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Methane (CH4) is the second-most important greenhouse 
gas after carbon dioxide (CO2), accounting for 16–25% of 
atmospheric warming to date1,2. Atmospheric methane has 

nearly tripled since pre-industrial times, with a steady rise between 
1984 and 1999 (8.4 ± 0.6 ppb yr−1) (ref. 3), little or no growth between 
2000 and 2006 (0.5 ± 0.5 ppb yr−1) (ref. 3) and renewed growth to 
present day (2007–2019: 7.3 ± 0.6 ppb yr−1) (refs. 3–6). Whether the 
renewed increase is caused by emissions from anthropogenic or 
natural sources or by a decline in the oxidative capacity of the atmo-
sphere or by a combination of all three factors remains unresolved7–9. 
Depending on the approach used, total methane emissions from nat-
ural and anthropogenic sources range between 538 and 884 Tg yr−1 
(refs. 10,11). However, top-down versus bottom-up estimates of meth-
ane sources and sinks do not match, underscoring the incomplete 
knowledge of global methane dynamics10,11.

Reducing the uncertainty in methane emission intensities and 
partitioning emissions to anthropogenic and natural sources is 
challenging. At the global scale, bottom-up methane emissions 
from aquatic ecosystems are not well constrained due to reasons 
that include the lack of observations, uncertainties associated 
with surface areas and the risk of ‘double counting’ of ecosystem 
types. In particular, methane emissions from small lakes, reser-
voirs, aquaculture ponds and coastal wetlands were insufficiently 

assessed in the Intergovernmental Panel on Climate Control Fifth 
Assessment Report1 and in the most recent global methane bud-
get11. Finally, anthropogenic disturbances such as dam construc-
tion12, eutrophication13 and wetland modification14, along with 
climate feedbacks such as microbial responses to warming15 and 
changes in hydrology16,17, all lead to an alteration of methane fluxes 
that are currently difficult to account for at the global scale. A bet-
ter understanding of the aquatic contribution to global methane 
emissions is therefore critical to a more robust understanding of 
atmospheric methane dynamics.

Global aquatic methane emissions
In this article, we present a metadata analysis of aquatic methane 
flux measurements based on inventory, remote sensing and mod-
elling efforts to revise bottom-up estimates of areal methane fluxes  
(mg CH4 m−2 d−1) (Extended Data Table 1) and global methane emis-
sions (Tg CH4 yr−1) (Table 1) from rivers and streams, lakes and ponds, 
reservoirs, estuaries, mangroves, salt marshes, seagrasses, tidal flats, 
aquaculture ponds and continental shelves, along with recently pub-
lished estimates of global methane emissions from freshwater wet-
lands11, rice paddies11, continental slope and open ocean18. Our global 
synthesis reveals median (Q1–Q3) methane emissions from aquatic 
ecosystems of 269 (202–424) Tg CH4 yr−1 or mean (lower–upper  
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confidence interval 95% (c.i.95%)) emissions of 431 (343–519) 
Tg CH4 yr−1. Our bottom-up estimates show a larger range with a 
lower (median) or higher (mean) central tendency than the most 
recent bottom-up estimate for aquatic ecosystems and wetlands11 
(Table 2). The interquartile range (IQR) (222 Tg CH4 yr−1) of our 
global aquatic emissions is larger than the c.i.95% (176 Tg CH4 yr−1), 
which suggests that methane flux variability is larger than uncertainty. 
The high variability in data sources is linked to the complexity of 
how methane is produced, transported and consumed before reach-
ing the atmosphere, with different transport pathways (diffusion, 
ebullition, plant-mediated), physical interfaces (water–atmosphere, 
sediment–atmosphere), ecosystem conditions (impacted versus 
natural), and temporal (diel/tidal, seasonal, inter-annual) and spatial 
scales involved. We find that the statistical distributions of our datas-
ets are ecosystem-specific and that all aquatic ecosystems have posi-
tively skewed distributions (Fig. 1), which greatly affects the results 
for global upscaling (Fig. 2). If the observational data represent the 
actual flux distribution, then mean values would be the appropriate 
measure to scale global emissions. However, our assessment cannot 
rule out substantial bias in the available flux estimates resulting from 
limited temporal and spatial coverage and non-random selection of 

study sites. Under such circumstances, median values provide a more 
conservative estimate for upscaling.

Methane emissions (Q1–Q3) from freshwater wetlands (138–
165 Tg CH4 yr−1) and lakes (23–142 Tg CH4 yr−1) are the largest 
aquatic sources, followed by rice cultivation (25–32 Tg CH4 yr−1), 
reservoir (9–28 Tg CH4 yr–1), coastal ocean (5–28 Tg CH4 yr−1, <200 
m), and river and stream emissions (2–21 Tg yr−1). While uncertain-
ties for bottom-up (and top-down) global estimates are still high, 
natural, impacted and human-made aquatic ecosystems, including 
wetlands, could be equally important to, or more important than, 
direct anthropogenic emissions11,19. Depending on the approach 
used (median or mean), we find that 41% or 53% of the global 
methane emissions can be attributed to aquatic ecosystems, whereas 
non-aquatic systems contribute the remainder, for example, 8% or 
6% to other land sources such as onshore geological, wild animals 
and termites11, and 51% or 41% to direct anthropogenic activities 
such as enteric fermentation and manure, landfill and waste, coal 
mining, gas and oil industry, transport, and biomass and biofuel 
burning11 (Table 2).

Our revised global estimates of aquatic ecosystem emissions are 
mostly higher than previous estimates (Supplementary Table 1). 

