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Abstract

1. The amplitude, duration, frequency, and predictability of runoff and inundation of

aquatic habitats are key hydrological characteristics linked to aquatic ecosystem

functioning and biodiversity, but they are seldom integrated into analyses of Ama-

zon floodplain ecology. Remote sensing approaches, measurements and modelling

of floodplain hydrology provide a basis for this integration.

2. Effective legislation to protect floodplains and other wetlands depends on opera-

tional definitions that require application of hydrological data.

3. Extent and changes of flooded areas are linked to fish diversity and to presence

and growth of flooded forests and floating plants.

4. Dam construction reduces river system connectivity and modifies the flood pulse,

with major negative implications for floodplain ecosystems adapted to and depen-

dent on a natural flood regime.

5. Trends and variability in climate plus deforestation are altering the Amazon's

hydrological cycle, causing changes in discharge and flooded area with concomi-

tant ecological impacts.
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1 | INTRODUCTION

Aquatic ecosystems of the Amazon basin vary from small streams to

massive rivers often bordered by narrow riparian zones or immense

floodplains with vast areas of seasonally flooded forests and lakes

(Figure 1). Hydrological conditions are central to the existence, biodi-

versity, and ecological functioning of all these aquatic ecosystems.

Topographic, climatic, and landscape features range from Andean

highlands in the west to lowlands across the central and eastern basin,

and these features strongly modulate hydrological conditions (Junk &

Piedade, 2005). As human activities increasingly modify the hydrology

of Amazon aquatic ecosystems, there is a critical need to improve

understanding of how changes in the hydrology of the Amazon basin

manifest in aquatic ecosystems across the basin.

Biodiversity encompasses species, biological communities and

ecosystems, and, in aquatic habitats, is strongly linked to temporal and

spatial variations in hydrological conditions. For example, analyses of

large rivers in the Neotropics and tropical Australia revealed that sys-

tems with rhythmic annual floods have higher fish species richness,

more stable avian populations, and elevated rates of riparian forest

production than those with arrhythmic flood pulses (Jardine

et al., 2015). Many species in the Amazon are adapted to and depend

on floodplains and associated wetlands (Junk, 1997). Furthermore, the

geomorphology of the floodplains is influenced by and determines the

flooding patterns (Park & Latrubesse, 2017), which contribute to

aquatic biodiversity (Hamilton, Kellndorfer, Lehner, & Tobler, 2007).

Castello and Macedo (2016) emphasized hydrological connectiv-

ity as a key aspect of the integrity of Amazonian freshwater ecosys-

tems. Junk et al. (2011) delineated 14 major types of naturally

occurring wetlands in the lowland Amazon for which the amplitude,

duration, frequency, and predictability of inundation are key charac-

teristics. Human activities, such as deforestation, construction of
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dams, reductions in runoff due to water extractions, altered discharge,

and urban development, as well as intensification of the hydrological

variability by climate change, are perturbing the natural hydrology of

the Amazon basin on increasing scales.

Although ecological, social, and economic impacts of these hydro-

logical alterations have been investigated, to date, understanding and

measurements of hydrological fluxes and processes have not been

adequately incorporated into most ecological and conservation ana-

lyses of the diverse aquatic ecosystems of the Amazon basin. Missing

in the conservation literature is sufficient consideration of recent

advances in hydrological modelling and remote sensing, which provide

a sound basis for linking changes in hydrology to the integrity and

conservation of Amazon lakes, rivers, and wetlands.

Here, hydrological perspectives on conservation of aquatic eco-

systems are provided, with a focus on lowland floodplains, the largest

aquatic system in the Amazon basin. First, relevant aspects of Amazon

hydrology with a focus on inundation hydrology of floodplains are dis-

cussed to frame the context for ecological functions and biodiversity

conservation. Second, extant hydrological conditions and likely hydro-

logical changes and their implications for aquatic conservation are

presented and discussed.

2 | HYDROLOGY OF THE AMAZON BASIN

2.1 | Rivers, streams, and inundated areas

The Amazon River and its major tributaries have annual monomodal

hydrographs with amplitudes from 2–18 m depending on location and

year (Richey et al., 1986). A several-year cycle of interannual variation

in discharge correlates with the El Ninõ–Southern Oscillation (ENSO;

Richey, Nobre, & Deser, 1989). Analyses of rainfall reveal an inter-

annual mode in variance about every 5 years in the northern Amazon

basin and decadal scales of variability in northern and southern

regions (Marengo, 2004). Anomalously large or small amounts of

rainfall, leading to especially high or low water level in rivers and lakes,

have been linked to intense ENSO events and strong warming of sur-

face waters in the tropical North Atlantic (Marengo et al., 2008). Rain-

fall rates are often intense and associated with convective clouds

(Figures 2 and 3).

