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Optimal Tolling for Multitype Mixed Autonomous
Traffic Networks

Daniel A. Lazar

Abstract—When selfish users share a road network
and minimize their individual travel costs, the equilib-
rium they reach can be worse than the socially optimal
routing. Tolls are often used to mitigate this effect in tra-
ditional congestion games, where all vehicles contribute
identically to congestion. However, with the proliferation
of autonomous vehicles and driver-assistance technology,
vehicles become heterogeneous in how they contribute to
road latency. This magnifies the potential inefficiencies due
to selfish routing and invalidates traditional tolling meth-
ods. To address this, we consider a network of parallel
roads where the latency on each road is an affine function
of the quantity of flow of each vehicle type. We provide tolls
(which differentiate between vehicle types) which are guar-
anteed to minimize social cost at equilibrium. The tolls are
a function of a calculated optimal routing; to enable this
tolling, we prove that some element in the set of optimal
routings has a lack of cycles in a graph representing the
way vehicles types share roads. We then show that unless
a planner can differentiate between vehicle types in the tolls
given, the resulting equilibrium can be unboundedly worse
than the optimal routing, and that marginal cost tolling fails
in our setting.

Index Terms—Transportation networks, game theory.

[. INTRODUCTION

OW AUTONOMOUS vehicles will change the efficiency
of traffic networks is still ambiguous. While the pla-
tooning capabilities of autonomous vehicles may increase the
capacity of roads up to three-fold [1], when users choose
their routes selfishly, the presence of capacity-improving
autonomous vehicles may worsen congestion [2], [3], even
beyond the selfish equilibria which emerge in the presence of
only human drivers [4]. Prior works have studied how to use
tolling to mitigate these effects in networks with a single vehi-
cle type [5] or for roads shared between human drivers and
autonomous vehicles which are uniform in their autonomous
capabilities [6], [7].
However, currently there are many different vehicles on the
market with different levels of autonomy, including multiple
Adaptive Cruise Control (ACC) systems, which affect road

Manuscript received August 30, 2020; revised November 2, 2020;
accepted November 17, 2020. Date of publication December 4, 2020;
date of current version January 13, 2021. This work was supported
by NSF ECCS under Grant 1952920. Recommended by Senior Editor
V. Ugrinovskii. (Corresponding author: Daniel A. Lazar.)

The authors are with the Department of Electrical and Computer
Engineering, University of California Santa Barbara, Santa Barbara,
CA 93117 USA (e-mail: dlazar@ucsb.edu; ramtin @ucsb.edu).

Digital Object Identifier 10.1109/LCSYS.2020.3042622

and Ramtin Pedarsani

, Member, IEEE

congestion differently [8]. Moreover, even within human-
driven vehicles, different types of vehicles vary in how they
affect congestion. To adequately understand and control traf-
fic networks, models must incorporate multiple vehicle types.
Because of this, we consider tolling for a network shared
between multiple vehicle types, each affecting road latency
differently. This is a setting for which no tolling results yet
exist, absent extremely restrictive assumptions [9].

We consider a network of parallel roads with an arbitrary
number of vehicle types, where the latency on each road is
an affine function of the flow of each vehicle type on the
road. We provide a theoretical property of optimal routing in
this setting and use this property to establish optimal tolls.
We then show that tolls must be differentiated, meaning the
social planner must be able to levy different tolls to each vehi-
cle type on a road. We further show the failure of a classic
tolling scheme, and conclude with a numerical example of
our scheme.

We summarize our contributions as follows.

1) We derive a theoretical property of the set of optimal

routing,

2) We use this property to design tolls which guarantee that
the only existing selfish equilibrium also minimizes the
social cost, and

3) We show the possible failure of nondifferentiated tolls
and marginal cost tolling.

