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ABSTRACT: The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a
High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science
Foundation project based on an intensive field campaign that occurred from June to October
2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds
to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether
lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale
atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface
energy fluxes, with the aim to improve model-data comparison and integration. To address
these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was
deployed over a 10 km x 10 km domain of a heterogeneous forest ecosystem in the Chequamegon—
Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower
that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the
world’s highest-density networks of above-canopy EC measurements of surface energy fluxes.
This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps
of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements
of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor,
and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and
radiosondes. These observations are being used with large-eddy simulation and scaling experi-
ments to better understand submesoscale processes and improve formulations of subgrid-scale
processes in numerical weather and climate models.
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and—-atmosphere exchanges of energy, water, and carbon influence weather and climate.
The biological processes that mediate these exchanges with the atmosphere occur at
multiple spatial and temporal scales, necessitating cross-scale observational platforms.
Accurate accounting of land—atmosphere interactions is critical for improving the performance
of numerical weather and climate models. Unfortunately, there is a persistent mismatch
between the scales of observations and models. This scale mismatch is problematic because
the land surface exhibits substantial heterogeneity, which means that observations are not
always accurate reflections of the entire model grid cell. Furthermore, the atmosphere is
strongly influenced by nonlinear two-way interactions with radiation, land cover, and soil,
so that the spatial and temporal scaling of surface fluxes is fundamental to assessing the
parameterizations used in atmospheric models to represent land—atmospheric interactions.
The notion that land surface heterogeneity influences the surface energy balance—and
resulting atmospheric responses—emerged from early model simulations showing the im-
portance of soil moisture, vegetation, albedo, roughness, and heating on the atmosphere
(Garratt 1993; Mahrt 2000; Betts et al. 1996; Charney 1975; Avissar 1995; Pielke et al. 1998).
Theories on how land surface variations drive atmospheric boundary layer (ABL) growth
vary (e.g., Desai et al. 2006; Reen et al. 2014; Platis et al. 2017; Gantner et al. 2017), with no
consensus on whether responses scale linearly or nonlinearly and whether they differ for dry
versus moist dynamics (Raupach and Finnigan 1995). Modeling studies have been developed
from limited sets of observations of prior field experiments and from specialized modeling
domains using simplified boundary conditions (e.g., Kang et al. 2007; Hill et al. 2008, 2011;
Zhu et al. 2016). From these previous studies, scaling laws have been derived based on
numerical simulations (van Heerwaarden et al. 2014; Rihani et al. 2015), but a systematic
regional-scale observational experiment that quantifies the multiscale nature of subgrid
scaling and patterning has never been realized (Steinfeld et al. 2007).
An issue related to how heterogeneity influences transport processes in the ABL is the
energy balance closure problem. This refers to an observed tendency in eddy covariance
(EC) flux measurements in which the sum of incoming available energy [net radiation
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(R,) minus ground heat flux (G)] exceeds surface turbulent sensible and latent heat fluxes
(H,and H)) over subhourly time scales (Foken et al. 2011). Systematic studies have ruled out
instrument errors as the primary cause (Twine et al. 2000; Liu et al. 2011). Incomplete obser-
vation of submeasurement height storage flux accounts for only some of this lack of closure
(Leuning et al. 2012; Xu et al. 2018). Advection terms are not expected (in most cases) to have
a systematic direction that would always lead to lack of closure (e.g., Aubinet et al. 2010;
Barr et al. 2013; Nakai et al. 2014; Zitouna-Chebbi et al. 2012; Eder et al. 2015), while topog-
raphy contributes mostly in extreme cases (McGloin et al. 2018).

EC sites with more variable land cover tend to have larger closure imbalances
(Stoy et al. 2013; Z. Xu et al. 2017). One proposed hypothesis for lack of closure in the energy
budget is that surface heterogeneity generates mesoscale features not adequately resolved by
traditional EC methods (e.g., Charuchittipan et al. 2014; Gao et al. 2016; Foken et al. 2011;
Mauder et al. 2007b). An intensive suite of energy flux measurements between surface and
atmosphere at the mesoscale, on the order of tens of kilometers, can help address this key
uncertainty in land—atmosphere exchange (Xu et al. 2020).

Experimental goals

The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density
Extensive Array of Detectors 2019 (CHEESEHEAD19) was designed to provide a new level of
observation density and instrumentation reliability to test hypotheses on spatial heteroge-
neity and atmospheric feedbacks. The two main research objectives for the CHEESEHEAD19
experiment were 1) to investigate causes of energy balance nonclosure over heterogeneous
ecosystems and 2) to address the problem of scaling surface energy fluxes.

There is currently no definitive answer as to what is responsible for energy balance
nonclosure. CHEESEHEAD19 was designed specifically to test the hypothesis that heteroge-
neity is responsible for generating organized (sub)mesoscale structures that are not resolved
by traditional EC methods.

Various theories suggest that “spatial” EC, where multiple towers are combined to estimate
the mesoscale contribution to the total flux, could be used to analyze this contribution and
“close” the energy balance (Steinfeld et al. 2007; Mauder et al. 2008b). To calculate spatial
fluxes, CHEESEHEAD19 deployed an EC tower network and airborne EC measurements. These
measurements provide spatial patterns of surface energy fluxes across various vegetation
and surface types in the heterogeneous landscape. Alongside this EC flux network, multiple
platforms were deployed to characterize the atmospheric environment by profiling relevant
atmospheric characteristics across a range of scales. This allows us to determine the exis-
tence of and characterize the nature of organized mesoscale structures. We can investigate
the degree to which mesoscale eddies are responsible for energy balance nonclosure in EC
measurements, and whether land surface energy partitioning and atmospheric responses
differ from the sum of their individual components.

To systematically address surface energy balance variability in the heterogeneous forested
landscape, a precampaign large-eddy simulation (LES; see the appendix for a list of acronyms
used throughout the paper) analysis of the study domain was conducted. It was found that,
while 12 flux towers would be sufficient to adequately sample land-cover variation, >15 flux
towers are required to sample mesoscale eddy structures and close the energy budget; a similar
result to Steinfeld et al. (2007). Therefore, the CHEESEHEAD19 field campaign deployed 20
flux towers, a marked increase over previous experiments.

CHEESEHEAD19 asks how we can optimally observe and simulate the terms of the sur-
face energy balance and the corresponding atmospheric responses to heterogeneous surface
forcings. The objective is to evaluate methods for scaling surface energy fluxes, with the aim
of improving model-data comparisons. To this end, we conduct LES and machine-learning

AMERICAN METEOROLOGICAL SOCIETY BAMS FEBRUARY 2021 E3



scaling experiments to simulate submesoscale responses. These will be compared to measured
quantities to test theory and to improve our understanding of how scale-dependent transport
processes in the lower atmosphere respond to surface heterogeneity. The dataset collected
during this study will help test multiple scaling methodologies across heterogeneous land
cover. Specifically, it aims to test the environmental response function—virtual control volume
(ERF-VCV) approach (Metzger 2018; Xu et al. 2018), which combines the strengths of both
data-driven and mechanistic strategies.