The �4 × 106 km of streams throughout the Amazon basin

(Beighley & Gummadi, 2011) harbour a diversity of aquatic organisms

and depend on runoff from their catchments. Few measurements of

the hydrology of these streams are available, as summarized in

Tomasella, Neill, Figueriedo, and Nobre (2009). Modelling of hydrologi-

cal processes and runoff at the catchment scale provides further under-

standing and information on streams. For example, Niu, Shen,

Chambers, Melack, and Riley (2017) applied a process-based hydrologi-

cal model to examine the sensitivity of hydrological budgets and stream

discharge to annual precipitation in an upland Amazon catchment. They

found that annual precipitation was the major control of surface runoff,

whereas evapotranspiration variability was less important.

Linked to changes in river and stream stage are large seasonal

and interannual variations in extent of inundation of thousands of

lakes and associated wetlands and riparian zones (Hess et al., 2015;

Sippel, Hamilton, & Melack, 1991). To estimate the area of the aquatic

habitats is quite a challenge given the large size of the Amazon basin

F IGURE 1 Flooded forest in the Anavilhanas archipelago, lower
Negro River as river level is beginning to decline. Trees in flooded
forests, the largest habitat on Amazon floodplains, vary in growth as
waters rise and fall. When flooded, they offer food and cover for
many fishes. Interactions of hydrological conditions with the ecology
of flooded forests are discussed in the text

F IGURE 2 View across a floodplain lake in the Anavilhanas
archipelago (Negro River) in an afternoon rainstorm illustrating an

intense deluge typical of convective clouds throughout the Amazon

F IGURE 3 Intense rain falling in a flooded forest of the
Anavilhanas archipelago (Negro River)
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and the wide range of aquatic environments from headwater streams

(<1 m across) to floodplains fringing major rivers (tens of kilometres

wide). Beighley and Gummadi (2011) combined hydraulic geometry

with a high-resolution drainage network and estimated, for drainage

areas from 1 to 431,000 km2 and channels >2 m in width, that the

Amazon basin contains 4.4 × 106 km of channels with a combined

area of about 60,000 km2. Hess et al. (2015) used synthetic aperture

radar (SAR) data with 100 m resolution to estimate that the lowland

Amazon basin (the region <500 m asl) has total floodable area of

�800,000 km2 with about three-quarters covered by periodically

inundated forests (Figure 1). Riparian zones along streams are inter-

mittently flooded and further increase wetland area.

2.2 | Floodplain hydrology

Floodplains border most rivers and streams throughout the Amazon

basin and represent the most extensive aquatic habitats, harbour a

diverse biota, and are important economically. The hydrology of flood-

plains is complex because it combines local catchment inputs with

regional-scale fluvial fluxes, both modulated by climate conditions.

Measurements and modelling of these integrated processes is chal-

lenging and difficult, yet essential for understanding the ecological

conditions and functions of the Amazon basin.

Mertes (1997) examined hydrological aspects of inundation

dynamics of floodplain systems and introduced the concept of the

perirheic zone, the mixing zone of waters with different characteris-

tics. Junk, Bayley, and Sparks (1989) emphasized the flood pulse and

defined floodplains in terms of river stage, associated physical and

chemical conditions, and adaptions of organisms to these conditions;

Junk (1997) elaborated these concepts for the central Amazon. How-

ever, hydrological processes and fluxes have seldom been integrated

into analyses of the flood pulse and its connection to Amazon flood-

plain ecology. As measurements and modelling of floodplain hydrol-

ogy have developed, their inclusion in the study of aquatic habitats in

Amazon floodplains is a critical need. Hence, we review the current

understanding of relevant floodplain hydrology in the Amazon basin

to stimulate its incorporation into ecological, management, and con-

servation research.

The hydrology and hydroecology of Amazon floodplains can be

characterized by (i) the flood pulse (i.e. the amplitude, duration,

frequency, and predictability of inundation), (ii) the sources of water

causing inundation, (iii) connectivity of the rivers and floodplain

habitats, (iv) residence times of organisms, materials, and water within

the floodplain, and (v) a seasonally flooded ecotone called the

aquatic–terrestrial transition zone (ATTZ). As noted by Park and

Latrubesse (2017), the extent and inundation of the ATTZ depends on

the spatial and temporal connectivity among different geomorphologi-

cal units. These factors are explicit and/or implicit in the measure-

ments and models of hydrological processes in the Amazon basin. A

general water balance equation, which can be applied at multiple spa-

tial scales from specific lake–floodplain systems to whole reaches of

major rivers, is presented first and is followed by examples of

measurements of its terms. The present status of inundation models

and applications of remote sensing to floodplains are then discussed.

2.2.1 | Analyses of water balances

The water balance of a floodplain can be expressed by the equation

ΔS=P+R�L�H�G−E

where ΔS is the change in volume of water, P is rainfall onto water

surfaces, R is inflowing upland runoff, L is exchange of water in either

direction to adjacent floodplains, H is exchange of water in either

direction to an adjacent river, G is exchange with groundwater, and

E is evaporation.

