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Abstract We present a real-time motion-synthesis method for robot manipu-
lators, called RelaxzedIK, that is able to not only accurately match end-effector
pose goals as done by traditional IK solvers, but also create smooth, feasible
motions that avoid joint-space discontinuities, self-collisions, and kinematic
singularities. To achieve these objectives on-the-fly, we cast the standard TK
formulation as a weighted-sum non-linear optimization problem, such that mo-
tion goals in addition to end-effector pose matching can be encoded as terms
in the sum. We present a normalization procedure such that our method is
able to effectively make trade-offs to simultaneously reconcile many, and po-
tentially competing, objectives. Using these trade-offs, our formulation allows
features to be relaxed when in conflict with other features deemed more im-
portant at a given time. We compare performance against a state-of-the-art
IK solver and a real-time motion-planning approach in several geometric and
real-world tasks on seven robot platforms ranging from 5-DOF to 8-DOF. We
show that our method achieves motions that effectively follow position and
orientation end-effector goals without sacrificing motion feasibility, resulting
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Fig. 1 In this paper, we present a method for generating accurate and feasible robot arm
motions in real-time such that the arm not only can match end-effector pose goals, but it also
avoids self-collisions, singularities, and joint-space discontinuities. This figure illustrates a
DRC-Hubo+ robot performing the square-tracing task from our evaluation using RelazedIK.

in more successful execution of tasks compared to the baseline approaches.
We also empirically evaluate how our solver performs with different optimiza-
tion solvers, gradient calculation methods, and choice of loss function in the
objective function.

1 Introduction

To perform real-time tasks, a robotic manipulator must calculate how its joint
angles should change at each update in order to meet kinematic goals rooted
in its environment. For instance, a robot providing home-care assistance by
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spoon-feeding an individual in a wheelchair would have to make real-time
motion decisions to simultaneously meet many objectives, including the robot
manipulator approaching the patient’s head with smooth, self-collision-free
motions, continuously updating the position and orientation of the spoon to
account for potential head or torso motion, and keeping the spoon level such
that the food does not spill. In this problem, and many other use cases for
robotics, the robot must both accurately match end-effector pose goals and
exhibit motion feasibility.

Prior approaches to matching end-effector goals while producing feasible
motion provide only partial solutions. For instance, direct point-to-point meth-
ods provide accurate end-effector pose matching by solving inverse kinematics
(IK) problems at each update. However, this approach does not guarantee
feasible motion when generating a sequence of solutions and may result in
behaviors such as exhibiting instantaneous jumps in joint space, causing dam-
age to the robot through self collisions, and exhibiting unsafe behavior near
kinematic singularities. Conversely, real-time motion-planning methods that
calculate a path to predicted state as quickly as possible, do guarantee motion
feasibility, but they do not ensure consistent matching of end-effector pose
goals throughout a continuous motion. For instance, if the planner must com-
pute a path between distant start and goal states, i.e., when the IK solver
exhibits a discontinuous jump after the prediction step, what the end-effector
will do along the path between the Cartesian waypoints can be difficult to
dictate.

In this paper, we present a novel real-time motion-synthesis method that
simultaneously supports end-effector pose goal matching and feasibility of mo-
tion. We achieve accurate, feasible motion through a generalized IK solver,
called RelazedIK, that formulates the IK problem at each update as a weighted-
sum non-linear optimization. Each term in the weighted sum encodes a spe-
cific motion objective, such as end-effector position/orientation goal matching,
minimum-jerk joint motion, distance from self-collision state, etc. While pa-
rameter tuning can become unwieldy for multi-objective optimizations, we
present a normalization procedure over the weighted sum terms that elicits
expected and intuitive motion behavior. Because these objectives may be in
conflict during motion, such as the robot trying to match a position goal
within the volume of its body, the method automatically relazes features that
are in conflict with other features deemed more important at a given time. Our
formulation does not rely on a specific optimization technique and provides
sufficient solutions using many constrained non-linear optimization solvers.

Objective importances are specified through term weights and thus can be
tailored to a specific task. Weights can even be dynamically adjusted during
runtime to varying effect, such as decreasing relative importance on orienta-
tion matching when the robot must follow a fast-moving position goal (Rakita
et al., 2017). Unlike many IK frameworks that achieve secondary goals through
regularization techniques (Chiacchio et al., 1991; Mansard et al., 2009a,b;
Nakamura, 1990; Siciliano, 1990), our method does not require any redun-
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dant joints, and even provides as close as possible results on under-articulated
robots.

Our method affords motion features that enable the creation of a se-
quence of feasible configurations, including minimum velocity, acceleration,
and jerk joint motion; self-collision avoidance; and kinematic-singularity avoid-
ance. While these features are more commonly found in offline trajectory-
optimization and motion-planning methods (Kalakrishnan et al., 2011; Ratliff
et al., 2009; Schulman et al., 2014), we utilize efficient and robust techniques
to achieve real-time performance, such as using a neural network to approx-
imate distance from collision states and singular value decomposition (SVD)
to approximate distance to singular configurations.

We show the benefits of our method through various empirical tests that
compare performance on several geometric and real-world tasks on seven robot
platforms, ranging from 5-DOF to 8-DOF, against a state-of-the-art IK solver
(Beeson and Ames, 2015) and a real-time motion-planning approach using the
Open Motion Planning Library (OMPL) (Sucan et al., 2012). Our method
achieves motions that effectively follow position and orientation end-effector
goals without sacrificing motion feasibility, leading to more successful exe-
cution of tasks than the baseline approaches. In addition to the evaluations
presented in our prior work (Rakita et al., 2018b), we also empirically evaluate
how our solver performs with different optimization solvers, gradient calcula-
tion methods, and choice of loss function in the objective function. We discuss
the main takeaways from our results, especially highlighting those that could
pertain to real-world motion synthesis scenarios. A solver that implements
the methods discussed in this work is available for download as open-source
software at https://github.com/uwgraphics/relaxed_ik.

2 Related Work

The development of our method for accurate and smooth real-time motion
synthesis draws from prior work in robotics, especially from inverse kinematics,
teleoperation and controls, trajectory optimization, and motion planning, and
from animation for methods that optimize over motions for real-time use.

Inverse Kinematics— The process of calculating joint-angle values on ar-
ticulated chains that produce desired pose goals of end-effectors, called inverse
kinematics (IK), has been extensively studied in robotics and animation (see
Aristidou et al. (2018) for a review of IK methods). The main objective of
many IK solvers is to reliably match the end-effector goal as quickly as pos-
sible. A state-of-the-art solver to achieve these goals on robot chains is the
Trac-IK solver proposed by Beeson and Ames (2015).

While 6-DOF chains generally have one solution to fully constrained po-
sition and orientation IK problems, prior research has attempted to take ad-
vantage of joint redundancy, if present, in order to achieve secondary goals by
regularizing solutions—often called task-priority IK (Chiacchio et al., 1991;
Chiaverini, 1997; Nakamura, 1990; Siciliano, 1990). Although we find inspira-
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tion in the ability of these general regularization techniques to achieve sup-
plementary objectives, our method does not require any redundancy and can
even work on under-articulated robots. Hauser (2016) has formulated a frame-
work for regularizing a smooth inverse of a multivariate function, such as a
forward-kinematics model, such that the inverse is the same forward and back-
ward along a path and that discontinuity boundaries are avoided as much as
possible. This work has been shown to be effective with multiple redundant
DOFs, but it has not been used on fully constrained IK problems. We believe
that our methods complement the overall framework presented in this prior
work.