Previous Work: Our work builds on the field of congestion
games, which studies routing of vehicles over transportation
networks, where each road is defined as an edge of a graph,
where the latency experienced by users of that edge is a (typ-
ically increasing) function of the vehicle flow on that edge.
There are several relevant focuses of study in this field. The
first is optimal traffic assignment, which studies how to route
vehicle flow in a manner which minimizes the social cost, typ-
ically understood to be the aggregate latency experienced by
all users [10]. Another is understanding equilibria which arise
when all users are self-interested and choose routes to mini-
mizes their individual travel latency [11], [12]. Another vein
of research is understanding and bounding the gap between
social cost when users are routed optimally with respect to
the social cost compared to when users choose routes self-
ishly [4]. Many works study tolling and seek to find optimal
tolls, which, when applied, make it so that the only equilibria
that exist will minimize the social cost [5]. Other works seek
to improve the efficiency of equilibria by persuading drivers
with route recommendations [13], [14].

Some previous works extend these topics to setting where
each road has multiple vehicle types which affect congestion
differently, dealing with traffic assignment [9], equilibria [15],

2475-1456 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2021 at 18:07:31 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-2954-1305
https://orcid.org/0000-0002-1126-0292

1850

IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 5, NOVEMBER 2021

bounding the gap between optimal and equilibria costs [16],
[17], and tolling [18]. However, the cited works on traffic
assignment, equilibria, and tolling have a restrictive critical
assumption that is violated in the general setting, including
in the model developed below for mixed autonomy. In the
setting of two vehicle types, [2] shows that seemingly para-
doxically, converting human-driven vehicles to more efficient
autonomous vehicles can worsen social cost at equilibrium;
in another work the authors bound this effect [19]. In [6],
the authors provide optimal tolls for general networks with
multiple source-destination pairs in the homogeneous case,
where the difference in how each of the two vehicle types
affect congestion is constant across all roads in the network.

Our prior work studies this setting when there are only
two vehicle types on each road [7]. However, neither this,
nor any of the other previous works, find optimal tolls for
traffic networks with more than two vehicle types. To add to
the difficulty of accomplishing this, the entire approach in the
proof of [7] cannot be generalized to more than two vehicle
types, as it relies on deriving the Hessian of the cost function
and its eigenvalues in closed-form. In the current work, to
address the significant difficulty posed by the multiple vehicle
type setting, we present a novel proof grounded in graph the-
ory, bringing a new notion of altering routing graphs, without
altering the cost, to be acyclic. With this, we present the first
work finding optimal tolls for parallel networks with affine
latency functions with no restrictions on the form of the affine
latency functions aside from requiring it to be increasing with
respect to the flow of each vehicle type.

[1. MODEL

We consider a network of n parallel roads with vehicle flow
demand from m vehicle types. We use [n] = {1, 2, ..., n} and
[m] = {1,2,...,m} to denote the set of roads and vehicle
types, respectively. In general, for an integer x, we define [x] =
{1,2,...,x}. We generally use i to index a road and j to index
a vehicle type. We consider nonatomic vehicle flow and use
fij > ( to denote the magnitude of vehicle flow of type j € [m]
on road i € [n]. We consider inelastic flow demand, where
each vehicle type j has flow demand f7; a feasible routing f is
one such that Y. f/ = f' for all j € [m] and f] > 0 for all
i€[n]andj € [m].

Definition 1: Let .7-"f denote the set of feasible routings for

flow demand vectorf Then, ]-"]; = {(f ),e[,, ljelm f >0Ai €
[ Aj € ml A Y i fl =F V) € [ml}.

We define the flow vector as

T
f= [f‘ll’f125 A 7fl’n’f21’f225 A ’fy’:,l]

We also deﬁne the flow vector on road i as f; =
NN

i l

Each road i has a latency function that is experienced iden-
tically by all vehicles on the road, related to the Bureau of
Public Roads (BPR) latency model [20], which depends on
the practical capacity of a road. We consider vehicle types
with different autonomous technologies allowing them each
to maintain different headway to the vehicle in front of it. Let
hi- denote the nominal space used by vehicle of type j on road
i, where the nominal space includes the length of the vehi-
cle and its nominal headway. We then model road’s practical
capacity to be inversely related to the average space occupied

by a vehicle on a road [21], [22]:

alf) =vi Y 1O fH),

Jelm] Jj€lm]

where v; denotes the free-flow velocity (e.g., the speed limit)
of the road. Using this in conjunction with the BPR model,
we find latency function

Gy =61+ pi Y HfH,
Jjelm]
where #; denotes the free-flow latency (meaning the time it
takes to traverse the road in the absence of congestion) and
pi and o; are model parameters. Choosing o; = 1 for all i €
[n] and letting @) = #; and @, = p;i,, we derive our latency
function:

Gy =al + > dlfl. (1)

Jelm]

As mentioned above, a? denotes the free-flow latency of

road i and aﬂ denotes the scaling by which the latency on road
i increases with the addition of vehicle type j. Accordingly,
a? >0 and ai > 0 for all roads and vehicle types.