Each of the terms varies on multiple temporal and spatial scales. A

typical water year can be divided into four hydrological phases: low,

rising, high, and falling water levels. The sources and movements of

water to, through, and from the floodplain during these phases

changes through the seasons and varies among different lakes. Deter-

mination of a water balance for a floodplain requires bathymetry of

the basin and measurements or calculations of all the processes. How-

ever, bathymetric data are available for very few Amazon lakes and

floodplains, and appropriate meteorological and hydrological measure-

ments have rarely been made. Only three hydrological analyses that

combine local data with calculations for specific floodplains are avail-

able, and they illustrate the complexity of these environments.

Figure 4 illustrates how the proportion of water from different sources

varies over a hydrological cycle and contrasts the relative importance

of local runoff versus mainstem river inputs. The simplified diagram is

derived from studies of Lake Calado and the Curuaí floodplain.

The first analysis of a floodplain water balance was performed at

Lake Calado, located in the central Amazon (3.15�S, 60.34�W;

F IGURE 4 Fraction of water contributed from major inputs to
floodplain systems. Patterns are derived from data summarized in the

text from lakes Calado (data shown for 1983–1984; Lesack &
Melack, 1995) and Curuaí (data from 2001–2002; Bonnet et al., 2008).
Key to lines: Solimões River input to Calado (solid blue); upland
catchment runoff to Calado (dashed black); Amazon River input to
Curuaí (solid red); upland catchment input to Curuaí (solid green);
aquatic–terrestrial transition zone catchment input to Curuaí (dashed
red). Minor inputs from seepage and direct rainfall are not shown
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Lesack, 1993, 1995; Lesack & Melack, 1995). Over the course of a

water year, water level changed 10 m, and local runoff contributed

57% of the total water input, river inflow 21%, rainfall directly onto

the lake 11%, inflow from an adjacent lake 6%, and seepage 4%.

Bonnet et al. (2008) examined the inundation hydrology of the Curuaí

floodplain (2.2�S, 55.5�W), located in the eastern Amazon, and found

that the Amazon River dominated the inputs of water year-round,

accounting for about 77% of the annual total, on average. Rainfall and

runoff accounted for about 9% and 10% respectively, and seepage

accounted for 4%. Bonnet et al. (2017) combined measurements and

a simple hydrological model complemented by electrical conductivity

data to the Janauacá floodplain (3.38�S, 60.3�W; Figure 5) and found

that the Solimões River was the main input, accounting for 93%, on

average; direct precipitation and runoff from uplands contributed ≤5%

and ≤10% respectively, and seepage was estimated to be <1%. The

differences among Calado, Curuaí, and Janauacá in the relative contri-

bution of the mainstem river versus local inputs reflect, in part, differ-

ences in local catchment area (CA) relative to floodable area (FA):

Calado, CA/FA = 7; Curuaí, CA/FA = 2; and Janauacá, CA/FA = 2. The

different water sources often have large differences in dissolved and

suspended components that influence ecological conditions, as

described in numerous publications and summarized in several

(Melack, 2016; Melack & Forsberg, 2001; Richey, Mertes et al., 1989).

2.2.2 | Modelling of inundation

Models of inundation have been developed for three spatial scales.

The nature of the processes that are included, the data requirements,

and the computational intensity vary among the models. Their poten-

tial application to issues related to aquatic conservation will depend

on the site specificity and timescale of the questions.

Ji et al. (2019) adapted a process-based hydrological model with

surface and subsurface components to examine the particular hydro-

logical characteristics of the Calado floodplain and lake. The model, the

Adaptive Watershed Simulator coupled with the Community Land

Model (PAWS+CLM), represents hydrological, energy, elemental

cycles, and vegetation dynamics based on physically based equations

(Shen, Niu, & Phanikumar, 2013). With the model, Ji et al. (2019) were

able to assess the fraction of water in the Calado lake that came from

the Solimões River for a range of hydrological conditions and the rela-

tive importance of the local basin, rainfall distribution in time, and inter-

annual variability in rainfall and river stage for water sources in the lake.

Hydraulic models of flooding have been applied at mesoscales to

Amazon floodplains. In the first application of a two-dimensional

hydraulic model (LISFLOOD-FP), Wilson et al. (2007) found that more

than 40% of river flow was routed through the floodplain near the

confluence of the Purus and Solimões rivers. The model matched well

with inundation extent estimated from SAR data at high water levels

but over-predicted inundation at low water because small drainage

channels were below the spatial resolution of the topographic data

used. Rudorff, Melack, and Bates (2014a, 2014b) applied the

LISFLOOD-FP model, together with a local hydrological model, to the

Curuaí floodplain over 15 years. They combined digital topography

derived from the Shuttle Radar Topography Mission with extensive

echo-sounding data to generate a digital elevation model that

included narrow channels. The model simulated changes in water ele-

vation, flooding extent, and river–floodplain flows. Dominant sources

of inflow varied seasonally, and average annual inflow from the

Amazon River represented 82% of inputs from all sources.

