
Single-query Path Planning Using
Sample-efficient Probability Informed Trees

Daniel Rakita1, Bilge Mutlu, Michael Gleicher

Abstract—In this work, we present a novel sampling-based
path planning method, called SPRINT. The method finds solu-
tions for high dimensional path planning problems quickly and
robustly. Its efficiency comes from minimizing the number of
collision check samples. This reduction in sampling relies on
heuristics that predict the likelihood that samples will be useful
in the search process. Specifically, heuristics (1) prioritize more
promising search regions; (2) cull samples from local minima
regions; and (3) steer the search away from previously observed
collision states. Empirical evaluations show that our method finds
shorter or comparable-length solution paths in significantly less
time than commonly used methods. We demonstrate that these
performance gains can be largely attributed to our approach to
achieve sample efficiency.

I. INTRODUCTION

Solving high-dimensional path planning problems, such as
for robot manipulator motion planning, remains a challenging
and important problem. Many aspects of this problem are often
addressed with sampling-based path planners, which sample
a collision-check function in order to probe the configuration
space and inform a search strategy. While, in theory, many
sampling-based planners are guaranteed to eventually find a
solution if one exists, in practice, even state-of-the-art ap-
proaches are unable to consistently solve challenging problems
in reasonable amounts of time as they require many costly
collision-check samples [1].

In this work, we present a novel sampling-based path plan-
ning method, called SPRINT (Sample-efficient PRobability
INformed Trees) that finds solutions for high dimensional
planning problems significantly faster than many state-of-
the-art approaches. Our method uses heuristics designed to
minimize the total number of collision-check samples required
to find solutions by modeling how likely regions of the search
space will yield useful samples. These heuristics, as part of
newly proposed global and local tree searches, are used to (1)
prioritize more promising search regions to foster a greedy
first global search strategy, while still exploring broadly in
the limit; (2) cull samples from local minima regions in the
local search to avoid wasteful, unfruitful samples; and (3)
steer the local search away from previously observed colli-
sion states toward search regions predicted to contain more
useful free-space samples. Our heuristics can be implemented

1Authors are with the Department of Computer Sciences, University of
Wisconsin–Madison, Madison 53706, USA
[rakita|bilge|gleicher]@cs.wisc.edu
This work was supported by a Microsoft Research PhD Fellowship, Na-

tional Science Foundation award 1830242, and a NASA University Leadership
Initiative (ULI) grant awarded to the UW-Madison and The Boeing Company
(Cooperative Agreement # 80NSSC19M0124).

�

�

�

��
	��

����������
	���
	��

��
	��

���������

�

Fig. 1. (a) This 2D planning example shows the sample efficiency of the
SPRINT planner, as many fewer collision-check samples were taken (left)
compared to RRT-Connect (middle) and RRT (right). (b–c) This sample
efficiency also makes path planning more efficient in high dimensions, such
as for the illustrated robot manipulator motion planning problems.

with efficient information storage and retrieval methods that
further accelerate the search. Specifically, our method does not
perform expensive nearest neighbor checking each time a node
is added to the search graph structure.

We assessed the efficacy of our method by running a large
testbed of simulation experiments and compared our method
to numerous path planners on single-arm and bimanual robot
manipulation problems (§VII). Our method found shorter or
comparable-length solution paths in significantly less time
than the alternatives. We demonstrate that these performance
advantages were, in large part, due to an increase in sample
efficiency from our heuristics. We conclude our work by
discussing the implications of our results in robotics appli-
cations and beyond. We provide open-source code for an
implementation of our method.1

II. RELATED WORKS

In general, there are three main paradigms for solving
path planning problems: sampling-based, local optimization,
and search-based. Sampling-based planners, many of which

1https://github.com/uwgraphics/lynx

https://github.com/uwgraphics/lynx

are extensions of Rapidly-Exploring Random Tree (RRT) [2],
Probabilistic Roadmap (PRM) [3], or Expansive Space Tree
(EST) [4] methods, often use random configuration-space
samples to bootstrap a broad search strategy. These algorithms
often have guarantees, such as probabilistic completeness or
asymptotic optimality [5], [6], though they often over-explore
the space with many unnecessary samples in order to achieve
such guarantees.

Our work shares particular similarities with informed-tree
sampling-based approaches that iteratively build search strate-
gies that trade-off between exploration and exploitation based
on information gathered at run-time [7]–[11]. Our work draws
on these approaches, but differs in two main ways: (1) these
approaches generally use linear local search segments between
samples, whereas our work proposes a new local search
designed to maneuver through narrow passages and avoid
over-sampling; and (2) the search strategies for these ap-
proaches are typically more focused on achieving asymptotic
optimality, whereas the search strategies for our method are
more singularly focused on reaching a first feasible solution
as quickly as possible.

Local optimization-based planners, such as CHOMP [12] or
STOMP [13], use non-linear optimization to iteratively trans-
form a trajectory into a higher quality path. These methods are
designed to be greedier than sampling-based methods, though
they often have fewer guarantees, strongly depend on the
quality of the initial condition, and commonly do not converge
on a feasible solution due to local minima.

Search-based planners prioritize exploration based on a set
heuristic, such as best-first search, depth-first search, breadth-
first search, or the A∗ heuristic [14]. However, because these
searches are often structured in a discrete, grid-like fashion,
higher dimensional planning often scales intractably in terms
of memory and run-time complexity.

Our method draws on all of the above paradigms, and
attempts to unite many of the discussed themes. To illustrate,
SPRINT also uses random samples to bootstrap its search
and explore broadly, but local optimization and search-based
concepts are used to optimize and prioritize certain parts of
the search to increase the probability of sample usefulness.
We compare our method to other common approaches in our
evaluation (§VII) to assess whether this bridging of concepts
is effective for path planning.