Several additional research objectives are addressed by using the unique data resources
of CHEESEHEAD19. These include a separately funded study to use CO, fluxes of Integrated
Surface Flux System (ISFS) towers and hyperspectral imagery of canopy functional traits to
determine the principal drivers of variation in net primary production (NPP) and carbon use
efficiency across a broad array of forest ecosystems. Additionally, concurrent measurements
of ozone (0,) mixing ratios at 30 and 122 m on the tall tower were made using a chemical
ionization time-of-flight mass spectrometer (CI-ToFMS; TOFWERK AG and Aerodyne Research
Inc.) and a photometric analyzer (Model 49i; Thermo Fisher) to obtain vertical O, profiles
above the forest canopy (Bertram et al. 2011; Novak et al. 2020). These measurements were
accompanied by flights of a small unoccupied aircraft system (SUAS)-mounted lightweight O,
monitor (POM; 2B) that obtained vertical concentration gradients. These measurements are
being used to determine the relative contributions of stomatal uptake and other nonstomatal
loss pathways to O, deposition within a mixed forest canopy.

The experiment

Overview. CHEESEHEAD19 investigators deployed an extensive suite of ground, tower, pro-
filing, and airborne instrumentation over a 10 km x 10 km domain in a forested and aquatic
landscape in northern Wisconsin, United States (Fig. 1; Table 1), centered on the existing Park
Falls 447-m-tower AmeriFlux/NOAA supersite (US-PFa/WLEF). The main components of the
CHEESEHEAD19 field campaign were

1) ground-based fluxes and meteorology,
2) airborne fluxes and meteorology,

3) atmospheric profiling, and

4) surface environment characterization.

The EC tower network consisted of 17 towers from the NSF Lower Atmosphere Observing
Facility (LAOF) ISFS, two additional towers, and the central tall AmeriFlux tower, US-PFa.
Ground-based measurement of vegetation occurred at 41 plots in the domain, plus an
additional 10 plots for measuring phenology. Airborne spectroscopy imaging was used to
map leaf chemistry and canopy properties.

The suite of atmospheric profiling instruments included the LAOF Integrated Sound-
ing System (ISS; Fig. 2c, Fig. ES1 in the online supplemental material) and the University
of Wisconsin (UW) Space Science and Engineering Center Portable Atmospheric Research
Center (SPARC) system (Fig. 2a). Additional instrument systems were brought by collaborators,
including the combined ATMONSYS lidar for measuring aerosol, T, and H,O profiles and two
Doppler wind lidars brought by Karlsruhe Institute of Technology (KIT), two Collaborative
Lower Atmospheric Profiling Systems (CLAMPS, from NOAA/NSSL), two 915-MHz radar wind
profilers with radio acoustic sounding systems (RASS) with microwave radiometers (MWRs,
from NOAA/PSL), and the Surface Radiation Budget Network (SURFRAD, from NOAA/GML)
systems for measuring incoming and outgoing radiation and cloud properties. While many
of these instruments were located within the 10 km x 10 km CHEESEHEAD19 domain, some
instruments were located at the Prentice and Lakeland airports, located approximately 45 km
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Fig. 1. Maps and schematic diagram of CHEESEHEAD19 domain. (a) Map of the study area in Wisconsin.
(b) Map of the location of all measurements made during the field campaign. Insets show Lakeland and
Prentice airports where SURFRAD (in addition to the one in ISS field), radar wind profilers with RASS, and
CLAMPS systems were installed. (c) Schematic diagram shows instrument location and a conceptual model
of airborne data collection. Figure ES1 shows detailed maps of instrument locations at ISS and WLEF sites
(Wisconsin Department of Natural Resources 2019).
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Table 1. List of instruments and data collected during CHEESEHEAD19. Definitions of variable abbreviations are located
in the appendix. Profiling instrument measurement ranges and resolutions are in Table ES1. Footnotes in Measured
variables and Period columns correspond with Location(s).

Data source Data provider Location(s) Measured variables Period
Ground-based measurements
AmeriFlux/NOAA tall tower UW AOS WLEF Hg, H,, Fop T, R, meteorology Continuous
(US-PFa/WLEF)
ChEAS AmeriFlux towers: US-WCr/ UW A0S AmeriFlux sites (4) H, H,, Fe, T. R, meteorology Continuous
US-Los/US-Syv/US-Alq
ISFS eddy covariance towers NCAR EOL ISFS 10km x 10 km (17 sites) ~ H,, H,, F_,,, T, R,, meteorology, soil G, Q,  Jun—Oct
C,. T profile, precipitation (5 sites)
MSU eddy covariance towers Montana State U NWS5 (ISS) and SE1 Hy, H, Fe, T. R, s0il G, C, meteorology  Jun—Oct
and UW BSE
Surface meteorology NCAR EOL ISS ISS field T, RH, P, precip, wind, sky images Jul-Oct
SURFRAD and TWST NOAA GML ISS field' Downwelling SW/LW'?2, direct SW'?, Jul-Oct (TWST:
Prentice airport? diffuse SW'2, upwelling SW/LW', PAR!, Sep—0ct)
Lakeland airport? sky images‘, cloud opticql depth{, cloud
fraction?, cloud base height?, mixed
layer depth?, meteorology!
Precipitation Imaging Package UW SSEC WLEF PSD, fall speed, rain rate Jul-Oct
Vehicle/pedestrian/boat transects Jackson State U 10 km x 10 km— T, RH, P, total downwelling SW, IR I0Ps 1, 2,3
roads/trails/Hay Lake brightness temperature, water T
Chemical ionization mass spec and UW Chem WLEF 0Ozone concentration and flux I0P 1
ozone photometric analyzer
Tall tower greenhouse gases NOAA GML WLEF C0,, CH, concentration and CO,, CH, Continuous and
profiles biweekly
Tree temperature Chequamegon HS 5 sites, 10 trees T at breast height (1.37 m AGL) Oct
Atmospheric profiling
449-MHz modular wind profiler NCAR EOL ISS ISS field 3D wind profiles Jul-Oct
Sodar-RASS NCAR EOL ISS ISS field 3D wind, T, and 6, profiles Jul-Oct
Ceilometer NCAR EOL ISS ISS field Attenuated backscatter profiles, cloud Jul-Oct
base height, ABL height
Daily radiosonde NCAR EOL ISS ISS field 1800 UTC (1300 local time) Jul-Oct
3-hourly daytime radiosondes NCAR EOL ISS ISS field 4-5 day~' for 5 days per 10P I0Ps 1,2, 3
AERI UW SSEC SPARC ~ WLEF Downwelling IR radiance, profiles of T, Jul-Oct
H,0, and cloud properties
HALO lidar (1)—uvertical stare UW SSEC SPARC WLEF Profiles of 3D wind (virtual tower) Jul-Oct
HSRL UW SSEC SPARC  WLEF Backscatter, depolarization Jul-Oct
Micro Rain Radar (MRR) UW SSEC WLEF Precipitation rate, reflectivity, particle Jul-Oct
size distribution (PSD)
ATMONSYS: Backscatter, Raman, KIT IMK-IFU WLEF Vertical profiles of aerosol backscatter, Jul-Sep
and differential absorption lidar T, H0
HALO lidars (2,3)—RHI scans KIT IMK-IFU WLEF Profiles of 3D wind (virtual tower) Jul-Sep
915-MHz radar wind profiler w/radio  NOAA PSL Prentice airport, Profiles of U, T,, convective ABL height Jul-Oct
acoustic sounding system Lakeland airport
MWR NOAA PSL ISS field' Downwelling microwave radiance, Jul-Oct?
Prentice airport? profiles of 7, H,0, and liquid water path  jy|-Sep? Sep—Oct!
Lakeland airport?
CLAMPS (MWR, AERI, Doppler wind ~ NOAA NSSL Prentice airport, Profiles of U, T, H,0 Sep—Oct
lidar) Lakeland airport
Airborne measurements
Airborne eddy covariance UWKA 30 km x 30 km, 24 flights 3D wind, T, H,0, CO, (25 Hz; ~3 m) I0Ps 1, 2,3
Airborne meteorology and radiation ~ UWKA 30 km x 30 km, 24 flights ~ Meteorology (1 Hz; ~80 m) I0Ps1,2,3
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Table 1. (Continued).

