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ABSTRACT: The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a 
High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science 
Foundation project based on an intensive field campaign that occurred from June to October 
2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds 
to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether 
lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale 
atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface 
energy fluxes, with the aim to improve model–data comparison and integration. To address 
these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was 
deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–
Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower 
that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the 
world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. 
This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps 
of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements 
of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, 
and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and 
radiosondes. These observations are being used with large-eddy simulation and scaling experi-
ments to better understand submesoscale processes and improve formulations of subgrid-scale 
processes in numerical weather and climate models.

https://doi.org/10.1175/BAMS-D-19-0346.1 
Corresponding author: Brian J. Butterworth, bbutterworth@wisc.edu 
Supplemental material: https://doi.org/10.1175/BAMS-D-19-0346.2 
In final form 16 September 2020
©2021 American Meteorological Society

This article is licensed under a Creative Commons Attribution 4.0 license.

Article

https://doi.org/10.1175/BAMS-D-19-0346.1
mailto:bbutterworth@wisc.edu
https://doi.org/10.1175/BAMS-D-19-0346.2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y F E B R UA RY  2 0 2 1 E2

AFFILIATIONS: Butterworth, Desai, Townsend, Petty, Andresen, Bertram, Kruger, Mineau, Olson, 

Paleri, Pertzborn, Pettersen, Stoy, Thom, Vermeuel, Wagner, Wright, and Zheng—University of  

Wisconsin–Madison, Madison, Wisconsin; Metzger—National Ecological Observatory Network Program, 

Battelle, Boulder, Colorado, and University of Wisconsin–Madison, Madison, Wisconsin; Schwartz and 

Iglinski—University of Wisconsin–Milwaukee, Milwaukee, Wisconsin; Mauder, Speidel, Vogelmann, 

and Wanner—Institute of Meteorology and Climate Research–Atmospheric Environmental Research, 

Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany; Augustine—Class ACT Charter 

School, Park Falls, Wisconsin; Brown and Oncley—NCAR/Earth Observing Laboratory, Boulder, Colorado; 

Buban and Lee—Cooperative Institute for Mesoscale Meteorological Studies, and Air Resources 

Laboratory, NOAA/Atmospheric Turbulence and Diffusion Division, Oak Ridge, Tennessee; Cleary—

University of Wisconsin–Eau Claire, Eau Claire, Wisconsin; Durden and Florian—National Ecological Obser-

vatory Network Program, Battelle, Boulder, Colorado; Lantz, Riihimaki, and Sedlar—Cooperative Institute 

for Research in Environmental Sciences, University of Colorado Boulder, and NOAA/Global Monitoring 

Laboratory, Boulder, Colorado; Meyers—Air Resources Laboratory, NOAA/Atmospheric Turbulence 

and Diffusion Division, Oak Ridge, Tennessee; Plummer—University of Wyoming, Laramie, Wyoming; 

Ruiz Guzman—University of Guadalajara, Guadalajara, Jalisco, Mexico; Smith—NOAA/National Severe 

Storms Laboratory, Norman, Oklahoma; Sühring—Institute of Meteorology and Climatology, Leibniz 

University of Hannover, Hannover, Germany; Turner—NOAA/Global Systems Laboratory, Boulder, 

Colorado; Wang—University of Colorado Boulder, Boulder, Colorado; White—Jackson State University, 

Jackson, Mississippi; Wilczak—NOAA/Physical Sciences Laboratory, Boulder, Colorado 

Land–atmosphere exchanges of energy, water, and carbon influence weather and climate. 
The biological processes that mediate these exchanges with the atmosphere occur at 
multiple spatial and temporal scales, necessitating cross-scale observational platforms. 

Accurate accounting of land–atmosphere interactions is critical for improving the performance 
of numerical weather and climate models. Unfortunately, there is a persistent mismatch 
between the scales of observations and models. This scale mismatch is problematic because 
the land surface exhibits substantial heterogeneity, which means that observations are not 
always accurate reflections of the entire model grid cell. Furthermore, the atmosphere is 
strongly influenced by nonlinear two-way interactions with radiation, land cover, and soil, 
so that the spatial and temporal scaling of surface fluxes is fundamental to assessing the 
parameterizations used in atmospheric models to represent land–atmospheric interactions.

The notion that land surface heterogeneity influences the surface energy balance—and 
resulting atmospheric responses—emerged from early model simulations showing the im-
portance of soil moisture, vegetation, albedo, roughness, and heating on the atmosphere 
(Garratt 1993; Mahrt 2000; Betts et al. 1996; Charney 1975; Avissar 1995; Pielke et al. 1998). 
Theories on how land surface variations drive atmospheric boundary layer (ABL) growth 
vary (e.g., Desai et al. 2006; Reen et al. 2014; Platis et al. 2017; Gantner et al. 2017), with no 
consensus on whether responses scale linearly or nonlinearly and whether they differ for dry 
versus moist dynamics (Raupach and Finnigan 1995). Modeling studies have been developed 
from limited sets of observations of prior field experiments and from specialized modeling 
domains using simplified boundary conditions (e.g., Kang et al. 2007; Hill et al. 2008, 2011; 
Zhu et al. 2016). From these previous studies, scaling laws have been derived based on 
numerical simulations (van Heerwaarden et al. 2014; Rihani et al. 2015), but a systematic 
regional-scale observational experiment that quantifies the multiscale nature of subgrid 
scaling and patterning has never been realized (Steinfeld et al. 2007).

An issue related to how heterogeneity influences transport processes in the ABL is the 
energy balance closure problem. This refers to an observed tendency in eddy covariance 
(EC) flux measurements in which the sum of incoming available energy [net radiation 
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(RN) minus ground heat flux (G)] exceeds surface turbulent sensible and latent heat fluxes  
(HS and HL) over subhourly time scales (Foken et al. 2011). Systematic studies have ruled out 
instrument errors as the primary cause (Twine et al. 2000; Liu et al. 2011). Incomplete obser-
vation of submeasurement height storage flux accounts for only some of this lack of closure 
(Leuning et al. 2012; Xu et al. 2018). Advection terms are not expected (in most cases) to have 
a systematic direction that would always lead to lack of closure (e.g., Aubinet et al. 2010; 
Barr et al. 2013; Nakai et al. 2014; Zitouna-Chebbi et al. 2012; Eder et al. 2015), while topog-
raphy contributes mostly in extreme cases (McGloin et al. 2018).

EC sites with more variable land cover tend to have larger closure imbalances 
(Stoy et al. 2013; Z. Xu et al. 2017). One proposed hypothesis for lack of closure in the energy 
budget is that surface heterogeneity generates mesoscale features not adequately resolved by 
traditional EC methods (e.g., Charuchittipan et al. 2014; Gao et al. 2016; Foken et al. 2011; 
Mauder et al. 2007b). An intensive suite of energy flux measurements between surface and 
atmosphere at the mesoscale, on the order of tens of kilometers, can help address this key 
uncertainty in land–atmosphere exchange (Xu et al. 2020).

Experimental goals
The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density 
Extensive Array of Detectors 2019 (CHEESEHEAD19) was designed to provide a new level of 
observation density and instrumentation reliability to test hypotheses on spatial heteroge-
neity and atmospheric feedbacks. The two main research objectives for the CHEESEHEAD19 
experiment were 1) to investigate causes of energy balance nonclosure over heterogeneous 
ecosystems and 2) to address the problem of scaling surface energy fluxes.