In animation, work by Shin et al. (2001) introduced an IK technique for
real-time articulated character puppetry that adjusted objectives on-the-fly
depending on what is currently important. Our method is inspired by this
idea of importance-based IK, as the terms in our weighted sum are formulated
such that their respective motion features automatically relax if another more
important term is in conflict. Also, the work by Baerlocher and Boulic (2004)
presented an IK framework that is able to handle many competing constraints
using multiple, hierarchically-based priority levels. The authors showed their
method’s ability to efficiently calculate a sequence of full-body postures with a
high number of degrees of freedom and constraints. Our method draws on the
idea of reconciling many potentially competing motion goals in a sequence of
joint-space solutions, though we push these motion considerations to the ob-
jective function rather than using many hard constraints, as then the method
can automatically arbitrate between different motion features with the goal of
finding “close as possible” solutions without sacrificing motion feasibility.

Teleoperation and Controls—Synthesizing motions on the fly is particularly
important in direct and shared control, as the system cannot look ahead to
determine what motions will be required in the near future. The approaches de-
scribed in seminal work, such as potential-field methods that afford real-time
collision avoidance (Khatib, 1986) and kinematic-singularity-robust damped
least-squares methods (Chiaverini, 1997; Maciejewski, 1990), serve as inspira-
tion for our real-time motion-feasibility techniques. Work by Sentis and Khatib
describes a method for controlling the motion of a humanoid by maintaining
a hierarchy of motion constraints, operational tasks, and poses (Sentis and
Khatib, 2005). The method is formulated such that lower priority tasks are
projected onto the null space of higher priority constraints, guaranteeing that
constraints will be met. Our method also contains many objectives and con-
straints of varying importances, but it is designed to be general enough to
handle lower dimensional systems and constraints that do not have redun-
dancy. Our prior work has shown the benefits of optimization-based methods
for synthesizing motion across various task domains, including a method for
real-time human-to-robot motion remapping to support intuitive teleopera-
tion (Rakita et al., 2017), a motion-remapping technique used for motor task
training (Rakita et al., 2018c), and a real-time motion synthesis method used
to drive a robot camera to optimize a viewpoint for a remote teleoperation
operator (Rakita et al., 2018a, 2019a). We have also applied our real-time mo-
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tion synthesis approach for a bimanual shared-control method (Rakita et al.,
2019c). In this work, the method moves the robot’s arms to mimic the op-
erator’s arm movements, but provides on-the-fly assistance to help the user
complete tasks more easily. This work shows the effectiveness of RelaxedIK
in arbitrating between different motion and task objectives on-the-fly, as well
as demonstrates that the method sufficiently scales up to higher-dimensional
platforms.

End-Effector Path Following— While our method attempts to compute
smooth, accurate, and feasible motions that follow end-effector pose goals in
real-time, alternative methods have been proposed to address the end-effector
trajectory tracing problem in an offline fashion. Work by Oriolo et al. consid-
ers searching through IK solutions organized in a graphical structure between
a start and goal configuration using RRT-like search strategies Oriolo and
Mongillo (2005); Oriolo and Vendittelli (2009). Work by Cefalo et al. presents
a randomized motion planning method for redundant robot systems that gen-
erates cyclic motions that smoothly follow an end-effector trace while avoiding
hard constraints such as collisions in the environment (Cefalo et al., 2013).
Rakita et al. present a technique for finding feasible robot arm trajectories
that pass through provided 6-DOF Cartesian-space end-effector paths with
high accuracy by searching through a temporally organized graph of sufficient
IK solutions (Rakita et al., 2019b). Praveena et al. present a solution that finds
a set of approximate candidate paths that pass through a given end-effector
trace, each with its own set of trade-offs, and affords users the option to pro-
vide sparse input to select a path that would be most fitting given the task at
hand Praveena et al. (2019).

Real-time Motion Planning—QOur work shares parallels with real-time mo-
tion planning techniques, which involve planning to predicted end-effector pose
goals as fast as possible to meet real-time demands. Hauser (2012) provides
an adaptive way to adjust the planning horizon time such that prediction and
planning steps can be interleaved in a stable manner. Our work shares similar
outcomes to this work, such as planning around obstacles in real-time. How-
ever, as we show in this work, controlling the end-effector pose en route to
a predicted waypoint using motion-planning methods is difficult and ineffec-
tive for certain tasks. Additionally, Murray et al. (2016) present a real-time
motion-planning approach that can solve for paths very quickly by reasoning
about paths at the hardware level using a custom chip. While this approach
enables feasible paths through joint space to be found nearly instantaneously,
it does not provide solutions that enable the robot to follow precise Cartesian
paths as done in our solution. To overcome this problem, Murray et al. (2016)
used motion planning to find a path that exhibited an end-effector pose at
the end point within 10 cm of the goal and then switched over to a Cartesian
planner to precisely approach the goal.
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3 Technical Overview

The main goal of our method is to calculate robot motions that match end-
effector pose goals while also exhibiting motion feasibility. In this section, we
provide a high level idea of how our method is structured to achieve both of
these goals, leaving the mathematical treatment of our solutions for §4.

3.1 Problem Formulation

Our method is rooted as a standard inverse kinematics (IK) problem. At each
system update, the method receives a goal position pg, and a goal orientation
qg for the end-effector and outputs joint angles corresponding to a desired
robot state.

While standard IK approaches solely focus on matching end-effector pose
goals as accurately and quickly as possible, our method also considers robot
configuration feasibility upon a sequence of solutions. Throughout this work,
we define robot configuration feasibility as meeting the criteria that the robot
(1) exhibits sufficiently close consecutive solutions such that simple interpola-
tion between these states is likely to be successful; (2) does not collide with
itself, or any modeled obstacle, on any frame (which, coupled with criterion
1, should lead to a collision-free path over time); and (3) stays sufficiently far
from kinematic singularities (when the robot’s Jacobian matrix loses full col-
umn rank) at each time step. Given this notion of feasibility, we reformulate
the standard IK problem as follows:

Match the end-effector pose goal corresponding to goal position p, and goal
orientation qg4 as precisely and quickly as possible without sacrificing robot
configuration feasibility.

We expect that solving discrete IK problems at each update with this cen-
tral goal, each with an individual sense of feasibility, will in turn yield contin-
uous and feasible motions upon a sequence of such solutions. This formulation
does not consider end-effector pose matching as a hard constraint; pose goals
may instead be relazed if other, more important features will be met. This
is a key insight in our method, as this affords feasible and smooth motions
even when such a path does not exist passing through exact IK solutions. It
is also this relaxation characteristic that allows our method to work without
any joint redundancy, as our method will inherently “regularize” solutions in
operational space if deemed necessary, even if a null-space is not present on a
6-DOF (or less) robot.

3.2 Importance-Based Inverse Kinematics

Because our method can relax certain features in favor of other features, it
must offer intuitive and robust ways to set and tune relative weights between
objectives. To achieve this goal, we draw from a concept called importance-
based inverse kinematics, a technique pioneered in animation to drive real-time
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performance capture (Shin et al., 2001). Prior work notes the key observation
that the main objective in an IK problem can vary across scenarios, such as
whether the animated character should match the general arm shape of the
actor, e.g., when making a communicative gesture, or match the end-effector
pose of the actor in space, e.g., when picking up an object. The primary way
of setting objective term relative importances in through static weight values
for each term.

While tuning an array of parameters can become unwieldy in multi-objective
optimizations, we present a normalization procedure, outlined in §4.1, that en-
sures that the method reasons over values in a standard range. This procedure
allows the weights described above to elicit expected behavior, making param-
eter tuning practical over numerous terms.