Table 1 | Annual methane emissions from aquatic ecosystems

Aquatic ecosystem Bottom-up global methane emission (Tg CH4 yr−1) Reference

Median (Q1–Q3) Mean (±c.i.95%)

Rivers (ice-corrected) 5.8 (1.8–21.0) 30.5 ± 17.1 This study

Lakes (ice-cover, ice-melt corrected)

 <0.001 km2 21.2 (9.1–53.5) 54.5 ± 48.5 This study

 0.001–0.010 km2 13.2 (5.6–33.1) 31.1 ± 23.7 This study

 0.01–0.10 km2 4.4 (1.4–16.7) 22.4 ± 18.4 This study

 0.1–1.0 km2 3.0 (1.1–8.0) 9.9 ± 7.0 This study

 >1 km2 14.0 (6.0–31.0) 33.0 ± 45.0 This study

 All lakes 55.8 (23.3–142.3) 150.9 ± 73.0 This study

Reservoirs (ice-cover, ice-melt corrected)

 <1 km2 0.4 (0.1–1.3) 2.4 ± 4.7 This study

 >1 km2 14.7 (8.7–27.1) 22.0 ± 6.4 This study

 All reservoirs 15.1 (8.8–28.4) 24.3 ± 8.0 This study

Freshwater wetlands 150.1 (138.3–164.6) 148.6 ± 15.2 Saunois et al.11,a

Freshwater aquaculture ponds 4.4 (0.4–7.9) 14.0 ± 18.8 This study

Rice cultivation 29.9 (24.9–32.1) 29.8 ± 6.7 Saunois et al.11,b

Total inland waters 261.0 (197.5–396.2) 398.1 ± 79.4 This study

Estuaries 0.23 (0.02–0.91) 0.90 ± 0.29 This study

Coastal wetlands

 Salt marshes 0.18 (0.02–0.89) 2.00 ± 1.51 This study

 Mangroves 0.21 (0.06–0.77) 1.46 ± 0.91 This study

 Seagrasses 0.13 (0.07–0.21) 0.18 ± 0.09 This study

Tidal flats 0.17 (0.04–2.70) 4.2 ± 4.9 This study

Coastal aquaculture ponds 0.62 (0.01–1.00) 5.9 ± 15.1 This study

Continental shelves 5.7 (3.6–20.4) 17.2 ± 34.0 This study

Slope (200–2,000 m) 0.30 (0.23–0.40) 0.36 ± 0.93 Weber et al.18,c

Open ocean (>2,000 m) 0.91 (0.75–1.12) 1.0 ± 1.7 Weber et al.18,c

Total coastal and open ocean 8.4 (4.8–28.4) 33.2 ± 37.6 This study

Total aquatic 269.4 (202.3–424.6) 431.3 ± 87.9 This study

We present median, first (Q1) and third (Q3) quartile, mean and c.i.95% of bottom-up global aquatic methane emissions. Although two decimal places imply more accuracy than the methods provide, this 
was done to avoid losing the emission estimates from ecosystems with <1 Tg CH4 yr−1. aBased on 13 biogeochemical models for wetland emissions, bottom-up estimate years 2008–2017. bBased on five 
inventory models for rice cultivation, bottom-up estimate years 2008–2017. cBased on two machine-learning models; c.i. is the mean of the lower and upper bound of the 95% level.
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However, the comparison to previous studies is challenging due 
to the difference in upscaling methods, dissimilar statistical treat-
ment and uncertainties in surface areas. In brief, our combined lake, 
pond and reservoir emissions are higher than the first mean global 
estimate for these ecosystems20, similar to recent estimates based on 
chlorophyll a scaling21, and lower than recent upscaling from mean 
values21. The relatively lower emissions we present here are largely 
the result of an ‘ice’ correction term, which had not previously 
been implemented in the computation of global lake and reservoir 
emissions (Supplementary Table 1). Thus, while our mean annual 
emissions for lakes, ponds and reservoirs are not higher than recent 
estimates, our mean areal methane fluxes (Extended Data Table 1) 
are higher than those recently reported21. These higher areal fluxes 
probably result from our inclusion of recent studies that add smaller 
water bodies and whose methods capture ebullition22. The result is a 
database containing disproportionately more studies from research 
published since 2015 (205 of 313 lakes or reservoirs; 65%). We find 
that the smallest lakes are responsible for the largest emission, with 
~37% of total lake emission coming from lakes <0.001 km2 regard-
less of mean or median (Table 1).

Our ice-corrected river and stream emissions are substantially 
higher than the first reported global mean20, which used a low  

surface area, only 21 sites for upscaling and no data from the trop-
ics. A more recent review23, using an updated surface area24 and 385 
sites, reported an average diffusive flux that is higher than our global 
estimate (Supplementary Table 1). Here we increase the number of 
sites and include ebullitive fluxes to report fluxes from five latitudi-
nal bands. Approximately 30% of ice-corrected fluxes are from the 
equatorial latitudes due to the large ice-free surface area of streams 
and rivers (Supplementary Table 2). However, the data density  
of total and ebullitive river fluxes is low, particularly for mid to  
high latitudes.