Assumption 1: The road latency functions are affine and the
latency of each road is strictly increasing with the flow of each
vehicle type on that road. In terms of (3), this is equivalent to
the condition a; > 0 for all i € [n], j € [m].

We wish to minimize the social cost, which we consider to
be the total latency experienced by all users of the network:

I =Y . @)

i€[n] jelm]
We will later derive properties of the set of optimal routings

F* = argmin J(f). 3)
feF;

Note that in general the optimal routing is not unique, and
multiple different routing choices can yield the same minimum
cost. We do not make claims about all routings that satisfy (3),
rather we will make claims that apply to at least one routing in
the set of routings that minimize the social cost (i.e., at least
one routing in the set F*).

In addition to considering the socially optimal routings, we
also consider how selfish users will choose their routes. To
influence this user choice, we levy tolls, where tolls for dif-
ferent user types can differ on a given road. We model user
type j on road i as experiencing cost

A = () + 7, )

where rlJ is the toll levied on user type j on road i. Note that
only the toll can make users of different types experience dif-
ferent costs on the same road; we assume all users experience
road latency identically. Also note that tolls are considered to
be circulated back into the public coffers and are therefore
not included in the social cost (2). We consider users who are
myopic and selfish; we therefore model users as following a
Nash Equilibrium.

Definition 2: A flow f is a Nash Equilibrium if fj > 0

implies cj(f) < cJ (f) for all i, € [n], j € [m].

Since we consider a network of parallel roads, a flow is
at Nash Equilibrium if no user can decrease their cost by
switching roads.
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Fig. 1. Example routings for a network with four roads and three vehicle
types. (a) vehicle type 1 has positive flow on roads 1 and 2, type 2 has
positive flow on roads 2 and 3, and type 3 has positive flow on roads
1, 3, and 4. (b) shows the corresponding bipartite graph. (c) shows a
similar routing but type 3 has zero flow on road 3, and (d) shows its
corresponding bipartite graph.

We define notation to make it easier to discuss properties
of specific routings. For a specific routing f, we use M to
denote the set of roads with positive flow of vehicle type j:

N ={i:fl >0nieln)

Similarly, we use M{ to denote the set of vehicle types with
positive flow on road i for the routing f:

M =g f >0njem)

The theoretical results established in the next section con-
ceptualize vehicle flow on roads in the form of a graph, where
for each specific routing f, a graph can be constructed. We
construct a bipartite graph G = (U, V, E) where one set of
nodes is the set of roads (U = [n]) and one set of nodes is
the set of vehicle types (V = [m]). The set of edges connect
vehicle types to roads on which they have positive flow, i.e.,

(5)
or equivalently, £ = {(i,)) :fi > 0Ai € [n]Aje [m]}.

l
In other words, for a routing f, there is an edge between the
nodes denoting road i and vehicle type j if there is positive

flow of type j on road i. We illustrate this in Figure 1.

E={G)):ielnnrjeM},

IIl. TOLLING

In this section we establish tolls which ensure that the social
cost is minimized in any resulting equilibrium. We do this in
two theorems: the first establishes properties about a routing
in the set of routings which minimize the social cost, and the
second provides optimal tolls which are constructed based on
the routing which is proved to exist in the first theorem.

Theorem 1: There exists a routing in the set of routings
minimizing social cost, f € F*, such that G(f) is acyclic,
where G = (U, V, E) is constructed as in (5), i.e., where nodes
are the roads and vehicle types, and edges exist between road
i and vehicle type j when flj > 0.