3.3 Optimization Overview

Given the varying objective importances outlined in the previous section, our
method needs some way of reconciling many, potentially competing goals of
different priorities in real-time. To achieve this, we use a non-linear constrained
optimization formulation, which attempts to drive down the objective values
of the various objective function terms, subject to a set of constraints.

We express the IK problem as follows:

O =argmin f(O) s.t. ¢;(0) > 0, c.(O) = 0
© (1)
l; <O0; <wuy, Vi

where ¢;(0) is a set of inequality constraints, c.(©) is a set of equality con-
straints, [; and wu; values define the upper and lower bounds for the robot’s
joints, and f is an objective function. Our challenge is to encode our motion
and feasibility goals within the constraints and objectives.

We express our objective function as a weighted sum of individual goals,
such as end-effector position matching, end-effector orientation matching, min-
imum jerk joint motion, and distance to singularity, and formalize it as follows:

k
f(O) = Z w; * fi(O, 82;) (2)

Here, w; is a static weight value for each term, as described in §3.2, which
allows the user to incorporate prior knowledge about what terms are most
important for a given task, and f;(©, {2;) is an objective-term function that
encodes a single sub-goal, with (2; being model parameters used to construct
a particular loss function. The exact structure of the f;(0, £2;) objective func-
tions are covered in §4.1.

Our full optimization formulation is comprised of seven objective terms
and two constraints. The objective terms encode the following kinematic goals:
(1) End-effector position matching; (2) end-effector orientation matching; (3)
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minimized joint velocity; (4) minimized joint acceleration; (5) minimized joint
jerk; (6) minimized end-effector translational velocity; (7) and self-collision
avoidance. The two constraints are designed to clamp joint velocities at each
update and avoid kinematic singularities, respectively. These objectives and
constraints are detailed throughout §4.

4 Technical Details

In this section, we cover the mathematical details that instantiate the high level
ideas outlined in §3. We first cover the structure of our objective function, then
detail the objective terms and constraints that comprise our full optimization.

4.1 Objective Function Structure

While a weighted-sum objective function affords expressiveness by encod-
ing each motion goal as a single term in the sum, parameter tuning of the
weights can become unwieldy, often leading to unstable or divergent behavior
if care is not taken. Parameter tuning would be particularly troublesome in
our Cartesian-space motion-synthesis approach, as many objectives may be in
conflict at any given time. Ideally, the term weights would correspond to easily
explainable behavior, such as a term with weight of two being twice as impor-
tant as a term with weight of one in the optimization. This behavior is not
observed using standard loss functions, such as quadratic, because optimized
terms can be over different units at vastly different scales (e.g., joint-space
velocities compared to Euclidean distances in operational space).

To facilitate combining objectives, we normalize each term using a para-
metric normalization function that is designed to scale each function to a
uniform range. This function places a narrow “groove” around the goal val-
ues, a more gradual falloff away from the groove in order to better integrate
with other objectives, and exhibits a consistent gradient that points towards
the goal. We refer to this function as the “Groove loss” due to its groove-like
shape at its center. We implement this normalization function as a Gaussian
surrounded by a more gradual polynomial:

+ 7 (xi(0) — )

Here, the scalar values n, s, c,r form the set of model parameters 2. To-
gether, they shape the loss function to express the needs of a certain term.
Here, n € {0,1}, which dictates whether the Gaussian is positive or negative.
Negative Gaussian regions are areas of high “reward,” while the optimization
will push away from positive regions of high “cost.” The value s shifts the
function horizontally, and ¢ adjusts the spread of the Gaussian region. The
r value adjusts the transition between the polynomial and Gaussian regions,

) (3)
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Fig. 2 Examples of the Groove loss function used in our weighted-sum objective. Left:
Scalar multiplication by a weight fully controls the amplitude of the reward region. The
w values illustrated here correspond to the w; objective term weight values in Equation 2.
Right: The value “c” controls the spread of the reward region.

higher values showing a steeper funneling into the Gaussian region and lower
values flattening out the boundaries beyond the Gaussian. The scalar function
x(O(t)) assigns a numerical value to the current robot configuration that will
serve as input to the loss function.

In our prototype solver described in §5, all parameter and weight values
were selected empirically and were observed to work well in practice; however,
using the normalization procedure described in this section, all parameters are
robust to tuning for differing results. In the remainder of this section, we will
outline the x(©(t)) functions and model parameters used to formulate our
motion-synthesis method.

4.2 End-Effector Position Matching

The first term in our weighted sum objective function involves matching up
the robot’s end effector position to a provided goal position py. To achieve
this goal, our solver minimizes the L2 error between the robot’s end effector
position given the joint configuration © and the goal position py. Put formally,
the objective term is formalized as:

Xp(0) = [[ Py = FK(O) [|2 (4)

Here, FFK(O) signifies the end-effector position given joint angles O, cal-
culated by the robot’s forward kinematics model.

We inject this objective term value x,(©) into the parametric loss function
described in §4.1 using model parameters n =1, s =0, ¢ = 0.2, and r = 5.0.
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4.3 End Effector Orientation Matching

To match the robot’s end-effector orientation to a provided goal quaternion
qg, we introduce an objective term that will be minimized as the orientations
align. We measure the difference between orientations as the magnitude of the
rotation vector between them, disp(qi,qz) = log(q; ' * qz2) (Lee, 2008). The
objective term is therefore:

Xo(0) = || disp( ag, a[FK(O)] ) |2 (5)

Here, F:K(@) specifies the end-effector rotation frame at joint configuration
O, calculated through the robot’s forward kinematics model, and q[.] indicates
a conversion from rotation matrix to quaternion.

Two quaternions can specify the same static orientation. This quaternion
pair, (igz + jgy + kq: + ¢uw) and (—igs — jgy — kq> — qu), are called anti-podal
equivalences. While the two quaternions encode the same orientation, they
produce different results when used in the quaternion displacement operator.
Thus, in our orientation objective, we check the result of both anti-podal
equivalences at each iteration, and we always minimize over the one with
smaller displacement to always encourage convergence.

We add this objective term value x,(©) into the parametric loss function
described in §4.1 using model parameters n =1, s =0, ¢ = 0.2, and r = 5.0.

4.4 Smooth Motion Synthesis

A main goal of our method is to produce smooth joint motion without ex-
hibiting joint-space discontinuities. We achieve this goal using four objective
terms and one hard constraint.

The first three smoothness objective terms strive to minimize joint velocity,
acceleration, and jerk, respectively:

Xo(0) =162 5 xa(®@) = 16|25 x;(0) = |8]]2 (6)

Velocity, acceleration, and jerk are approximated using backward finite
differencing using a window of the past four solutions. Having smooth joint
motion up to the third derivative is beneficial in terms of wear and tear on
the robot. Prior work also shows this characteristic to be present when people
move their arms to complete tasks (Flash and Hogan, 1985), suggesting that
the generated motions may have a more human-like quality.

We also include an objective term that minimizes velocity in the robot’s
end-effector position space:

Xe(©) = [|FK(0)||2 (7)

This term discourages large jumps in operational space, acts as a real-time
filter, reduces motion jitters when performing fine-motion tasks, and facilitates
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Fig. 3 (a) Our collision avoidance method starts by enveloping the robot’s links and body
components in geometric primitives. The method uses pairwise distance calculations between
these geometric primitives to compute a potential function that characterizes a distance to a
collision state. A neural network is trained to approximate this potential function to speed up
the distance calculation, making it fast enough to serve as a single term in our optimization
objective function. (b) Static environment objects can also be enclosed in collision objects,
such as the table-top and vase seen here. After training the neural network, the robot will
learn that a high collision cost is elicited when its links are close to the table or vase and
will attempt to avoid these objects throughout its motions.

motions along straight lines. These four terms all use the same loss function
model parameter values n =1, s =0, ¢ = 0.2, and r = 5.0.