Our coastal ocean emission estimate is higher than previous 
mean estimates11,18,25, which did not include some of the coastal 
habitats. The large range and uncertainty of coastal methane fluxes 
that we find in this study are associated with the paucity of data, 
but also with the high spatial and temporal variability of fluxes in 
coastal ecosystems driven by, for example, tidal pumping and salin-
ity gradients26. More than half of the global coastal ocean emis-
sion is attributed to large continental shelf areas, mainly gas seeps 
(ebullition) and estuarine plumes (Extended Data Fig. 1). However, 
per area, methane fluxes from continental shelves are much lower 
compared with those from other coastal ecosystems (Extended 
Data Table 1). We find particularly high areal mean methane fluxes 

Table 2 | Global methane sources and sinks

Average methane 
emissions (Tg CH4 yr−1)

Range of methane 
emissions (Tg CH4 yr−1)

Period of time Reference

Aquatic sources

 BUa 352 253–455 (2008–2017) Saunois et al.11

 BU (median, Q1–Q3) 269 202–425 (1978–2019) This study

 BU (mean, lower–upper c.i.95%) 431 343–519 (1978–2019) This study

Non-aquatic sources

Natural sources (BU)

 Geological (onshore) 38 13–53 (2008–2017) Saunois et al.11

 Wild animals 2 1–3 (2008–2017) Saunois et al.11

 Termites 9 3–15 (2008–2017) Saunois et al.11

Anthropogenic sources (BU)

 Agriculture and waste

 Enteric fermentation and manure 111 106–116 (2008–2017) Saunois et al.11

 Landfills and waste 65 60–69 (2008–2017) Saunois et al.11

 Fossil fuels

 Coal mining 42 29–60 (2008–2017) Saunois et al.11

 Oil and gas 79 66–92 (2008–2017) Saunois et al.11

 Industry 3 0–7 (2008–2017) Saunois et al.11

 Transport 4 1–12 (2008–2017) Saunois et al.11

 Biomass and biofuel burning

 Biomass burning 17 14–26 (2008–2017) Saunois et al.11

 Biofuel burning 12 10–14 (2008–2017) Saunois et al.11

Total methane sources

 BUb 737 594–881 (2008–2017) Saunois et al.11

 BU (median, Q1–Q3) 651 505–892 (1978–2019) This study

 BU (mean, lower–upper c.i.95%) 813 646–986 (1978–2019) This study

Total methane sinks

 BU 625 500–798 (2008–2017) Saunois et al.11

 TD 556 501–574 (2008–2017) Saunois et al.11

Bottom-up (BU) global aquatic methane sources compared with other BU natural and anthropogenic methane sources and BU and top-down (TD) methane sinks. aWetlands, freshwater, oceanic sources, 
permafrost and rice cultivation. bDifferences of 3 Tg CH4 yr−1 compared with the sum of aquatic and non-aquatic sources (BU) (2008–2017) of 734 Tg CH4 yr–1 in this table are due to rounding errors11.
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from coastal aquaculture ponds that are 7–430 times higher than 
from non-converted coastal habitats (mangroves, salt marshes, sea-
grasses, tidal flats) and nearly 70,000 times higher than from the 
open ocean18.

Increasing aquatic methane emissions
The renewed increase in atmospheric methane has been attributed 
to climate feedbacks on wetlands, increased fossil fuel use, methane 
production by livestock and declining removal of methane by tro-
pospheric OH (sinks)8,9,19. Our findings complement this picture by 
highlighting how human alterations to aquatic ecosystems increase 
methane emissions. The strongest growth in atmospheric methane 
since 2007 has been reported in the tropics and subtropics (30° N to 
30° S), with fuel burning and both agricultural and ruminant popu-
lations as the major sources8. Despite the global coverage of our data, 
we did not detect clear latitudinal trends of methane emissions from 
aquatic ecosystems, except for the emissions from coastal wetlands 
peaking at 30° N (Extended Data Fig. 2). Instead of latitudinal pat-
terns, we found methane emissions increasing from rivers to lakes 
and wetlands, from natural to impacted and eutrophic ecosystems 
(Extended Data Figs. 3 and 4) and from coastal marine to freshwa-
ter ecosystems (Fig. 3). Particularly pronounced is the difference of 
areal fluxes between aquaculture farms and non-converted coastal 
and inland water ecosystems (Extended Data Table 1).

As a result of global warming, increased methane emissions are 
expected across biomes and latitudes because of the higher activities 
of methanogenic archaea at elevated temperatures relative to metha-
notrophic microorganisms27,28. However, not only archaea but also 
saprotrophic fungi and cyanobacteria can produce methane under 
various environmental conditions29–31. While the methane flux from 
these microorganisms is currently poorly constrained, it is intui-
tive to assume that it increases with increasing eutrophication and 
temperature. This is indeed supported by a general positive relation-
ship between methane emissions and temperature across biomes15,27 
and the enhanced methane emissions that we found with increasing 
temperature in coastal wetlands (Extended Data Fig. 5). However, 
the effect of warming and wetting may have synergistic effects on 

methane emissions from freshwater wetlands. In fact, when freshwa-
ter wetlands dry, both the water-table level and time of inundation 
drop, which may foster methane oxidation and thereby reduce emis-
sions32. Finally, global warming impacts are predicted to be particu-
larly important at high latitudes33: therefore, a better understanding 
of the expected changes in methane emissions from the Arctic34, 
from hydrate deposits in the shallow ocean, permafrost soils35 and 
melting sea ice36 and glaciers, for example, would be required.

Human alterations (for example, damming and rice cultivation) 
increased the surface area of perennial and seasonal freshwater 
ecosystems by 94,000 km2 and ~230,000 km2, respectively, between 
1984 and 201417. This areal expansion of inland waters compounds 
our finding of areal methane fluxes from aquatic ecosystems. It also 
indicates that total methane fluxes from aquatic ecosystems will 
probably increase due to habitat expansion and/or transformation.