There is currently no definitive answer as to what is responsible for energy balance 
nonclosure. CHEESEHEAD19 was designed specifically to test the hypothesis that heteroge-
neity is responsible for generating organized (sub)mesoscale structures that are not resolved 
by traditional EC methods.

Various theories suggest that “spatial” EC, where multiple towers are combined to estimate 
the mesoscale contribution to the total flux, could be used to analyze this contribution and 
“close” the energy balance (Steinfeld et al. 2007; Mauder et al. 2008b). To calculate spatial 
fluxes, CHEESEHEAD19 deployed an EC tower network and airborne EC measurements. These 
measurements provide spatial patterns of surface energy fluxes across various vegetation 
and surface types in the heterogeneous landscape. Alongside this EC flux network, multiple 
platforms were deployed to characterize the atmospheric environment by profiling relevant 
atmospheric characteristics across a range of scales. This allows us to determine the exis-
tence of and characterize the nature of organized mesoscale structures. We can investigate 
the degree to which mesoscale eddies are responsible for energy balance nonclosure in EC 
measurements, and whether land surface energy partitioning and atmospheric responses 
differ from the sum of their individual components.

To systematically address surface energy balance variability in the heterogeneous forested 
landscape, a precampaign large-eddy simulation (LES; see the appendix for a list of acronyms 
used throughout the paper) analysis of the study domain was conducted. It was found that, 
while 12 flux towers would be sufficient to adequately sample land-cover variation, >15 flux 
towers are required to sample mesoscale eddy structures and close the energy budget; a similar 
result to Steinfeld et al. (2007). Therefore, the CHEESEHEAD19 field campaign deployed 20 
flux towers, a marked increase over previous experiments.

CHEESEHEAD19 asks how we can optimally observe and simulate the terms of the sur-
face energy balance and the corresponding atmospheric responses to heterogeneous surface 
forcings. The objective is to evaluate methods for scaling surface energy fluxes, with the aim 
of improving model–data comparisons. To this end, we conduct LES and machine-learning 
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scaling experiments to simulate submesoscale responses. These will be compared to measured 
quantities to test theory and to improve our understanding of how scale-dependent transport 
processes in the lower atmosphere respond to surface heterogeneity. The dataset collected 
during this study will help test multiple scaling methodologies across heterogeneous land 
cover. Specifically, it aims to test the environmental response function–virtual control volume 
(ERF-VCV) approach (Metzger 2018; Xu et al. 2018), which combines the strengths of both 
data-driven and mechanistic strategies.

Several additional research objectives are addressed by using the unique data resources 
of CHEESEHEAD19. These include a separately funded study to use CO2 fluxes of Integrated 
Surface Flux System (ISFS) towers and hyperspectral imagery of canopy functional traits to 
determine the principal drivers of variation in net primary production (NPP) and carbon use 
efficiency across a broad array of forest ecosystems. Additionally, concurrent measurements 
of ozone (O3) mixing ratios at 30 and 122 m on the tall tower were made using a chemical 
ionization time-of-flight mass spectrometer (CI-ToFMS; TOFWERK AG and Aerodyne Research 
Inc.) and a photometric analyzer (Model 49i; Thermo Fisher) to obtain vertical O3 profiles 
above the forest canopy (Bertram et al. 2011; Novak et al. 2020). These measurements were 
accompanied by flights of a small unoccupied aircraft system (sUAS)-mounted lightweight O3 
monitor (POM; 2B) that obtained vertical concentration gradients. These measurements are 
being used to determine the relative contributions of stomatal uptake and other nonstomatal 
loss pathways to O3 deposition within a mixed forest canopy.

The experiment
Overview. CHEESEHEAD19 investigators deployed an extensive suite of ground, tower, pro-
filing, and airborne instrumentation over a 10 km × 10 km domain in a forested and aquatic 
landscape in northern Wisconsin, United States (Fig. 1; Table 1), centered on the existing Park 
Falls 447-m-tower AmeriFlux/NOAA supersite (US-PFa/WLEF). The main components of the 
CHEESEHEAD19 field campaign were

1)	 ground-based fluxes and meteorology,
2)	 airborne fluxes and meteorology,
3)	 atmospheric profiling, and
4)	 surface environment characterization.

The EC tower network consisted of 17 towers from the NSF Lower Atmosphere Observing 
Facility (LAOF) ISFS, two additional towers, and the central tall AmeriFlux tower, US-PFa. 
Ground-based measurement of vegetation occurred at 41 plots in the domain, plus an 
additional 10 plots for measuring phenology. Airborne spectroscopy imaging was used to 
map leaf chemistry and canopy properties.

The suite of atmospheric profiling instruments included the LAOF Integrated Sound-
ing System (ISS; Fig. 2c, Fig. ES1 in the online supplemental material) and the University 
of Wisconsin (UW) Space Science and Engineering Center Portable Atmospheric Research 
Center (SPARC) system (Fig. 2a). Additional instrument systems were brought by collaborators, 
including the combined ATMONSYS lidar for measuring aerosol, T, and H2O profiles and two 
Doppler wind lidars brought by Karlsruhe Institute of Technology (KIT), two Collaborative 
Lower Atmospheric Profiling Systems (CLAMPS, from NOAA/NSSL), two 915-MHz radar wind 
profilers with radio acoustic sounding systems (RASS) with microwave radiometers (MWRs, 
from NOAA/PSL), and the Surface Radiation Budget Network (SURFRAD, from NOAA/GML) 
systems for measuring incoming and outgoing radiation and cloud properties. While many 
of these instruments were located within the 10 km × 10 km CHEESEHEAD19 domain, some 
instruments were located at the Prentice and Lakeland airports, located approximately 45 km 
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Fig. 1. Maps and schematic diagram of CHEESEHEAD19 domain. (a) Map of the study area in Wisconsin. 
(b) Map of the location of all measurements made during the field campaign. Insets show Lakeland and 
Prentice airports where SURFRAD (in addition to the one in ISS field), radar wind profilers with RASS, and 
CLAMPS systems were installed. (c) Schematic diagram shows instrument location and a conceptual model 
of airborne data collection. Figure ES1 shows detailed maps of instrument locations at ISS and WLEF sites 
(Wisconsin Department of Natural Resources 2019).
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Table 1. List of instruments and data collected during CHEESEHEAD19. Definitions of variable abbreviations are located 
in the appendix. Profiling instrument measurement ranges and resolutions are in Table ES1. Footnotes in Measured 
variables and Period columns correspond with Location(s).

Data source Data provider Location(s) Measured variables Period

Ground-based measurements

AmeriFlux/NOAA tall tower  
(US-PFa/WLEF)

UW AOS WLEF HS, HL, FCO2, τ, Rn, meteorology Continuous

ChEAS AmeriFlux towers: US-WCr/
US-Los/US-Syv/US-Alq

UW AOS AmeriFlux sites (4) HS, HL, FCO2, τ, Rn, meteorology Continuous

ISFS eddy covariance towers NCAR EOL ISFS 10 km × 10 km (17 sites) HS, HL, FCO2, τ, Rn, meteorology, soil G, Q, 
Cv, T profile, precipitation (5 sites)

Jun–Oct

MSU eddy covariance towers Montana State U  
and UW BSE

NW5 (ISS) and SE1 HS, HL, FCO2, τ, Rn, soil G, Cv, meteorology Jun–Oct

Surface meteorology NCAR EOL ISS ISS field T, RH, P, precip, wind, sky images Jul–Oct