III. PRELIMINARIES

A. Problem Statement

Consider χ as a d-dimensional configuration space with
states within χ denoted as q. Suppose χobs is a subset of
χ considered to be infeasible space (i.e., obstacles). Feasible
space can then be defined as the subset of χ not in an
obstacle region: χfree ≡ χ \χobs. A path in χ is a continuous
function Γ[qa, qb] : [0, 1] → χ, where Γ[qa, qb](0) = qa,
Γ[qa, qb](1) = qb, and all points along the path are in χ.
The goal in path planning is to find a feasible, C0 continuous
path Γ[qinit, qgoal] such that Γ[qinit, qgoal](0) is a given start
state, qinit; Γ[qinit, qgoal](1) is a given goal state, qgoal; and
Γ[qinit, qgoal](u) ∈ χfree, ∀u ∈ [0, 1].

B. Graph-based Planning Structure

A common structure to solve the problem described above is
a graph-based search [2]–[6], [10]. This framework organizes
the search into a set of collision-free edges, E, between pairs
of nodes in a set N to form a graph G = (N, E). The goal
in these searches is to construct G such that a feasible path
Γ[qinit, qgoal] is contained as some connected sequence of edge
traversals between nodes within the graph. The feasibility of
each edge is checked prior to its addition to the graph using a
collision-check function. SPRINT interleaves global and local
graph-based searches, overviewed in §IV-A.

C. Search-space Regions and Useful Samples

The overall goal of SPRINT is to minimize the number of
collision-check samples by incorporating probability heuristics
that model how likely regions of the search space will yield
useful samples.

A search-space region is a segment of the configuration
space χ loosely thought of as states in the vicinity of the
line segment between two specified end-points. These regions
are used to characterize and model where the planner has
previously searched and where the planner could search in the
future. Their loose definition is sufficient for these use cases.
We denote a search-space region as R[qa, qb], where qa and
qb serve as the end-point markers of the region.

Intuitively, a useful sample is a sample that plays an integral
role in constructing a final solution path. More formally, we
consider a sample to be δ–useful if it achieves two criteria:
(1) it is in free-space, χfree; and (2) it ultimately lies within
a distance of δ of the final solution path, Γ[qinit, qgoal]. Note
that this definition implies that it is unknowable if a sample is
δ–useful until a solution path is found. However, our method
uses heuristics to predict the probability that a particular
search-space region will contain at least one δ–useful sample,
which we will denote as Pr(Uδ(R[qa, qb])). The following
sections will detail the structure and functionalities of these
probability heuristics.

IV. TECHNICAL OVERVIEW

This section outlines the search structure and overall strat-
egy of the SPRINT method. Pseudocode of the SPRINT
planning sub-processes can be found in Alg. 1–7.

A. SPRINT Global planning Level

The global planning level in SPRINT (Alg. 1) uses a tree-
graph as a search structure, Tg = (Ng, Eg), rooted at qinit.
A set of sampled collision-free milestone points, M, serve as
intermediary goals for the global search to reach en route to
qgoal, reminiscent of FMT∗ [6]. On each global planning level
loop, the planner selects a best search-space region for the next
local search, R[q∗n, q∗m] (q∗n ∈ Ng, q∗m ∈ M). Milestones that
are reached via local searches to form global edges in Eg from
already established nodes in Ng are added as global nodes in
Ng. If the current set of milestone points does not foster a path
to qgoal, more milestone points are added to M, and the search

Algorithm 1: sprint(qinit, qgoal)

1 Ng ← {qinit} ; Eg ← ∅ ; M← {qgoal} ; Rlocalmin ← ∅ ; k← 50
2 Loop either indefinitely or until some run-time limit is met
3 while |M| < k do
4 M +← randomly sampled state from χfree
5 Loop
6 R[q∗n , q∗m]← probability_heuristic_1(Ng, M, Rlocalmin)
7 if R[q∗n , q∗m] ≡ ∅ then
8 k← 1.5 ∗ k
9 break // go to line 2 to add more milestones to M

10 (success, T`) ← local_tree_search(q∗n , q∗m)
11 if success then
12 Ng

+← q∗m ; Eg
+← Γ[q∗n , q∗m] ; M –← q∗m

13 if q∗m ≡ qgoal then
14 return Γ[qinit, qgoal] // solution found

15 else
16 Rlocalmin

+← R[q∗n , q∗m] // remember that this search-space

region appears to be a local minimum trap

Algorithm 2: local_tree_search(q∗n , q∗m)
1 N` ← {q∗n }; E` ← ∅; Nstack ← ∅; Ncheckpoints ← {q∗n }; qx ← q∗n
2 Hexploit ← ∅ // hashmap with (q, (float, float)) key-value pairs

3 Hexplore ← ∅ // hashmap with (q, (float, float)) key-value pairs

4 Hobs ← ∅ // hashmap with (q, {q} sets) key-value pairs

5 Hnum ← ∅ // hashmap with (q, float) key-value pairs

6 add checkpoint← true // the root node is always labeled as a checkpoint

7 Loop
8 if probability_heuristic_2(qx, T`, Ω`) then
9 if add checkpoint then

10 Ncheckpoints
+← qx // label qx as checkpoint

11 exploit← ||qx – q∗m||; explore← ||q∗n – qx||
12 Hexploit

+← (qx, (0, exploit)); Hexplore
+← (qx, (0, explore))