Data source Data provider Location(s) Measured variables Period

Compact Raman Lidar (CRL) UWKA 30 km x 30 km, 24 flights ~ H,0 and T cross sections I0Ps 1, 2,3

Wyoming Cloud Lidar (WCL) UWKA 30 km x 30 km, 24 flights ~ ABL height IOPs1,2,3

Meteodrone SSE sUAS NOAA ARLATDD  WLEF and SW2 T.HO, U IOPs1,2,3

Ozone sUAS UWEC WLEF 0, T H0 0P 1

Surface environment
HySpex UW FWE 10 km x 10 km, 4 flights Hyperspectral imagery (474 bands), foliar  Jun—Aug
functional traits

DJI S-1000 (sUAS) NOAA ARLATDD  WLEF and SW2 LST, H, IOPs 1,2

Routescene lidar (sUAS) UW-Mad Geog 11 tower sites Ground and canopy height (leaf on) June

QL2 lidar USFS 30 km x 30 km Ground and canopy height (leaf off) Fall 2018

Vegetation/phenology sampling UW-Mil Geog 10 km x 10 km Leaf color/fall level Sep—Oct
(10 plots)

Vegetation sampling UW FWE 10 km x 10 km Inventory, root growth, NPP, biometry, Jun—0ct
(41 plots) leaf spectra, foliar tissue chemistry, LMA

Soil samples NCAR EOL 17 tower sites Heat capacity and soil bulk density Jul-Oct

Soil samples UW AOS 16 tower sites Soil carbon, nitrogen Oct

Soil samples Butternut Schools 7 sites Soil and water chemistry July

ECOSTRESS, GEDI, 0C03 NASA JPL 30 km x 30 km LST, emissivity, evapotranspiration Periodic

south and east of the WLEF tower, respectively, to provide information on the spatial vari-
ability of boundary layer structure and cloud and radiation fields.

Three 7-day intensive observation periods (IOPs) occurred on 7-13 July, 18-24 August,
and 22-28 September. During these IOPs the University of Wyoming King Air (UWKA) flew
transects over an extended 30 km x 30 km domain to measure EC fluxes, ABL depth, and
atmospheric profiles of water vapor and temperature. These observations will be used to
test flux tower scaling, observe atmospheric mesoscale patterning, and evaluate LES. Also,
during the IOPs, a team from NOAA/ARL/Atmospheric Turbulence and Diffusion Division
(ATDD) brought multiple sUASs for measuring profiles of meteorological variables (T, H,0,
U, P; see the appendix for a list of variables used in this paper) and land surface temperature.
Additional information on the spatial variations of surface meteorology was obtained using
mobile observing systems operated in pedestrian, boat, and car modes.

The 4-month deployment spanned the summer to fall transition, capturing the shift in
surface energy balance from a more uniform evapotranspiration (latent heat flux) dominated
landscape to a patchy sensible heat flux dominated landscape. These energy balance shifts
arise from seasonal changes in plant phenological phases, ecosystem water use for photosyn-
thesis, and available net radiation. These shifts provide a “natural experiment” with which to
test hypotheses on how heterogeneity influences energy balance closure and spatial scaling.

The study domain was partly chosen due to the history of atmospheric science research
in the region. Since 1995, university and NOAA investigators have sampled greenhouse gas
profiles, meteorology, and EC flux measurements (energy, carbon, momentum) at 30, 122,
and 396 m above ground level (AGL; Fig. 2b) on the WLEF tall tower (Bakwin et al. 1998;
Davis et al. 2003). The site also includes a Fourier transform infrared solar-pointing
spectrometer (TCCON) for total greenhouse column observations operated by CalTech
and NASA JPL. Two additional EC towers (US-WCr, 30 m in mature forest, and US-Los,
10 m in shrub fen wetland) have been operating for 20 years, approximately 20 km from
the tall tower (Cook et al. 2004; Desai et al. 2005; Sulman et al. 2009). The scales of
atmospheric motions at the site are characteristic of a midlatitude continental site—with
synoptic westerlies dominating and weather systems passing through on a multiday

AMERICAN METEOROLOGICAL SOCIETY BAMS FEBRUARY 2021 E7




period, associated with the movement of the midlatitude jet. Being 75 km south of Lake
Superior and 225 km west of Lake Michigan, the Great Lakes do not typically influence

mesoscale motions at the site.
CHEESEHEAD19 builds upon previous
tower mesonet experiments, including
BOREAS (Sellers et al. 1995), CASES99
(Poulos et al. 2002), SGP97 (Desai
et al. 2006), IHOP (Kang et al. 2007),
LITFASS-2003 (Beyrich et al. 2006), EBEX
(Oncley et al. 2007), BEAREX (Alfieri
et al. 2012), HHIWATER-MUSOEXE (Wang
et al. 2015), SCALE-X (Wolf et al. 2017),
and GRAPEX (Kustas et al. 2018), that
were aimed at understanding scaling of
nonlinear land—atmosphere interaction.

Instrumentation and measurements

GROUND-BASED MEASUREMENTS. Towers
sampled three-dimensional wind velocity,
temperature, moisture, and CO, at 20 Hz
to measure land—atmosphere fluxes (T,
H,, H,, F.,,). Each tower also measured
net radiation, soil heat flux at 5-cm depth
(and soil temperature profiles, heat ca-
pacity, and moisture to determine soil
heat storage), and included a three-level
air temperature and humidity profile to
estimate canopy heat storage. A majority
of the sites were forested and had flux

Fig. 2. (a) HSRL beam next to WLEF tall tower, (b) EC instru-
ments at 396 m AGL on the WLEF tall tower, and (c) the ISS field
with modular wind profiler, MWR, ceilometer, sodar-RASS,
SURFRAD, EC, and meteorological towers with UWKA flying
overhead and WLEF tall tower in the distance.

instruments mounted 33 m AGL (Fig. 3; Table ES2). Instruments for wetland, grass, and lake
sites were mounted between 1 and 3 m AGL to maintain consistent vegetation within the flux
footprint. Tower placement within the 10 km x 10 km study domain followed a stratified ran-
dom grid pattern, taking into account practical considerations including distance to road,
a suitable gap in trees for a tower, U.S. Forest Service (USFS)-owned land, etc. Individual
towers were an average of 1.4 km from their nearest neighboring tower and an average of 3.5
km from the tall tower. This meant that under certain conditions (e.g., high wind speeds,

stable stratification) several of the towers
shared overlapping flux footprints; a fa-
vorable condition for applying some of the
data-driven scaling methods used in the
project. Additionally, the semi-random
placement meant that the towers were not
chosen by distributing the towers in the
centers of the most homogeneous areas
of the various land-cover types. Thus,
within the individual footprint of each
tower there was often spatial variability
in vegetation height and type (deciduous
vs evergreen). While this can compli-
cate analyses of flux measurements, it

AMERICAN METEOROLOGICAL SOCIETY

Fig. 3. (a) EC tower SW1—an example of the 33 m AGL tele-
scoping towers deployed by NCAR ISFS and (b) EC instruments
mounted at the top of tower SW2.
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generates more representative data from these types of mixed forests. Furthermore, we expect
it will enhance the ability of the data-driven methods for estimating domain-wide fluxes.