Several models of river discharge and associated inundation have

been applied at the basin scale (Beighley et al., 2009; Coe, Costa, &

Howard, 2007; Getirana et al., 2012; Miguez-Macho & Fan, 2012;

Paiva et al., 2013; Yamazaki, Kanae, Kim, & Oki, 2011). When forced

with climate data, these models can provide estimates of inundated

area and water depth for relatively long time periods (>50 years) and

of interannual and spatial variations in floodplain inundation associ-

ated with variations in precipitation. Although these models calculate

river discharges reasonably well, their ability to represent inundation

of floodplains and wetlands varies. The lack of sufficiently accurate

and detailed digital elevation models is one major issue arising from

the complex and subtle topography of floodplains. For example, Coe

et al. (2007) and Paiva et al. (2013) had good matches between mod-

elled area flooded and remotely sensed inundation in the central basin

but underestimated flooded area in the Bolivian Amazon and lower

mainstem in comparison with remotely sensed inundation.

Basin-scale models, because of simplifications or the coarse spa-

tial resolution required to simulate large areas, cannot simulate small

but important spatial differences in water height across the floodplain.

Interferometric processing of SAR data indicates that considerable

spatial and temporal variations in elevations of water surfaces occur

across Amazon floodplains (Alsdorf et al., 2000; Alsdorf, Bates,

Melack, Wilson, & Dunne, 2007). These gradients, although typically

only a few centimetres per kilometre, can determine the direction of

flow across the floodplains.

F IGURE 5 Janauacá floodplain in the central Amazon basin.
Rising-water image (Planet® RapidEye-L3A, 5 m resolution, March
2015) showing inflows of sediment-laden water from the Solimões
River mixing with local runoff and lake water. The portion of water
from different sources varies seasonally, as calculated and modelled
by Bonnet et al. (2017)
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Another issue is that most models assume that flooding of the

floodplains occurs only when river stage surpasses bankfull, when in

fact it occurs via channels, which allow water to enter before levees

are overtopped, and these channels and the levee heights are often

not represented by the topographic data (Figure 6). Hence, the timing

of inundation is not correct. Conversely, at low water, the channels

can result in lower water levels on the floodplains than indicated by

the levees.

Other important aspects of floodplain hydrology are the propor-

tion of water flowing in the rivers that exchanges with the floodplains

and the length of time the water remains in the river channels and on

the floodplains. Sorribas (2016) modelled both aspects by combining a

new water-parcel tracking module with the basin-scale hydrological

model used by Paiva et al. (2013). He found that simulated travel time

of water in the main channels is generally less than 70 days and that

total travel time on floodplains exceeds 120 days. Although, on aver-

age, �20% of the total flux of water in the basin is exchanged with

the floodplains, the ratio between river–floodplain discharge and

basin discharge ranged between 5 and 40%, which is comparable with

the range estimated from observations by Richey, Mertes et al. (1989)

and Alsdorf, Han, Bates, and Melack (2010).

2.2.3 | Remote sensing of floodplains

Areal extent, water level, and temporal changes of inundation on local,

regional, and basin-wide scales can be determined with remote sens-

ing, including passive and active microwave, laser, visible and near-

infrared, and gravity anomaly detection systems (Melack, 2004, 2016).

Several products derived from remote sensing are of particular rele-

vance to hydrological aspects of aquatic conservation. Hess

et al. (2015) used SAR data to determine (at low and high water levels

and at spatial resolution of about 100 m) floodable area, inundated

area, and areal extent of major habitats in the whole lowland Amazon

basin. The high-resolution videography used to validate this SAR

product provides detailed habitat information (Hess et al., 2002).

Time-series of optical and SAR data have been analysed for specific

locations and can complement ecological studies (Arnesen

et al., 2013; Canisius, Brisco, Murnaghan, Van Der Kooij, &

Keizer, 2019; Ferreira-Ferreira et al., 2015; Renó, Novo, Suemitsu,

Renno, & Silva, 2011). Besides providing valuable scientific informa-

tion, these remote-sensing products can be used to identify priority

areas for protection and conservation, and to aid in proper manage-

ment of these areas.

Multiyear seasonal variations in inundation are available at a

25 km scale (Hamilton, Sippel, & Melack, 2002, 2004; Papa, Prigent,

Jimenez, Aires, & Rossow, 2010; Prigent, Papa, Aires, Rossow, &

Matthews, 2007). Aires, Papa, and Prigent (2013) suggested an

approach to downscale these spatially coarse products. Comparison

of these products with SAR-based estimates of inundation areas indi-

cates generally good agreement for moderate to large inundated units.

Seasonal variations in the water stored on Amazon floodplains at

�100,000 km2 resolution can be detected from anomalies in the

Earth's gravity field (Chen, Wilson, & Tapley, 2010; Xavier

et al., 2010). These products are especially useful in the detection of

large-scale changes in hydrological and ecological conditions associ-

ated with climate anomalies and in the validation of regional models

of inundation.