Lastly, because the aforementioned smoothing terms only encourage mo-
tion properties, but do not place any bounds in the case of errors, we include
hard inequality constraints on individual joint velocities to further account for
failure cases:

Cy; == 0i] <w;, Vie{l,..,N} (8)

Here, v; refers to the joint-velocity limit for joint ¢ over a single update,
and N is the number of robot DOFs.

4.5 Self-Collision Avoidance

A key feature of our real-time motion-synthesis method is to provide a way
for the robot to avoid any self-collisions, even when using per-frame IK with
no look-ahead or prediction. While existing methods can detect when a robot
model is colliding with itself, a standard feature within the Movelt! frame-
work,! being alerted of a collision after it happens is not appropriate in real-
time motion synthesis. Instead, our method can approximate how imminent
the robot is to a collision state and favor configurations that are as far away
as possible from self-collision states while still pursuing other goals.

Our approach follows two steps: (1) create a smooth, continuous function
that approximates a self-collision cost given a joint state ©, called col(©).
This is essentially a potential function, congruent with prior collision-avoidance
techniques, that is high when near collision and low otherwise (Khatib, 1986;
Nakamura, 1990); and (2) train a neural network to learn the function from
step 1 to speed up the collision approximation process by over two orders of

1 http://moveit.ros.org/
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magnitude, making this procedure fast enough to be optimized over in real-
time.

While our initial prototype implementation presented in prior work used
an approximation of the robot’s geometry using line segments (Rakita et al.,
2018b), the current work extends this idea to other geometric representations,
such as cubes, capsules, or even full mesh models. The method automatically
envelopes the robot’s links in capsule objects, and the user may supplement the
scene with other static geometric primitives, such as a thin cube in front of the
robot to represent a table-top or a cylinder placed on the table to represent
a vase. The method also supports manual specification of dynamic collision
objects that are rigidly attached to the robot, such as a sphere object that
surrounds the robot’s end-effector, or a cube object specified for the robot’s
head. Throughout this work, we refer to these collision geometric primitives as
collision objects. A visual representation of collision objects attached to and
around a robot platform can be seen in Figure 3.

We start by characterizing the overall geometry of a robot arm by assessing
distances between its collision objects in a non-collision state, provided by the
user. This allows the method to discern when a collision is likely imminent, as
opposed to two collision objects just being naturally close together in a safe
state. We will refer to the sample configuration not in self-collision as ©,. We
calculate the forward kinematics ©g, update the collision objects such that
the items rigidly attached to the robot appropriately correspond to the new
configuration, and store the orthogonal distances between all pairs of collision
objects I; and I; in a table d; ;. Note that d; ; = 0 when [; and [; are adjacent,
or when 7 = j.

Given these initial distances d; ;j, the method exponentially increases the
self-collision cost as distances between collision objects I; and [; are observed
to be increasingly less than their standard distance d; ;. We use a sum of
Gaussian terms to exponentially scale up the cost based on distance between
all pairs of links, which are smooth and differentiable when taking gradients
for optimization. The function is defined as follows:

—dZS(l“ lj)2
col(@) = » bxerp(——F5—"—)
Z > (9)
c=—d};/(2*log(le—15/b))

Here, dis(l;,1;) signifies the distance between collision objects correspond-
ing to the query state ©. The b value defines the amplitude of the Gaussian and
normalizes a total range of return values, and the ¢ value adjusts the spread of
the Gaussian such that it starts to trend upwards only when dis(l;, ;) is less
than its standard distance d; ;. When ¢ = 0, i.e., when d; ; = 0, the division
by zero is manually avoided and nothing is added to the sum. In our prototype
solver, we used a value of b = 50.

Depending on the complexity of the robot model and the number of supple-
mental collision objects specified in the environment, the function in Equation
9 checks all combinations of objects in approximately 5 - 20 ms. While this
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o (o] Multi-layer Perceptron

Scalar Value
Output

Input Robot
Configuration

Fig. 4 Illustration of our collision avoidance neural network procedure. (a) The robot’s
joint points are calculated at the query configuration given the forward kinematics model.
(b) The joint positions are concatenated together and are provided as inputs to the neural
network. The network is a fully connected multi-layer perceptron with ReLLU activations on
all nodes. The output of the neural network is a single scalar value signifying an approximate
distance to a collision state, where a higher value designates that the robot is closer to a
collision.

performance may be sufficient for quick checks throughout run-time, it is not
fast enough for real-time optimization where the full objective function may
be called more than 100 times per solution. To speed up this process, we train
a neural network to learn col(©), which then only requires a simple matrix
multiplication for evaluation.

We used a multi-layer perceptron neural network with six hidden layers
to learn col(©). We observed that concatenating the joint points [j1, jo, ...jn]
as inputs worked considerably better than naively using the robot state ©.
This adds little overhead to the system as the forward kinematics are already
being calculated for use by other objective terms. All of the six layers contains
N % 3 + 5 nodes, such that each is slightly wider than the input vector. Each
node uses a ReLU activation function. We used 100,000 training inputs by
randomly generating states, and using outputs of the original col(©) function.
We used the Adam solver to run the network optimization with a learning rate
of n = 0.001. It takes about 10-25 minutes during preprocessing to generate
all 100,000 input and output pairs, and about another 20 minutes to train the
network.

Once the neural network is trained, we have a new function col_nn(©) that
sufficiently matches the outputs of col(©) but evaluates a cost in about 10 -
30 microseconds (dependent on the number of robot DOFs). This approxi-
mately 2-3 orders of magnitude gain in speed over col(©) enables real-time
optimization. Our objective term is as follows:

Xc(©) = col_nn(O) (10)

This objective uses loss function model parameter values n = 0, s = 0,
c=0.08, and r = 1.0.

4.6 Kinematic Singularity Avoidance
Kinematic singularities are well studied in robotics (Gosselin and Angeles,

1990). These objectionable robot poses occur when the Jacobian matrix J(O)
that maps joint and end-effector tool velocities, i.e., x = J(©)O, loses full
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column rank. Under these circumstances the chain may lock since an instanta-
neous change in one of the end-effector DOFs is unattainable. Further, when
the Jacobian matrix is near singular, small changes in the end-effector tool
space can induce large, diverging velocities in joint angle space, which is un-
safe for many applications.

To avoid singular configurations in our motion synthesis method, we use
the following approach: (1) find a metric that can approximate distance to a
singularity; (2) characterize the robot’s general manipulability during prepro-
cessing by analyzing the singularity distance metric in many configurations;
and (3) set a hard constraint that avoids configurations deemed to be close to
singularities based on the analyses from step 2.

Because kinematic singularities occur when the Jacobian matrix loses full
rank, we use a common metric that approximates distance to such a configu-
ration, called the matriz condition number, which we denote as c. This value
is found by taking the SVD of the matrix, then taking the ratio of the smallest
singular value and the largest singular value: ¢ = o /o1. When this value is
small, it indicates that the matrix is not well conditioned, and is close to losing
full rank.

Because every robot arm has a distinct geometry and kinematic structure,
the distribution of the conditioning number will vary for each arm. This char-
acteristic of a particular robot arm is called its manipulability and is analyzed
through a multi-dimensional object called a manipulability ellipse (Yoshikawa,
1985). We chose to analyze the matriz condition number of the Jacobian as
a proxy distance to singularity over the Yoshikawa manipulability measure
(Yoshikawa, 1985), because the condition number favors general roundness of
the manipulability ellipse, rather than favoring a larger ellipse as a whole,
which generalizes better across different robots (Nakamura, 1990).