Hobs
+← (qx, ∅); Hnum

+← (qx, 1)
13 R[qx, q∗c]← probability_heuristic_3(qx, T`, Ω`)
14 if in_collision(q∗c) then
15 for all q ∈ Ncheckpoints ∩ Γ[q∗n , qx] // all checkpoints on the

path from qx back to q∗n
16 do
17 Hexploit[q][0] += 1; Hexplore[q][0] += 1; Hobs[q] +← q∗c
18 if Nstack.is_empty() then
19 return (false, T`) // if the stack is empty, the local

search has failed

20 qx ← Nstack.pop_last_added()
21 add checkpoint← true
22 else

// if q∗c is not in collision

23 Γ[qx, q∗c]← qx + u ∗ (q∗c – qx) , u ∈ [0, 1]
24 N`

+← q∗c ; E`
+← Γ[qx, q∗c] ; Nstack

+← qx ; qx ← q∗c
25 if q∗c ≡ q∗m then
26 return (true, T`) // local search solution was found

27 exploit← ||q∗c – q∗m||; explore← ||q∗n – q∗c ||
28 for all q ∈ Ncheckpoints ∩ Γ[q∗n , qx] // all checkpoints on the

path from qx back to q∗n
29 do

// update checkpoints with information about q∗c
30 Hnum[q] += 1
31 if exploit < Hexploit[q][1] then
32 Hexploit[q][0]← 0; Hexploit[q][1]← exploit
33 else
34 Hexploit[q][0] += 1
35 if explore > Hexplore[q][1] then
36 Hexplore[q][0]← 0; Hexploit[q][1]← explore
37 else
38 Hexplore[q][0] += 1
39 add checkpoint← false
40 else

// if Probability Heuristic 2 considered the most recent qx as

not worthwhile to extend, try the next node on the stack

41 if Nstack.is_empty() then
42 return (false, T`) // if the stack is empty, the local

search has failed

43 qx ← Nstack.pop_last_added()

proceeds. This process iterates until qgoal is reached via Tg,
provided a solution exists.

In general, the global planning level is intended to be a
simple wrapper around the more sophisticated local search,
outlined below. While the global planning level achieves
probabilistic completeness in the limit (§VI), in practice, the

default starting set of 50 milestone points is sufficient to
quickly solve all problems that we have ever tried.

B. SPRINT Local Planning Level

The local planning level in SPRINT (Alg. 2) also uses a
tree-graph as a search structure, T` = (N`, E`). The root of the
local tree is the first boundary point of the search-space region
selected by the global planning level, q∗n, and the goal state
that the local tree is trying to reach is the second boundary
point of this region, q∗m.

The local planning level in SPRINT is a greedy, depth-first-
search-like algorithm that uses heuristics to intelligently select
branching directions, backtrack to fruitful parts of the search
tree, and stop as early as possible when a solution is unlikely
to be found. The local search was designed to be particularly
adept at steering around approximately convex-shaped obstacle
sections and navigating through narrow passages (as seen in
Figure 1a). While the local search has no guarantees and needs
the global search to route around local minima regions, in
practice, it is effective and solves many problems on its own,
even in high dimensions.

The local planning level progresses in three steps: (1) Select
a node from the tree to extend from, qx ∈ N`; (2) Decide if qx
is worthwhile to extend (if not, return to step 1); and (3) If qx
is worthwhile to extend, calculate a candidate node to extend
toward, q∗c . After q∗c is calculated, it is checked for collision
(Alg. 2, line 14). If q∗c is in free-space, it is added as a node to
the tree, the algorithm assesses and stores information about
how the search has improved or worsened given the addition
of the new node, and it becomes the next qx to extend (Alg. 2,
lines 23–39). If q∗c is in collision, the collision-point is stored
by the algorithm to help prevent the tree from colliding with
the same region again and a next qx is popped off of a stack of
nodes to extend from, Nstack (Alg. 2, lines 15–21). These steps
repeat until either the local goal is reached or Nstack becomes
empty.

The heuristics used in the local search often rely on its
ability to efficiently assess and characterize sub-trees within
the tree. Therefore, the local search tree stores information
allowing fast responses to queries such as “has the sub-tree
rooted at node q recently progressed toward the goal q∗m?”;
or “what previously observed collision points are in close
proximity to the sub-tree rooted at node q?”. To achieve these
quick assessments, our method labels certain nodes in the local
search tree as data checkpoints, then stores and accesses infor-
mation at these checkpoints throughout the search. It would
be highly inefficient for all nodes to be labeled as checkpoints.
Thus, only the root node, q∗n, and nodes that have more than
one child node are labeled as checkpoints, which reduces the
overall number of checkpoints and structurally places them as
roots of salient sub-trees where distinct branching decisions
were made.

When pertinent information is processed during the search,
e.g., a node is added or a collision point is detected, this
information is back-propagated through the tree and stored at
all checkpoint nodes that reside on the path from the current
extend node to the local tree root, q∗n . This process can be

c d

��� ���
χobs

��� ���
χobs

a

e

g

f

h

b

��� ���
χobs��� ���

χobs

��� ���

χobs

��� ���

�������������
���������

χobs

��� ���

χobs

�����

��� �����

χobs

Fig. 2. (a) - (d) The detected collision states (red dots) get stored (dotted
lines) in all checkpoint nodes (dots with purple outlines) along the path from
the current extend node, qx to the root, q∗n . (e) - (f) Each added node passes
its exploitation and exploration progress information back to its predecessor
checkpoints until (g) the search decides that it is stuck in a local minimum
trap based on lack of progress. (h) A new search-space region is selected by
the global search to route around the local minimum region.

seen in Alg. 2 lines 17 and 30–39 where information is
updated in four hashmap data structures (Hexploit, Hexplore,
Hobs, Hnum, explained more below) on checkpoint nodes
q ∈ Ncheckpoints ∩ Γ[q∗n, qx]. This procedure ensures that
checkpoints have access to information that has been processed
“downstream” at newer, more distal parts of its sub-tree
(illustrated in Figure 2).