A suite of high-quality radiation sensors was deployed in the ISS field as a complement to
the net radiometers installed on each flux tower. The full suite included high-quality upwell-
ing and downwelling broadband surface radiation measurements to determine the surface
radiation budget, as well as ancillary measurements of meteorological parameters, photosyn-
thetically active radiation (PAR), and clouds as described in Table ES3. Radiation measurements
were manually screened and then processed through an automated data quality procedure
(Long and Shi 2008). Clear-sky radiation fluxes are estimated using the Radiative Flux Analysis
method (Long and Ackerman 2000; Long and Turner 2008), from which derivation of cloud
radiative effects as well as other data products such as fractional sky cover (Long et al. 2006;
Diirr and Philipona 2004) and cloud optical depth (Barnard and Long 2004; Niple et al. 2016) are
calculated. Measurements of cloud properties will allow us to quantify their impacts on the radia-
tive and turbulent heat fluxes to better understand the two-way coupling between cloud-radiative
interactions and boundary layer evolution, and to investigate the effect on EC nonclosure.

A smaller suite of radiation, cloud, and surface meteorological measurements were deployed
at the Prentice and Lakeland airports, approximately 45 km south and east from the ISS field,
respectively (Fig. 1), to characterize the larger-spatial-scale inhomogeneities. These measurements
include downwelling shortwave and longwave irradiance as well as diffuse and direct compo-
nents of shortwave irradiance (Table ES3); sufficient information to derive cloud radiative effects
and fractional sky cover using the Radiative Flux Analysis method described above. Ceilometers
deployed at the two airport sites provided additional cloud and boundary layer information.

AIRBORNE MEASUREMENTS. During each IOP the UWKA flew over the study area to measure
spatial EC fluxes of heat, water vapor, and CO,. The purpose of the airborne observations
was to test flux tower scaling and observe atmospheric mesoscale patterning. The UWKA
also measured cross-sectional profiles of water vapor and temperature below the flight level
using a downward-pointing Compact Raman Lidar (CRL; Wu et al. 2016) and ABL depth with
the upward-looking Wyoming Cloud Lidar (WCL; Wang et al. 2009).

Flights over the domain occurred on 4 days during each of the three IOPs (Table ES4).
On each day there were two 3-h flights, one
in the morning (1400-1700 UTC) and one
in the afternoon (1900-2200 UTC). Flights
consisted of ten 30-km down-and-back tran-
sects across the domain. The first leg of each
transect was flown at 400 m AGL, while the
return leg was flown at 100 m AGL. Flight
transects alternated between straight and
diagonal passes.

Three different flight patterns were de-
termined prior to the experiment (oriented
SE-NW, SW-NE, and W-E; Fig. 4). Flying
them either in forward or reverse order re-
sulted in six distinct flight sequences that
maximize data coverage under different
wind conditions (see the sidebar). The main

objectives were to maximize 1) the number of . . . .

. ) . Fig. 4. The location (superimposed) of all 480 UWKA flight
independent atmospheric eddies and 2) sur- legs completed during the CHEESEHEAD19 field campaign.
face flux footprint observed by the aircraft  ype yellow square represents the study domain and the red
EC measurements, while 3) ensuring crew  dots indicate the flux tower locations.

 — == s m— _ =L
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safety. This was achieved by designing a parsimonious set of only three flight patterns that
allowed the UWKA to fly perpendicular to the prevailing winds within a range of +45° on
any given day (Metzger et al. 2021, manuscript submitted to Atmos. Meas. Tech.). The 30-km
flight legs extended an average of 10 km beyond the domain to compute a robust mesoscale
eddy flux (Mauder et al. 2007a, 2008a) by capturing enough eddies and mesoscale variation
to properly compute statistics for fluxes using the wavelet decomposition method.

The low-altitude legs were primarily used to measure EC fluxes. The altitude 100 m AGL
was chosen to ensure flux measurements were made in the surface layer, as well as to mini-
mize flux footprint errors over the 10 km x 10 km sampling domain. It was also the lowest
altitude deemed safe to fly, as canopy height extended up to 35 m. The low-altitude legs were
also used to identify ABL depth with the upward pointing 355 nm WCL. The primary purpose
of the high-altitude legs (400 m AGL) was to map temperature and moisture profiles of the
atmosphere with the CRL. These data were collected to estimate mesoscale development and
calculate flux divergence and storage terms.

ATMOSPHERIC PROFILING. Characterizing the mesoscale environment over the study domain was
accomplished with a range of platforms and instruments to measure profiles of wind, water
vapor, temperature, aerosols, and gases at different temporal and spatial scales (Fig. 1; Table 1).

The NCAR ISS was located in a field 1.6 km west of the tall tower (45.946°N, 90.294°W).
It deployed a radar wind profiler, sodar—-RASS, ceilometer, all-sky camera, and a surface
meteorology station to measure ABL depth, winds, water vapor, and temperature. The
449-MHz modular wind profiler measured 30-min wind profiles with 150-m vertical reso-
lution up to several kilometers AGL, while the sodar-RASS was capable of higher resolu-
tion (20 m; 10 min), but only penetrated to ~400 m AGL. Meteorological profiles were also
measured with 172 radiosonde launches (daily 1800 UTC soundings and 3—-4 additional
soundings on IOP days). These instruments characterized the ABL from nocturnal boundary
layer (sunrise sounding), through ABL development (midmorning and afternoon), to peak
ABL (late afternoon sounding). In mid-September, one of the MWRs located at the Prentice
Airport was relocated to this location, due to the failure of the AERI at the tall tower site
in early September.

Several profiling systems were deployed at the base of the tall tower. SPARC (Wagner et al. 2019)
was located 50 m north of the WLEF tower and was equipped with an Atmospheric Emitted
Radiance Interferometer (AERI, a zenith-pointing infrared radiometer; Knuteson et al. 2004),
a high spectral resolution lidar (HSRL; Eloranta 2005), and a ceilometer. Profiles of bound-
ary layer temperature and humidity were retrieved from the AERI radiance observations
(Turner and Lohnert 2014; Turner and Blumberg 2019). The HSRL sampled ABL aerosol
backscatter and depolarization ratio at 532 and 1,064 nm. The ceilometer provided an ad-
ditional measure of ABL depth.

The ATMONSYS system was placed beside the SPARC system, measuring atmospheric water
vapor, temperature, and aerosol. The primary light source of the ATMONSYS lidar is a 100-Hz
diode pumped Nd:Yag laser with the harmonic generation of 532 and 355 nm. The 532-nm
light (P = 27 W) is used for optical pumping a Ti:Sapphire laser, generating 817 nm (P = 2 W)
for water vapor profiling with the high-resolving DIAL (differential absorption lidar) method
as well as for profiling aerosol backscatter. The 355-nm light is used for temperature profiling
from rotational Raman backscatter. The system setup as installed during CHEESEHEAD19
(Vogelmann et al. 2020) allows for spatial sampling of 7.5 m and integration times of 20 s for
aerosols and water vapor measurements and 300 s for temperature profiling.