Proof: We prove this theorem constructively. We show that
if there exists a routing in the set 7* that has a cyclic bipartite

graph, we can break each cycle without altering the cost. We
do this by showing that for a cyclic routing f’, there exists a
feasible direction d and that moving in the direction d will not
alter the cost and will eventually break the cycle.

The second-order partial derivatives of (2) are as follows

(f):{o ifis#7

. -
af» + aﬁ otherwise.

3%
offof]
Since we define £ = [£l,£2, ... /" £l f2, .../, the

Hessian matrix is therefore block-diagonal in the following
form:

H 0 ... 0
0 Hy, ... 0
H=| . . ) s
0 0 H,
where the block corresponding to road i is
Zail ai1 + al-2 ai1 +al
a} + ai2 Zai2 aiz +a
H; = :
al] +a ai2 +a 24"

Consider a routing f/ which minimizes social cost and has
a corresponding cyclic graph. We will alter this routing and
break the cycle while maintaining the same social cost.

Since the graph is bipartite, any cycle will have the same
number of nodes of each type. For some cycle in f’, let us use
re{2,3,...,min(m, n)} to denote the number of roads (and
therefore vehicle types as well) in a simple cycle. The vehicles
and roads are indexed arbitrarily, so let us consider the cycle
to be comprised of the first » roads (roads {1,2,...,r} and
the first r vehicle types (vehicle types {1, 2, ..., r}). Let road
1 be shared between vehicle types 1 and 2, road 2 be shared
between vehicle types 2 and 3, and so on, until road r which
is shared between types r and 1. The remaining roads and
vehicle types are indexed arbitrarily.

Based on this feasible routing f’, we construct another
feasible routing f. Consider flow f' + ad, where « € Rxp
and d is a direction vector as follows. As with f, let d =
[dl,dz,...,dn]T, where d; corresponds to the flow change
on road i, specifically d; = [dl.l,diz,...,d;”]r. We choose
dy = [-1,0,...,0, 1,0,...O]T, where d] = 1. We choose
d =[1,-1,0,...,0]", and, for i = {3, ..., r}, d; is equal to
di_1 circularly shifted downward. For i ¢ [r], dﬁ = 0 for all
j € m].

The direction defined above corresponds to shifting some
flow of type 1 from road 1 to road 2, some flow of type 2
from road 2 to road 3, and so on, ending in some flow of type
r shifting from road r to road 1. With this defined direction,
the flow vector f’ + ad is feasible for some range a € [0, @],
which we show as follows, using Definition 1 (feasible flow).

When starting from a feasible flow, moving in the direc-
tion d satisfies conservation of flow, as Zie[n] di = 0 for all

J € [m]. Moreover, by the definition of flow i d{ < 0 only
when f,./] > (0, meaning that in the direction d, flow of a cer-
tain vehicle type on a road is decreased only if there exists
positive flow of that vehicle type already. As such, we find the

maximum feasible range to be @ = ming¢[/] f,f, since at this
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point the nonnegativity constraint becomes active. The reason
it is the minimum of f,f, with k € [r], is because in direc-
tion d, some of vehicle type k is shifted off road k. Since at
a = o the nonnegativity constraint becomes active, at the flow
f =f"+uad, the cycle on roads [r] has been broken. Note that
no new cycles have been induced, as a"- can only be greater
than zero when f; U is greater than zero. Thus, no new edges
are added to the graph by moving in direction d.

We now investigate the social cost at f. Since the objec-
tive function is quadratic (and therefore analytic), by a trivial
application of Taylor’s inequality we can express J(f) as a
second-order Taylor expansion around f” as follows.

. 1
IO =G +(VI(f), @d) + Sad" H(fad,
where H(f') is the Hessian of J evaluated at f’. First-order
optimality conditions imply that (VJ(f"), @d) = 0, since d
only has nonzero elements where inequalities for feasible flow

are not tight; thus for f” to be optimal, the derivative of J(f")
in the direction of d must be zero. We now investigate the

latter term, ignoring the scalar %-. Since H is block-diagonal,
d"Hd = Z d'Hd;.
ie[n]

Let us inspect diT H;d;. For any specific road 7', dy has one
entry that is 1 and one that is —1. Let us assign p and p’ such

that &, = 1 and d = —1. Then,
dHdy = > d) S (d) +d)d,
jem)  jetm)
=Y Al +d) - @ +d)]
Jelm]
= Y &)=~ d)) ~ () ~d)) =
J€lm]
Thus, dTHd = 0 as well, so
IF) =1¢).

