLOv3

[23] based object detection in every frame and the Deepsort

multiple object tracking algorithm[24] is used to track the

objects. This information is encoded as a SFD by mapping

the location of the objects into the set of tiles for each video

and stored at the media server along with MPD and SRD. 43

viewers’ view traces are used to build a VOSM at the server,

and remaining 5 viewers’ data is used to test the performance

of the view prediction algorithm.

To evaluate the performance of the proposed view prediction

algorithm in the end-to-end streaming system, we have gen-

erated a networking model that transmits the video segment

data. A real HSDPA network trace [25] is used to evaluate the

performance of the 360-degree video streaming system with

the network variation.

A. View Prediction

We first measure the performance of view prediction al-

gorithms without considering the bandwidth variation. The

precision (prediction accuracy) is measured as

T∑
t=1

min(wt, gt) (7)

where gt is a normalized ground truth that has 0 for non-

visible tiles and 1/(number of visible tiles) for visible tiles,

and wt is a predicted probability that tile t will be shown in

the future segment. Figure 8a shows the average precision for

1-sec prediction horizon of the proposed SEAWARE system,

Linear Regression (LR) [3], and Navigation Graph (NG) [5]

based view prediction method. We could find that the proposed

SEAWARE system performs better than the LR and NG for

all videos. We have analyzed the videos in terms of objects

shown in the videos to find the reason why the prediction
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Figure 9: Video Semantic Information

algorithm performs differently in each video. Figure 9 shows

the average number of states per object in VOSM, the average

life time of the objects, and the total number of objects shown

in nine videos. It shows that the video-1 has two states per

object on average, which means that there are two possible

choices for the next segment on average when the viewer is

watching a certain object. Other videos have less than two

states per object on average and especially the video-8 has

the smallest average number of states per object. Therefore,

VOSM can make more accurate prediction of the view in the

next segment for video-8. In other words, if the number of

states per object is 1, it means that all viewers make the same

choice for the next view. Therefore, the performance gain we

can get by using the SEAWARE is larger with smaller number

of states per object. The average life time of the objects counts

the average number of segments that the objects appear in the

video. Video-6, 7, 8 and 9 have longer life time of the objects

than videos-1, 2, 3, 4 and 5, which helps predicting the next

view relying on the objects’ trajectories. We also count the

number of objects shown in the videos. Video-6 has a large

number of objects found in the video and it helps build a

viewing behavior model in terms of objects.

The average prediction errors for 1-sec prediction horizon

(Figure 8b) are also measured to find how often the view

prediction algorithms fail to predict visible tiles in the future

segment. The Prediction Error is measured by counting re-

quired tiles that have pt = 0 over total required tiles to render

the view. Since the clients will not request the tiles having

pt = 0, there is a risk to show blank area to the viewer when

the Prediction Error is high. Figure 10b shows that LR has the

highest prediction error compared to NG and SEAWARE. The

Precision of LR is better than the Precision of NG, but NG

has the smallest prediction error, therefore, we cannot directly

decide which prediction method is better. Since NG refers all

other viewers’ view history to produce the prediction matrix,

NG usually requests every tile that other viewers watched in

the past. It makes the Prediction Error small, but there is

some loss in Precision performance. SEAWARE has the best

precision performance compared to NG and LR, and has better

prediction error performance than LR.

Figure 8c and Figure 8d show the precision and the predic-

tion error performance for 5-sec future view prediction results.

The view prediction performance degrades with the longer

prediction horizon. In terms of the precision, NG works best

for video-1,2,3,4,8,9 and SEAWARE works best for video-6,7.

video-6 has the largest number of objects shown in the video,

and video-7 has the longest life time of the objects. In other
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Figure 10: Average V-PSNR and Average Blank Area (BA)

words, SEAWARE works better when the video has many

objects and their life time is long. NG has the lowest prediction

errors because NG usually request more tiles that were seen

by other viewers. However, we could find that the precision

performance of 1-sec prediction horizon affects the most on

V-PSNR and Blank Area performance, which are more closely

related to viewers’ actual experience. We discuss the results

in the following section.

B. Viewport-PSNR (V-PSNR) and Blank Area (BA)

To evaluate more realistic performance of the view pre-

diction algorithms in 360-degree video streaming system, we

have applied the rate selection algorithm to measure quality

of tiles that will be shown to the viewers. The Window-

based rate adaptation algorithm (WBA) [12], [11] is used for

rate selection of tiles with given probability matrix derived

from the view prediction algorithms. WBA allows the rate

selection of tiles [13], the client buffer management, and the

fast switching [26], [12] to update the existing video segments

in the buffer. Two types of network traces are used to test

the algorithms. A stable network condition is considered for a

wired network, and a variable network condition is considered

for a wireless network.