Although recent remote-sensing and modelling results are valu-

able and promising, limitations of the available measurements con-

tinue to hinder estimation of inundation dynamics. Gauges of river

stage are widely spaced, floodplains remain ungauged except during

field studies at a few locations, and satellite-borne altimeters, both

radar and laser based, have wide spacing between tracks. Passive

microwave and gravity anomaly sensors have coarse spatial resolu-

tion, and SAR systems have had limited temporal or spatial coverage,

although new SAR sensors offer repeated regional coverage at high

resolution. Topographic data require considerable work to remove

vegetation, and bathymetric data are available for few floodplains. A

promising approach derived from a time series of Landsat imagery and

water levels developed by Fassoni-Andrade (2020) provides improved

regional floodplain bathymetry. There is a critical need to collect addi-

tional hydrological and floodplain habitat data in order to produce

more accurate and comprehensive data sets that could be used to

inform ecological studies on Amazon floodplains.

3 | IMPLICATIONS FOR AQUATIC
CONSERVATION OF HYDROLOGICAL
CONDITIONS AND CHANGES

Floodplain ecology is governed by the seasonal water balance, includ-

ing the amounts and sources of inputs and outputs, and their natural

variations and modifications by human activity. Although this hydro-

logical information is lacking for most sites, regional models and

remote-sensing products can be incorporated into aquatic conserva-

tion studies and efforts. Metrics that characterize hydrological vari-

ability and connectivity, and their modification by dams, land cover
F IGURE 6 Channel connecting the Amazon and Tapajós rivers in
the eastern Amazon basin with typical river boat
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and land use change, and prolonged droughts or exceptional floods,

have direct application to the ecological status of aquatic ecosystems.

These types of information are available and have the potential to

improve understanding of the underlying processes leading to

observed patterns of and changes to hydrology and floodplain charac-

teristics. To illustrate their application, examples are provided of how

hydrological information and analyses of current and likely future

hydrological changes can be applied to aquatic conservation in the

Amazon basin.

3.1 | Legal protection

Effective legislation to protect floodplains and other wetlands

depends on operational definitions that require application of hydro-

logical data. In Brazil, although the benefits of floodplains to local

populations and the value of biodiversity in wetlands are well known,

no national policy regulating wetland protection or management

exists. Although not specifically designed to protect wetlands, the

Brazilian Forest Code directs that riparian forests must remain intact

on all private and public lands. The definition of how much forest

adjacent to streams and water bodies must remain intact (from 30 to

500 m from the stream, depending on stream width) is not necessarily

science based, and restoration requirements of illegally deforested

riparian zones have been weakened in recent years. However, the

overall intent and outcome of the law is to protect aquatic conditions

and resources (Soares-Filho et al., 2014).

To guide implementation of needed floodplain-specific policy,

Junk et al. (2014) suggested criteria that consider hydrological and

biological conditions to define, classify, and delineate wetlands.

Although the predictability of the flood pulse is one key criterion, few

wetlands have the required hydrological data. A combination of

remotely sensed information, distributed sensors, and modelling offers

an approach to delineate wetlands and implement legislation for their

protection. As is clear from the integrated nature of hydrological sys-

tems, the conservation of aquatic habitats requires approaches that

encompass whole catchments. In the Amazon, the Jaú National Park

is the only example that protects almost all the catchment of a large

river (www.icmbio.gov.br). A good example of an application of inun-

dation mapping to aquatic conservation is provided by Ferreira-

Ferreira et al. (2015), where the use of SAR was linked to vegetation

for the Mamirauá Sustainable Development Reserve, the largest

Brazilian protected area dedicated to wetland conservation.

3.2 | Hydrological characteristics linked to aquatic
ecology, ecosystem integrity, and biodiversity

Several studies have integrated combinations of recently available sat-

ellite remote-sensing products, hydrological model output, and locally

derived field data to gain novel insights into the relationships between

inundation variations and fish and forest ecology. These studies dem-

onstrate that seasonal means, natural variations, and anthropogenic

changes to flooded area and hydrological connectivity are all relevant

to understanding the ecology of fish and forests. In turn, the inte-

grated understanding of hydrology and ecology can guide manage-

ment of fisheries and land use development on floodplains.

Lobón-Cervia, Hess, Melack, and Araujo-Lima (2015) combined

flooded forest areas derived from SAR analyses with sampling of fish

in 35 Amazon floodplain lakes over a 1,300 km reach in the central

basin. They demonstrated that fish richness and abundance were

directly related to flooded forests and inversely related to distance

from the river. In another application of remote sensing data, Arantes

et al. (2017) used both Landsat and SAR data to characterize aquatic

habitats and found that spatial patterns of fish biodiversity on Amazon

floodplains were associated with forest cover and landscape

gradients.