Uncertainties in aquatic methane sources
Methane emissions from individual sources are challenging to mea-
sure given the large spatial and temporal variation in net emissions 
from production, consumption and transport pathways and due 
to mixing in the atmosphere37. Ebullition often constitutes a sub-
stantial, albeit highly variable, fraction of the total aquatic methane 
flux. While many ecosystems have a large proportion of emissions 
driven by ebullition (for example, some lakes and reservoirs), other 
ecosystems may have negligible ebullition rates (for example, sea-
grasses). Furthermore, different physical interfaces need to be con-
sidered when estimating whole-ecosystem emissions, in particular 
in coastal ecosystems, where methane can be released by exposed 
(sediment–air flux) or inundated (water–air flux) sediments follow-
ing the tidal cycle26. Plant-mediated methane fluxes can be impor-
tant in aquatic ecosystems dominated by plants, but the relative 
contribution of plant-mediated and tree fluxes to total emissions 
is highly uncertain at a global scale38. It is also likely that there is 
a bias in site selection, but the direction of this bias is unknown.  
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Very high or very low values can also be related to inadequate sam-
pling methods, incorrect data analysis or reporting.

Another challenge lies within the statistical comparison of dif-
ferent upscaling methods. For example, a recent estimate of global 
methane emissions from freshwater wetlands was based on an 
ensemble of 13 biogeochemical models constrained with remote 
sensing of surface inundation and inventory-based wetland area39. 
These wetland models use standardized climate, atmospheric CO2 
and dynamic wetland area, but to operate at global scales and across 
multiple wetland types, the models generalize fundamental pro-
cesses of methane production, oxidation and transport to the atmo-
sphere. By contrast, here, we upscale data-driven methane fluxes 
from streams, rivers, lakes and reservoirs using a Monte Carlo 
approach and relationships between methane fluxes and latitudinal 
band (streams and rivers) (Supplementary Table 2), size bin (lakes 
and small reservoirs) or chlorophyll a concentration (large reser-
voirs) (Supplementary Table 3). For coastal ecosystems, where fewer 
data were available, we multiplied rates by surface area.

There are uncertainties associated with surface areas of aquatic 
ecosystems and the risk of ‘double counting’ due to issues in clearly 
identifying different ecosystem types. In particular, small ponds 
and lakes, streams and rivers, and coastal wetlands are difficult 
to separate from freshwater wetlands using coarse-to-moderate 
spatial-resolution optical and radar remote sensing. Recent wet-
land area mapping aims to reduce the problem of double counting 
by explicitly removing inland waters from remote-sensing-based 
surface inundation data40. However, there remains a need for finer 
spatial-resolution approaches that would permit better mapping 
and counting of both small ponds and streams to partition these 
from vegetated wetlands.

When we combine our median bottom-up aquatic methane 
emissions with emissions from thermogenic, pyrogenic and other 
methane-producing sectors11, we find a discrepancy of about 
26 Tg CH4 yr−1 compared with bottom-up sinks11, which is similar to 
the difference of +20 Tg CH4 yr−1 required to account for the change 
in atmospheric concentrations since 2007 (7.3 ppb yr−1)3 (Table 2). 
Our median bottom-up total source estimate exceeds the top-down 
sinks11 by 95 Tg CH4 yr−1, which is close to the source–sink imbalance 

of 112 Tg CH4 yr−1 reported in the global methane budget11. However, 
our mean bottom-up global source estimate exceeds bottom-up and 
top-down global sinks11 by 188–257 Tg CH4 yr−1 (Table 2). While 
we are unable to explain such high source–sink imbalances, they 
are consistent with the large uncertainties related to bottom-up and 
top-down global sinks11,19,41. In particular, global OH concentrations 
are difficult to measure, and thus atmospheric chemistry models 
are used to simulate these concentrations, which vary by 10–20%  
(refs. 42,43). The upland soil methanotrophic sink is equally uncer-
tain and known only via numerical modelling estimates and sparse 
observations made by soil chambers and flux towers11,44. Given these 
uncertainties, there may be room for large aquatic sources of meth-
ane to the atmosphere that we identify in our study.

Aquatic methane management interventions
Reducing methane emissions from aquatic ecosystems is an effec-
tive pathway to mitigate climate change, particularly those from 
freshwater wetlands, which account for 35–55% of aquatic emis-
sions (Table 1). Salinities of ~10–15 are an important tipping point 
for biogeochemical processes in wetlands45, as sulfate-reducing 
bacteria, favoured by more saline waters, can outcompete methano-
gens. Hence, converting freshwater wetlands back to salt marshes 
by restoring tidal flows is a promising strategy to reduce methane 
emissions14 while increasing carbon sequestration. Converting 
aquaculture ponds and salinized rice paddies back to salt marsh and 
mangrove habitats may also achieve order-of-magnitude reductions 
in methane fluxes because mangrove and salt marshes have lower 
fluxes than aquaculture ponds (Extended Data Table 1). Reducing 
nutrient inputs to freshwater wetlands, lakes and reservoirs can help 
reduce methane emissions13,21 (Extended Data Fig. 4). Reservoirs and 
constructed ponds can be designed to reduce methane emissions 
through their placement within the watershed46 and their depth47, 
and in the case of reservoirs, by withdrawing water from depths with 
lower methane concentrations48. In rivers and streams, methane 
emissions can be reduced if the benthic environments of the streams 
are restored and organic matter loadings are decreased49. In coastal 
environments, reducing eutrophication should lead to a decrease in 
methane emissions as suggested by the comparison of fluxes from 
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impacted versus natural sites (Extended Data Fig. 3). Thus, land-use 
and management choices may substantially reduce methane emis-
sions and lessen the impact on future atmospheric methane.

