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Abstract We investigate the problem of determining the
shape of a rotating celestial object – e.g., a comet or an as-
teroid – under its own gravitational field. More specifically,
we consider an object symmetric with respect to one axis –
such as a dumbbell – that rotates around a second axis per-
pendicular to the symmetry axis. We assume that the object
can be modeled as an incompressible fluid of constant mass
density, which is regarded as a first approximation of an ag-
gregate of particles.

In the literature, the gravitational field of a body is often
described as a multipolar expansion involving spherical co-
ordinates (Kaula, 1966). In this work we describe the shape
in terms of cylindrical coordinates, which are most naturally
adapted to the symmetry of the body, and we express the
gravitational potential generated by the rotating body as a
simple formula in terms of elliptic integrals. An equilibrium
shape occurs when the gravitational potential energy and the
rotational kinetic energy at the surface of the body balance
each other out. Such an equilibrium shape can be derived as
a solution of an optimization problem, which can be found
via the variational method. We give an example where we
apply this method to a two-parameter family of dumbbell
shapes, and find approximate numerical solutions to the cor-
responding optimization problem.

W.T. Lam’s and M. Gidea’s research partially supported by NSF grant
DMS-0635607 and DMS-1814543. F.R. Zypman partially supported
by NSF grant CHE-1508085.

� F.R. Zypman
zypman@yu.edu

1 Yeshiva University, 2495 Amsterdam Avenue, New York City,
NY 10033, USA

Keywords Potential theory · Planetary gravitation · Solar
system · Asteroids · Mathematical astronomy ·
Axisymmetric celestial objects · Dumbbell

1 Introduction

Modeling the gravitational fields produced by celestial bod-
ies in the Solar System has been of interest since the time of
Isaac Newton, Alexis Claude Clairaut, and George Gabriel
Stokes. Their work was focused on determining the shape
of the Earth. The more general problem is to determine all
possible equilibrium shapes of rotating, homogeneous fluid
bodies. Such equilibrium shapes are given by the condi-
tion that the total energy, i.e., the sum of the gravitational
potential energy and the rotational kinetic energy, should
have the same value at any point of unit mass on the sur-
face of the body. The rotational speed is a parameter of the
problem, with different rotational speeds yielding different
equilibrium shapes. Maclaurin (Maclaurin 1742) discovered
a family of equilibrium shapes – referred to as Maclaurin
spheroids –, which are ellipsoids that are symmetric with
respect to the axis of rotation. As the rotational speed of
the body is increased, the family of spheroid equilibrium
shapes branches off at some value of the rotational speed,
giving rise to a family of tri-axial ellipsoids, referred to as
the Jacobi ellipsoids. Further, the family of Jacobi ellipsoids
branches off into two families of equilibrium shapes at two
distinct values of the rotational speed. One of the branches
consists of pear-shaped equilibrium figures, referred to as
Poincaré figures. The second branch consists of dumbbell-
shaped equilibria. The corresponding branching point for
this latter family was found in (Chandrasekhar 1967). The
dumbbell sequence was first computed in (Eriguchi et al.
1982). One should note here that these dumbbell shapes are
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not given by closed form equations, but they are computed
numerically, for example via iterative methods.

Additionally, the gravitational fields of oblate planets
have been of interest to understand the motion of satellites,
in particular artificial satellites orbiting around the Earth
(Vinti 1966; Lara 2020). More recently, general shapes have
been considered with the aim of providing accurate dynam-
ics of interacting gravitational bodies that can be monitored
experimentally to high precision (Dirkx et al. 2019; Celletti
et al. 2020). In such problems, multipolar expansions of the
gravitational potential play a key role in the analysis.

The interest in modeling and computing the gravitational
field created by shapes beyond spheroids is stimulated by the
fact that many asteroids and comets have irregular shapes.
Dumbbell shapes are among the shapes that have been ob-
served for comets and asteroids, making them both astro-
nomically and mathematically interesting.