To assess the properties of an arm’s manipulability ellipse, we randomly
sample 500,000 robot configurations during preprocessing and find the mean,
e, and standard deviation, std.., of all condition values ¢. We make the model
assumption that the condition-value random variable is approximately normal
and set a hard constraint in the optimization such that configurations with
condition values less than p, — b * std,. are avoided, for some scalar b. In our
prototype solver, we used a value of b = 2, such that approximately the bottom
2.5% of configurations in terms of condition score will be avoided.

5 Experimental Evaluation

In this section, we outline the empirical tests carried out to validate our
method. Specifically, we describe the prototype solver that instantiated our
methods, provide details on our four experiments, and finally discuss our find-
ings.
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5.1 Prototype Details

To demonstrate the effectiveness of our method on various robot platforms
and tasks, we implemented a prototype solver that instantiates our real-time
motion-synthesis method. The performance intensive aspects of the solver are
implemented in the Julia programming language, while higher level interfacing
is specified in Python. The solver integrates natively with ROS, enabling real-
time monitoring of optimization parameters and constraints, multi-threading,
and communication with robot controllers. All of our testing was performed
on an HP Pavilion laptop with an Intel Core 2.6 GHz i7-6700HQ CPU with
32 GB RAM.

Because our method requires information about the kinematic structure
and geometry of the particular robot arm before run-time, it includes a one-
time preprocessing step to gain this information prior to the use of the solver.
This step takes as input a robot description in URDF format and initializes
various procedures to learn certain geometric and kinematic features about the
robot platform. The preprocessing step takes approximately 30-40 minutes,
and the resulting output configuration files can be reused to seed the solver.

5.2 Experimental Procedure

All of our evaluations involved robot platforms executing five tasks, outlined
in §5.3, simulated on seven robot platforms featuring 5 to 8 DOF arms, includ-
ing the Fanuc LR Mate 200ic? (5-DOF), a Universal Robots UR53 (6-DOF), a
Kinova Jaco* (6-DOF), a Rethink Robotics Sawyer® (7-DOF), a Kuka ITWA
7% (7-DOF), a Rainbow Robotics DRC-Hubo+ arm? (7-DOF), and a DRC-
Hubo+ arm-and-waist rotation (8-DOF). We manually selected initial con-
figurations for the robots such that all robots faced the same direction with
matching end-effector orientations, and the tasks operated analogously across
platforms.

Because real-time motion tasks are very sensitive to an initial configura-
tion, we followed a randomization procedure on initial configurations to ac-
count for experimenter bias. For each trial, the system randomly generated a
vector shorter than 0.2 m and calculated a random configuration based on this
displaced starting position using Trac-IK. The maximum displacement was se-
lected such that the robot always stayed within its manipulation envelope. We
did not randomly offset the orientation, because the absolute directions of the
end-effector’s coordinate frame were often important for a given task. Each
task was run with 100 random initial configurations.

http://www.fanuc.eu/se/en/robots/robot-filter-page/Irmate-series
https://www.universal-robots.com/products/ur5-robot/
http://www.kinovarobotics.com/innovation-robotics/products/robot-arms/
http://www.rethinkrobotics.com/sawyer/
https://www.kuka.com/en-us/products/robotics-systems/lbr-iiwa

N O O s WwoN

http://www.rainbow-robotics.com/products_humanoid


http://www.fanuc.eu/se/en/robots/robot-filter-page/lrmate-series
https://www.universal-robots.com/products/ur5-robot/
http://www.kinovarobotics.com/innovation-robotics/products/robot-arms/
http://www.rethinkrobotics.com/sawyer/
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
http://www.rainbow-robotics.com/products_humanoid
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o Hubo+ Robot - Square Tracing

© URS5 Robot - Square Tracing
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@ IIWA Robot - Circle Tracing

Fig. 5 Various robots exhibiting motions solved for on-the-fly using RelazedIK in order to
execute tasks used in our experimental test bed. (a)-(b) The Hubo+ and UR5 robots are
performing the square-tracing task with smooth, accurate, and feasible motions. (c) The
Sawyer robot is performing the isolated rotations task, where the robot rotates its end-
effector around a single point. Note how the robot slightly relaxes the position-matching
objective in the third and fourth images in order to avoid a kinematic singularity. (d)
The ITWA robot is performing the circle tracing task. Note how the robot avoids the self-
collision in the third image, even when the end-effector path goes through its static base,
by automatically relaxing the position-matching objective and momentarily moving its end-
effector from the path at those points to find close, yet still feasible, solutions.

Our test bed was run in simulation and consisted of a total of 1,535,500
discrete solutions, including seven robot platforms, five tasks, and 100 random
initial configurations.

5.3 Experimental Tasks

Our experimental test bed consisted of five tasks, including three geometric
tasks that enabled us to analytically assess the input curve if necessary and
two use-case tasks involving a robot home-care assistant. The geometric tasks
included circle tracing, square tracing, and isolated rotations. Tracing tasks
involved the end-effector following a perfect a circle or a square centered at
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the robot’s base and scaled for each robot to span close to the robot’s whole
workspace range. The IK goal did not ease in and out at the square’s cor-
ner, instead following a constant velocity even at the sharp corners. For the
tracing tasks, the robot’s end-effector remained static in its initial orientation.
Isolated rotations involved the robot’s end-effector rotating 180-degrees and
back around yaw, pitch, and roll axes. No end-effector translation was present
for this task. The two home-care-scenario tasks were spoon feeding and cook-
ing. Spoon feeding involved the robot arm using a spoon to retrieve food from
bowls placed around the workspace using a spoon and to offer the food to an
individual in a wheelchair for feeding. Cooking was a two-arm task involving
moving a pot from the stove top to the counter. Because the two arms have
to coordinate, end-effector configurations and motion feasibility are both of
particular importance, as highlighted in previous work (Sina Mirrazavi Sale-
hian et al., 2016). For the home-care tasks, the end-effector traces were hand
animated in a 3D-animation tool at 50 Hz. Examples of robots executing some
of our tasks can be seen in Figure 5.

5.4 Measures

We assessed eight objective measures in all of our evaluations: mean position
error (meters), mean rotational error (radians), mean joint velocity (rad/s),
mean joint acceleration (rad/s?), mean joint jerk (rad/s®), total number of
joint discontinuities, total number of singularities, and total number of self-
collisions. We also report on the average solution time (seconds) for each con-
dition.

5.5 Experiment 1: Comparing Against Alternative Real-time Synthesis
Approaches

In our first experiment, we compared RelazedIK to two alternative real-time
motion synthesis approaches. We first present the comparisons used in the
evaluation, then overview our results.

5.5.1 Experiment 1 Comparisons

We compared RelazedIK against three alternative real-time motion-synthesis
approaches. The first comparison is a direct point-to-point approach that uses
a state-of-the-art IK solver, Trac-IK (Beeson and Ames, 2015), to perform per-
update IK on the given end-effector pose goal. Trac-IK is an slsqp optimization-
based IK formulation that minimizes the distance between the given pose
goal and the pose of the end-effector, structured as a displacement of dual-
quaternions. This formulation also minimizes velocity from a seed state to an
optimized state. We seed Trac-IK with the configuration from the previous
update. Our tests used the open-source C++ Trac-IK library (Beeson and
Ames, 2015).
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Our second comparison is a direct point-to-point approach using IKFust,
an analytical inverse kinematics solver that can quickly find exact solutions
for IK problems (Diankov, 2010). While IKFast can, in theory, find solutions
for fully constrained IK problems on redundant robots with greater than six
joints, it can only do so if the problem is reduced down to a 6-DOF problem,
e.g., by fixing d — 6 joints in the chain, where d is the number of joints on the
redundant platform. If the redundant joints are not fixed, the number of exact
IK solutions is infinite, and the solver has no way to reduce the set down to a
single solution or set of reasonable solutions. Because there is not a systematic
way to decide which redundant joint(s) in the chain to fix or what value to fix
these redundant joints to at a given time to afford effective motion synthesis,
we only tested IKFast on 6-DOF robots. If multiple valid solutions were found
by IKFast on the 6-DOF robot tasks, the system chose the one closest to the
robot’s current configuration in terms of Euclidean distance.