V. PROBABILITY HEURISTICS

In this work, our method uses three probability heuristics,
one in the global planning level and two in the local planning
level (highlighted in green in Alg. 1 and 2). Each heuristic
tries to guide the search into search-space regions with a high
probability of containing δ–useful samples. In this section, we
describe each of these three heuristics.

A. Probability Heuristic 1

Probability Heuristic 1 is used by the global search to
select which search-space region would be best to next attempt
a local search. This assessment is based on two criteria:
(1) A good search-space region should have an end-point
q∗m ∈ M that gets closer to qgoal. Intuitively, global edges
that make progress toward the goal are more likely to have
useful samples; and (2) A good search-space region should be
far from any regions that already fostered local searches that
did not reach their respective goals. The goal of this second

Algorithm 3: probability_heuristic_1(Ng, M, Rlocalmin)

1 R[q∗n , q∗m]← ∅ ; best value = –∞
2 c1 ← 1 ; c2 ← 0.25 ; w1 ← 1 ; w2 ← 1.5
3 for all qn ∈ Ng do
4 for all qm ∈ M do
5 if R[qn, qm] /∈ Rlocalmin then
6 x1 ←

||qm–qgoal||
||qn–qgoal||

// characterizes how much closer region

would be getting to qgoal
7 g1 ← exp(–x2

1 / 2c2
1) // first Gaussian term

8 x2 ← 1 // initialization, iteratively constructed in for

loop below

9 for all R[qa, qb] ∈ Rlocalmin do
10 p1 ← proj+(qn, R[qb, qa]) // projection point 1

11 p2 ← proj+(qm, R[qa, qb]) // projection point 2

12 d1 ← ||p1 – qn|| ; d2 ← ||p2 – qm|| // distances to

projection points

13 x2 ← x2 ∗ (d1+d2
0.5∗||qinit–qgoal||

)

14 g2 ← (–exp(–x2
2 / 2c2

2) + 1) // second Gaussian term

15 if (w1 ∗ g1) ∗ (w2 ∗ g2) > best value then
16 best value = (w1 ∗ g1) ∗ (w2 ∗ g2)
17 R[q∗n , q∗m]← R[qn, qm] // update best search-space

region found thus far

18 return R[q∗n , q∗m] // return best overall search-space region found

���������∈ ���������

��

��

��

��

��

������ ������

��

Fig. 3. Projection procedure of a search-space region R[qn, qm] onto a region
already deemed to be a local minimum trap, R[qa, qb].

criterion is to de-prioritize the search from repeating a local
search in a region already estimated to be a local minimum
trap (stored in the Rlocalmin set in Alg. 1).

We model the two criteria outlined above as a mixture of
two respective Gaussian functions:

Pr1(Uδ(R[qg, qm]) | Tg) =

φ–1 ∗ [(w1 ∗ g1(qn, qm, Tg)) ∗ (w2 ∗ g2(qn, qm, Tg))]
(1)

These Gaussian functions can be seen in Alg. 3, lines
7 and 8–14. The φ scalar is a normalization constant, and
the w scalars signify weights that adjust the peaks of their
Gaussian terms. The default values for w1 and w2 were hand-
tuned, though our experiments below show that performance
is not overly sensitive to these parameters. The c scalar is the
standard deviation over these Gaussian functions, which we
set as the Euclidean distance from start to goal.

The g1 function uses Euclidean distances to achieve the first
criterion discussed above. Specifically, x1, the input variable
of the g1 Gaussian function, is designed such that the closer
a search-space region gets to qgoal compared to where it
started, the higher the probability value will be from g1. The
g2 function achieves the second criterion by projecting all
candidate search-space regions onto rays cast from the end-
points of prior unfruitful search-space regions (stored in the
set Rlocalmin) and deprioritizing candidate regions with end-
points close to any of these projections (Alg. 3, lines 9–14,
seen illustrated in Figure 3).

B. Probability Heuristic 2

Probability Heuristic 2 is used by the local search to decide
whether a particular node in the local tree search, qx, is

Algorithm 4: probability_heuristic_2(qx, T`,Ω`)

1 if qx ∈ Ncheckpoints then
2 return false // prevents a node from being extended more than twice

3 κ← 0.3 // lower bound for allowable probability

4 for all q ∈ Ncheckpoints ∩ Γ[(q∗n , qx)] // all checkpoints on the path from qx
back to q∗n

5 do
6 x1 ← Hexploit[q][0] / Hnum[q]; x2 ← Hexplore[q][0] / Hnum[q]
7 x← min(x1, x2)
8 c← log2(Hnum[q])–1

9 g← exp(–x2 / 2c2) // Gaussian value

10 if g < κ then
11 return false // if even one checkpoint is below the probability

threshold, the node is considered invalid to extend

12 return true

worthwhile to extend. This decision is made by checking
information stored at all checkpoints along the path from qx
back to q∗n. At a high level, qx is deemed worthwhile to extend
if either (1) all of the sub-trees rooted at checkpoints along
the path from qx back to q∗n have shown recent progress in
terms of getting closer to the goal, q∗m. Throughout this work,
we refer to this kind of progress as exploitation (stored and
tracked in the Hexploit hashmap in Alg. 2); or (2) all of the
sub-trees rooted at checkpoints along the path from qx back
to q∗n have shown recent progress in terms of getting further
from the tree root, q∗n. Throughout this work, we refer to
this kind of progress as exploration (stored and tracked in the
Hexplore hashmap in Alg. 2). If the sub-trees that qx is a part
of show no sign of recent exploitation or exploration progress,
the heuristic considers this region of the local tree trapped in
a local minimum, and qx is culled prior to extension.