Understanding hydrological influences on fish abundance and

movements can improve assessments of fishery yields, as is evident

by the dependence of fish catches on natural hydrological cycles along

the lower Amazon River found by Isaac, Castello, Santos, and

Ruffino (2016). An application of a multivariate time-series technique

to investigate intra-annual and interannual dynamics and long-term

trends in fish catch for the 10 most abundant fish species in the

Madeira River by Lima, Kaplan, and Rodrigues da Costa Doria (2017)

showed that the best explanatory variables were maximum water

level, flooding duration, previous year's flow, and rate of change in

flow with species-specific responses to these hydrological variables.

More specifically, Castello, Bayley, Fabré, and Batista (2019) examined

the abundance and catch of Colossoma macropomum, a long-lived fish,

and found that inundation positively and non-linearly affected abun-

dance of the age-1 cohort, but not of older age classes, and did not

find flooding effects on total catch. Of particular importance was the

expansion and contraction of the ATTZ, because it provides habitat

and rich food sources. Hence, an evaluation of the effects of flood-

plain deforestation on fishery yields along the lower Amazon that

found forest cover was positively related to multispecies fish capture

per unit effort indicates the interplay of hydrology, land use, and fish-

eries (Castello et al., 2017).

Using data on fish yields aggregated for all the states in the

Brazilian Amazon during the period of 1980 to 1998, Melack, Novo,

Forsberg, Piedade, and Maurice (2009) found no significant relation-

ship between maximum total flooded area and total annual fish yield,

independent of the lag time used between variables. However, when

yields for adult fish of different sizes and trophic levels were analysed

separately, using longer lag times for larger species and species from

higher trophic levels, several significant relationships were found

between fish yield and flooding: small species at lower trophic levels

generally had short lag times (0–1 year), whereas those for large spe-

cies at higher trophic levels had longer lag times (3–5 years).

Understanding how climate changes affect Andean river hydrology

is key to understanding responses of pimelodid catfishes, a diverse and

economically important group, to environmental changes (Barthem &

Goulding, 1997; Barthem et al., 2017). For example, Feng et al. (in

press) used a hydrological model forced with historical and projected

climate data to characterize changes in river flows on the eastern
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Andean slopes that provide access for pimelodid catfish to spawning

grounds. Their results imply that the hydrological conditions may be

favourable for catfish movement in the north west but disadvanta-

geous in other regions as the climate changes. Uncertainties in channel

morphology are the major source of error in the hydrological model.

When comparing hydrological and ecological impacts of the 1997

and 2005 droughts, Tomasella et al. (2013) found that rainfall was

lower, evaporation was higher, and, as a result, lake levels were lower

during the dry season of 2005 compared with 1997. These results

demonstrate the importance of conditions in local catchments, as well

as mainstem rivers, as indicated by the water balance studies at

Calado, Curuaí, and Janauacá. The low-water conditions during these

droughts were associated with higher fish mortality and increased

growth rates of floodplain trees. Floodplain forests are adapted to

seasonal changes in inundation, and their growth, as indicated by

annual ring widths, is often greater during non-flooded periods and

increases with longer non-flooded periods (Schöngart et al., 2004;

Schöngart, Piedade, Wittmann, Junk, & Worbes, 2005). However,

drought and prolonged low water can cause higher seedling mortality

and reduced seedling growth and photosynthetic activity (Parolin,

Lucas, Piedade, & Wittmann, 2010). Herbaceous, aquatic macrophytes

are another important type of vegetation on Amazon floodplains.

These plants have notably high net primary productivity, and regres-

sion models developed by Silva, Melack, and Novo (2013) indicated

that years with especially high water result in the especially high net

primary productivity. Clearly, woody and herbaceous plants on

Amazon floodplains are responsive to hydrological variability.

3.3 | Dams

Large hydroelectric reservoirs have been built, are under construction,

or are planned throughout the Amazon basin (Almeida et al., 2019). As

discussed in Forsberg et al. (2017), Latrubesse et al. (2017), Anderson

et al. (2018), Finer and Jenkins (2012), and Melack, Amaral, Kasper,

Barbosa, and Forsberg (2021), dam construction reduces river system

connectivity and has major implications for floodplain ecosystems

adapted to and dependent on a natural flood regime. One of the most

significant impacts of dams is alternations of river flows and variations

in stage. For example, reductions in peak flows and increased base

flows can keep riparian forests flooded and result in their deteriora-

tion and mortality (Assahira et al., 2017; Resende et al., 2019).

Furthermore, climate changes may modify the performance of

hydroelectric dams as precipitation and runoff rise or fall, perhaps

causing significant changes to reservoir management, with unknown

ecological impacts. Studies of projected hydrological changes in the

Tapajós (Arias et al., 2020) and Xingu (Stickler et al., 2013) rivers, as a

result of climate change and deforestation, found increased inter-

annual variability and an overall decrease in annual hydropower

production potential (as much as 75%). In turn, the considerable

outgassing of greenhouse gases from hydroelectric reservoirs may

exacerbate climate warming (Kemenes, Forsberg, &

Melack, 2007, 2011).