Examples of astronomical dumbbells include the Jupiter
Trojan Asteroid 624 Hektor (Descamps 2015), the comet
8P/Tuttle (Groussin et al. 2019), the comet 103P/Hartley
(Harmon et al. 2011), and the transneptunian object 486958
Arrokoth/Ultima Thule (Amarante and Winter 2020). As-
tronomically, these dumbbell shapes can originate from fu-
sion of ellipsoidal precursors, or from elongation. We do not
quest here into the mechanisms of formation, rather concen-
trating on the self-gravity of bodies, and searching for pos-
sible shapes that can occur in practice.

A related problem, of astrodynamics interest, is to under-
stand the dynamics of an infinitesimal mass (e.g., a space-
craft) near a dumbbell shaped asteroid (e.g., the Trojan As-
teroid 624 Hektor), under the additional influence of other
planetary bodies (e.g., Sun, Jupiter). See, e.g., (Burgos-
García et al. 2020).

For spheroid shapes the gravitational field can be ex-
pressed as a spherical harmonic expansion. However, this
method is not particularly suitable for non-spheroidal bod-
ies. Other types of expansions have been proposed. For in-
stance, ellipsoid harmonic expansions (Romain and Jean-
Pierre 2001) are better fitted for bodies that can be approxi-
mated by an ellipsoid rather than by a sphere.

In this work we provide a general expression for the grav-
itational potential produced by a body of constant mass den-
sity, whose boundary surface is described by revolving the
graph of a single-valued function about an axis, which be-
comes the symmetry axis of the body.

Using cylindrical coordinates, which are adapted most
naturally to the symmetry of the problem, we obtain a
general formula for the gravitational potential as a one-
dimensional integral of a closed form expression given in
terms of elliptical functions.

When the rotation of the body about an axis perpendic-
ular to the symmetry axis is considered, the total energy of

a unit mass particle at the surface of the body is expressed
as the sum of the gravitational potential energy and the rota-
tional kinetic energy.

Then we formulate the problem of finding shapes of ax-
isymmetric rotating bodies that are approximate equilibrium
shapes of the total energy, in the sense that the surface of the
body is as close as possible to a level set of the total energy
function. We formulate this problem as a two-dimensional
optimization problem, which can be solved numerically us-
ing variational methods. We illustrate this approach via an
example consisting of a two-parameter family of dumbbell
shapes, for which we find numerical solutions to the corre-
sponding optimization problem.

The physical justification that the surface of an equilib-
rium shape is approximately a level set of the total energy
function relies on viewing the body as either a solidifying
fluid, or a collection of solid particles. In the case of aster-
oids, this assumption is partially justified by the fact that
many small bodies in the solar system are believed to be
rubble piles, that is, collections of smaller particles. There
are models that analyze in detail the granular structure of as-
teroids, and study the tidal stress corresponding to different
particle shapes; see, e.g., (Goldreich et al. 2009). However,
numerical simulations show that such granular structures
preferentially assume shapes that are close to fluid equilib-
rium shapes (Tanga et al. 2009). Nevertheless, perfect equi-
librium fluid shapes are not attained since the bodies are not
truly fluid but subject to some level of inter-particle friction.
The fluidity hypothesis-based approach was recently used
in (Descamps 2015) to find, through an iterative scheme, a
family of shapes that fit the observed light curves1 of some
small bodies in our Solar System, for example of the Trojan
Asteroid 624 Hektor.

The paper is divided into three main sections. Section 2
provides a formula for the gravitational potential of a solid
of revolution in terms of elliptical functions. This formula
provides an economical method to exactly compute the
gravitational field inside and outside the body. Section 3
gives an integral equation that any rotating such body, as-
suming an equilibrium shape, must satisfy. This result serves
as a practical starting point to explore possible equilibrium
shapes that can be attained from suitably chosen families of
profiles. Section 4 presents an application to a parameterized
family of dumbbells, which uses an optimization process to
identify the best fit shapes. Section 5 presents the conclu-
sions.