SURFRAD and TWST NOAA GML ISS field1

Prentice airport2

Lakeland airport2

Downwelling SW/LW1,2, direct SW1,2, 
diffuse SW1,2, upwelling SW/LW1, PAR1, 
sky images1, cloud optical depth1, cloud 
fraction1,2, cloud base height2, mixed 
layer depth2, meteorology1

Jul–Oct (TWST: 
Sep–Oct)

Precipitation Imaging Package UW SSEC WLEF PSD, fall speed, rain rate Jul–Oct

Vehicle/pedestrian/boat transects Jackson State U 10 km × 10 km— 
roads/trails/Hay Lake

T, RH, P, total downwelling SW, IR  
brightness temperature, water T

IOPs 1, 2, 3

Chemical ionization mass spec and 
ozone photometric analyzer

UW Chem WLEF Ozone concentration and flux IOP 1

Tall tower greenhouse gases NOAA GML WLEF CO2, CH4 concentration and CO2, CH4 
profiles

Continuous and 
biweekly

Tree temperature Chequamegon HS 5 sites, 10 trees T at breast height (1.37 m AGL) Oct

Atmospheric profiling

449-MHz modular wind profiler NCAR EOL ISS ISS field 3D wind profiles Jul–Oct

Sodar–RASS NCAR EOL ISS ISS field 3D wind, Tυ and θv profiles Jul–Oct

Ceilometer NCAR EOL ISS ISS field Attenuated backscatter profiles, cloud 
base height, ABL height

Jul–Oct

Daily radiosonde NCAR EOL ISS ISS field 1800 UTC (1300 local time) Jul–Oct

3-hourly daytime radiosondes NCAR EOL ISS ISS field 4–5 day−1 for 5 days per IOP IOPs 1, 2, 3

AERI UW SSEC SPARC WLEF Downwelling IR radiance, profiles of T, 
H2O, and cloud properties

Jul–Oct

HALO lidar (1)—vertical stare UW SSEC SPARC WLEF Profiles of 3D wind (virtual tower) Jul–Oct

HSRL UW SSEC SPARC WLEF Backscatter, depolarization Jul–Oct

Micro Rain Radar (MRR) UW SSEC WLEF Precipitation rate, reflectivity, particle 
size distribution (PSD)

Jul–Oct

ATMONSYS: Backscatter, Raman,  
and differential absorption lidar

KIT IMK-IFU WLEF Vertical profiles of aerosol backscatter, 
T, H2O

Jul–Sep

HALO lidars (2,3)—RHI scans KIT IMK-IFU WLEF Profiles of 3D wind (virtual tower) Jul–Sep

915-MHz radar wind profiler w/radio 
acoustic sounding system

NOAA PSL Prentice airport,  
Lakeland airport

Profiles of U, Tυ, convective ABL height Jul–Oct

MWR NOAA PSL ISS field1

Prentice airport2  
Lakeland airport3

Downwelling microwave radiance,  
profiles of T, H2O, and liquid water path

Jul–Oct3

Jul–Sep2 Sep–Oct1

CLAMPS (MWR, AERI, Doppler wind 
lidar)

NOAA NSSL Prentice airport,  
Lakeland airport

Profiles of U, T, H2O Sep–Oct

Airborne measurements

Airborne eddy covariance UWKA 30 km × 30 km, 24 flights 3D wind, T, H2O, CO2 (25 Hz; ~3 m) IOPs 1, 2, 3

Airborne meteorology and radiation UWKA 30 km × 30 km, 24 flights Meteorology (1 Hz; ~80 m) IOPs 1, 2, 3
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south and east of the WLEF tower, respectively, to provide information on the spatial vari-
ability of boundary layer structure and cloud and radiation fields.

Three 7-day intensive observation periods (IOPs) occurred on 7–13 July, 18–24 August, 
and 22–28 September. During these IOPs the University of Wyoming King Air (UWKA) flew 
transects over an extended 30 km × 30 km domain to measure EC fluxes, ABL depth, and 
atmospheric profiles of water vapor and temperature. These observations will be used to 
test flux tower scaling, observe atmospheric mesoscale patterning, and evaluate LES. Also, 
during the IOPs, a team from NOAA/ARL/Atmospheric Turbulence and Diffusion Division 
(ATDD) brought multiple sUASs for measuring profiles of meteorological variables (T, H2O, 
U, P; see the appendix for a list of variables used in this paper) and land surface temperature. 
Additional information on the spatial variations of surface meteorology was obtained using 
mobile observing systems operated in pedestrian, boat, and car modes.

The 4-month deployment spanned the summer to fall transition, capturing the shift in 
surface energy balance from a more uniform evapotranspiration (latent heat flux) dominated 
landscape to a patchy sensible heat flux dominated landscape. These energy balance shifts 
arise from seasonal changes in plant phenological phases, ecosystem water use for photosyn-
thesis, and available net radiation. These shifts provide a “natural experiment” with which to 
test hypotheses on how heterogeneity influences energy balance closure and spatial scaling.

The study domain was partly chosen due to the history of atmospheric science research 
in the region. Since 1995, university and NOAA investigators have sampled greenhouse gas 
profiles, meteorology, and EC flux measurements (energy, carbon, momentum) at 30, 122, 
and 396 m above ground level (AGL; Fig. 2b) on the WLEF tall tower (Bakwin et al. 1998; 
Davis et al. 2003). The site also includes a Fourier transform infrared solar-pointing 
spectrometer (TCCON) for total greenhouse column observations operated by CalTech 
and NASA JPL. Two additional EC towers (US-WCr, 30 m in mature forest, and US-Los, 
10 m in shrub fen wetland) have been operating for 20 years, approximately 20 km from 
the tall tower (Cook et al. 2004; Desai et al. 2005; Sulman et al. 2009). The scales of 
atmospheric motions at the site are characteristic of a midlatitude continental site—with 
synoptic westerlies dominating and weather systems passing through on a multiday 

Data source Data provider Location(s) Measured variables Period

Compact Raman Lidar (CRL) UWKA 30 km × 30 km, 24 flights H2O and T cross sections IOPs 1, 2, 3

Wyoming Cloud Lidar (WCL) UWKA 30 km × 30 km, 24 flights ABL height IOPs 1, 2, 3

Meteodrone SSE sUAS NOAA ARL ATDD WLEF and SW2 T, H2O, U IOPs 1, 2, 3

Ozone sUAS UWEC WLEF O3, T, H2O IOP 1

Surface environment

HySpex UW FWE 10 km × 10 km, 4 flights Hyperspectral imagery (474 bands), foliar 
functional traits

Jun–Aug

DJI S-1000 (sUAS) NOAA ARL ATDD WLEF and SW2 LST, HS IOPs 1, 2

Routescene lidar (sUAS) UW-Mad Geog 11 tower sites Ground and canopy height (leaf on) June

QL2 lidar USFS 30 km × 30 km Ground and canopy height (leaf off) Fall 2018

Vegetation/phenology sampling UW-Mil Geog 10 km × 10 km  
(10 plots)

Leaf color/fall level Sep–Oct

Vegetation sampling UW FWE 10 km × 10 km  
(41 plots)

Inventory, root growth, NPP, biometry, 
leaf spectra, foliar tissue chemistry, LMA

Jun–Oct

Soil samples NCAR EOL 17 tower sites Heat capacity and soil bulk density Jul–Oct

Soil samples UW AOS 16 tower sites Soil carbon, nitrogen Oct

Soil samples Butternut Schools 7 sites Soil and water chemistry July

ECOSTRESS, GEDI, OCO3 NASA JPL 30 km × 30 km LST, emissivity, evapotranspiration Periodic

Table 1. (Continued).
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period, associated with the movement of the midlatitude jet. Being 75 km south of Lake 
Superior and 225 km west of Lake Michigan, the Great Lakes do not typically influence 
mesoscale motions at the site.