In the field to the east of the trailers were three Doppler wind lidars. One lidar (LVS)
measured in vertical stare mode throughout the measurement campaign. The other two
lidars (LA, LB) were placed 90 m away from the LVS and made range—height indicator (RHI)
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scans (66°-87° elevation angle) pointing toward the LVS. This setup constitutes a virtual
tower that provides vertical wind speed measurements and calculates average horizontal
wind speed at multiple height levels above the LVS (Calhoun et al. 2006; Klein et al. 2015;
Wulfmeyer et al. 2018). Additionally, the collocation of lidars for measuring 3D winds, tem-
perature, and water vapor facilitates calculation of flux profiles of 7, H;, and H,, as well as
flux divergence (Wulfmeyer et al. 2016).

Two precipitation instruments [a Precipitation Imaging Package (PIP) and a Micro Rain
Radar Pro (MRRPro; Metek GmbH)] were installed at WLEF. The PIP is a video disdrometer
system that records information about hydrometers and produces end user products such as
particle size distributions, fall speeds, and rain rate at 1-min resolution (Newman et al. 2009;
Pettersen et al. 2020a,b). The MRRPro is a 24-GHz, frequency modulated continuous wave,
vertically profiling Doppler radar (Klugmann et al. 1996) that is used for observations of both
rain (i.e., Peters et al. 2002) and snow (Kneifel et al. 2011).

Additional thermodynamic profiling systems were operated at the Prentice and Lakeland
airports throughout the experiment to characterize the boundary layer variability and evolu-
tion around the CHEESEHEAD19 domain. The primary motivation of these two profiling sites
was to characterize the mesoscale transport and role of advection on the ABL mass balance.
At each location, a 915-MHz wind profiler with radio acoustic sounding system was deployed
together with a multichannel MWR. These instruments provided profiles of horizontal wind
and temperature, and low-vertical-resolution profiles of water vapor.

Prior to IOP 3, two mobile CLAMPS facilities (Wagner et al. 2019) were deployed at Prentice
and Lakeland. The systems contained a Doppler lidar wind profiler, an AERI, and an MWR.
The information content in the AERI observations is higher than in the MWR, and thus the
retrieved water vapor and temperature profiles have better vertical resolution and accuracy
(Lohnert et al. 2009; Blumberg et al. 2015). The Doppler lidars complemented the radar wind
profilers, providing higher-temporal-resolution and higher-vertical-resolution measurements
than the radar systems up to 1.5 km AGL on average, while the radars were able to extend
wind profiles up to 3.0 km on average, albeit at coarser resolution (Table ES1).

Two sUASs were flown to characterize surface and near-surface conditions (Fig. ES2). During
IOP1 (IOP2), a DJI S-1000 (e.g., Lee et al. 2019) was flown adjacent to the SW2 tower (WLEF
tall tower) to quantify the variability in surface sensible heat flux (e.g., Lee et al. 2017). During
all three IOPs, the Meteomatics Meteodrone SSE sUAS was used to sample the evolution of
near-surface profiles of temperature, moisture, and wind up to 213 m AGL, which was the
maximum altitude to which we could operate our sUAS per our cooperative agreement with
the Federal Aviation Administration (FAA). Additionally, the Meteodrone SSE was used to
sample the horizontal variability in temperature, moisture, and wind fields over a ~100 m x
100 m box surrounding the SW2 and WLEF towers. Over the three IOPs, 26 (103) flights were
conducted with the DJI S-1000 (Meteodrone SSE).

SuRFACE ENVIRONMENT. Data describing the ecological environment were collected to provide
the boundary conditions of canopy type, activity, and stress, needed for estimating scaling
properties. This was done with a variety of methods, including airborne imaging spectroscopy,
ground-based phenological characterization, and tree growth measurements.

Foliar functional traits such as leaf mass per area (LMA) and nitrogen concentration
strongly influence photosynthetic capacity and plant growth (i.e., NPP) (Niinemets 2001;
Kattge et al. 2009) and can be mapped using imaging spectroscopy (a.k.a. hyperspectral
remote sensing; Kampe et al. 2011; Singh et al. 2015). To map foliar functional traits across
the domain a full-range imaging spectroscopy system comprising two co-aligned imagers
(VNIR-1800 and SWIR-384; HySpex, Skedsmokorset, Norway) was operated from a Cessna
210 at 1,400 m AGL on 4 days (26 June, 11 July, 4 August, 30 August), producing images with
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1-m spatial resolution. The HySpex collects 474 bands with a spectral resolution of 3.26 nm
in the VNIR (400-1,000 nm) and 5.45 nm in the SWIR (1,000-2,500 nm).

Extensive ground-based vegetation samples were collected to support the hyperspectral
image analyses. These included 41 plots in the domain for measuring tree species (400+
trees), root growth, tree height, diameter at breast height (DBH), NPP, biometry, and leaf area
index (LAI). In addition, 122 top-of-canopy foliar samples were collected to estimate leaf level
function traits following the protocol from Serbin et al. (2014).

In combination with an existing extensive database of foliar traits and image spectra
(Wang et al. 2020), we will use the 122 foliar samples to develop and validate 1-m-resolution
maps of numerous foliar functional traits hypothesized to influence NPP (including LMA,
nitrogen concentration, chlorophyll and other pigments, phosphorus, nonstructural carbo-
hydrates, fiber and lignin, and phenolics) for all four dates of the hyperspectral image col-
lection. From this, we will test the relationship between functional traits and gross primary
production (GPP; as derived from towers) and peak-season integrated NPP (early July to early
September, derived from the 41 plots). We will generate 1-m maps of NPP and GPP and identify
the foliar factors that most influence each.

Additional plots were used to measure vegetation phenology as it changed through the
season, building upon several years of previous phenological observations collected in the
domain. Autumn tree leaf color and fall phenology levels were visually observed and recorded
at least twice weekly over 6 weeks during the senescence period (1 September to 25 October)
for a group of 214 individual trees (at 10 sites distributed over the 10 km x 10 km area) that
were representative of the major species.

Forest canopy structure was characterized using an sUAS-based lidar system (Routescene;
Edinburgh, Scotland) acquiring high density point clouds (500 points per square m) within
footprints from 11 CHEESEHEAD19 flux tower sites including aspen, pine, poplar, larch,
cedar, and hardwood forests (e.g., Antonarakis et al. 2014). Areas surveyed ranged between
0.25 and 1 km? per site. Additional canopy information for the entire domain came from
leaf-off lidar from USFS sampling (1 m x 1 m resolution) conducted for the three counties
that comprise the study area between 2014 and 2017.

Land surface temperature (LST) is a key environmental driver of the surface energy balance
(e.g., Anderson et al. 2008; Metzger et al. 2013; K. Xu et al. 2017). Spatially explicit LST can be

ERA5 7 Landsat 8

300 km

300 km ) 10 km

Fig. 5. Land surface temperature on 15 Jun 2019 from (a) ERA5 and (b) derived from Landsat-8,
where subgrid spatial resolution is present, but temporal resolution is low at one image every
8 days (Gerace et al. 2020; Landsat 8 data courtesy of the U.S. Geological Survey; ERA5 data
generated using Copernicus Climate Change Service Information 2020).
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acquired from satellite remote sensing (Fig. 5). However, there are tradeoffs in space and time
resolutions such that no single sensor provides sufficient resolution for use as a land surface
driver to map heat fluxes across space at subkilometer and hourly time steps required for the
hypotheses here. Also, remote sensing methods may not be able to distinguish between true
surface temperature and upper canopy temperature. Here, we are investigating multisensor
fusion using a combination of in situ thermal drone and infrared camera imagery, ECOSTRESS,
Landsat, VIIRS, and/or GOES (Wu et al. 2013).