Because of their prominent contribution to global emissions, 
actions to reduce aquatic methane emissions through the manage-
ment of land use, nutrient and organic matter inputs and hydro-
logical flows are a promising avenue to mitigate methane emissions. 
These actions will be particularly effective when targeting the eco-
systems with the greatest contributions to aquatic methane emis-
sions, primarily freshwater wetlands, lakes, reservoirs and rice 
paddies. This requires an effort to integrate existing knowledge 
across disciplines, from the microbial processes that cycle methane, 
to the biogeochemical constraints that favour and inhibit these pro-
cesses, to spatial and hydrological planning and management to cre-
ate the conditions conducive to the lowest fluxes, while preserving 
ecosystem function and biodiversity.
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Methods
We use the term ‘natural’ to describe less-impacted and less-disturbed study sites 
or ecosystems, whereas ‘impacted’ refers to highly impacted, modified, polluted or 
eutrophied study sites or ecosystems.

Our datasets were compiled from peer-reviewed publications. Temporal 
(annual, seasonal, diel) or spatial data were averaged to a single flux per study 
site. If ‘site’ was not obvious, we set a criterion of 10 km distance to distinguish 
between sites. An exception was the river and stream dataset, where measurements 
with the exact same coordinates were treated as one site, and fluxes with different 
coordinates were treated as many sites to account for variable fluxes of low and 
high stream orders. Values under detection limit were set to ‘0’ and included in the 
statistical analysis. Sites were classified as natural or impacted if clearly identified 
in the literature or on the basis of the authors’ knowledge.

Rivers and streams. We compiled peer-reviewed studies until March 2019 using 
the Boolean search string ‘(CH4 OR methane) AND (concentration OR flux OR 
emission) AND (river OR stream)’ in the Web of Science Core Collection (http://
isiknowledge.com) and China Knowledge Resource Integrated database (https://
www.cnki.net/). In our river and stream database, we included only georeferenced 
methane concentrations or fluxes. If exact coordinates were not provided but 
site description was sufficient, we obtained approximate coordinates from 
Google Maps. We excluded non-river data by either referring to the original site 
descriptions or by overlying the measurement locations with a map of global open 
inland waters50.

Our efforts identified a total of 2,601 records with either a methane 
concentration or a flux measurement. Our primary analysis showed that methane 
fluxes calculated from concentration versus gas transfer velocity (k) poorly 
predicted the literature-reported fluxes. Therefore, we included only reported 
methane fluxes from publications. This resulted in a collection of 652 methane 
fluxes from 74 publications, including one unpublished dataset (provided by T.I.B). 
The total number of records included 187 total fluxes, 590 diffusive fluxes and 
126 ebullitive methane fluxes. We refer to the total methane flux as either the sum 
of diffusive and ebullitive fluxes or the total flux without differentiation between 
diffusion and ebullition. For example, a properly designed chamber can catch both 
diffusive and ebullitive methane fluxes51,52. If the original studies clearly identified 
chamber fluxes as diffusive + ebullitive fluxes, we included these as total fluxes. 
If the original studies identified chamber fluxes as diffusive (for example, because 
of low observed ebullition) or reported calculated fluxes from concentration and 
k, we included these as diffusive fluxes. If the original studies measured methane 
fluxes with bubble traps or invert funnels, we included these as ebullitive fluxes.

We used a Monte Carlo approach to upscale river methane fluxes to the 
global scale and to estimate uncertainties. We performed simulations for five 
latitudinal bands (0–10°, 10–25°, 25–40°, 40–60°, 60–90°) and at the global 
scale for diffusive, ebullitive and total fluxes. Because the data were skewed, we 
ln-transformed all fluxes before simulations. For each simulation, we generated 
a total of 1,000 random values from a normal distribution centred around means 
of the ln methane fluxes and with deviations confined by those of the ln methane 
fluxes (R package mc2d). Values generated from the simulations were then 
back-transformed to raw fluxes before calculation of any statistics. Global methane 
emissions were calculated as the products of the recently developed Global River 
Widths from Landsat surface area53 and the post-simulation methane fluxes for 
each latitudinal band (Supplementary Table 2). Finally, we corrected our latitudinal 
methane emissions for ice coverage periods by excluding Global River Widths from 
Landsat surface areas53 with an atmospheric temperature below −4 °C for each 
month in each latitudinal band and at the global scale54.

Lakes and reservoirs. We conducted a literature search until May 2019 using ‘(CH4 
OR methane) AND (concentration OR flux OR emission) AND (lake OR pond 
OR reservoir)’ in the same search engines used for rivers and streams. Overall, 
the 84 publications provided 243 and 116 total methane fluxes for 227 lakes and 
86 reservoirs, respectively. In our freshwater lakes, ponds and reservoir database, 
we included studies that provided both diffusive and ebullitive fluxes from the 
open-water surface either separately (for example, via bubble traps or acoustic 
surveys for ebullition and via thin-boundary-layer modelling or floating chambers 
for diffusion) or together (for example, via floating chamber or eddy covariance 
methods). We categorized ‘site’ as either a lake or a reservoir, wherein a reservoir 
was defined as a system whose primary outflow was dammed. The lake category 
was largely composed of natural lakes and a small subset (n = 23) of artificial 
lakes55,56. The total methane flux either refers to the total emission estimate 
(diffusive and ebullitive) of the whole water body reported by the authors or was 
estimated by us using the mean of all reported areal fluxes (diffusive and ebullitive) 
or the mean of the range of reported fluxes (diffusive and ebullitive). We excluded 
studies that estimated only diffusive or ebullitive methane fluxes but not both. 
We include only studies where both diffusive and ebullitive fluxes were estimated 
because the extent to which each contributes to total emissions is variable (ranging 
from negligible to most of the flux)57. We further excluded methane fluxes that 
were made solely during mixing events and fluxes from adjacent marsh and 
drawdown zones of reservoirs because they should be accounted for in freshwater 
wetland emissions. Finally, we also excluded methane fluxes from beaver ponds 