CHEESEHEAD19 builds upon previous 
tower mesonet experiments, including 
BOREAS (Sellers et al. 1995), CASES99 
(Poulos et al. 2002), SGP97 (Desai 
et al. 2006), IHOP (Kang et al. 2007), 
LITFASS-2003 (Beyrich et al. 2006), EBEX 
(Oncley et al. 2007), BEAREX (Alfieri 
et al. 2012), HiWATER-MUSOEXE (Wang 
et al. 2015), SCALE-X (Wolf et al. 2017), 
and GRAPEX (Kustas et al. 2018), that 
were aimed at understanding scaling of 
nonlinear land–atmosphere interaction.

Instrumentation and measurements
Ground-based measurements. Towers 
sampled three-dimensional wind velocity, 
temperature, moisture, and CO2 at 20 Hz 
to measure land–atmosphere fluxes (τ, 
HS, HL, FCO2). Each tower also measured 
net radiation, soil heat flux at 5-cm depth 
(and soil temperature profiles, heat ca-
pacity, and moisture to determine soil 
heat storage), and included a three-level 
air temperature and humidity profile to 
estimate canopy heat storage. A majority 
of the sites were forested and had flux 
instruments mounted 33 m AGL (Fig. 3; Table ES2). Instruments for wetland, grass, and lake 
sites were mounted between 1 and 3 m AGL to maintain consistent vegetation within the flux 
footprint. Tower placement within the 10 km × 10 km study domain followed a stratified ran-
dom grid pattern, taking into account practical considerations including distance to road, 
a suitable gap in trees for a tower, U.S. Forest Service (USFS)-owned land, etc. Individual 
towers were an average of 1.4 km from their nearest neighboring tower and an average of 3.5 
km from the tall tower. This meant that under certain conditions (e.g., high wind speeds, 
stable stratification) several of the towers 
shared overlapping flux footprints; a fa-
vorable condition for applying some of the 
data-driven scaling methods used in the 
project. Additionally, the semi-random 
placement meant that the towers were not 
chosen by distributing the towers in the 
centers of the most homogeneous areas 
of the various land-cover types. Thus, 
within the individual footprint of each 
tower there was often spatial variability 
in vegetation height and type (deciduous 
vs evergreen). While this can compli-
cate analyses of flux measurements, it 

Fig. 3. (a) EC tower SW1—an example of the 33 m AGL tele-
scoping towers deployed by NCAR ISFS and (b) EC instruments 
mounted at the top of tower SW2.

Fig. 2. (a) HSRL beam next to WLEF tall tower, (b) EC instru-
ments at 396 m AGL on the WLEF tall tower, and (c) the ISS field 
with modular wind profiler, MWR, ceilometer, sodar–RASS, 
SURFRAD, EC, and meteorological towers with UWKA flying 
overhead and WLEF tall tower in the distance.
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generates more representative data from these types of mixed forests. Furthermore, we expect 
it will enhance the ability of the data-driven methods for estimating domain-wide fluxes.

A suite of high-quality radiation sensors was deployed in the ISS field as a complement to 
the net radiometers installed on each flux tower. The full suite included high-quality upwell-
ing and downwelling broadband surface radiation measurements to determine the surface 
radiation budget, as well as ancillary measurements of meteorological parameters, photosyn-
thetically active radiation (PAR), and clouds as described in Table ES3. Radiation measurements 
were manually screened and then processed through an automated data quality procedure 
(Long and Shi 2008). Clear-sky radiation fluxes are estimated using the Radiative Flux Analysis 
method (Long and Ackerman 2000; Long and Turner 2008), from which derivation of cloud 
radiative effects as well as other data products such as fractional sky cover (Long et al. 2006; 
Dürr and Philipona 2004) and cloud optical depth (Barnard and Long 2004; Niple et al. 2016) are 
calculated. Measurements of cloud properties will allow us to quantify their impacts on the radia-
tive and turbulent heat fluxes to better understand the two-way coupling between cloud–radiative 
interactions and boundary layer evolution, and to investigate the effect on EC nonclosure.

A smaller suite of radiation, cloud, and surface meteorological measurements were deployed 
at the Prentice and Lakeland airports, approximately 45 km south and east from the ISS field, 
respectively (Fig. 1), to characterize the larger-spatial-scale inhomogeneities. These measurements 
include downwelling shortwave and longwave irradiance as well as diffuse and direct compo-
nents of shortwave irradiance (Table ES3); sufficient information to derive cloud radiative effects 
and fractional sky cover using the Radiative Flux Analysis method described above. Ceilometers 
deployed at the two airport sites provided additional cloud and boundary layer information.

Airborne measurements. During each IOP the UWKA flew over the study area to measure 
spatial EC fluxes of heat, water vapor, and CO2. The purpose of the airborne observations 
was to test flux tower scaling and observe atmospheric mesoscale patterning. The UWKA 
also measured cross-sectional profiles of water vapor and temperature below the flight level 
using a downward-pointing Compact Raman Lidar (CRL; Wu et al. 2016) and ABL depth with 
the upward-looking Wyoming Cloud Lidar (WCL; Wang et al. 2009).

Flights over the domain occurred on 4 days during each of the three IOPs (Table ES4). 
On each day there were two 3-h flights, one 
in the morning (1400–1700 UTC) and one 
in the afternoon (1900–2200 UTC). Flights 
consisted of ten 30-km down-and-back tran-
sects across the domain. The first leg of each 
transect was flown at 400 m AGL, while the 
return leg was flown at 100 m AGL. Flight 
transects alternated between straight and 
diagonal passes.

Three different flight patterns were de-
termined prior to the experiment (oriented 
SE–NW, SW–NE, and W–E; Fig. 4). Flying 
them either in forward or reverse order re-
sulted in six distinct flight sequences that 
maximize data coverage under different 
wind conditions (see the sidebar). The main 
objectives were to maximize 1) the number of 
independent atmospheric eddies and 2) sur-
face flux footprint observed by the aircraft 
EC measurements, while 3) ensuring crew 

Fig. 4. The location (superimposed) of all 480 UWKA flight 
legs completed during the CHEESEHEAD19 field campaign. 
The yellow square represents the study domain and the red 
dots indicate the flux tower locations.
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safety. This was achieved by designing a parsimonious set of only three flight patterns that 
allowed the UWKA to fly perpendicular to the prevailing winds within a range of ±45° on 
any given day (Metzger et al. 2021, manuscript submitted to Atmos. Meas. Tech.). The 30-km 
flight legs extended an average of 10 km beyond the domain to compute a robust mesoscale 
eddy flux (Mauder et al. 2007a, 2008a) by capturing enough eddies and mesoscale variation 
to properly compute statistics for fluxes using the wavelet decomposition method.

The low-altitude legs were primarily used to measure EC fluxes. The altitude 100 m AGL 
was chosen to ensure flux measurements were made in the surface layer, as well as to mini-
mize flux footprint errors over the 10 km × 10 km sampling domain. It was also the lowest 
altitude deemed safe to fly, as canopy height extended up to 35 m. The low-altitude legs were 
also used to identify ABL depth with the upward pointing 355 nm WCL. The primary purpose 
of the high-altitude legs (400 m AGL) was to map temperature and moisture profiles of the 
atmosphere with the CRL. These data were collected to estimate mesoscale development and 
calculate flux divergence and storage terms.