Data analysis and modeling. Two analysis approaches have been proposed to test the hy-
potheses of this study. The first is the application of ERF-VCV—a data-driven approach that
can be used to account for the dispersive fluxes missed by single-tower EC measurements,
and to upscale fluxes across the CHEESEHEAD19 domain (Metzger 2018; Xu et al. 2018,
2020). ERF-VCV uses a machine learning algorithm to find relationships between measured
fluxes and their meteorological and surface drivers within the flux footprints (see sidebar).

The second analysis approach will be to perform LES for the IOP days using the Parallel-
ized LES Model (PALM) (Raasch and Schroter 2001; Maronga et al. 2015, 2020). Building
on previous LES work (Stoll et al. 2020), we will emulate airborne and tower-mounted flux
observations to compare them against the “real world” observations with the ability to also
evaluate flux footprints using Lagrangian particle modeling (Steinfeld et al. 2008), radiation
footprints, and storage fluxes at various locations and points in time. To simulate the physical
processes as observed during the IOPs of the field experiment as realistically as possible, we
will assume realistic topography for the experiment site, and apply a land surface model (LSM)
with a coupled soil and radiation model, as well as a plant canopy model (PCM). Both models
are built into PALM. The use of the LSM and PCM runs instead of prescribed surface fluxes
will allow us to study land—atmosphere feedbacks such as self-reinforcement of mesoscale
circulations over the heterogeneous study domain. The LSM will be set up for each IOP test
case, with land-use classes, soil, and vegetation data as observed during the field experiment.
Further, in order to account for synoptic-scale processes during the IOPs (e.g., advection of air
masses with different characteristics) we will nest the LES domain into a larger-scale model.

One proposed goal is to derive a parametric heterogeneity correction of dispersive fluxes
by setting up virtual towers within the LES, applying the correction to CHEESEHEAD19 tower
flux field data, and evaluating the correction with ERF-VCV flux grids. Therefore, tower-level
turbulence characteristics will be simulated as observed during the field campaign to investi-
gate the energy balance nonclosure problem. Additionally, by emulating real-world measure-
ments we intend to help interpret the observations—such as giving hints where secondary
circulations occur or how far heterogeneity signals extend downwind.

Preliminary results

Over the course of the 4-month study period the region exhibited light winds (diurnal means
from 1 to 4 m s') from all directions, with the most prevalent direction being southwesterly.
Air and soil temperatures decreased over the period, while soil moisture increased (Figs. 6a,b).
Daily mean net radiation decreased over the course of the study, which showed a direct re-
lationship with ABL height (measured as the height of the inversion on the daily 1800 UTC
radiosonde launches; Fig. 6c). One of the most relevant seasonal changes with respect to
energy balance was the change in the daytime Bowen ratio (H,/H,) which averaged 0.5 in
the summer and 1.0 in the fall, with the latter period having more variability than the former
(Fig. 6d). Diurnal cycles of sensible and latent heat flux show that latent heat flux is much
larger in the summer when the canopy is fully evapotranspiring compared to the fall, when
senescence of broadleaf trees reduces H,, allowing H, to comprise a larger share of the total
heat flux over the region (Figs. 6e-h).
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Continuity through Environmental Response Functions

CHEESEHEAD19 disentangles how land surface heterogeneity relates to atmospheric transport of mesoscale eddies, which contributes
to the discrepancy between EC flux observations and model predictions. We strive to create a new class of observational flux data
product that reconciles energy balance closure biases on the order of 10% (Chen et al. 2011; Foken et al. 2011) and reveals actual
surface emissions. For nonuniform exchange surfaces such as in CHEESEHEAD19, this requires us to evaluate the conservation of mass
and energy continuously in time and space throughout the study domain (e.g., Finnigan 2008). However, even intensive field instru-
mentation campaigns such as CHEESEHEAD19 cannot produce observations everywhere, all the time. Here, environmental response
functions (ERF; Metzger et al. 2013; Metzger 2018) can help attain the necessary information continuum from individual observation
plots to model grid scale. To achieve this, ERFs complement information across disciplines and observation types by using a machine-
learning algorithm to find relationships between measured fluxes and their meteorological and surface drivers within the flux foot-
prints (Fig. SB1a). This provides a powerful approach not only for post—field data synthesis, but already in the experiment planning
stage, e.g., in combination with large-eddy simulations (Fig. SB1b). Maximizing scientific return on experimental investment (Fig. SB1¢;
Metzger et al. 2021, manuscript submitted to Atmos. Meas. Tech.) is one example of how ERFs can help close the circle among obtaining
“knowledge from data” and “data from knowledge” (Reichstein et al. 2019).

A Environmental Response Functions B Large Eddy Simulation experiments C Ability to reproduce reference
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Fig. SB1. (a) ERFs augment sparse response observations (e.g., tower and aircraft EC) with abundant driver observa-
tions (e.g., meteorological stations and satellites). High-rate time-frequency decomposition and source area modeling
facilitate data joins among these response and driver observations at minute and meter scale. Machine learning then
extracts a driver-response process model from the resulting space- and time-aligned dataset. Ultimately, this driver-
response process model complements the properties of response and driver observations in the response data product.
In the present example these are meter-scale sensible heat flux maps, which can be used to more reliably evaluate
the conservation of energy across the nonuniform CHEESEHEAD19 experiment domain. (b) During the experiment
planning stage we used LESs to create synthetic atmospheres over the CHEESEHEAD19 domain for different synop-
tic conditions. We simultaneously sampled the synthetic atmospheres as observed by different virtual experiment
designs. Each experiment design resulted in a separate set of virtual observations that we independently processed
through the ERFs in (a). (c) We benchmarked the different experiment designs against their ability to reproduce the
LES reference in the form of flux grids that ERF reconstructed from the virtual observations alone. Identifying the
optimal experiment design not only allowed us to double the scientific return on experimental investment, but also
to simplify flight plans and increase crew safety. For additional details, see the full study by Metzger et al. (2021,
manuscript submitted to Atmos. Meas. Tech.).
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As is typical for EC mea-
surements, we observed
energy fluxes that were
lower in magnitude than
the available energy (R, - G),

100

when averaged across all b ' ' '
sites (Fig. 7). The magni-
tudes of the energy balance
residual (C,,) was largest

during the daytime, when

incoming solar radiation
was highest. The reverse in
sign of C,, from day to night
in part can be attributed to

heat storage in the canopy.
However, the magnitudes
of the daytime values are
larger than the nighttime

Bowen Ratio

Va?“es’ Wh‘,‘:h results in a 07/01 07/15 08/01 08/15 09/01 09/15 10/01
daily mean imbalance. Date (2019)
The energy balance resid- 1

ual peaked under conditions
of low turbulence (Fig. 8). It
is during such periods of
calm wind and strongly
unstable stratification in
which thermally induced
mesoscale eddies result-

f

ing from landscape-scale < zqoF h

. = g —— latent heat
heterogeneity are expected 200} — censible heat
(Steinfeld et al. 2007). This % 100} /“\/\ m
lends support to the hypoth- g 0 e
esis that mesoscale eddies S -100 - s . . . .
are responsible for the en- 6:00 12:00 18:00 6:00 12:00 18:00
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ergy balance nonclosure.
Landscape heterogeneity
was observed for a range of