We model Probability Heuristic 2 as the minimum of a set
of probability functions:

Pr2(Uδ(R[qx, q∗m]) | T`) =

min
q∈B

(g(qx, q, T`)), B ≡ Ncheckpoints ∩ Γ[q∗n , qx] (2)

The probability functions are modeled as Gaussian func-
tions, constructed in Alg. 4, lines 4 – 9. Here, x1 and
x2 are the number of collision-check samples since a node
has made exploitation and exploration progress, respectively.
These values are stored and updated in the Hexploit and Hexplore
hashmaps in Alg. 2, lines 17 and 31–38. We model this sub-
tree assessment process by taking the minimum of x1 and x2
in Alg. 4, line 7. Taking the minimum ensures that if either
exploitation or exploration progress are occurring in the given
sub-tree (i.e., either x1 or x2 are near 0), the sub-tree as a
whole will still be considered promising. This value is inputted
into the Gaussian function in line 9 to output the approximate
probability value g ∈ [0, 1]. The standard-deviation c value is
attenuated based on the number of nodes in a given sub-tree
(stored and updated in the hashmap Hnum in Alg. 2) such that
new sub-trees with few nodes do not fail too abruptly even
if they do not immediately show exploitation or exploration
progress. In our prototype system, we use a probability cut-
off of κ = 0.3, though our experiments below suggest that
performance is not overly sensitive to this parameter selection.

C. Probability Heuristic 3

Probability Heuristic 3 is used by the local search to cal-
culate which search-space region the local tree should extend

Algorithm 5: Common Functions
1 proj_scalar(q, R[qa, qb]) = (q–qa)·(qb–qa)

(qb–qa)·(qb–qa)
2 proj(q, R[qa, qb]) = qa + proj_scalar(q, R[qa, qb]) ∗ (qb – qa)
3 proj+(q, R[qa, qb]) =

qa + max(proj_scalar(q, R[qa, qb]), 0) ∗ (qb – qa)

4 hvs(x) =

{
0 if x ≤ 0
1 if x > 0

// Heaviside step function

Algorithm 6: probability_heuristic_3(qx, T`,Ω`)

1 w1 ← 0.5; w2 ← 1; w3 ← 1.2
2 qc ← qx + (qx – qp) // initial condition prior to gradient ascent

3 Nobs ← get_nearby_collision_points(qx, T`,Ω`) if
|Nobs| > 0 then

4 qc += ξ // small amount of noise

5 for 0...num iters do
6 qc += (w1

∂g1
∂qc

) + (w2
∂g2
∂qc

) + (hvs(|Nobs|) ∗w3
∂g3
∂qc

) // Equations 4,

5, and 6, respectively

7 qc ← qx + λ ∗ qc–qx
||qc–qx||

// re-set to length λ

8 return R[qx, qc]

into from an extend node qx. This region is computed based
on three criteria: (1) A good search-space region should follow
a straight line path with respect to the predecessor edge of qx.
This criterion prevents the local search from making drastic
turns and unnecessarily turning back on its own path; (2) A
good search-space region should get closer to the local goal,
q∗m. Intuitively, making progress toward the goal is estimated
to be useful; and (3) A good search-space region should move
away from previously observed collision points nearby (stored
in the Hobs hashmap in Alg. 2). A search-space region that is
pointing in the direction of a previously observed collision
point is also likely to collide, and thus, is less likely to lead
to a useful sample.

Instead of explicitly modeling a Pr3 model, we implicitly
define the model through its gradient with respect to a search-
space region end-point, qc: ∂Pr3(Uδ(R[qx,qc]))

∂qc
. Then, given

this gradient, we perform gradient ascent to steer local edges
in a way that would approximately optimize a Pr3. We model
this gradient as proportional to the sum of three weighted sub-
term gradients, each trying to achieve one of the three criteria
from Probability Heuristic 3 above, respectively:

∂Pr3(Uδ(R[qx, qc])) | T`)
∂qc

∝ w1
∂g1

∂qc
+ w2

∂g2

∂qc
+ w3

∂g3

∂qc
(3)

The ∂g1
∂qc

sub-term gradient pulls the search-space region in
a straight line with respect to its predecessor edge. Here, qp
denotes the predecessor node of the extend node, qx:

∂g1

∂qc
=

qx – qp

||qx – qp||
(4)

The ∂g2
∂qc

sub-term gradient pulls the search-space region
toward the local goal, q∗m:

∂g2

∂qc
= ψ2 ∗

q∗m – qc

||q∗m – qc||
ψ2 = exp(–||q∗m – qc||2 / 4λ2) + 1

(5)

Here, ψ2 increases the pull from ∂g2
∂qc

as the local tree
approaches its goal which helps avoid overshoot when doing
gradient ascent. The λ scalar is the fixed length of all local
search edges.