Our third comparison is real-time motion planning, which predicts what
pose the end-effector should have in the future, calculates a goal state cor-
responding to the predicted pose using an IK solver, plans a feasible motion
from the current state to the goal state, and finally executes the trajectory
along this planned path (Hauser, 2012). The planning and execution phases
proceed as fast as possible to meet real-time demands. Our testing used the
open-source OMPL (Sucan et al., 2012) motion planners that are integrated
within the Movelt! ROS package.

Our implementation used Trac-IK, as incorporated into Movelt!, as the IK
solver after the prediction step. We allow the IK solver to have perfect pose
prediction up to 0.2 s ahead at the prediction step to prevent negative results
due to poor prediction or an inadequate planning horizon to be able to observe
real-time motion planning under ideal conditions.

For the motion-planning phase, we first use an RRT-Connect planner (Kuffner
and LaValle, 2000) and then a PRM planner(Kavraki et al., 1996) as backup
if the first planner failed to find a path. Because state-of-the-art techniques,
such as parallelization using GPUs (Bialkowski et al., 2011) and hardware-
level planning using custom chips (Murray et al., 2016), allow real-time use of
motion planning, we also provide motion planners with as much time as they
needed to converge, even when tracking the real-time goal in the test bed. We
report solution times based on the implementation described above, although
we make the assumption that these real-time approaches could keep up with
such goals given their reported timing information.

We tested RelazedIK with two different importance weight configurations.
In RelazedIK (A), the configuration emphasized end-effector accuracy with
the following weights: {w, = 50,w, = 40,w, = 0.1,w, = 1,w; = 2,w. =
0.1,w, = 2}. The configuration in RelazedIK (B) emphasized smoothness and
feasibility with the following weights: {w, = 10, w, = 9, w, = 5,w, = 4, w; =
3, we = 2,w. = 5}.
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5.5.2 Experiment 1 Results

Our results for Experiment 1 are summarized in Table 1. RelazedIK (A) was
shown to have higher end-effector accuracy than all other comparisons. Re-
laxedIK (B) did show some motion smoothness benefits, as seen by having
lower joint velocity, acceleration, and jerk results than all other comparisons;
however, these benefits come at the cost of inducing more end-effector posi-
tion and rotation errors than RelazedIK (A ). Both instantiations of RelazedlK
exhibited feasible motions on all solutions, without exhibiting any disconti-
nuities, singularities, or self-collisions. In contrast, direct point-to-point using
Trac-IK and IKFast encountered many of these errors, which would result in
infeasible motions when run on a robot platform.

Pos. Rot. Joint Joint Joint. Numberof | Number of Number of Solution

Error Error Velocity Accel. Jerk Discontinuities | Singularities | Self-Collision Times
RelaxedIK (A)]0.0047 + 0.003 | 0.0029 + 0.008 | 0.0118 + 0.013 [ 0.0004 + 0.001 | 0.0002 % 0.001 0 0 0 0.0046 % 0.008
RelaxedIK (B)]0.0118 + 0.018 | 0.0284 + 0.026|0.0101 + 0.008 | 0.0001 + 0.001 | 0.0001 % 0.001 0 0 0 0.0046 % 0.009
Trac-IK 0.0051 £ 0.0050.0233 + 0.040|0.0803 + 0.084| 0.113 £ 0.148 | 0.2110 + 0.270 2,260 633 1,350 0.0029 + 0.002
IKFast 0.017* +0.013 | 0.133* £ 0.130 | 0.048* + 0.064 | 0.091* £ 0.083 | 0.179* £ 0.150 538* 43* 662*  [0.000007 + 0.00
Real-time MP|0.2523 + 0.241|0.2517 + 0.275|0.0357 + 0.025| 0.014 + 0.013 | 0.0261 % 0.025 0 9 0 0.0542 % 0.039

Table 1 Summary of aggregated results from our Experiment 1. The measures are mean
position error (meters), mean rotational error (radians), mean joint velocity (rad/s), mean
joint acceleration (rad/s?), mean joint jerk (rad/s®), total number of joint discontinuities,
total number of singularities, total number of self-collision, and mean solution time (seconds).
The range value is standard deviation. The * on the IKFast condition values denotes partial
results only over the 6-DOF robots.

Although the mean position and rotation errors were lower for Trac-IK
than for RelaxedIK(B), the errors induced by RelazedIK(B) were due to fea-
sibility considerations, i.e., avoiding acceleration and jerk disturbances which
may cause the end effector to drift slightly behind the goals or slight devia-
tions to prevent more serious problems such as self-collision or joint disconti-
nuity. Further, if the reported end-effector pose matching errors would be too
high for a given task, respective weights on position and orientation match-
ing terms could be raised to exhibit a reduction in these errors. To illustrate,
RelazedIK(A) exhibited lower end-effector position and rotation errors than
Trac-IK as the weights on motion accuracy were raised for this condition.

While Trac-IK and IKFast precisely hit end-effector poses when solutions
existed, they often fell behind the end-effector pose goals when solutions could
not be found. Trac-IK and IKFast also had major motion feasibility issues. For
instance, Trac-IK resulted in 2, 260 discontinuities, 633 singularities, and 1, 350
self-collisions, and IKFast resulted in 538 discontinuities, 43 singularities, and
662 self-collisions on just the 6-DOF robots. In contrast, RelazedIK did not
exhibit such problems in any solution.

At a high level, real-time motion planning exhibited consistent motion
feasibility, showing no joint discontinuities, but did not reliably get close to
end-effector position and rotation goals. These errors followed one of two pat-
terns: (1) when the motion planner had to interpolate a long path due to a
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discontinuity, the end-effector had to deviate from the path to reach the goal
state; and (2) when the motion planner failed to find a path, the robot stayed
at its previous state, causing significant end-effector pose-matching errors. In
contrast, RelaredIK showed the same level of motion feasibility while reliably
matching end-effector poses throughout the tasks.

Our method takes on average 4.6 ms to find a solution. While Trac-IK
provided a solution in slightly less time (2.9 ms on average in our testing),
and IKFast found solutions very quickly (7 microseconds on average), in many
scenarios the feasibility benefits provided by our method may outweigh the
cost of the extra computation time. Our results also indicate that the joint
motion generated by RelaxredIK is considerably smoother than direct point-to-
point, IKFast and real-time motion planning, demonstrating the feasibility of
real-time minimum-jerk plans discussed in §4.

5.6 Experiment 2: Comparing Optimization Solvers

In our second experiment, we assess the performance of RelazedIK using differ-
ent optimization solvers, including derivative-based and non-derivative-based
varieties. We first present the optimization solvers used in the evaluation before
discussing our findings.