Figure 10 shows the average V-PSNR and the average BA

for nine videos (Table. I). V-PSNR represents the quality of the

view, which is measured by comparing a received view with

the original view. BA indicates the average number of tiles that

are missing over total number of tiles required to render the

view. Therefore, the viewers will see more blank (or black)

area in their view when BA is larger. BA is an important

performance evaluation metric for 360-degree videos. In case

of conventional video streaming systems, video freezing rate

(or re-buffering rate) is important because it indicates how

often the client-side buffer depletes and the clients should wait

until the video resumes. However, in tiled media, a video may

not freeze even if the client does not receive tiles to render the

view, but those missing tiles will show blank areas in the view

and it will affect the viewer’s experience degrading. Therefore,

we have to measure how large the blank area is in the view.

MONO represents the system that has no view prediction,

assuming every tile has the same probability of view. MONO

has poor V-PSNR performance because it streams all tiles in

the same quality. Therefore, most of the bandwidth is wasted

due to streaming non-visible tiles. However, MONO has very

low BA with the stable network condition because it will

request every tile with lower video quality. LR, NG, and

SEAWARE perform much better than MONO since they per-

form view prediction using single viewer’s view data, multiple

viewers’ view data, and multiple viewers’ view data combined

with semantic information respectively. Figure 10a shows

that SEAWARE can achieve the best V-PSNR performance.

Ideal represents the video streaming system with perfect view

prediction. Therefore, we know how much performance loss

we had because of view prediction errors. BA (Figure 10b)

shows an advantage of using SEAWARE. In most of the

videos, SEAWARE can achieve less than 4% of BA, which

means that viewers rarely see a blank area while other schemes

having higher BA (up to 10%) will show blank area more

often. Ideal has almost 0% BA because the view prediction is

perfect.

Figure 10c and 10d show the performance with variable

network condition [25]. We can observe that the V-PSNR

and BA performance are worse compared to V-PSNR and

BA performance in the stable network condition. The net-

work bandwidth variation makes it more difficult to receive

all required tiles because the network sometimes reaches a

too low bandwidth status to receive all required tiles with

the lowest quality. However, LR, NG, and SEAWARE have

less performance degradation than MONO because they can

receive visible tiles utilizing given bandwidth more efficiently.

SEAWARE achieves the best V-PSNR and BA performance in

the variable network condition since it’s prediction accuracy

is higher than other prediction schemes and prediction errors

are smaller than LR.

We can observe that MONO has very poor BA performance

in the variable network condition. MONO cannot stream vis-

ible tiles when the network bandwidth is very small, because

it wastes most of the bandwidth streaming non-visible tiles.

Moreover, even with the Ideal view prediction, there are some

blank area in the view in variable network, which means that

the network bandwidth is sometimes too small to transmit all

visible tiles.

C. Overhead Analysis

SEAWARE requires SFD and VOSM in addition to SRD.

The total storage required for the SFD files is up to 100KB per

video and the storage required for the VOSM file (including

states and transition matrix) is 10KB per video on average.

SFD file is generated for each segment and delivered only

when clients request corresponding segment. The average

size of SFD files is smaller than 1KB per segment which

is significantly smaller compared to video segments (up to

5.8MB).
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Processing the VOSM based view prediction algorithm takes

2.2ms on average in the client device (Intel Core i7, 8GB

memory) not using GPU when the processing time of LR and

NG are 1.9ms and 19ms respectively on average in the same

client device. We have used YOLOv3 based object detection

and tracking algorithms off-line. This process is done on

the Ubuntu machine that has CPU (Intel Xeon) and GPU

(NVIDIA Quadro P4000) with 32GB memory. The process

takes 4-min per video on average.

SEAWARE can achieve better performance than other

schemes using minimal overhead.

V. CONCLUSION

The semantic-aware view prediction (SEAWARE) system

represents a novel 360-degree video streaming system. The

SEAWARE system utilizes semantic information of 360-

degree video content to predict the viewer’s behavior. It en-

sures minimal bandwidth usage with very strong V-PSNR and

low BA performance results. Semantic information is encoded

as SFD and view information from the clients are gathered

to generate VOSM. SFD and VOSM descriptions are stored

in the media server and the server provides the information

to the clients when the clients request their video segments.

The client devices can predict future view using SFD and

VOSM information since the viewers tend to follow objects

in the video. We introduce VMV, derived from SFD, VOSM,

and client’s current view, to generate possible future views.

The SEAWARE system achieves better precision performance

compared to the history-based prediction algorithms. We have

shown that video semantic information helps to improve QoE

of the 360-degree videos streamed over the Internet. Moreover,

SEAWARE is compatible with the DASH platform and clients

can perform the semantic-aware view prediction without ana-

lyzing the video.
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