Algorithm 7: get_nearby_collision_points(qx, T`, Ω`)

1 Nobs ← ∅
2 for qcheckpoint ∈ Ncheckpoints ∩ Γ[q∗n , qx] // Ordered set of checkpoints from qx

back to q∗n
3 do
4 for qobs ∈ Hobs[qcheckpoint] do
5 if qobs /∈ Nobs then
6 Nobs

+← qobs // add collision point to Nobs
7 if |Nobs| > m then

// m is some maximum capacity of Nobs, e.g. 10

8 return Nobs
9 return Nobs

The ∂g3
∂qc

sub-term gradient pushes the candidate edge away
from a set of nearby, previously observed collision points
qobs ∈ Nobs (utility functions used in this sub-term gradient
can be found in Alg. 5):

∂g3

∂qc
=

1
|Nobs|

∑
qobs∈Nobs

ψ3,1 ∗ ψ3,2 ∗
proj(qobs, R[qx, qc]) – qobs

||proj(qobs, R[qx, qc]) – qobs||

ψ3,1 = hvs(proj_scalar(qobs, R[qx, qc]))

ψ3,2 = 5 ∗ exp(–||proj(qobs, R[qx, qc]) – qobs||2 / 4λ2)

(6)

The push from a particular collision point, qobs, is given in
the direction of qobs towards its projection onto the candidate
search-space region, R[qx, qc]. If this projection point lies
“behind” qx, i.e., proj_scalar(qobs, R[qx, qc]) < 0, the
collision point is considered already passed, and the ψ3,1 term
removes this collision point’s effect on the gradient. If qobs
lies “ahead” of qx, ψ3,2 attenuates the push strength away
from qobs such that a smaller distance between qobs and its
projection point corresponds to a stronger push, and vice versa.
The scalar 5 coefficient on the ψ3,2 term raises the peak of its
corresponding Gaussian to further strengthen the push away
from qobs if it is close to its projection onto R[qx, qc]. The
set of nearby collision states, Nobs, is efficiently accessed
in constant time, i.e., without using a heavy data structure
like a kd-tree, by using the checkpoint data back-propagation
technique outlined in §IV-B (Alg. 7). Here, collision points are
stored and accessed at checkpoint nodes in the Hobs hashmap
throughout Alg. 2. Note that if |Nobs| ≡ 0, the effect of ∂g3

∂qc
is cancelled by the Heaviside step coefficient in Alg. 6, line
6, and thus, ∂g3

∂qc
does not need to be computed in this case.

The ∂Pr3(Uδ(R[qx,qc]))
∂qc

gradient is used in gradient ascent
iterations to steer the local tree, as seen in Alg. 6. Because
this gradient ascent occurs at such a performance critical inner-
loop process, we only do one or two iterations per local search
loop in practice. By default, we use the point qx + (qx – qp)
as the initial condition for qc in the gradient ascent. Also, if
|Nobs| > 0, we add a small amount of noise to this initial
condition. In our prototype system, this noise vector is drawn
from a d-dimensional uniform distribution ξ ∼ Ud(–λ

100 , λ
100).

Without this small random push, the local search would just
stay on a single plane embedded in the configuration space.
We also re-set the edge length to λ after each gradient ascent
iteration (Alg. 6, line 7).

VI. ANALYSIS

In this section, we show the probabilistic completeness
property of SPRINT in Rd.

Sketch Proof : Consider Γ[qinit, qgoal] as any feasible solution
path found by a probabilistically complete planner parame-
terized by a set of k nodes, N ≡ {q1, q2, ..., qk}, connected
by linear edges, E. For example, solution paths found by
RRT or PRM would fit this definition. Now, suppose d-
dimensional open balls of radii r1 . . . rk, are centered around
nodes q1 . . . qk, which we will denote as Br1 (q1) . . .Brk (qk).
Each radius rj will be selected such that all of Brj (qj) lies
in free-space and all points in Brj (qj) can be connected
by collision-free lines with all points in Brj+1 (qj+1) ∀j ∈
[1, 2, ..., k – 1]. Note that because Γ[qinit, qgoal] is feasible, a
radius of rj > 0 must exist for all Brj (qj) [15].

Observation 1: Because milestone points are uniformly
sampled from χfree and each radius rj > 0, each Brj (qj) will
become dense with milestones in the limit [15]. Observation
2: SPRINT will process a local search between all current
global node and milestone point pairs each loop through
Algorithm 1 lines 2–16. Observation 3: If a collision-free,
straight-line path exists between a global node qn and a
milestone qm, the local search in SPRINT resolves to a
straight-line. From these observations, it can be seen that the
following recursive sequence will always happen in SPRINT:
a milestone point will eventually be sampled in Brj(qj), which
will be reached by a straight line local search from a global
node in Brj–1(qj–1) ∀j ∈ [2, 3, ..., k]. Note that qinit, i.e., q1,
and qgoal, i.e., qk, start as a global node and milestone point,
respectively, so these points bootstrap the recursive process
and never have to be exactly sampled. Therefore, SPRINT
must inherit the probabilistic completeness of any algorithm
that would eventually find a feasible path Γ[qinit, qgoal] as a
homotopically equivalent path will always eventually be found
by SPRINT. �

VII. EVALUATION

We have assessed the efficacy of our approach in three
empirical experiments. Although we demonstrate that SPRINT
is able to solve low-dimensional testbed problems used to val-
idate planning algorithms, as illustrated in Figure 1, we focus
our assessment on higher dimensional problems with robot
manipulators. In this section, we overview our experiments
and share results.

A. Implementation Details

Our prototype SPRINT implementation is implemented in
the Rust programming language. Robot manipulator self-
collisions and environment collisions are detected using the
ncollide Rust library. Configurations that exceed joint
position limits are also considered in a collision state. All
evaluations throughout this work were run on a Lenovo Legion
laptop with an i7-9750H processor and 32GB RAM. All
parameters used in SPRINT were held constant at their default
values for all problems in our evaluation.