We have thus constructed a flow f which has the same social
cost as a socially optimal flow f’, which has broken a cycle
in the graph representing f’ without introducing a new cycle.
Since the number of roads and vehicle types is finite, this
process can be repeated until we arrive at a flow which has no
cycles and has a social cost which optimizes (2). This proves
the theorem statement. ]

Corollary 1: For the routing f € F*, such that G(f) is
acyclic, provided by Theorem 1, no two vehicle types share
more than one common road.

It is important to note that finding routing in the set of those
which minimize the social cost requires solving a nonconvex
optimization, if no further restrictions are placed on the road
latency functions. This may make it computationally difficult
to find the routing guaranteed to exist by Theorem 1.

We next provide a theorem describing tolls, based on the
routing proven to exist above, which will lead the vehicles to
follow the optimal routing.

Theorem 2: Consider any routing f* that has an associated
acyclic graph. The existence of such a routing is provided in
Theorem 1. Then levy the following tolls 7 (f*):

g = {0 e

otherwise.

(6)

Under Assumption 1, then for every u and sufficiently large
P, the only Nash equilibrium that exists is the flow f*.
Proof: We use the following properties of the above tolls.
Property 1: As a result of the tolls in Theorem 2, if two
vehicle types have positive flow on a road in routing f*, then
the resulting tolls 7 (f*) will be such that the two vehicle types
experience identical cost on that road. Mathematically,

A=) YfeFnichlnjjeM. .

Property 2: As a result of Definition 2, if two roads have
positive flow of a specific vehicle type at equilibrium, then the
roads have equal cost for that vehicle type. Formally, if f is
an equilibrium, then

B0

Property 3: For sufficiently large P, users in equilibrium
will not use a road with toll P. Formally, for equilibrium flow
f experiencing tolls 7 (f*),

=d(f) VielmAiieN.

A=0 Viemniecm\N .

We now prove the theorem by contradiction. Assume there
exists some feasible flow f 7# f* which is at equilibrium under

tolls 7(f*). Since f # f*,

dienlnjelm

St f] >f*]
From Property 3, i € ./\f]f . Then, resulting from (7), either (i)
. f* ~i o
1) EI]"NE M st.fl <f* or
2) ci(f) > ci(f*) (from Assumption 1).
If (i), then it must be the case that (i)
3) 3 e N, stfl >

due to Deﬁmtron 1 (flow conservation), which implies, from
Definition 2,

@)

4@ = ). ®)

Then again, as a result of (iii) either (i) or (ii) must be the case,
where i is replaced by i’ and j is replaced by j/. This process
continues until we reach (ii). This terminal point must exist
as the routing’s bipartite graph is acyclic. Say the termination
point is on vehicle type j©' on road i%). Then,

(k) ~
C]<p>(f)>cj(p>(f)—cl(f) ©)
where the equality results from Properties 1 and 2. Further,
due to Definition 2 and Property 1,
i) ~ 0 - k=1) ~
Cji(p) () = Ci'(pfl) ) = Cé(pfl) ==

dF) = ).

(10)

We follow a similar logic down another branch. Reusing
the indices j/ and i’ to a new use, we consider the other result
of (7). By Definition 1,

3 e N st fl <Y (11)

Next, consider the results of (11) Similarly to above, either
(iv) 3 € /\/l s.t. f.’ >f*’, (where j € Mf due to
Property 3) or
V) c’ (f) < c’ (f*) (from Assumption 1).
If (iv), then 1t must be the case thgt
i) 3" e NI st < £,
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Fig. 2. Flow changes for the proposed new flow at equilibrium.

due to Definition 1 (flow conservation), which implies, from
Assumption 1,

RGEXAGY (12)
Similarly to above, as a result of (vi), either (iv) or (v) must
be the case, where i’ is replaced by i’ and j is replaced by j'.