How changes associated with hydroelectric dams affect flood-

plain ecology is a complex function of reservoir management, climate

changes, and ecosystem vulnerability and is challenging to quantify

with available data. Tempe and Kaplan (2017) developed indices of

hydrological alternation by dams and applied them to dams across the

Brazilian Amazon. Relative differences between pre‑ and post-dam

hydrological regimes were determined and related to ecological

parameters. The indices characterized extremes, such as the magni-

tude and duration of high or low flows, timing of annual maxima or

minima, and the rate of change of water levels. They evaluated the

length of record required for robust conclusions and found, in general,

that large lowland rivers needed shorter records than smaller highland

rivers. Although all dams altered the hydrological regimes, and large

hydroelectric dams often had the largest impact, some smaller dams

had similar or even greater impacts. Even road crossings that block

streams alter instream habitats (Macedo et al., 2013). The greatest

impacts were associated with modifications of the flood pulse, a key

aspect of floodplain ecological functioning. Observations, hydrological

models, and satellite products have improved understanding of the

vulnerability of infrastructure and the potential to magnify climate dis-

turbances on discharge and the flood pulse, but more explicit links to

ecological processes on the floodplain need to be made.

3.4 | Deforestation

An understanding of how deforestation alters the Amazon's hydrolog-

ical cycle has been possible in recent years through the application of

numerical models and satellite observations in combination with local

observations (Coe, Costa, & Soares-Filho, 2009; D'Almeida

et al., 2007; Levy, Lopes, Cohn, Larsen, & Thompson, 2018; Panday,

Coe, Macedo, Silvério, & Brando, 2015; Silvério et al., 2015). Local

observations alone are not sufficient to clarify this complex issue.

Deforestation can decrease evapotranspiration and increase discharge

and flooded area (Coe, Latrubesse, Ferreira, & Amsler, 2011;

D'Almeida et al., 2006). However, reduced evapotranspiration and

energy balance changes caused by deforestation can also lead to

increased dry-season length (Costa & Pires, 2009; Wright et al., 2017),

decreased rainfall (Butt, Oliveira, & Costa, 2011; Knox, Bisht, Wang, &

Bras, 2011; Stickler et al., 2013), and decreased discharge and flooded

area (Coe et al., 2009). Levy et al. (2018) estimated that stream dis-

charge during the dry season increased between 4 and 10% (relative

to the forested condition) in the ‘arc of deforestation’ along the

southern border of the Amazon basin, as deforestation and agricul-

tural development occurred from 1950 to 2013. Furthermore, they

found that concurrent changes in temperature and rainfall reduced

the regional increase in discharge expected from deforestation. Thus,

the net effect of deforestation on the discharge and flooded area is a

complex combination of local and regional effects. Discharge and

flooded area can either increase or decrease depending on whether

the decrease in evapotranspiration (increased flood) or the decrease

in rainfall (decreased flood) dominates (Coe et al., 2009; Panday

et al., 2015; Stickler et al., 2013).
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3.5 | Climate variability and change

Trends and variability in climate are influencing the hydrology of the

Amazon basin. An analysis of the output of 35 climate models, as part

of the Coupled Model Intercomparison Project as summarized in the

Intergovernmental Panel on Climate Change Fifth Assessment Report,

indicates that increasing greenhouse gases are likely to result in

increased rainfall in the western Amazon basin and decreased rainfall

and more frequent drought in the southern and eastern basin this cen-

tury (Duffy, Brando, Asner, & Field, 2015). Analysis of satellite and

ground-based data suggests that this change is well under way.

Observations and model outputs confirm a climatically driven

decrease in rainfall and soil moisture and increase in evapotranspira-

tion in the Xingu River basin, which has resulted in a decrease in dis-

charge since the 1970s (Panday et al., 2015). Recent years have had

an increase in extreme events. Exceptionally high river levels occurred

in 2009 (Chen et al., 2010), and severe droughts resulted in record-

breaking low water levels in 2005 and 2010 (Marengo et al., 2008;

Marengo, Tomasella, Alves, Soares, & Rodriguez, 2011; Zeng

et al., 2008). These extreme events are consistent with increased vari-

ability in climatic conditions projected by global models (Gloor

et al., 2013; Lau, Wu, & Kim, 2013; Liu, Wang, Cane, Yim, &

Lee, 2013; Marengo & Espinoza, 2016).

These hydrological conditions appear to influence Amazon fish

and indicate the importance of incorporating climatic and hydrological

forecasts into evaluations of fish communities. Specifically, Freitas,

Siqueira-Souza, Humston, and Hurd (2013) sampled fish in six lakes

along a 400 km reach of the Solimões River over 4 years (2004–2007)

before, during, and after the severe 2005 drought that resulted in

especially low water levels and isolated the lakes from the river. They

found varied responses among trophic levels or migratory behaviour:

after this drought, planktivores, herbivores and detritivores increased,

carnivores and omnivores decreased, and migratory species increased

disproportionately compared with non-migratory species.