Atmospheric profiling. Characterizing the mesoscale environment over the study domain was 
accomplished with a range of platforms and instruments to measure profiles of wind, water 
vapor, temperature, aerosols, and gases at different temporal and spatial scales (Fig. 1; Table 1).

The NCAR ISS was located in a field 1.6 km west of the tall tower (45.946°N, 90.294°W). 
It deployed a radar wind profiler, sodar–RASS, ceilometer, all-sky camera, and a surface 
meteorology station to measure ABL depth, winds, water vapor, and temperature. The 
449-MHz modular wind profiler measured 30-min wind profiles with 150-m vertical reso-
lution up to several kilometers AGL, while the sodar–RASS was capable of higher resolu-
tion (20 m; 10 min), but only penetrated to ~400 m AGL. Meteorological profiles were also 
measured with 172 radiosonde launches (daily 1800 UTC soundings and 3–4 additional 
soundings on IOP days). These instruments characterized the ABL from nocturnal boundary 
layer (sunrise sounding), through ABL development (midmorning and afternoon), to peak 
ABL (late afternoon sounding). In mid-September, one of the MWRs located at the Prentice 
Airport was relocated to this location, due to the failure of the AERI at the tall tower site 
in early September.

Several profiling systems were deployed at the base of the tall tower. SPARC (Wagner et al. 2019) 
was located 50 m north of the WLEF tower and was equipped with an Atmospheric Emitted 
Radiance Interferometer (AERI, a zenith-pointing infrared radiometer; Knuteson et al. 2004), 
a high spectral resolution lidar (HSRL; Eloranta 2005), and a ceilometer. Profiles of bound-
ary layer temperature and humidity were retrieved from the AERI radiance observations 
(Turner and Löhnert 2014; Turner and Blumberg 2019). The HSRL sampled ABL aerosol 
backscatter and depolarization ratio at 532 and 1,064 nm. The ceilometer provided an ad-
ditional measure of ABL depth.

The ATMONSYS system was placed beside the SPARC system, measuring atmospheric water 
vapor, temperature, and aerosol. The primary light source of the ATMONSYS lidar is a 100-Hz 
diode pumped Nd:Yag laser with the harmonic generation of 532 and 355 nm. The 532-nm 
light (P ≃ 27 W) is used for optical pumping a Ti:Sapphire laser, generating 817 nm (P ≃ 2 W) 
for water vapor profiling with the high-resolving DIAL (differential absorption lidar) method 
as well as for profiling aerosol backscatter. The 355-nm light is used for temperature profiling 
from rotational Raman backscatter. The system setup as installed during CHEESEHEAD19 
(Vogelmann et al. 2020) allows for spatial sampling of 7.5 m and integration times of 20 s for 
aerosols and water vapor measurements and 300 s for temperature profiling.

In the field to the east of the trailers were three Doppler wind lidars. One lidar (LVS) 
measured in vertical stare mode throughout the measurement campaign. The other two 
lidars (LA, LB) were placed 90 m away from the LVS and made range–height indicator (RHI) 
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scans (66°–87° elevation angle) pointing toward the LVS. This setup constitutes a virtual 
tower that provides vertical wind speed measurements and calculates average horizontal 
wind speed at multiple height levels above the LVS (Calhoun et al. 2006; Klein et al. 2015; 
Wulfmeyer et al. 2018). Additionally, the collocation of lidars for measuring 3D winds, tem-
perature, and water vapor facilitates calculation of flux profiles of τ, HS, and HL, as well as 
flux divergence (Wulfmeyer et al. 2016).

Two precipitation instruments [a Precipitation Imaging Package (PIP) and a Micro Rain 
Radar Pro (MRRPro; Metek GmbH)] were installed at WLEF. The PIP is a video disdrometer 
system that records information about hydrometers and produces end user products such as 
particle size distributions, fall speeds, and rain rate at 1-min resolution (Newman et al. 2009; 
Pettersen et al. 2020a,b). The MRRPro is a 24-GHz, frequency modulated continuous wave, 
vertically profiling Doppler radar (Klugmann et al. 1996) that is used for observations of both 
rain (i.e., Peters et al. 2002) and snow (Kneifel et al. 2011).

Additional thermodynamic profiling systems were operated at the Prentice and Lakeland 
airports throughout the experiment to characterize the boundary layer variability and evolu-
tion around the CHEESEHEAD19 domain. The primary motivation of these two profiling sites 
was to characterize the mesoscale transport and role of advection on the ABL mass balance. 
At each location, a 915-MHz wind profiler with radio acoustic sounding system was deployed 
together with a multichannel MWR. These instruments provided profiles of horizontal wind 
and temperature, and low-vertical-resolution profiles of water vapor.

Prior to IOP 3, two mobile CLAMPS facilities (Wagner et al. 2019) were deployed at Prentice 
and Lakeland. The systems contained a Doppler lidar wind profiler, an AERI, and an MWR. 
The information content in the AERI observations is higher than in the MWR, and thus the 
retrieved water vapor and temperature profiles have better vertical resolution and accuracy 
(Löhnert et al. 2009; Blumberg et al. 2015). The Doppler lidars complemented the radar wind 
profilers, providing higher-temporal-resolution and higher-vertical-resolution measurements 
than the radar systems up to 1.5 km AGL on average, while the radars were able to extend 
wind profiles up to 3.0 km on average, albeit at coarser resolution (Table ES1).

Two sUASs were flown to characterize surface and near-surface conditions (Fig. ES2). During 
IOP1 (IOP2), a DJI S-1000 (e.g., Lee et al. 2019) was flown adjacent to the SW2 tower (WLEF 
tall tower) to quantify the variability in surface sensible heat flux (e.g., Lee et al. 2017). During 
all three IOPs, the Meteomatics Meteodrone SSE sUAS was used to sample the evolution of 
near-surface profiles of temperature, moisture, and wind up to 213 m AGL, which was the 
maximum altitude to which we could operate our sUAS per our cooperative agreement with 
the Federal Aviation Administration (FAA). Additionally, the Meteodrone SSE was used to 
sample the horizontal variability in temperature, moisture, and wind fields over a ~100 m × 
100 m box surrounding the SW2 and WLEF towers. Over the three IOPs, 26 (103) flights were 
conducted with the DJI S-1000 (Meteodrone SSE).

Surface environment. Data describing the ecological environment were collected to provide 
the boundary conditions of canopy type, activity, and stress, needed for estimating scaling 
properties. This was done with a variety of methods, including airborne imaging spectroscopy, 
ground-based phenological characterization, and tree growth measurements.

Foliar functional traits such as leaf mass per area (LMA) and nitrogen concentration 
strongly influence photosynthetic capacity and plant growth (i.e., NPP) (Niinemets 2001; 
Kattge et al. 2009) and can be mapped using imaging spectroscopy (a.k.a. hyperspectral 
remote sensing; Kampe et al. 2011; Singh et al. 2015). To map foliar functional traits across 
the domain a full-range imaging spectroscopy system comprising two co-aligned imagers 
(VNIR-1800 and SWIR-384; HySpex, Skedsmokorset, Norway) was operated from a Cessna 
210 at 1,400 m AGL on 4 days (26 June, 11 July, 4 August, 30 August), producing images with 
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1-m spatial resolution. The HySpex collects 474 bands with a spectral resolution of 3.26 nm 
in the VNIR (400–1,000 nm) and 5.45 nm in the SWIR (1,000–2,500 nm).