This process continues until we reach (vi). Say the termination
point is on vehicle type j on road ). Then,

I0F) < doy =),

where the equality results from Properties 1 and 2. Further,
due to Definition 2 and Property 1,

13)

=) ~ 7

C{E:)) (f) = Cﬁ?_n(f) = Ci'(s—l)(f) Z...Z Ci (f) = Ci(]? .

~

We then string together (9) and (13) to find
i ~ ) ~
Cji(p) ) > Cé(x) (-

We find a contradiction by combining (10) and (14): leg (f) <
i~
‘J,-m - u

We note that role of having sufficiently large P is to enfore
Property 3, and that no user will experience toll P in Nash
Equilibrium. Moreover, in Nash Equilibrium all users will
experience cost (including both latency and toll) equal to pu,
enforcing a notion of fairness in the proposed scheme.

We show an example of this proof construction. Consider
the routing in Figures 1 (c—d), with the proof illustrated
in Figure 2. As before, f* denotes the flow which minimizes
the social cost and satisfies the condition in Theorem 1. We
walk through a specific alternate flow f # f* and show that
it cannot exist in equilibrium when tolls are applied as in
Theorem 2, where the tolls are based on flow f*.

Let us consider the flow f to have f]1 > f*l, meaning the
flow of type 1 on road 1 is higher in this new flow vector. By
conservation of flow, le < f*é. Then, either f13 < f*? , meaning
the flow of type 3 on road 1 decreases in the new flow vector,
or c} & > ci(f*) (by Assumption 1). Consider the former
case. Then by conservation of flow and the fact that f must be
in equilibrium and the tolling structure prevents flow of type
3 on any road outside of the set {1, 4}, ff > f*i. Then by
Assumption 1, ci(f) > ci(f*).

On the other branch of the diagram, as a result of le < f*l,
either fzz > f*% or cé(f) < cé(f*). If the former, again ﬂz <
£*2, resulting in c%(f) < c%(f*). Properties 1 and 2 imply

() = i (f*) = cl(f*) = 3 (") = & (F) = S,

O(fL 7)) = kfi + f7

b(f3, f3) = f2 + kf3

Fig. 3. Example of the futility of undifferentiated tolling in a simple
network. Consider flow demands f!' = 1 and 72 = 1. The equilib-
rium with the best undifferentiated toll may be arbitrarily worse than the
socially optimal routing.

and combining it with the inequalities above, ci(};) > c%(f).
However, since f must be at equilibrium (yielding the inequal-
ities), and from Property 1 (yielding the equalities), we find a
contradiction:

ah <ad=c<dh =30 <3P.

IV. NECESSITY OF TOLLING

In this section we show the necessity of the tolling scheme
proposed in the previous section, both in that tolls must differ-
entiate between vehicle types, and that well-known marginal
cost tolling [5] fails in our setting.

Undifferentiated tolls: We show via example that unless dif-
ferent vehicle types can experience differentiated tolls, the
equilibrium social cost can be unboundedly worse than the
social optimum. A previous work has shown that when a
network has multiple source-destination pairs, undifferentiated
tolls may not induce a socially optimal flow [6]. As in [7], we
extend these results to a simple two-road network and show
that under undifferentiated tolling, the equilibrium can have a
social cost which is arbitrary worse than the social optimum.

Consider the network in Figure 3, with flow demands f =1
and f2 = 1, and let k > 1. The socially optimal routing has
social cost 2, with fl1 = 0 and f12 = 1. Without loss of gen-
erality, we can consider a toll on just one of the roads, since
only the difference between the tolls on the two roads will
affect the equilibrium. This example is symmetric, so without
loss of generality let the top road be the road with a positive
toll. In the equilibrium which maximizes the social cost, the
top road has some flow of type 1 and the bottom road has
the remaining flow of type 1 and all the flow of type 2. To
investigate how well the best toll can do:

min fle1(fl,0) 4+ (0 —f + Dea(l — £, 1)

flefo,1
= min k(F)?+ (1 —f1 + DU —f +k
flelo,1]
Tk +3 1

Though the toll decreases the social cost from that of the
equilibrium which maximizes the social cost, the social cost
still increases linearly with k, while the socially optimal cost
is constant with respect to k. Thus the optimal undifferenti-
ated tolling can result in arbitrarily worse social cost than the
socially optimal routing even in this simple setting.