1Light curves are measurements of the brightness of a celestial body as
a function of time. They are used for example to determine the shape,
rotation period, as well as other parameters of an asteroid (Kaasalainen
and Torppa 2001).
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Fig. 1 Sagittal section of body of revolution around the z-axis. All
points inside the object are within −z0 ≤ z ≤ z1. For a fixed z, the
points are on a circular disc of radius smax

2 Axisymmetric body in its own
gravitational field

We consider an axisymmetric body relative to the z-axis,
obtained by revolving the graph of single-valued function
smax = f (z) ≥ 0 about the z-axis. The origin of the (z, s)-
coordinate system is set at the center of mass. See Fig. 1.

In this section, we consider shapes that have only this
symmetry. In Sect. 4, we will restrict to a family of shapes
that have an additional symmetry, namely that the graph of
the function f (z) is symmetric about the s-axis.

In cylindrical coordinates (s,φ, z), the inside of the body
is defined by −z0 ≤ z ≤ z1, 0 ≤ s ≤ smax = f (z), 0 ≤ φ ≤
2π . The function f (z) defines the shape of the body. The
points �r ′ inside the body produce a gravitational potential at
a point �r = zẑ + f (z)ŝ on the surface that is given by

UG(�r) = −G

∫
Body

ρ d3 �r ′

|�r − �r ′| , (1)

where ρ is the constant mass density of the object, G is the
universal gravitational constant, and the caret stands for the
unit vectors in the axial and transverse directions. We note
that the integrand in (1) is undefined when �r ′ = �r , yet the
value of the potential at any point �r on the surface of the
body is well defined owing to the three-dimensional nature
of the body.

We begin by considering the explicit form of equation (1)
in cylindrical coordinates (Skelton 1982), (Conway 2000):

UG = −Gρ

∫∫∫
dz′ds′dφ′ s′

+∞∑
m=−∞

∫ +∞

0
dk eim(φ′−φ)Jm(ks)Jm(ks′)e−k|z−z′|. (2)

Here we will use the primed variables to refer to the sources
and the unprimed for the observation point. The integrals
in equation (2) are in the variables z′ ∈ [−z0, z1], s′ ∈
[0, f (z′)], and φ′ ∈ [0,2π], respectively.

The triple integral in (2) can be rearranged as a sum of an
infinite series as follows

+∞∑
m=−∞

∫ +∞

0
dk

∫ z1

−z0

dz′ e−k|z−z′|

∫ f (z′)

0
ds′ s′Jm(ks)Jm(ks′)

∫ 2π

0
dφ′ eim(φ′−φ), (3)

where the variable s is evaluated at the surface of the body.
The integral in φ′ in equation (3) is equal to 2πδm0, where δ

is the Kronecker function. Thus, equation (2) becomes

UG = −2πGρ

∫ +∞

0
dk

∫ z1

−z0

dz′e−k|z−z′|

∫ f (z′)

0
ds′ s′J0(ks)J0(ks′). (4)

We now recall the identity (Watson 1922)

s′J0(ks′) = 1

k

d

ds′ [s′J1(ks′)] (5)

which allows us to evaluate the integral in s′ and obtain

UG = −2πGρ

∫ +∞

0
dk

∫ z1

−z0

dz′e−k|z−z′| J0(ks)

k
f (z′)J1(kf (z′)) (6)

where we have used that J1(0) = 0.
For clarity, equation (6) is rearranged as

UG = −2πGρ

∫ z1

−z0

dz′ f (z′)

∫ +∞

0
dk

J1(kf (z′))J0(kf (z))

k
e−k|z−z′|, (7)

where we have explicitly set s = f (z) to obtain the potential
at the surface.

We now consider the integral

Y(f (z′), f (z), |z − z′|)

=
∫ +∞

0
dk

J1(kf (z′))J0(kf (z))

k
e−k|z′−z|. (8)

This integral can be viewed as the Laplace transform of
a combination of Bessel and power functions, of the kind
studied in (Kausel and Irfan Baig 2012). Specifically, using
the notation from (Kausel and Irfan Baig 2012),

Iλ
αβ(a, b, s) :=

∫ +∞

0
dx xλJα(ax)Jβ(bx)e−sx,
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for

α = 1, β = 0, λ = −1, x = k, a = f (z′),

b = f (z), and s = |z′ − z| (9)

we have that the right-hand side of equation (8) equals

I−1
10 (f (z′), f (z), |z − z′|).