B. Evaluation Benchmark

We developed a set of seven benchmark tasks to compare
our method against alternative path planners. The benchmark

a

b

c

Benchmark Times (Log10-scale)

Path Length Multiple

Sample δ-Usefulness (higher is better)

0.001
0.01

0.1
1.0

10.0
100.0

Se
co

nd
s

0.01
0.02

0.04
0.03

0.07
0.11

0.26 0.09
0.16

0.4
3.24

0.87
2.33

12.2 0.1
0.23

1.55
4.14

4.89
8.11

36.9 1.06
1.94

5.31
10.8

23.8
27.4

24.7 0.12
0.19

0.48
4.75

1.24
4.01

18.5 0.16
0.24

0.63
10.3

4.28
25.5

44.1 20.
60.

60.
60.

60.
60.

60. 60.
60.

60.
60.

60.
60.

60. 2.1
60.

60.
60.

60.
60.

60. 10.8
60.

60.
60.

60.
60.

60.

SPRINT RRT-C BiTRRT FMT* BIEST KPIECE RRT RRT* STOMP CHOMP

0.0
0.5
1.0
1.5
2.0
2.5

SPRINT RRT-C BiTRRT FMT* BIEST KPIECE RRT RRT* STOMP CHOMP

0
0.2
0.4
0.6
0.8
1.0

SPRINT RRT-C BiTRRT FMT* BIEST KPIECE RRT RRT*

Fig. 4. Results from Experiments 1 and 2. Bar colors denote different tasks, with ordering from left to right being Single Box (UR5), Table (UR5), Vertical
Bars (Sawyer), Narrow Passage Box (Sawyer), Over Boxes (Hubo+), Bookshelf (Hubo+), and Arms around Table (Hubo+). Error bars denote standard error.
The values above the log10-scale bars in (a) denote the standard decimal values of the bars (in seconds). A circle with a line through it indicates that no
solution was found on the given task in the allotted time.

was designed to test the planners on a wide variety of tasks
that range in dimensionality and topological structure. Our
benchmark consists of two tasks on a Universal Robots UR5
(6-DOF), two tasks on a Rethink Robotics Sawyer (7-DOF),
and three bimanual tasks on the DRC-Hubo+ (15-DOF). Two
of these tasks can be seen illustrated in Figure 1(b–c). The
UR5 tasks included (1) Single Box, where the robot moves
over a large box; and (2) Table, where the robot moves its arm
up and around a small table. The Sawyer tasks included (3)
Vertical Bars where the robot maneuvers around six vertical
bars; and (4) Narrow Passage Box where the robot maneuvers
out of a cramped box through a narrow passage. Finally, the
Hubo tasks included (5) Over Boxes where the robot moves
its arm up and over a set of boxes; (6) Bookshelf where the
robot moves an item from the top shelf to the bottom shelf;
and (7) Arms around Table where the robot maneuvers both
of its arms up and around a table to reach objects on top. Our
benchmark consisted of 100 trials through each task. All tasks
had a maximum evaluation time of one minute.

C. Experiment 1: Comparisons with Alternative Planners
In our first experiment, we compared performance on our

benchmark tasks to nine commonly used path planners: RRT
[16], RRT-Connect [17], RRT∗ [5], FMT∗ [6], KPIECE [18],
BiEST [4], BiTRRT [19], CHOMP [12], and STOMP [13]. All
methods were tested using their MoveIt! implementations with
default planner options. Also, we implemented RRT, RRT-
Connect, FMT∗, and EST within our framework to ensure that
the planning primitives in SPRINT, e.g., collision checking or
graph operations, were not eliciting unintended performance
gains. Our implementations used kd-trees for nearest neighbor
checking. We used both our own implementations and MoveIt!
in our evaluation and only report the better of the two
results for fairness. Across all planners and tasks, the highly
optimized implementations in MoveIt! were faster.

1) Results—Computation Time: Figure 4a provides an
overview of the average times needed to complete our bench-

mark tasks. SPRINT computed solution paths for the bench-
mark problems often one to three orders of magnitude faster
than alternative approaches. While many of the planners
did well on the somewhat simpler, lower dimensional UR5
problems, SPRINT still out-performed the other methods on
these tasks.

2) Results—Path Length: Figure 4b provides an overview
of average path lengths per each planner and task. The
paths computed by SPRINT are shorter or at most similar in
length compared to other sampling-based planners. Thus, the
performance advantages in computation time do not come at
the expense of lower quality paths. While optimizing planners,
such as RRT∗ and STOMP, did find higher quality paths on
the UR5 Single Box task, these results came at a significantly
higher computation cost. Further, these planners were not able
to find any solutions in the allotted sixty seconds for any of
the other benchmark tasks.

D. Experiment 2: Analysis of Performance Gains

In our second experiment, our goal was to investigate
whether the performance gains exhibited by SPRINT in Ex-
periment 1 could be attributed to enhanced sample efficiency.
We assessed the ratio of points from the solution paths from
Experiment 1 that were δ–Useful for each tested planner,
which we defined in §III-C. We defined δ to be 2λ for this
evaluation, where λ was the minimum edge length in the tree
or graph structure. We only report this δ-Usefulness metric
on the sampling-based planners as it is not applicable to the
local-optimization-based planners (STOMP and CHOMP).

Figure 4c shows the δ–Useful metric results. We observe
that SPRINT performs much better on this metric across all
tasks, indicating that many more of its samples were useful.
These results suggest that the performance gains from SPRINT
were indeed due to our intended goal of enhancing sample-
efficiency.

a

b

Benchmark Times (Log10-scale)

Path Length Multiple

0.001
0.01

0.1
1.0

Se
co

nd
s 10.0

100.0 0.01
0.02

0.04
0.03

0.07
0.11

0.26 0.02
0.03

0.06
0.05

0.1
0.17

0.34 2.14
3.36

2.14
3.36

7.04
5.14

10. 1.12
2.45

1.12
2.45

2.22
2.98

4.28 60.
60.