Based on modelled and remotely sensed seasonal and interannual

variations in inundation extent as a function of climatic conditions,

Costa, Coe, and Guyot (2009) concluded that, although ENSO

strongly influences variability in discharge, a 28-year mode in precipi-

tation variability explains most of the interannual differences in extent

of inundation. Rainfall anomalies are known to be associated with El

Niño conditions and sea surface temperatures in the equatorial Pacific

and tropical Atlantic oceans (Ronchail et al., 2002).

Sorribas et al. (2016) used a regional hydrological model with a

river hydraulic and floodplain water storage simulation and output from

five global climate models to create future climate projections for the

period from 2070 to 2099. Analyses such as these should be used with

caution, given the considerable uncertainty inherent with climate pro-

jections. Their results indicate that increased river discharge for large

rivers draining the Andes in the north west will contribute to increased

discharge and inundation extent over Peruvian floodplains and the

Solimões River in the western Amazon basin. Decreased river dis-

charges were projected for the eastern basin and decreased inundation

extent at lowwater in the central and lower Amazon basin.

3.6 | Dams, land cover, and climate changes

The combination of infrastructure development, such as dams, chang-

ing land cover — which effects both water yield and climate — and a

changing climate caused by increasing greenhouse gases makes

predicting and preparing for the future difficult. As illustrated in the

previous sections, each of these factors alone can significantly affect

discharge and floodplain inundation; together in varying combinations

they will create many different responses throughout the Amazon

basin. In one large-scale example, Melack and Coe (2013) simulated

inundation of the mainstem of the Amazon under altered climate and

land uses using a hydrological model forced with climate data

from 1950 to 2000. Simulations with 10% and 25% decreases in

rainfall resulted in reductions in inundation similar to reductions in

rainfall. Based on 35% deforestation coupled to a global climate

model, rainfall decreased and evapotranspiration decreased more;

hence, average maximum flooded area increased slightly.

The Xingu River, in the south-eastern Amazon, provides an exam-

ple of the complexities involved. The observed discharge has

decreased modestly since the 1970s, suggesting a stable environment,

and the Belo Monte dam was built on that assumption. Closer

inspection using discharge data, models, and satellite products

(Panday et al., 2015) shows that rainfall and evapotranspiration have

significantly decreased, which by themselves would result in a nearly

15% decrease in discharge, but it was offset by a 6% increase in

discharge from a deforestation-driven evapotranspiration decrease. A

numerical-model-based analysis of the potential future of the Xingu

River (Stickler et al., 2013) suggested that simulated deforestation of

20% and 40% within the Xingu River basin increased discharge by

4–8% and 10–12% respectively. When climate was allowed to

respond to the deforestation, rainfall decreased within the Xingu

Basin, counterbalancing the decrease in evapotranspiration and

resulting in a decrease in net discharge of between 6 and 36%.

4 | CONCLUSIONS

Climate and land use continue to change in the Amazon basin, causing

significant changes to long-term mean and the variability of discharge

and floodplain inundation. Aquatic environments in streams and

floodplains are shaped by a complex combination of local and non-

local effects, such as local topography, forest cover, land use, local

runoff, and upstream water input, which are a function of physical

characteristics and human actions throughout the larger catchment.

Thus, determining the impacts of change on and the resilience of

aquatic environments is challenging.

Satellite products and numerical models are already providing con-

siderable data and understanding of the hydrology of the Amazon

floodplain system. The last few years has brought a clearer understand-

ing of the sensitivity of this system to human activities and a changing

climate. However, the links from hydrological to ecological understand-

ing have been slow to form. As Ramirez-Reyes et al. (2019) pointed out,

large-scale incorporation of satellite and model products into
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ecosystem assessments is not likely to happen until a series of technical

and conceptual challenges are addressed. On the technical side, chal-

lenges include issues of data awareness, processing, and access, which

stem from the fact that the data were rarely created with aquatic eco-

systems in mind. As a result, aquatic ecologists may be unaware of rele-

vant data, the data format can be unfamiliar to them, and access can be

difficult. On the conceptual side, there is a mismatch between the spa-

tial and temporal scales being investigated, such as hourly observations

versus monthly simulations, or ecosystem properties and parameters,

which may be neglected at the large scale but important at the small

scale. These challenges can be overcome, however, through systematic

investment and interdisciplinary training, collaboration, and creative

thinking. Given the long-term nature of solving the technical challenges

and creating systematic investments, the scientific community needs to

create opportunities for collaboration and creativity on pressing aquatic

environmental issues. Working together, those who know the satellite

and model products, those who study the hydrology of tropical river–

floodplain systems, and those who know the ecology of these system

can craft innovative solutions.
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