Rain (cm) RH (%)

ABL (km agl)

Fig. 6. Daily (24 h) mean across all ISFS towers of (a) temperature and rela-
tive humidity, (b) soil moisture at 5-cm depth and rain, (c) net radiation and
. . . ABL height (measured at ISS field), and (d) Bowen ratio (daytime only).
environmental variables, in- Aerial view of site NE2 on (e) 12 Jul 2020 and (f) 9 Oct 2020. Diurnal cycles

cluding vegetation, canopy  of sensible and latent heat averaged across all ISFS sites for the weeks of

height, surface temperature,  (g) 7-14 Jul and (h) 4-11 Oct.
and energy fluxes. Variabil-
ity in surface H, was quanti-
fied by combining tower measurements with in situ measurements of air temperature and
land surface temperature from the DJI S-1,000, following Lee et al. (2017). The example from
12 July 2019 showed significant temperature and H, variability; temperature differences of
10°Cand H, differences of 100 W m~2 over the 500 m x 500 m area surrounding the SW2 tower
(Fig. 9). Spatial variability in temperature and H, around the tower were directly related to
heterogeneity in local surface characteristics.

Landscape heterogeneity in vegetation spectral characteristics and canopy height were
captured from downward-looking airborne remote sensing instruments (Fig. 10b). False color
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HySpex imagery is being used to differentiate
plant functional types at 1 m x 1 m resolu-
tion. Canopy structure was measured with
the Routescene lidar at 11 leaf-on flux sites
(Fig. 10c) and across the entire domain from
the State of Wisconsin leaf-off lidar dataset.
These data are being used to identify surface
roughness in the flux footprints of the EC
towers. In addition, these spatial data are
being used as input drivers within the ERF-
VCV machine-learning approach.

There is also spatial variation in the energy
balance components across the domain on a
typical day (Fig. 11). This variability includes
the relative weighting of latent and sensible
heat fluxes, as well as the magnitude of the
energy balance residual. The mean energy
balance closure [calculated as (H, + H))/(R,
— G)] across all the sites over the entire study
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Fig. 7. The diurnal cycle of energy balance components:
latent and sensible heat flux (H, and H,), ground flux (G),
net radiation (R,; where negative represents net incom-
ing radiation), and energy balance residual (C_,), averaged

period was 0.8. This is typical for EC towers
and supports the need for the advanced
methods put forth by this study.

To address this spatial and temporal variability we are testing different types of spatial
EC techniques, which have been suggested as a means of mitigating errors arising from
single-site, temporal EC (Steinfeld et al. 2007; Mauder et al. 2008b; Engelmann and Bern-
hofer 2016). Using LES, Xu et al. (2020) found that standard spatial EC improved closure
over standard temporal EC, while a combined spatiotemporal method performed better still.
Further, by applying the ERF-VCV approach,

across all flux towers over the entire study period.

the energy balance was found to be almost ' o \ '
completely closed. L )

Spatial fluxes were calculated for aircraft
data and across the tower network. The spatial
fluxes for aircraft data were calculated using a
wavelet decomposition. This dataset provided o

0.5F

Ceg / (Ry-G)

good spatial coverage but had limited tem- 0 01 02 03 04 05 06
poral resolution—even though with 72 flight u, (ms™)
hours spread across 12 days, it is one of the

0.7

0.8

largest airborne EC datasets collected to date.
Spatial fluxes were also calculated for the

Fig. 8. Daily mean energy balance residuals (C_,) normalized
by net radiation minus ground heat flux (R, - G) plotted
against friction velocity (u,) for all ISFS EC towers for the
entire CHEESEHEAD19 dataset (excludes individual towers

20 flux towers, which provided a continu-
ous flux record through the campaign. Flux
footprint calculations for 26 September 2019
show that spatial coverage of the towers, including WLEF, covered roughly 8% of the domain
(Fig. 12; using Kljun et al. 2015). This is a significant increase compared to a single tower set up
(typically <<1% of a 10 km x 10 km domain). This is important because it provides sampling over
a wider range of physical environments. By combining the tower and aircraft EC datasets we
had excellent coverage (~80%) of the study domain on flight days (Fig. 12). Both flux datasets
are being used to confirm the LES model results for improvements to energy balance closure.
Last, the characterization of the ABL and identification of mesoscale eddies is being
performed using lidar measurements of wind, water vapor, temperature, and backscatter.
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Fig. 9. (a) Surface temperature and (b) H_ from a downward-pointing infrared camera flown
on the DJI S-1000 sUAS surrounding the SW2 tower between 1504 and 1518 UTC 12 Jul 2019.
(c).(d) As in (a) and (b), but between 1614 and 1628 UTC 12 Jul 2019. H_is computed following
Lee et al. (2017). As the technique requires an initial H_to derive the variability in H_and H_was
unavailable from SW2 on 12 Jul, H_at SW2 was estimated using a linear regression with data
from nearby towers. The mean plus and minus one standard deviation is shown at the bottom
of each panel.
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Fig. 10. Surface maps showing spatial variation around tower site SW2 in (a) surface temperature
measured by the DJI S-1000 (as in Fig. 10a), (b) vegetation spectral characteristics measured by
the HySpex shown as a false color image (849 nm, red; 1,650 nm, green; 2,217 nm, blue), and (c)
surface/canopy height measured by the sUAS Routescene lidar.

Figure 13 shows an example of this on 24 September 2019. Increasing water vapor through
the day is representative of a large-scale warm, wet air mass entering the domain (Figs. 13c,d,
Fig. ES3a). This characterizes the variation in water vapor throughout the collection of the
morning UWKA CRL dataset (Fig. 13a). The afternoon CRL dataset (Fig. 13b) shows a more
evenly mixed ABL, with variation in water vapor due to local pockets of relatively moist
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and dry air. These two examples show the
varying applications of the CRL data de-
pending on the atmospheric environment,
with the afternoon flight illustrating the
potential of the dataset for determining the
degree of ABL heterogeneity arising from
surface heterogeneity. Further analysis will
investigate relationships with underlying
vegetation and LST.

Around 1200 UTC (0700 local time) net ra-
diation becomes positive (Fig. 13g) and soon
after we see the breakup of the surface inver-
sion (Fig. 13d). Around 1400-1500 UTC the
ABL grows and is followed by development
of large-scale structures revealed by strong
oscillations in vertical wind speed (+2 m s7;
Fig. 13e). During peak hours the angle of
attack of the wind vectors oscillate between
roughly —10° and 15° on time scales of 10 min
to an hour. These angles far exceed those of
the underlying terrain, suggesting that these
periodic updrafts and downdrafts are the
result of mesoscale eddies.