5.6.1 Experiment 2 Comparisons

We compared five optimization solvers in our evaluation, all of which are open-
sourced and provided by the NLopt library.® The solvers used were COBYLA
(constrained optimization by linear approximation) (Powell, 1994), BOBYQA
(bound optimization by quadratic approximation) (Powell, 2009), MMA (method
of moving asymptotes) (Svanberg, 2002), CCSAQ (conservative convex sepa-
rable approximation) (Svanberg, 2002), and SLSQP (sequential least-squares
quadratic programming) (Kraft, 1988). The COBYLA and BOBYQA solvers
are non-derivative-based, while MMA, CCSAQ, and SLSQP solvers are derivative-
based. In this experiment, all gradients for the derivative-based solvers were
calculated using automatic-differentiation. For a comparison of different gradi-
ent calculation methods, refer to Experiment 3 in §5.7. All of these solvers are
local and do not attempt to reach global optimality. An augmented-Lagrangian
approach was used to apply unconstrained optimization solvers to constrained
problems.

5.6.2 Experiment 2 Results

Our results for Experiment 2 are summarized in Table 2. At a high level, all of
the optimization algorithms produced reasonably smooth and feasible results
and returned solutions fast enough for real-time use. This highlights that our

8 NLopt: https://nlopt.readthedocs.io/en/latest/
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Pos. Rot. Joint Joint Joint. Number of Number of Number of Solution
Error Error Velocity Accel. Jerk Discontinuities| Singularities | Self-Collision Times
COBYLA  |0.0138 £ 0.007 { 0.0100 + 0.024 | 0.0107 + 0.016| 0.0028 + 0.001 | 0.0041 + 0.008 0 0 0 0.0111 +0.011

BOBYQA  10.0080 + 0.007{0.0026 + 0.003 [0.0111 + 0.012|0.0014 + 0.003 | 0.0019 + 0.001

MMA 0.0044 + 0.005|0.0016 + 0.040 [ 0.0108 + 0.012 | 0.0004 + 0.003 | 0.0002 + 0.003
CCSAQ 0.0043 + 0.005|0.0016 £ 0.005 [ 0.0110 + 0.012 { 0.0004 + 0.003 | 0.0002 + 0.003
SLSQP 0.0047 + 0.003|0.0029 + 0.008 [0.0118 + 0.013 [ 0.0004 + 0.001 | 0.0002 + 0.001

0.0113 + 0.009
0.0089 + 0.009
0.0092 + 0.009
0.0046 + 0.008

o o o o
© o o o
© o o o

Table 2 Summary of aggregated results from our Experiment 2. The measures are mean
position error (meters), mean rotational error (radians), mean joint velocity (rad/s), mean
joint acceleration (rad/s?), mean joint jerk (rad/s3), total number of joint discontinuities,
total number of singularities, total number of self-collision, and mean solution time (seconds).
The range value is standard deviation.

method is generalizable and not tied to a particular non-linear constrained-
optimization algorithm.

While all of the solvers performed reasonably well in the evaluation, two
main points emerge upon further analysis. First, the derivative-based optimiza-
tion algorithms performed better than the non-derivative-based algorithms.
Specifically, we see that the COBYLA solver performs least favorably from the
set of solvers, exhibiting higher end-effector errors, less smooth motion, and
higher computational cost compared to the alternatives. We believe derivative-
based optimization methods performed better because gradients and higher
derivative information inherently carry rich information about a robot’s mo-
tion qualities. To illustrate, consider how the robot’s end-effector coordinates
change when the robot’s joint angles change. In this case, the different axes
on the robot arm will have a different magnitude of effect on the robot’s end-
effector depending on where it is in the chain, i.e., a rotation of the root
joint will have a larger relative effect on the change in the robot’s end-effector
pose than the same angle rotation on the outermost joint in the chain. While
this kind of kinematic phenomenon may be difficult for stochastic-based op-
timization algorithms to infer upon random steps in joint-space, this effect is
inherently contained in the second-derivative information of most of our objec-
tive terms, with respect to the joint state. Specifically, the second-derivative
of these terms can be exactly interpreted as how fast the gradient of the term
outputs are changing based on each joint’s rotation (this rate of change would
be higher for the root joint than the outermost point). Thus, we believe that
the derivative-based methods performed more favorably because they natu-
rally maintain this sense of kinematic nuance through the use of gradients
and approximated higher-order derivative information, making convergence a
more dependable procedure. The second point we observed was that, while
MMA and CCSAQ exhibited marginally better results over SLSQP in terms
of end-effector pose error and joint smoothness, SLSQP provided compara-
ble performance in about half the computation time. Based on these results,
We suggest that SLSQP is the best algorithm to use for RelazedIK in most
situations where accuracy, feasibility, and computational efficiency are all con-
siderations. However, in the case where computational efficiency is of lower
priority, MMA and CCSAQ may provide motions with slightly improved ac-
curacy and feasibility.
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5.7 Experiment 3: Comparing Gradient Calculation Methods

Derivative-based optimization methods generally share a similar strategy: at
each update, calculate the gradient of the objective function and move some
distance along the gradient in the direction of quickest descent towards a
minimum in the function landscape. All solvers within this paradigm depend
on the method used to calculate gradients, each offering potential tradeoffs in
different situations. In this experiment, we assess the performance of RelaxedK
using different gradient calculation methods on each of the derivative-based
optimization solvers featured in Experiment 2.

As overviewed in Equation 2, our objective function is composed of multiple
weighted terms, each encoding a desired motion quality:

k
£(0) =" w; *£;(6, 1)

i=1

The gradient of the objective function with respect to © is:

- ofi
96 =2 " * 50

The focus of this experiment was to assess if the method for calculating the

gradient gg terms has an effect on the overall optimization. We first overview

the gradient methods used in the evaluation before discussing our findings.

5.7.1 Experiment 3 Comparisons

We compared two methods for computing gradient terms: automatic differen-
tiation and finite differencing. Automatic differentiation, or AD, is a numerical
method that propagates gradient information through all sub-routines needed
to compute the value of a function. The final gradient is then constructed using
the chain rule once the AD process reaches a base case with a known derivative.
In this evaluation, we used the forward-mode AD package called ForwardDiff
provided in the Julia programming language (Revels et al., 2016).

Finite differencing is a a numerical procedure that approximates a gradient
by taking differences between the function at the original query point and
other inputs slightly perturbed from the query point. The finite differencing
implementation used in our evaluation is from the Calculus package provided
in the Julia programming language.”

We note that the kinematic singularity constraint function discussed in §4.6
above is not able to be differentiated using AD as the gradient information is
not able to pass through the singular value decomposition process. Thus, both
comparisons in this section use finite differencing to calculate the gradient of
this constraint function.

9 https://github.com/JuliaMath/Calculus.jl
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5.7.2 Experiment 8 Results

Pos. Rot. Joint Joint Joint. Number of Number of Number of Solution
Error Error Velocity Accel. Jerk Discontinuities | Singularities | Self-Collision Times
MMA (AD) |0.0044 + 0.005 [ 0.0016 + 0.040 | 0.0108 + 0.012|0.0004 + 0.003 | 0.0002 + 0.003 0 0 0 0.0089 + 0.009

MMA (FD) [0.0045 + 0.005 | 0.0016 + 0.041|0.0108 + 0.012| 0.0004 + 0.003 | 0.0002 + 0.003
CCSAQ (AD) |0.0043 +0.005|0.0016 + 0.005 [0.0110 + 0.012 | 0.0004 + 0.003 | 0.0002 + 0.003
CCSAQ (FD) ]0.0044 +0.005 | 0.0017 + 0.005|0.0110 + 0.012| 0.0004 + 0.003 | 0.0002 + 0.003
SLSQP (AD) ]0.0047 +0.003|0.0029 + 0.008 |0.0118 + 0.013 | 0.0004 + 0.001 | 0.0002 + 0.001
SLSQP (FD) ]0.0047 + 0.003 | 0.0029 + 0.009|0.0114 + 0.013|0.0004 + 0.001 | 0.0002 + 0.003

0.0290 + 0.010
0.0092 + 0.009
0.0279 +£0.019
0.0046 + 0.008
0.0126 + 0.006

oo oo o
oo oo o
oo oo o

Table 3 Summary of aggregated results from our Experiment 3. The measures are mean
position error (meters), mean rotational error (radians), mean joint velocity (rad/s), mean
joint acceleration (rad/s?), mean joint jerk (rad/s>), total number of joint discontinuities,
total number of singularities, total number of self-collision, and mean solution time (seconds).
The range value is standard deviation.