Marginal Cost Tolling: We show by example that the classic
marginal cost tolling, shown to be optimal in the case of a
single vehicle type on a general network [5], is not optimal
in the multitype case in a parallel network with affine latency

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on July 28,2021 at 18:07:31 UTC from IEEE Xplore. Restrictions apply.



1854

IEEE CONTROL SYSTEMS LETTERS, VOL. 5, NO. 5, NOVEMBER 2021

G(ff f) = 4211 +2f¢

b(fs f3) =2f + f3

Fig. 4. Example of the nonoptlmallty of marglnal cost tolling in a simple
network. Consider flow demands f! = 2 and 72 = 3. Under marginal
cost tolling, there exists an equilibrium with nonoptlmal social cost.

TABLE |
ROUTINGS, LATENCY, AND TOLLS FOR THE EXAMPLE NETWORK

Worst eq. routing Opt. routing Opt. Tolls
social cost: 80 social cost: 32.9
Rd fl f2 f’i Vi f1 f2 f? Vi 7.1 7_2 7_3
1 3 0 0 10 O 0 3 4 P 1 1
2 0O 2 0 10 28 0 0 48 P P 0.17
3 o 0 3 10 017 2 0 433 067 P P

functions. Consider the network in Figure 4, with two vehicle
types with flow demand f' =2 and f* = 3.

To find the optimal routing, we use Corollary 1 to solve
four convex optimizations instead of one nonconvex one. The
optimal routing is fl1 =0 and f12 = 2, for a social cost of 23.

With marginal cost tolls, the toll for a vehicle type on a
road is a function of the vehicle flows currently on that road

— in the affine case, rl’ = a’ Z/e (m] f] With these tolls, we
find an equilibrium with f1 = 105/128 and f1 = 95/128;
since both roads have positive flow of both vehicle types, we
confirm that each vehicle type experiences identical cost on
the two roads. In this equilibrium flow, the social cost is 23.6,
which is greater than the social optimum of 23. This shows
that marginal cost tolls are not optimal in this setting.

V. NUMERICAL EXAMPLE

We provide the following example to show the calculation
of the tolling scheme described in the previous section, as well
as the benefits of tolling. Consider a network of three parallel

roads and three vehicle types, with flow demands ]_‘ = 3,
]_‘2 =2, and ]_‘3 = 3. Let the latency functions be as follows:

a2 ) = 143 42 43
UL =241 + 487 2
GEL P =142 + 24 3.

A possible equilibrium has all flow of type 1 on road 1, flow
of type 2 on road 2, and flow of type 3 on road 3, yielding a
social cost of 80. The optimal routing, shown in Table I, has
flow type 1 on roads 2 and 3, type 2 on road 3, and type 3
on road 1, for a social cost of 32.9, a 2.5-fold improvement
from the equilibrium described above. This routing satisfies the
conditions in Theorem 1.! The table also shows the proposed
tolls based on this routing with 4 = 5, chosen to be greater
than the maximum latency so no vehicles are subsidized.

1Some networks could also have s0c1ally 0pt1mal routings with cyclic bipar-

tite graphs — con51der a network w1th a] a]- on all roads for two vehicle
types j and j. In this case j and j’ Could shdre more than one road in an
optimal routing. As guaranteed by Theorem 1, there will also be routings in
the set of minimizers in which the they share at most one road.

CONCLUSION

In this letter we considered tolling on parallel roads with
multiple vehicle types and affine latency functions. We derived
a key property of optimal routing in this setting and used this
property to establish optimal tolls. Future works may gen-
eralize these results, both in terms of the network and the
considered latency functions. Further extensions of this letter
will be critical in understanding traffic routing in the presence
of many vehicle types with varying levels of autonomy.
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