and river reaches upstream of weirs to avoid potential overlap with river and 
stream emissions. If original studies used an r2 > 0.85 as a cut-off for linear gas 
accumulation in floating chambers, these fluxes were considered diffusive only 
and excluded from the dataset (unless accompanied by an independent estimate of 
ebullition).

Given previous evidence that chlorophyll a and ecosystem productivity are 
predictors of total lentic methane emissions21,22, we used total phosphorus (TP) to 
model missing chlorophyll a data and assigned trophic statuses22. If no estimates 
of chlorophyll a or TP were reported by the primary study, we mined the literature 
for other studies of the same site that reported TP and/or chlorophyll a within a 
±five-year time period of the primary study.

We upscaled lake and reservoir methane fluxes separately to a global scale. 
For each water body type, we used a Monte Carlo analysis (R package mc2d) 
that allowed for uncertainty in both surface area and areal methane fluxes. Only 
sites with surface area information were included in the Monte Carlo analysis 
(n = 198 lakes, n = 78 reservoirs). Because the data were skewed, we ln-transformed 
all total fluxes before Monte Carlo analysis. Our approach for binning Monte 
Carlo analyses differed for lakes versus reservoirs due to different correlates with 
methane emissions57. In a parallel study, we show that morphometric features 
better predicted methane emission in lakes, whereas chlorophyll a was a better 
predictor in reservoirs57.

For small lakes <1 km2, we upscaled methane fluxes on the basis of logarithmic 
size classes. However, for lakes >1 km2, our low sample size (n = 20) precluded 
this approach, and we lumped together all lakes >1 km2. We ran a Monte Carlo 
analysis with 1,000 iterations for each size class of small lake and for large lakes 
as one category. Each iteration randomly selected a methane flux from a normal 
distribution surrounding the mean and standard deviation for that size class. 
Simulations also selected for a surface area estimate of lakes in each size class using 
a uniform distribution based on estimates from refs. 58–60. Because Verpoorter et al.60  
reported combined lake and reservoir surface area, we subtracted reservoir areas 
using estimates of reservoir surface area for each size class from Lehner et al.61. 
Because surface area estimates for lakes <0.01 km2 are highly uncertain, we 
extrapolated the data from Verpoorter et al.60 to estimate the lower bound62.

For reservoirs, we upscaled methane fluxes for small (<1 km2) and large 
(>1 km2) reservoirs. For small reservoirs, where sample size was low (n = 16), we 
used the same scaling approach as with large lakes. For large reservoirs, where 
estimates of the global distribution of lake and reservoir chlorophyll a were 
available63, we upscaled methane fluxes on the basis of the positive log-linear 
relationship between chlorophyll a and areal methane fluxes57 and reservoir surface 
area estimates58,61. We generated 1,000 Monte Carlo simulations of reservoir surface 
area based on a uniform distribution ranging between the surface area estimates by 
Downing et al.58 and those by Lehner et al.61. We also allowed for uncertainty in the 
relationship between chlorophyll a and methane flux by generating 1,000 Monte 
Carlo simulations of slope and intercept terms based on a normal distribution 
around the standard error of these terms. We then estimated areal methane fluxes 
by applying reservoir surface areas across 20 chlorophyll a bins (with each bin 
spanning 5 µg l−1 from 0 to 100 µg l−1), then calculating total methane emissions 
from each bin and finally summing across the 20 bins. The global distributions of 
chlorophyll a concentrations were generated using MERIS OC4 satellite imagery 
via the Michigan Tech Research Institute method, which is based on 300 m 
resolution inputs63.

To account for the impact of ice on lake and reservoir emissions, we excluded 
surface areas61 with an average atmospheric temperature of 0 °C or less for each 
month54. For lakes and reservoirs that freeze, we scaled upwards the ice-corrected 
emissions by 127%64 to account for an ice–melt pulse in emissions. Both the 
ice-cover and ice-melt corrections were applied after the Monte Carlo upscaling by 
adjusting the estimated annual flux by the size-class-specific fraction of emission 
expected on the basis of both ice cover and ice melt (fractions ranged from 0.60 
to 0.98, Supplementary Table 3). Combined corrections for both ice cover and ice 
melt reduced overall annual methane emissions to 66% of their uncorrected values. 
We do not account for potential diel effects on lentic methane emissions. A further 
uncertainty is our small sample size for large lakes (>1 km2) and that half of the 
large lakes were shallow (≤3 m mean depth) and only 3 were >100 km2, suggesting 
emissions may be overestimated from this size class.

Freshwater aquaculture ponds. We conducted a literature search using ‘(CH4 OR 
methane) AND (aquaculture pond OR aquaculture farm) AND (shrimp OR fish)’. 
For freshwater aquaculture ponds, we built on the database from Yuan et al.65 and 
added three new studies of diffusive and ebullitive methane fluxes since 2018. Total 
freshwater aquaculture pond fluxes in the database were derived mainly from carp 
and mixed shrimp–fish ponds. We scaled areal freshwater aquaculture methane 
fluxes to global emissions using the surface area estimated by Verdegem and 
Bosma66 (Supplementary Table 4), which is likely an underestimate, assuming an 
increase of freshwater aquaculture farms since 2009.