Using the formula (ENS-4.6) from (Kausel and Irfan Baig
2012) we obtain

I−1
10 (a, b, s) = 1

πa

[
2
√

ab

κ
E(κ) + (a2 − b2)

κ

2
√

ab
K(κ)

]

+ s

πa
Sgn(a − b)�(ν, κ) − s

a
�(a − b),

(10)

where

κ = 2
√

ab√
(a + b)2 + s2

, ν = 4ab

(a + b)2
,

�(ν, κ) = |a − b|
a + b

s√
(a + b)2 + s2

�(ν, κ),

(11)

where E is the elliptic function of the first kind, K is the
elliptic function of the second kind, � is the elliptic function
of the third kind, Sgn is the sign function, and � is the unit
step function.

For the convenience of the reader, we recall

K(κ) =
∫ 1

0

dt√
1 − t2

√
1 − κ2t2

,

E(κ) =
∫ 1

0

√
1 − κ2t2

√
1 − t2

dt,

�(ν, κ) =
∫ 1

0

dt

(1 − νt2)
√

1 − t2
√

1 − κ2t2
.

(12)

Substituting (9) in (10) we obtain the explicit expression

Y(f (z′), f (z), |z − z′|)

=
√

(z′ − z)2 + (f (z′) + f (z))2

πf (z′)

·E
(

2
√

f (z′)f (z)√
(z′ − z)2 + (f (z′) + f (z))2

)

+ f (z′)2 − f (z)2

πf (z′)
√

(z′ − z)2 + (f (z) + f (z′))2

·K
(

2
√

f (z′)f (z)√
(z′ − z)2 + (f (z′) + f (z))2

)

+ (z′ − z)2(f (z′) − f (z))

πf (z′)(f (z′) + f (z))
√

(z′ − z)2 + (f (z′) + f (z))2

·�
(

4f (z′)f (z)

(f (z′) + f (z))2
,

2
√

f (z′)f (z)√
(z′ − z)2 + (f (z′) + f (z))2

)

−|z′ − z|
f (z′)

�
(
f (z′) − f (z)

)
. (13)

Using equation (7), we obtain the following:

Proposition 1 The gravitational potential at a point of
cylindrical coordinates (f (z),φ, z) on the surface of a body
generated by revolving the graph of z 	→ f (z) ≥ 0, −z0 ≤
z ≤ z1 is given by

UG = −2πGρ

∫ z1

−z0

dz′ f (z′)Y(f (z′), f (z), |z − z′|). (14)

For a given body shape generated by the profile function
f (z), equation (14) gives the gravitational potential UG as a
function of z at any point of the surface.

Equation (14) can be easily modified to obtain the exact
gravitational potential at any point in space, as follows:

Corollary 2 The gravitational potential at a point in space
of cylindrical coordinates (s,φ, z), exerted by a body gener-
ated by revolving the graph of z 	→ f (z) ≥ 0, −z0 ≤ z ≤ z1,
is given by

UG = −2πGρ

∫ z1

−z0

dz′ f (z′)Y(f (z′), s, |z − z′|). (15)

The formulas (14) and (15) are very general as they apply
to any solid of revolution. They give the gravitational poten-
tial in terms of a 1-dimensional integral of a combination
elliptic functions. It is known that the elliptic functions have
expansions in power series that are convergent, thus (14) and
(15) can themselves be expanded in convergent power series
(Byrd and Friedman 2013). Also, elliptic functions are read-
ily implemented in many numerical computation software
packages.

Fig. 2 Rotating dumbbell showing a circular region of surface points
at z
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3 Total energy at the surface of a rotating
axisymmetric body

In this section we consider a solid of revolution as in Sect. 2,
where the s-axis is chosen to pass through the center of
mass. We now assume that the body rotates around the s-axis
with constant rotational speed ω. See Fig. 2. In the reference
frame of the rotating object, that is, one rigidly attached to
the object, a centrifugal force ensues. The magnitude of this
force can be derived from the rotational kinetic energy.