Extensive ground-based vegetation samples were collected to support the hyperspectral 
image analyses. These included 41 plots in the domain for measuring tree species (400+ 
trees), root growth, tree height, diameter at breast height (DBH), NPP, biometry, and leaf area 
index (LAI). In addition, 122 top-of-canopy foliar samples were collected to estimate leaf level 
function traits following the protocol from Serbin et al. (2014).

In combination with an existing extensive database of foliar traits and image spectra 
(Wang et al. 2020), we will use the 122 foliar samples to develop and validate 1-m-resolution 
maps of numerous foliar functional traits hypothesized to influence NPP (including LMA, 
nitrogen concentration, chlorophyll and other pigments, phosphorus, nonstructural carbo-
hydrates, fiber and lignin, and phenolics) for all four dates of the hyperspectral image col-
lection. From this, we will test the relationship between functional traits and gross primary 
production (GPP; as derived from towers) and peak-season integrated NPP (early July to early 
September, derived from the 41 plots). We will generate 1-m maps of NPP and GPP and identify 
the foliar factors that most influence each.

Additional plots were used to measure vegetation phenology as it changed through the 
season, building upon several years of previous phenological observations collected in the 
domain. Autumn tree leaf color and fall phenology levels were visually observed and recorded 
at least twice weekly over 6 weeks during the senescence period (1 September to 25 October) 
for a group of 214 individual trees (at 10 sites distributed over the 10 km × 10 km area) that 
were representative of the major species.

Forest canopy structure was characterized using an sUAS-based lidar system (Routescene; 
Edinburgh, Scotland) acquiring high density point clouds (500 points per square m) within 
footprints from 11 CHEESEHEAD19 flux tower sites including aspen, pine, poplar, larch, 
cedar, and hardwood forests (e.g., Antonarakis et al. 2014). Areas surveyed ranged between 
0.25 and 1 km2 per site. Additional canopy information for the entire domain came from 
leaf-off lidar from USFS sampling (1 m × 1 m resolution) conducted for the three counties 
that comprise the study area between 2014 and 2017.

Land surface temperature (LST) is a key environmental driver of the surface energy balance 
(e.g., Anderson et al. 2008; Metzger et al. 2013; K. Xu et al. 2017). Spatially explicit LST can be 

Fig. 5. Land surface temperature on 15 Jun 2019 from (a) ERA5 and (b) derived from Landsat-8, 
where subgrid spatial resolution is present, but temporal resolution is low at one image every 
8 days (Gerace et al. 2020; Landsat 8 data courtesy of the U.S. Geological Survey; ERA5 data 
generated using Copernicus Climate Change Service Information 2020).
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acquired from satellite remote sensing (Fig. 5). However, there are tradeoffs in space and time 
resolutions such that no single sensor provides sufficient resolution for use as a land surface 
driver to map heat fluxes across space at subkilometer and hourly time steps required for the 
hypotheses here. Also, remote sensing methods may not be able to distinguish between true 
surface temperature and upper canopy temperature. Here, we are investigating multisensor 
fusion using a combination of in situ thermal drone and infrared camera imagery, ECOSTRESS, 
Landsat, VIIRS, and/or GOES (Wu et al. 2013).

Data analysis and modeling. Two analysis approaches have been proposed to test the hy-
potheses of this study. The first is the application of ERF-VCV—a data-driven approach that 
can be used to account for the dispersive fluxes missed by single-tower EC measurements, 
and to upscale fluxes across the CHEESEHEAD19 domain (Metzger 2018; Xu et al. 2018, 
2020). ERF-VCV uses a machine learning algorithm to find relationships between measured 
fluxes and their meteorological and surface drivers within the flux footprints (see sidebar).

The second analysis approach will be to perform LES for the IOP days using the Parallel-
ized LES Model (PALM) (Raasch and Schröter 2001; Maronga et al. 2015, 2020). Building 
on previous LES work (Stoll et al. 2020), we will emulate airborne and tower-mounted flux 
observations to compare them against the “real world” observations with the ability to also 
evaluate flux footprints using Lagrangian particle modeling (Steinfeld et al. 2008), radiation 
footprints, and storage fluxes at various locations and points in time. To simulate the physical 
processes as observed during the IOPs of the field experiment as realistically as possible, we 
will assume realistic topography for the experiment site, and apply a land surface model (LSM) 
with a coupled soil and radiation model, as well as a plant canopy model (PCM). Both models 
are built into PALM. The use of the LSM and PCM runs instead of prescribed surface fluxes 
will allow us to study land–atmosphere feedbacks such as self-reinforcement of mesoscale 
circulations over the heterogeneous study domain. The LSM will be set up for each IOP test 
case, with land-use classes, soil, and vegetation data as observed during the field experiment. 
Further, in order to account for synoptic-scale processes during the IOPs (e.g., advection of air 
masses with different characteristics) we will nest the LES domain into a larger-scale model.

One proposed goal is to derive a parametric heterogeneity correction of dispersive fluxes 
by setting up virtual towers within the LES, applying the correction to CHEESEHEAD19 tower 
flux field data, and evaluating the correction with ERF-VCV flux grids. Therefore, tower-level 
turbulence characteristics will be simulated as observed during the field campaign to investi-
gate the energy balance nonclosure problem. Additionally, by emulating real-world measure-
ments we intend to help interpret the observations—such as giving hints where secondary 
circulations occur or how far heterogeneity signals extend downwind.

Preliminary results
Over the course of the 4-month study period the region exhibited light winds (diurnal means 
from 1 to 4 m s−1) from all directions, with the most prevalent direction being southwesterly. 
Air and soil temperatures decreased over the period, while soil moisture increased (Figs. 6a,b). 
Daily mean net radiation decreased over the course of the study, which showed a direct re-
lationship with ABL height (measured as the height of the inversion on the daily 1800 UTC 
radiosonde launches; Fig. 6c). One of the most relevant seasonal changes with respect to 
energy balance was the change in the daytime Bowen ratio (HS/HL) which averaged 0.5 in 
the summer and 1.0 in the fall, with the latter period having more variability than the former 
(Fig. 6d). Diurnal cycles of sensible and latent heat flux show that latent heat flux is much 
larger in the summer when the canopy is fully evapotranspiring compared to the fall, when 
senescence of broadleaf trees reduces HL, allowing HS to comprise a larger share of the total 
heat flux over the region (Figs. 6e–h).



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y F E B R UA RY  2 0 2 1 E14

Continuity through Environmental Response Functions
CHEESEHEAD19 disentangles how land surface heterogeneity relates to atmospheric transport of mesoscale eddies, which contributes 
to the discrepancy between EC flux observations and model predictions. We strive to create a new class of observational flux data 
product that reconciles energy balance closure biases on the order of 10% (Chen et al. 2011; Foken et al. 2011) and reveals actual 
surface emissions. For nonuniform exchange surfaces such as in CHEESEHEAD19, this requires us to evaluate the conservation of mass 
and energy continuously in time and space throughout the study domain (e.g., Finnigan 2008). However, even intensive field instru-
mentation campaigns such as CHEESEHEAD19 cannot produce observations everywhere, all the time. Here, environmental response 
functions (ERF; Metzger et al. 2013; Metzger 2018) can help attain the necessary information continuum from individual observation 
plots to model grid scale. To achieve this, ERFs complement information across disciplines and observation types by using a machine-
learning algorithm to find relationships between measured fluxes and their meteorological and surface drivers within the flux foot-
prints (Fig. SB1a). This provides a powerful approach not only for post–field data synthesis, but already in the experiment planning 
stage, e.g., in combination with large-eddy simulations (Fig. SB1b). Maximizing scientific return on experimental investment (Fig. SB1c; 
Metzger et al. 2021, manuscript submitted to Atmos. Meas. Tech.) is one example of how ERFs can help close the circle among obtaining 
“knowledge from data” and “data from knowledge” (Reichstein et al. 2019).