Coastal ocean. For each coastal ocean ecosystem, we performed a literature review 
until December 2019 using Scopus by Elsevier (https://www.scopus.com/) and 
Google Scholar (https://scholar.google.com/) databases. In addition, we scanned 
the reference lists of publications. When methane fluxes were presented only in 
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figures, we used a manual data extraction tool (WebPlotDigitizer) to estimate 
the values. We included methane fluxes with identifiable coordinates (latitude/
longitude) derived from the original studies or from Google Earth on the basis 
of site description. Coastal wetlands were distinguished from inner estuaries by 
accounting for methane fluxes solely from studies that were conducted in clearly 
vegetation-dominated salt marsh, seagrass or mangrove sites in opposition to 
spatial surveys over salinity gradients in estuarine open waters. For each coastal 
ocean ecosystem, we upscaled combined spatial and temporal methane fluxes to a 
global scale using recent surface area estimates (Supplementary Table 4).

Estuaries. We conducted a literature search using ‘(CH4 OR methane) AND 
estuary’, which resulted in 53 publications containing 137 averaged water–air 
methane fluxes for 124 sites. In our estuary database, we included methane fluxes 
over full salinity gradients. We excluded methane fluxes from coastal wetlands and 
from incomplete coverage of salinity gradients. Most studies reported diffusive 
methane fluxes computed from concentration gradients and k parameterizations. 
A minority (n = 3) of the studies measured diffusive fluxes with floating chambers, 
and only one study reported measurements with eddy covariance. If the original 
studies estimated fluxes using several k parameterizations, we chose the value 
corresponding to the parameterization most accepted (for example, we chose the 
Wanninkhof67 over the Liss and Merlivat68 model).

Salt marshes. We conducted a literature search using ‘(CH4 OR methane) AND 
(saltmarsh OR salt-marsh OR tidal marsh)’, which resulted in 75 publications 
containing 89 averaged methane fluxes for 60 sites. In our salt marsh database, we 
included methane flux estimates and measurements for salt marsh and tidal marsh. 
We excluded methane fluxes from freshwater marsh (salinity <0.5) that should be 
accounted for in freshwater wetland emissions. Salt marsh methane fluxes were 
grouped into three salinity classes: oligohaline (0.5–5), mesohaline (5–18) and 
polyhaline (>18) (ref. 69). Most studies (n = 49) reported diffusive methane fluxes 
from the sediment–air interface during low tide using static chambers. Several 
other studies (n = 33) reported sediment–water–air fluxes during exposed and 
inundated periods using either static dynamic chambers or eddy covariance. Few 
studies (n = 7) were available that estimated the water–air methane flux, computed 
either on the basis of k parameterization or using the floating chamber approach.

Mangroves. We conducted a literature search using ‘(CH4 OR methane) AND 
(mangroves OR mangrove forest)’, which resulted in 56 publications containing 
79 averaged methane fluxes for 59 sites. Our global mangrove methane emission 
estimate is an update of the review by Rosentreter et al.26. In our mangrove 
database, we included sediment–water fluxes from core incubations (n = 2), 
sediment–air (n = 45) and sediment–water–air fluxes (n = 8) using static 
chambers, and water–air fluxes (n = 22) using floating chambers or based on k 
parameterizations. Our revised global estimate includes mainly diffusive sediment–
air and water–air fluxes, but also plant-mediated fluxes (through pneumatophores, 
roots, stems, leaves) and fluxes over sediments with crab burrows. No estimates of 
ebullitive fluxes from mangroves were available. We excluded fluxes estimated from 
methane concentrations in gas bubbles that were actively stirred up from mangrove 
sediments as they cannot be accounted for in in situ ebullition.

Seagrasses. We conducted a literature search using ‘(CH4 OR methane) AND 
(seagrasses OR seagrass beds OR seagrass meadows)’, which resulted in 11 
publications containing 18 averaged methane fluxes for 18 sites. In our seagrass 
database, we included plant-mediated and diffusive sediment–water fluxes (n = 14) 
from submerged seagrass meadows and few available water–air methane fluxes 
(n = 4) over seagrass meadows. The majority of studies reported sediment–water 
fluxes from core incubation and benthic chambers. One study used a dynamic 
flux chamber, which allowed flux measurements during exposed and submersed 
conditions, and hence includes sediment–air fluxes70. No estimates of ebullitive 
fluxes from seagrass sites were available.

Tidal flats. We conducted a literature search using ‘(CH4 OR methane) AND (tidal 
flat OR mud flat OR sand flat)’, which resulted in 23 publications containing 25 
averaged methane fluxes for 16 sites. Tidal flat ecosystems were classified as tidal 
mudflats, tidal sand flats or wide tidal rock platforms71 and distinguished from 
coastal wetlands through the absence of vegetation. Because tidal flats comprise 
at least a global distribution of 127,921 km2 (ref. 71), which is similar to that of 
mangrove forests, and are characterized by frequent tidal inundation, we included 
tidal flats in our coastal ocean emission estimate. Our tidal flat database is biased 
towards tidal mudflats in China, with a few data from North America and Europe. 
We included diffusive and ebullitive fluxes from coastal bare sediments of the 
inter-tidal zone (salinity >0.5) measured with static chambers or core incubations, 
which resulted in 16 sediment–air fluxes, 8 sediment–water–air fluxes and one 
water–air flux. We excluded freshwater bare sediments and sites where the salinity 
region was unclear.