60.
60.

60.
60.

60.

SPRINT SPRINT-RP SPRINT Pr1- SPRINT Pr2- SPRINT Pr3-

0.0
0.5
1.0
1.5
2.0

SPRINT SPRINT-RP SPRINT Pr1- SPRINT Pr2- SPRINT Pr3-

Fig. 5. Results from Experiment 3. Bar colors denote different tasks,
with ordering from left to right indicating Single Box (UR5), Table (UR5),
Vertical Bars (Sawyer), Narrow Passage Box (Sawyer), Over Boxes (Hubo+),
Bookshelf (Hubo+), and Arms around Table (Hubo+). The values above the
log10-scale bars in (a) denote the standard decimal values of the bars (in
seconds). A circle with a line indicates that no solution was found.

E. Experiment 3: Analysis of Heuristics and Parameters

In our final experiment, our goal was to observe how the
performance of SPRINT changes if we systematically perturb
its parameters or remove its probability heuristics. We assessed
four conditions: (1) SPRINT-RP, which randomly offsets all
parameters such that each varies by up to 25% above or
below its original hand selected value. These random offsets
were drawn from a uniform distribution; SPRINT Pr–

1, which
replaced the Pr1 heuristic with a random global edge selection;
(2) SPRINT Pr–

2, which replaced the Pr2 heuristic with a
random, 50% chance of extending a node; and (4) SPRINT
Pr–

3, which replaced the Pr3 heuristic with a random extend
direction process.

Figure 5 overviews the results from Experiment 3. First, we
found that SPRINT-RP was comparable in terms of computa-
tion time and average path length, suggesting that SPRINT
is not overly sensitive to parameter tuning. However, we
see that performance significantly degrades when even one
probability heuristic is removed, suggesting that all of our
probability heuristics are integral and work in tandem in order
to enhance sample-efficiency and, in turn, boost performance.
Probability Heuristic 3 appears to be particularly important, as
no solutions were found in the allotted sixty seconds without
this heuristic model.

VIII. DISCUSSION

In this work, we presented a path planning approach that
is able to quickly and reliably solve high-dimensional path
planning problems. Through the notion of enhanced sample
usefulness afforded by a set of probability heuristics, we show
that our approach achieves significant performance gains over
standard approaches.

Limitations—We note a number of limitations of our work
that suggest future extensions. First, our probability heuristics
were constructed by observation and intuition. While our
three heuristics serve as proofs of concept for our overall
premise, we believe that better models, either hand-engineered
or data-driven, could improve results. Our approach also does
not guarantee asymptotic optimality. Lastly, our work does
not currently accommodate kinodynamic planning, though we
believe that extensions to our work could explore kinodynamic
steering functions compatible with Probability Heuristic 3.

ACKNOWLEDGMENTS

The authors thank Lydia Kavraki for valuable discussions
regarding this work.

REFERENCES

[1] K. Hauser, “Lazy collision checking in asymptotically-optimal motion
planning,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2015, pp. 2951–2957.

[2] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[3] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[4] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in Proceedings of International Conference on
Robotics and Automation, vol. 3. IEEE, 1997, pp. 2719–2726.

[5] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[6] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree:
A fast marching sampling-based method for optimal motion planning
in many dimensions,” The International Journal of Robotics Research,
vol. 34, no. 7, pp. 883–921, 2015.

[7] B. Burns and O. Brock, “Toward optimal configuration space sampling.”
in Robotics: Science and Systems. Citeseer, 2005, pp. 105–112.

[8] R. Alterovitz, S. Patil, and A. Derbakova, “Rapidly-exploring roadmaps:
Weighing exploration vs. refinement in optimal motion planning,” in
2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 3706–3712.

[9] B. Akgun and M. Stilman, “Sampling heuristics for optimal motion plan-
ning in high dimensions,” in 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2011, pp. 2640–2645.

[10] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 2997–
3004.

[11] ——, “Batch informed trees (BIT*): Sampling-based optimal planning
via the heuristically guided search of implicit random geometric graphs,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 3067–3074.

[12] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in 2009
IEEE International Conference on Robotics and Automation. IEEE,
2009, pp. 489–494.

[13] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
2011 IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 4569–4574.

[14] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev,
“Multi-heuristic A*,” The International Journal of Robotics Research,
vol. 35, no. 1-3, pp. 224–243, 2016.

[15] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of robot motion: theory, algorithms,
and implementation. MIT press, 2005.

[16] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[17] J. J. Kuffner Jr and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in ICRA, vol. 2, 2000.

[18] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in Algorithmic Foundation of Robotics
VIII. Springer, 2009, pp. 449–464.

[19] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on
configuration-space costmaps,” IEEE Transactions on Robotics, vol. 26,
no. 4, pp. 635–646, 2010.

	Introduction
	Related Works
	Preliminaries
	Problem Statement
	Graph-based Planning Structure
	Search-space Regions and Useful Samples

	Technical Overview
	SPRINT Global planning Level
	SPRINT Local Planning Level

	Probability Heuristics
	Probability Heuristic 1
	Probability Heuristic 2
	Probability Heuristic 3

	Analysis
	Evaluation
	Implementation Details
	Evaluation Benchmark
	Experiment 1: Comparisons with Alternative Planners
	Results—Computation Time
	Results—Path Length

	Experiment 2: Analysis of Performance Gains
	Experiment 3: Analysis of Heuristics and Parameters

	Discussion
	References