Fig. SB1. (a) ERFs augment sparse response observations (e.g., tower and aircraft EC) with abundant driver observa-
tions (e.g., meteorological stations and satellites). High-rate time–frequency decomposition and source area modeling 
facilitate data joins among these response and driver observations at minute and meter scale. Machine learning then 
extracts a driver-response process model from the resulting space- and time-aligned dataset. Ultimately, this driver-
response process model complements the properties of response and driver observations in the response data product. 
In the present example these are meter-scale sensible heat flux maps, which can be used to more reliably evaluate 
the conservation of energy across the nonuniform CHEESEHEAD19 experiment domain. (b) During the experiment 
planning stage we used LESs to create synthetic atmospheres over the CHEESEHEAD19 domain for different synop-
tic conditions. We simultaneously sampled the synthetic atmospheres as observed by different virtual experiment 
designs. Each experiment design resulted in a separate set of virtual observations that we independently processed 
through the ERFs in (a). (c) We benchmarked the different experiment designs against their ability to reproduce the 
LES reference in the form of flux grids that ERF reconstructed from the virtual observations alone. Identifying the 
optimal experiment design not only allowed us to double the scientific return on experimental investment, but also 
to simplify flight plans and increase crew safety. For additional details, see the full study by Metzger et al. (2021, 
manuscript submitted to Atmos. Meas. Tech.).
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As is typical for EC mea-
surements, we observed 
energy f luxes that were 
lower in magnitude than 
the available energy (RN − G), 
when averaged across all 
sites (Fig. 7). The magni-
tudes of the energy balance 
residual (CEB) was largest 
during the daytime, when 
incoming solar radiation 
was highest. The reverse in 
sign of CEB from day to night 
in part can be attributed to 
heat storage in the canopy. 
However, the magnitudes 
of the daytime values are 
larger than the nighttime 
values, which results in a 
daily mean imbalance.

The energy balance resid-
ual peaked under conditions 
of low turbulence (Fig. 8). It 
is during such periods of 
calm wind and strongly 
unstable stratification in 
which thermally induced 
mesoscale eddies result-
ing from landscape-scale 
heterogeneity are expected 
(Steinfeld et al. 2007). This 
lends support to the hypoth-
esis that mesoscale eddies 
are responsible for the en-
ergy balance nonclosure.

Landscape heterogeneity 
was observed for a range of 
environmental variables, in-
cluding vegetation, canopy 
height, surface temperature, 
and energy fluxes. Variabil-
ity in surface HS was quanti-
fied by combining tower measurements with in situ measurements of air temperature and 
land surface temperature from the DJI S-1,000, following Lee et al. (2017). The example from 
12 July 2019 showed significant temperature and HS variability; temperature differences of 
10°C and HS differences of 100 W m−2 over the 500 m × 500 m area surrounding the SW2 tower 
(Fig. 9). Spatial variability in temperature and HS around the tower were directly related to 
heterogeneity in local surface characteristics.

Landscape heterogeneity in vegetation spectral characteristics and canopy height were 
captured from downward-looking airborne remote sensing instruments (Fig. 10b). False color 

Fig. 6. Daily (24 h) mean across all ISFS towers of (a) temperature and rela-
tive humidity, (b) soil moisture at 5-cm depth and rain, (c) net radiation and 
ABL height (measured at ISS field), and (d) Bowen ratio (daytime only). 
Aerial view of site NE2 on (e) 12 Jul 2020 and (f) 9 Oct 2020. Diurnal cycles 
of sensible and latent heat averaged across all ISFS sites for the weeks of 
(g) 7–14 Jul and (h) 4–11 Oct.
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HySpex imagery is being used to differentiate 
plant functional types at 1 m × 1 m resolu-
tion. Canopy structure was measured with 
the Routescene lidar at 11 leaf-on flux sites 
(Fig. 10c) and across the entire domain from 
the State of Wisconsin leaf-off lidar dataset. 
These data are being used to identify surface 
roughness in the flux footprints of the EC 
towers. In addition, these spatial data are 
being used as input drivers within the ERF-
VCV machine-learning approach.

There is also spatial variation in the energy 
balance components across the domain on a 
typical day (Fig. 11). This variability includes 
the relative weighting of latent and sensible 
heat fluxes, as well as the magnitude of the 
energy balance residual. The mean energy 
balance closure [calculated as (HS + HL)/(RN 
− G)] across all the sites over the entire study 
period was 0.8. This is typical for EC towers 
and supports the need for the advanced 
methods put forth by this study.

To address this spatial and temporal variability we are testing different types of spatial 
EC techniques, which have been suggested as a means of mitigating errors arising from 
single-site, temporal EC (Steinfeld et al. 2007; Mauder et al. 2008b; Engelmann and Bern-
hofer 2016). Using LES, Xu et al. (2020) found that standard spatial EC improved closure 
over standard temporal EC, while a combined spatiotemporal method performed better still. 
Further, by applying the ERF-VCV approach, 
the energy balance was found to be almost 
completely closed.

Spatial fluxes were calculated for aircraft 
data and across the tower network. The spatial 
fluxes for aircraft data were calculated using a 
wavelet decomposition. This dataset provided 
good spatial coverage but had limited tem-
poral resolution—even though with 72 flight 
hours spread across 12 days, it is one of the 
largest airborne EC datasets collected to date.

Spatial fluxes were also calculated for the 
20 flux towers, which provided a continu-
ous flux record through the campaign. Flux 
footprint calculations for 26 September 2019 
show that spatial coverage of the towers, including WLEF, covered roughly 8% of the domain 
(Fig. 12; using Kljun et al. 2015). This is a significant increase compared to a single tower set up 
(typically <<1% of a 10 km × 10 km domain). This is important because it provides sampling over 
a wider range of physical environments. By combining the tower and aircraft EC datasets we 
had excellent coverage (~80%) of the study domain on flight days (Fig. 12). Both flux datasets 
are being used to confirm the LES model results for improvements to energy balance closure.

Last, the characterization of the ABL and identification of mesoscale eddies is being 
performed using lidar measurements of wind, water vapor, temperature, and backscatter. 

Fig. 8. Daily mean energy balance residuals (CEB) normalized 
by net radiation minus ground heat flux (RN − G) plotted 
against friction velocity (u*) for all ISFS EC towers for the 
entire CHEESEHEAD19 dataset (excludes individual towers 
on days without complete quality-controlled data).

Fig. 7. The diurnal cycle of energy balance components: 
latent and sensible heat flux (HL and HS), ground flux (G), 
net radiation (RN; where negative represents net incom-
ing radiation), and energy balance residual (CEB), averaged 
across all flux towers over the entire study period.
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Figure 13 shows an example of this on 24 September 2019. Increasing water vapor through 
the day is representative of a large-scale warm, wet air mass entering the domain (Figs. 13c,d, 
Fig. ES3a). This characterizes the variation in water vapor throughout the collection of the 
morning UWKA CRL dataset (Fig. 13a). The afternoon CRL dataset (Fig. 13b) shows a more 
evenly mixed ABL, with variation in water vapor due to local pockets of relatively moist 

Fig. 9. (a) Surface temperature and (b) Hs from a downward-pointing infrared camera flown 
on the DJI S-1000 sUAS surrounding the SW2 tower between 1504 and 1518 UTC 12 Jul 2019. 
(c),(d) As in (a) and (b), but between 1614 and 1628 UTC 12 Jul 2019. Hs is computed following 
Lee et al. (2017). As the technique requires an initial Hs to derive the variability in Hs and Hs was 
unavailable from SW2 on 12 Jul, Hs at SW2 was estimated using a linear regression with data 
from nearby towers. The mean plus and minus one standard deviation is shown at the bottom 
of each panel.