To evaluate this rotational kinetic energy at any point on
the surface we consider, as shown in Fig. 2, a ring of surface
points at coordinate z. A generic point on the ring has cylin-
drical coordinates (f (z),φ, z), so its distance to the s-axis is
f 2(z) sin2(φ) + z2. The rotational kinetic energy of a point
of unit mass at the surface, which rotates around the s-axis
with rotational speed ω is:

URot = −1

2
ω2(f 2(z) sin2(φ) + z2). (16)

Corollary 3 The total energy U acting on a particle of unit
mass at the surface of the rotating body is the sum of the
expressions in equations (14) and (16):

U = −2πGρ

∫ z1

−z0

dz′ f (z′)Y(f (z′), f (z), |z − z′|)

− 1

2
ω2(f 2(z) sin2(φ) + z2). (17)

The negative sign in the last two terms of (17) accounts
for the sign of the repulsive centrifugal force being opposite
to that of the attractive gravitational force.

Equation (17) can be used in two ways.
First, if the explicit shape of a body is known, then the

gravitational acceleration g = −∇U at the surface of the
body can be computed.

Second, one may ask, for a given family of shapes de-
fined by a function f (z) depending on parameters, to deter-
mine the parameters that (approximately) give the equilib-
rium shape. This can be re-phrased as a minimization prob-
lem, on determining the optimal parameters for the function
describing the shape, for which the total energy function at
the surface has the lowest variability – expressed as normal-
ized standard deviation (see Sect. 4).

Thus equation (17) can be seen as a main result of this
paper.

In principle, for a given ω, functional variations δU

should provide the function f (z) that give the equilibrium
shape. However, in practice, that is a very challenging pro-
gram, owing to the complicated form of the kernel of Y.
Realistically one should explore the minimization problem
in the parameter space of a well suited family of functions.

A problem that immediately becomes apparent from
equation (17) is that, at the surface of the object, UG de-
pends only on z, while URot depends, in addition, on φ.
Thus, as one walks along the ring of Fig. 2, UG remains
constant while URot contributes with an additional sin2 φ

dependence. It is clear that the total energy on a unit mass
cannot be constant on the ring. However, the practical prob-
lem of a real celestial body must be interpreted in the con-
text of rotating not with respect to a fixed axes, but secularly
with respect to all axes perpendicular to the z-axis. Under
these conditions, and owing to the sin2 φ factor, outstretched
shapes will develop perpendicularly to z. But these shapes

Fig. 3 Examples of shapes given by the function f (z), which is defined as in equation (20)
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will subsequently develop in other directions, as the axis of
rotation itself wobbles. Hence, one should find among ce-
lestial bodies, those that after long times compared with the
rotational period 2π/ω, have cross sections averaged in φ.
For this reason, we eliminate the dependence on φ by replac-
ing URot by its average with respect to φ. Thus, instead of
the total energy (17) we consider the effective total energy

UEff = 1

2π

∫ 2π

0
dφ U(z,φ), (18)

which takes the following form

UEff = −2πGρ

∫ z1

−z0

dz′ f (z′)Y(f (z′), f (z), |z − z′|)

− 1

4
f 2(z)ω2 − 1

2
z2ω2. (19)

In the next section we give an example of a parametrized
family of dumbbell shapes, and investigate numerically the
minimization problem of finding parameters for which the

Fig. 4 Approximate equilibrium shapes for ω = 0.1 and ω = 0.2, ω = 0.3 and ω = 0.4
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effective total energy function (19) at the surface has the
lowest normalized standard deviation.

4 Minimization problem for a parametric
family of dumbbell shapes

In this section we consider the family of curves

f (z) = γ

√√√√
(

1 −
(

z

z0

)2
)(

1 + β

1 − β

(
z

z0

)2
)

, (20)

for −z0 ≤ z ≤ z0. The functions in this family are symmet-
ric relative to the s-axis, so the solid of revolution generated
by these functions have a mirror symmetry with respect to
the plane through the origin orthogonal to the z-axis. Differ-
ent values of the parameters β and γ give different shapes.
The parameter γ gives the value f (0) of the radius of the
section at the origin, and β controls the convexity. We note
that some values of β the resulting body is dumbell shaped
while for some others it is not. The parameter z0 can be used
as the unit of length and, without loss of generality, it can be
set to unity. Examples of graphs of f (z) obtained for some

Fig. 5 Approximate equilibrium shapes for ω = 0.5 and ω = 0.6, ω = 0.7 and ω = 0.8
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Fig. 6 Approximate equilibrium shapes for ω = 0.9 and ω = 1.0

choices of parameters (β, γ ) are depicted in Figs. 3a and
3b.