Around 1900 UTC the
domain clouds over, seen
in R, and backscatter
(Figs. 13f,g, Fig. ES3hb).
This causes the strength of
the oscillations in vertical
wind to decrease (Fig. 13e),
which coincides with a
change in the relative
weighting of the different
energy balance compo-
nents, with both R, and H,
decreasing strongly, while
H, decreases only slightly
(Fig. 13g). An increase in
R, around 2000 UTC corre-
sponds to a reversal of these
trends. Further analyses
will investigate the preva-
lence of this result across
the entire dataset and ex-

Fig. 11. Average daily mean energy balance pie charts for
the flux towers over the entire study period. The pie chart
with the cyan outline (bottom center) was a buoy EC sys-
tem deployed on a small lake where G was not measured.

Max
Flux

UWKA footprints

No
Flux

amine specific drivers and Fig. 12. Flux footprint climatologies from the 20 flux towers and aircraft on

possible implications for
EC energy balance closure.
These datasets show that

the morning of 26 Sep 2019. Tower footprints extend to the 90% footprint
with 10% contour lines shown down to 10% [calculated based on Kljun et al.
(2015)]. The heat map shows aircraft flux footprints with areas of strongest
flux contribution in red, grading to blue where there was no contribution

changes in ABL develop-  [calculated based on Metzger et al. (2013)]. UWKA flight tracks shown as
ment are closely tied to  dashed black lines.
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changes in the surface energy fluxes, highlighting the potential research applications of

the CHEESEHEAD19 data.

Educational outreach

Several public events were conducted to introduce and communicate the science goals

and objectives of the proj-
ect. These include a pre-ex-
periment community-wide
public presentation at the
Park Falls Public Library
and a summer open house
at several sites, enabling
members of the community
to visit data collection loca-
tions, meet CHEESEHEAD19
team members, and par-
ticipate in demonstrations
of the instruments (Fig. 14).
CHEESEHEAD19 team mem-
bers also participated in
surveys and in training
on fieldwork bullying and
sexual harassment preven-
tion (Fischer et al. 2019,
manuscript submitted to
Bull. Amer. Meteor. Soc.).
The project also worked
with two local school groups,
one from the Butternut,
Wisconsin, K-12 school and
another from Chequamegon
High School of Park Falls,
Wisconsin, to include them
as supporting data collec-
tors. The GLOBE (Global
Learning and Observations
to Benefit the Environment)
program trained Butternut
K-12 students and a teacher
to collect land-cover clas-
sification data, soil proper-
ties, and atmospheric data
at seven of the tower sites at
multiple times throughout
the summer. The high school
group installed 10 tree tem-
perature sensors at 5 of the
forest flux tower sites, which
are being used to estimate
biomass heat storage. We
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Fig. 13. (a).(b) CRL cross sections of H,0 mixing ratio [cut to domain size;
color bar in (c) is for (a)-(c)] for each of 10 legs on research flights 17 and
18 (at 1351-1626 and 1911-2131 UTC 24 Sep); time series profiles at WLEF
tall tower on 24 Sep 2019 of (c) H,O mixing ratio and (d) T measured by
the ground-based MWR, (e) vertical wind speed from wind lidar LVS, and
(f) 532-nm backscatter from the ground-based HSRL. (g) Stacked energy
balance components: available energy (R, — G), sensible and latent heat
fluxes (H; and H)), and energy balance residual (C.,), averaged across all EC
towers, with C__ during the passing of a moist synoptic system [see (a)-(c)].
C,, increases at the breakup of the morning inversion [see (d)], is highest
when mesoscale eddies are present midday [see (e)], and dips when clouds
form in the afternoon [see (f)].
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also hosted two undergraduate university
field classes (University of Wisconsin-
Madison and University of South Carolina),
which conducted independent research
projects on micrometeorology and carbon
cycling.

Data and code availability
The database of observations and models
is currently online and freely available
to the community and public for general
use or for further scientific investigation.
The datasets and supporting information
(including site characterizations, project | :
logistics, and setup) have been gathered  Fig. 14. Bill Brown (just right of the radiosonde balloon)
together in the NCAR Earth Observatory  describing the capabilities of the ISS facility during the com-
Laboratory (EOL) data repository which ~ munity open house.
can be accessed through the project web
page at www.eol.ucar.edu/field_projects/
cheesehead. The project has open data and code policies, in which other researchers are encour-
aged to use CHEESEHEAD19 resources for their own research. The policies can be accessed
through the above web page.

Additionally, data are stored and are being used for in-depth analysis and modeling
purposes on the NSF-funded cloud computing platform CyVerse, with the goal of having a
central location for users to bring their code to the data in a way that maintains data and
code provenance for collaborative, multi-user projects. Additional information about the
project, including descriptions of the sites, photographs, and data plots can be found on the
CHEESEHEAD19 website, located at www.cheesehead19.org.

Conclusions

The data collected during the CHEESEHEAD19 field campaign show a distinct seasonal shift
in surface energy fluxes, as well as spatial patterning that appears to be directly related to the
characteristics of the underlying surface environment. Consequently, the imbalance in the
energy budget displays both temporal and spatial variability, with the imbalance becoming
larger under periods of low turbulence. The broad coverage of the measured fluxes using the
20-tower network and airborne EC, combined with the collection of spatial data of surface
characteristics like LST, vegetation type, and canopy structure, will enable thorough investiga-
tion of the causes of energy balance nonclosure. Additionally, the suite of atmospheric profiling
instrumentation characterizes the mesoscale structure of atmospheric flows over the study
domain to an unprecedented degree, helping to determine how mesoscale eddies contribute
to measured imbalances. The observational dataset provided by CHEESEHEAD19 enables
machine-learning approaches and LES for testing hypotheses on scaling and parameteriza-
tion of subgrid processes in mesoscale meteorological models. Findings emerging from this
project are expected to have broad implications for heterogeneous terrestrial regions beyond
the specific study domain.
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Appendix: List of acronyms and variables

AGL Above ground level
ARL Air Resources Laboratory (NOAA)
ATDD Atmospheric Turbulence and Diffusion Division (NOAA)

CHEESEHEAD19 Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled
by a High-Density Extensive Array of Detectors 2019

CLAMPS Collaborative Lower Atmospheric Mobile Profiling System (NOAA NSSL)
CRL Compact Raman Lidar

EC Eddy covariance

GML Global Monitoring Laboratory (NOAA)
I0P Intensive observation period

LES Large-eddy simulation

Lidar Light detection and ranging

LSM Land surface model

NCAR National Center for Atmospheric Research
NOAA National Atmospheric and Oceanic Administration
NPP Net primary production

NSF National Science Foundation

NSSL National Severe Storms Laboratory (NOAA)
PALM Parallelized LES Model

PSL Physical Sciences Laboratory (NOAA)
Radar Radio detection and ranging

RASS Radio Acoustic Sounding System

Sodar Sonic detection and ranging

sUAS Small unmanned aircraft system
SURFRAD Surface Radiation Budget Network
UWKA University of Wyoming King Air

C, volumetric soil heat capacity (J m=> K)
Fe., CO, flux (pmol m~2s?)

G Ground heat flux (W m™2)

H,0 Water vapor mixing ratio (g kg™)

H, Sensible heat flux (W m2)

H, Latent heat flux (W m2)

LST Land surface temperature (°C)

P Pressure (mb; 1 mb = 1 hPa)

Q Soil moisture (vol %)

R, Net surface radiation (W m™?)

T Temperature (°C)
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T, Virtual temperature (°C)

U Horizontal wind speed (m s)

u, Friction velocity (m s?)

w Vertical wind speed (m s™)

0 Potential temperature (°C)

0, Virtual potential temperature (°C)

T Momentum flux (N m2)
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