Coastal aquaculture ponds. We conducted a literature search using ‘(CH4 OR 
methane) AND (aquaculture pond OR aquaculture farm) AND (shrimp OR fish)’, 
which resulted in 10 publications containing 18 methane fluxes for 5 sites. Most 

methane fluxes (n = 10) were from coastal aquaculture ponds near the Min River 
estuary in China. In our coastal aquaculture database, we included diffusive and 
ebullitive fluxes mainly from shrimp ponds, with the residual measurements from 
mixed fish–shrimp, mixed shrimp–sea cucumber, drained and undrained coastal 
aquaculture farms.

Continental shelves. Continental shelves were subdivided into estuarine plumes, 
seep areas and upwelling areas if identified as such in the literature or on the 
basis of the authors’ knowledge. We conducted a literature search using ‘(CH4 OR 
methane) AND (shelf OR coastal) AND (Arctic ocean OR upwelling OR river 
plume)’, which resulted in 77 publications providing 9 methane fluxes for estuarine 
plumes, 19 for seep areas (diffusion), 3 for seep areas (ebullition), 12 for upwelling 
areas and 57 for other continental shelf areas. In our continental shelf database, 
we included methane water–air flux estimates or measurements for continental 
shelf environments. We excluded studies that reported only the dissolved methane 
concentrations without computing fluxes. We summed our upscaled emissions 
from estuarine plumes, seep areas (diffusion + ebullition), upwelling areas, the East 
Siberian Arctic Shelf and other continental shelves to total global continental shelf 
methane emissions.

Statistical analysis. We use the IQR to describe methane flux variability and 
the c.i.95% (using the population standard deviation (σ) and sample size (n) 
assuming Student’s t distribution and a confidence level of α = 1–0.95 = 0.05) to 
estimate uncertainties of mean methane fluxes. For global estimates, we combined 
the confidence intervals by taking the square root of the sum of the variances. 
To compute the skewness coefficient of each dataset, we applied the function 
‘skewness’ from the R package e1071 (ref. 72). We did not conduct an assessment for 
publication bias.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets that support the findings of this study are available in the Figshare 
repository: https://doi.org/10.6084/m9.figshare.13611296. Source data are provided 
with this paper.
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Extended Data Fig. 1 | Areal methane fluxes from continental shelf regions. Boxplot showing median, lower (Q1), upper (Q3) quartiles and 1.5 times the 
length of the interquartile range of diffusive methane fluxes in areas with natural gas seeps, estuarine plumes, upwelling areas and the remaining (other) 
continental shelves. Differences are statistically significant (Kruskal-Wallis test, p<0.0001).

Nature Geoscience | www.nature.com/naturegeoscience

http://www.nature.com/naturegeoscience


ArticlesNATurE GEOsciEncE

−5

0

5

10

−90 −60 −30 0 30 60 90

−5

0

5

10

−90 −60 −30 0 30 60 90

−5

0

5

10

−90 −60 −30 0 30 60 90

Latitude

−5

0

5

10

−90 −60 −30 0 30 60 90

Latitude

−5

0

5

10

−90 −60 −30 0 30 60 90

−5

0

5

10

−90 −60 −30 0 30 60 90

−5

0

5

10

−90 −60 −30 0 30 60 90

Latitude

Rivers and streams

Lakes

Reservoirs

Aquaculture ponds

Estuaries

Saltmarshes

Mangroves

Seagrasses

Tidal fats

Cont.shelf

M
et

ha
ne

 fl
ux

 ln
 (m

g 
C

H
4 m

−2
 d

−1
)

M
et

ha
ne

 fl
ux

 ln
 (m

g 
C

H
4 m

−2
 d

−1
)

M
et

ha
ne

 fl
ux

 ln
 (m

g 
C

H
4 m

−2
 d

−1
)

Rivers and streams

Lakes

Reservoirs

Estuaries

Coastal wetlands

Continental Shelves

Extended Data Fig. 2 | Areal methane fluxes from aquatic ecosystems over latitudes. Natural log (ln) transformed methane fluxes over latitudes of 
all aquatic ecosystems compiled in this study, and individual plots for rivers and streams, lakes, reservoirs, estuaries, coastal wetlands (mangroves, salt 
marshes, seagrasses), and continental shelves.
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Extended Data Fig. 3 | Areal methane fluxes from natural and impacted estuaries, mangroves, and salt marshes. Boxplots showing median, lower (Q1), 
upper (Q3) quartiles and 1.5 times the length of the interquartile range of methane fluxes from impacted and more natural (low disturbed) estuaries, 
mangroves and salt marshes. Several sites that could not be classified as ‘impacted’ or ‘natural’ were excluded from this plot.
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Extended Data Fig. 5 | Areal methane fluxes from coastal wetlands and relationships of methane fluxes versus temperature and salinity. a) Boxplots showing 
median, lower (Q1), upper (Q3) quartiles and 1.5 times the length of the interquartile range of methane fluxes from salt marshes, mangroves and seagrasses. b) 
Linear relationships of coastal wetland methane fluxes and temperature (r2 = 0.04, p = 0.07) and salinity (r2 = 0.02, p = 0.1). Salt marsh extreme methane flux 
values (n = 2) are not shown.
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Extended Data Table 1 | Areal methane fluxes from inland and coastal ocean ecosystems

The different transport pathways and interfaces that are included in the total methane flux of each aquatic ecosystem are reported in Supplementary Table 5. n refers to the number of sites.
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