Replacing f (z) from equation (20) into equation (19) and
computing the integral numerically, we obtain numerical
values of the function UEff(z,β, γ ). We then search, among
all pairs (β, γ ), the ones which produce, for a given ω, an
effective total energy UEff with the least normalized stan-
dard deviation in z. The variant of the normalized standard
deviation that we use is given by the quantity σ/|μ|, that is,
the standard deviation divided by the mean. This quantity
measures the extent of variability in relation to the mean. It
is known as the coefficient of variation, and it has been used
extensively in the optimization literature (Abdi 2010). It is
a dimensionless quantity that is very practical in comparing
the variability of different data sets. One particularity is that
it emphasizes deviations for smaller means.

In our case, we compute the coefficient of variation σ/|μ|
as a measure of the variability of the effective total energy
UEff computed for all values of z, for different choices of
parameters (β, γ ) which control the shape of the body. The
optimization problem is to find those parameters for which
the coefficient of variation attains the lowest values.

Practically, for each value of the rotational speed ω in
a grid, we compute the effective total energy for each co-
ordinate z, for fixed (β, γ ). The goal is to find dumbbell
shapes that yield a nearly constant effective total energy at
the surface, in practice one with a relatively small coefficient
of variation of UEff over the surface of the body. For each
value of ω – which we increase at each step by an increment
of δω = 0.1, we record the local minimum values of σ/|μ|
and the parameters γ and β for which the local minimum

is attained. The obtained results suggest different interesting
dumbbell shapes, as in Figs. 4, 5, 6.

We notice that, for the same ω, there may be several
different choices of parameters γ and β – hence different
shapes – for which σ/|μ| attains a local minimum. Since at a
practical level we do not look for exact solutions of the opti-
mization problem, but for approximate ones for which σ/|μ|
is ‘relatively small’, we do not impose a precise threshold on
what ‘relatively small’ means. However, we speculate that
for a given ω, dumbbell shapes with relatively large values
of σ/|μ| are less likely to occur in real life than those with
relatively small values of σ/|μ|. We also notice that some
of the shapes that we obtain appear to be similar to the ob-
served shapes of some asteroids and comets, such as 624
Hektor, 103P/Hartley, and 8P/Tuttle.

5 Conclusions

First, we have derived a formula in terms of elliptic integrals
for the gravitational potential at any point on the surface of
an axisymmetric body, as well as at any point outside the
body. Second, we have derived a formula for the total en-
ergy of a unit mass particle on the surface of an axisym-
metric body that rotates around an axis perpendicular to the
symmetry axis. Third, we have formulated an optimization
problem of finding approximate equilibrium shapes, based
on the principle of minimizing the coefficient of variation
of the effective total energy at the surface. As an applica-
tion, we have considered a two-parameter family of dumb-
bells, and computed numerically their approximate equilib-
rium solutions, i.e., the choices of parameters, depending on
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the rotational speed, for which the effective total energy at
the surface is approximately constant.

We note that there also exist exact equilibrium solutions
of dumbbell shapes (Eriguchi et al. 1982). Such dumbbell
shapes are not given by closed form equations. In contrast,
we provide a family of dumbbell shapes that are given by
simple, explicit formulas, and depend only on two param-
eters. However these only correspond to approximate en-
ergy level sets. Our family of dumbbell shapes could be po-
tentially utilized to find first approximations for irregularly
shaped asteroids and comets. Our approach can be extended
to other families of shapes (depending on more parameters),
as well as to shapes that are not generated as solids of revo-
lution.

Publisher’s Note Springer Nature remains neutral with regard to ju-
risdictional claims in published maps and institutional affiliations.
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