Our results for Experiment 3 are summarized in Table 3. We see that au-
tomatic differentiation and finite differencing provide very similar accuracy
and feasibility in output motions. While, in theory, automatic differentiation
would be expected to provide improved results because of its exactness (accu-
rate down to machine precision), we believe results were similar here because
locally optimal solutions are close by in state-space and the small errors in-
duced by finite differencing do not have much room to propagate and propel
the solution away from the local minimum.

We observed the automatic differentiation conditions to be 2-3 times faster
at finding solutions than the finite differencing conditions. We believe AD is
faster because it only needs to take a single pass through the objective func-
tion, while finite differencing has to make many calls to the function to make
its approximation. Because the ForwardDiff package propagates gradient in-
formation very efficiently using operator overloading, it requires little com-
putational overhead when performing its single pass through the objective
function and results in faster optimization outputs than the finite differencing
approach.

5.8 Experiment 4: Comparing Loss Functions

In our fourth experiment, we assess the performance of RelaxedIK using dif-
ferent loss functions in the objective function. As discussed in §4.1, we present
a novel loss function, called the “Groove loss”, which normalizes the many
objective terms into a standard range. This experiment was designed to assess
whether the Groove loss exhibits advantages over more standard loss func-
tions. We first overview the loss functions used in the evaluation, then discuss
our results.
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5.8.1 Experiment 4 Comparisons

In this experiment, our goal was to assess the relative contribution of our
Groove loss function on the results presented in the prior experiments. To
achieve this, we compared results on our evaluation test bed using our Groove
loss function to a more standard quadratic loss function. In contrast to the
formulation specified in Equation 3, our objective terms take the following
form using just a quadratic loss:

fi(©) = xi(©)* (11)

We used the same two sets of weighting parameters used in Experiment

1 for both loss functions. Specifically, these weighting parameters are {w, =

50, w, = 40,w, = 0.1,w, = 1,w; = 2,w. = 0.1,w. = 2} for RelazedIK A,

which should emphasize motion accuracy, and {w, = 10, w, = 9, w, =5, w, =

4,w; = 3,w. = 2,w, = 5} for RelazedIK B, which should emphasize motion
feasibility and smoothness.

5.8.2 Experiment 4 Results

Pos. Rot. Joint Joint Joint. Number of Number of Number of Solution
Error Error Velocity Accel. Jerk Discontinuities | Singularities | Self-Collision Times
Groove (A) [0.0047 +0.003|0.0029 + 0.008{0.0118 + 0.013 | 0.0004 % 0.001 | 0.0002 + 0.001 0 0 0 0.0046 + 0.008
Groove (B) [0.0118 +0.018|0.0284 + 0.026 [ 0.0101 + 0.008 | 0.0001 + 0.001 | 0.0001 + 0.001 0 0 0 0.0046 + 0.009
Quadratic(A) |0.0884 + 0.096 | 0.1361 + 0.2620.0359 + 0.086| 0.0182 + 0.061 | 0.0229 + 0.079 79 0 0 0.0067 £ 0.095
Quadratic(B) [0.1001 + 0.089[0.0168 + 0.241|0.0114 + 0.019|0.0018 + 0.008 | 0.0020+ 0.011 0 0 0 0.0071 + 0.085

Table 4 Summary of aggregated results from our Experiment 4. The measures are mean
position error (meters), mean rotational error (radians), mean joint velocity (rad/s), mean
joint acceleration (rad/s?), mean joint jerk (rad/s®), total number of joint discontinuities,
total number of singularities, total number of self-collision, and mean solution time (seconds).
The range value is standard deviation.

Our results for Experiment 4 are summarized in Table 4. At a high level,
we observe that the Groove loss versions of RelazedIK far outperform the ver-
sions using a standard quadratic loss functions. These results indicate that the
Groove loss function structure plays an integral role in the improved results
presented in the experiments presented above and serves as a substantial con-
tribution of this work as a whole. We suggest that the Groove loss function
may provide similar advantages for any optimization problem where the objec-
tive function is structured as a weighted sum with many terms. We show that
the Groove loss is able to reconcile many potentially competing objectives and
effectively make tradeoffs in such situations.

6 General Discussion

In this paper, we presented a real-time motion-synthesis method for robot ma-
nipulators to reliably match end-effector pose goals while considering motion
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feasibility objectives on-the-fly. Our contributions included the Groove loss
function that both normalizes terms over a standard range and allows motion
features to smoothly relax in favor of other more important objectives, intro-
ducing a collision avoidance neural network approach for quickly computing a
distance to a self-collision state, and demonstrating how to effectively incor-
porate many motion objectives and constraints into a non-linear optimization
framework to effectively synthesize robot motions in real-time. We also showed
through many empirical tests that our method performs more favorably than
state-of-the-art baselines including direct Trac-IK or real-time motion planning
on numerous tasks and robot platforms, and we provided additional details on
other components of the method, such as choices of optimization solver, gra-
dient calculation method, and objective term loss functions.

Our method has a number of limitations that suggest many extensions.
First, because we rely on a general constrained non-linear optimization formu-
lation, our method provides no guarantees of convergence. We instead provide
substantial empirical evidence of the robustness of our method in practice.
Additionally, certain guarantees can be achieved by integrating our method as
the IK solver in an overall real-time motion-planning framework, thus falling
back on the completeness and feasibility guarantees of the motion planner as
a backup.

While the current work only explored setting objective term relative impor-
tances through defining static weights for each term prior to run-time, defin-
ing dynamic weighting functions for each objective that can adjust relative
importances on-the-fly could be beneficial. To illustrate, precise end-effector
pose matching would be very important when a sewing robot is threading
the needle, but smooth, minimum-jerk joint motion would be more important
when the robot is making broad motions to pull the thread through the fab-
ric. While prior works have demonstrated that such dynamic weights work in
practice, (Rakita et al., 2017; Shin et al., 2001), extensions to this work could
investigate their overall effectiveness and influence on convergence properties.

While the overall framework presented in this paper may generalize to con-
sider force or torque based objectives and constraints, we have not yet explored
this possibility and plan to consider dynamics, particularly how exerted forces
and moments could fit into our relaxation framework, in our future work.
Lastly, while the current implementation of our method is sufficiently fast
for real-time use, and is about 4-5 times faster than the original RelaxedlK
implementation reported on in prior work (Rakita et al., 2018b), it is still
marginally slower than standard IK solvers. Although the feasibility benefits
may outweigh the cost of the additional computation time in many scenarios,
we will pursue ways of speeding up our method so that it can generalize to
more domains and more easily work as a subroutine within larger frameworks.

The results presented in this work show that our method works for creating
accurate and feasible robot arm motions one frame at a time. We believe that
such a per-frame approach for synthesizing accurate and feasible robot arm
motions could enable more effective applications that involve robots reacting
to external stimuli or generally acting under uncertainty. We will continue to
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expand upon this approach and evaluate its efficacy in such reactive scenarios,
such as for telemanipulation, shared-control, active vision, or active policy
learning.
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