Fig. 10. Surface maps showing spatial variation around tower site SW2 in (a) surface temperature 
measured by the DJI S-1000 (as in Fig. 10a), (b) vegetation spectral characteristics measured by 
the HySpex shown as a false color image (849 nm, red; 1,650 nm, green; 2,217 nm, blue), and (c) 
surface/canopy height measured by the sUAS Routescene lidar.
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and dry air. These two examples show the 
varying applications of the CRL data de-
pending on the atmospheric environment, 
with the afternoon flight illustrating the 
potential of the dataset for determining the 
degree of ABL heterogeneity arising from 
surface heterogeneity. Further analysis will 
investigate relationships with underlying 
vegetation and LST.

Around 1200 UTC (0700 local time) net ra-
diation becomes positive (Fig. 13g) and soon 
after we see the breakup of the surface inver-
sion (Fig. 13d). Around 1400–1500 UTC the 
ABL grows and is followed by development 
of large-scale structures revealed by strong 
oscillations in vertical wind speed (±2 m s−1; 
Fig. 13e). During peak hours the angle of 
attack of the wind vectors oscillate between 
roughly −10° and 15° on time scales of 10 min 
to an hour. These angles far exceed those of 
the underlying terrain, suggesting that these 
periodic updrafts and downdrafts are the 
result of mesoscale eddies.

Around 1900 UTC the 
domain clouds over, seen 
i n  R N  a nd  b a c k s c at te r 
(Figs. 13f,g, Fig. ES3b). 
This causes the strength of 
the oscillations in vertical 
wind to decrease (Fig. 13e), 
which coincides w ith a 
c ha nge  i n  t he  re lat ive 
weighting of the different 
energ y balance compo-
nents, with both RN and HS 
decreasing strongly, while 
HL decreases only slightly 
(Fig. 13g). An increase in 
RN around 2000 UTC corre-
sponds to a reversal of these 
trends. Further analyses 
will investigate the preva-
lence of this result across 
the entire dataset and ex-
amine specific drivers and 
possible implications for 
EC energy balance closure. 
These datasets show that 
changes in ABL develop-
ment are closely tied to 

Fig. 11. Average daily mean energy balance pie charts for 
the flux towers over the entire study period. The pie chart 
with the cyan outline (bottom center) was a buoy EC sys-
tem deployed on a small lake where G was not measured.

Fig. 12. Flux footprint climatologies from the 20 flux towers and aircraft on 
the morning of 26 Sep 2019. Tower footprints extend to the 90% footprint 
with 10% contour lines shown down to 10% [calculated based on Kljun et al. 
(2015)]. The heat map shows aircraft flux footprints with areas of strongest 
flux contribution in red, grading to blue where there was no contribution 
[calculated based on Metzger et al. (2013)]. UWKA flight tracks shown as 
dashed black lines.
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changes in the surface energy fluxes, highlighting the potential research applications of 
the CHEESEHEAD19 data.

Educational outreach
Several public events were conducted to introduce and communicate the science goals 
and objectives of the proj-
ect. These include a pre-ex-
periment community-wide 
public presentation at the 
Park Falls Public Library 
and a summer open house 
at several sites, enabling 
members of the community 
to visit data collection loca-
tions, meet CHEESEHEAD19 
team members, and par-
ticipate in demonstrations 
of the instruments (Fig. 14). 
CHEESEHEAD19 team mem-
bers also participated in 
surveys and in training 
on fieldwork bullying and 
sexual harassment preven-
tion (Fischer et al. 2019, 
manuscript submitted to 
Bull. Amer. Meteor. Soc.).

The project also worked 
with two local school groups, 
one from the Butternut, 
Wisconsin, K–12 school and 
another from Chequamegon 
High School of Park Falls, 
Wisconsin, to include them 
as supporting data collec-
tors. The GLOBE (Global 
Learning and Observations 
to Benefit the Environment) 
program trained Butternut 
K–12 students and a teacher 
to collect land-cover clas-
sification data, soil proper-
ties, and atmospheric data 
at seven of the tower sites at 
multiple times throughout 
the summer. The high school 
group installed 10 tree tem-
perature sensors at 5 of the 
forest flux tower sites, which 
are being used to estimate 
biomass heat storage. We 

Fig. 13. (a),(b) CRL cross sections of H2O mixing ratio [cut to domain size; 
color bar in (c) is for (a)–(c)] for each of 10 legs on research flights 17 and 
18 (at 1351–1626 and 1911–2131 UTC 24 Sep); time series profiles at WLEF 
tall tower on 24 Sep 2019 of (c) H2O mixing ratio and (d) T measured by 
the ground-based MWR, (e) vertical wind speed from wind lidar LVS, and 
(f) 532-nm backscatter from the ground-based HSRL. (g) Stacked energy 
balance components: available energy (RN − G), sensible and latent heat 
fluxes (HS and HL), and energy balance residual (CEB), averaged across all EC 
towers, with CEB during the passing of a moist synoptic system [see (a)–(c)]. 
CEB increases at the breakup of the morning inversion [see (d)], is highest 
when mesoscale eddies are present midday [see (e)], and dips when clouds 
form in the afternoon [see (f)].
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also hosted two undergraduate university 
field classes (University of Wisconsin–
Madison and University of South Carolina), 
which conducted independent research 
projects on micrometeorology and carbon 
cycling.

Data and code availability
The database of observations and models 
is currently online and freely available 
to the community and public for general 
use or for further scientific investigation. 
The datasets and supporting information 
(including site characterizations, project 
logistics, and setup) have been gathered 
together in the NCAR Earth Observatory 
Laboratory (EOL) data repository which 
can be accessed through the project web 
page at www.eol.ucar.edu/field_projects/
cheesehead. The project has open data and code policies, in which other researchers are encour-
aged to use CHEESEHEAD19 resources for their own research. The policies can be accessed 
through the above web page.

Additionally, data are stored and are being used for in-depth analysis and modeling 
purposes on the NSF-funded cloud computing platform CyVerse, with the goal of having a 
central location for users to bring their code to the data in a way that maintains data and 
code provenance for collaborative, multi-user projects. Additional information about the 
project, including descriptions of the sites, photographs, and data plots can be found on the 
CHEESEHEAD19 website, located at www.cheesehead19.org.

Conclusions
The data collected during the CHEESEHEAD19 field campaign show a distinct seasonal shift 
in surface energy fluxes, as well as spatial patterning that appears to be directly related to the 
characteristics of the underlying surface environment. Consequently, the imbalance in the 
energy budget displays both temporal and spatial variability, with the imbalance becoming 
larger under periods of low turbulence. The broad coverage of the measured fluxes using the 
20-tower network and airborne EC, combined with the collection of spatial data of surface 
characteristics like LST, vegetation type, and canopy structure, will enable thorough investiga-
tion of the causes of energy balance nonclosure. Additionally, the suite of atmospheric profiling 
instrumentation characterizes the mesoscale structure of atmospheric flows over the study 
domain to an unprecedented degree, helping to determine how mesoscale eddies contribute 
to measured imbalances. The observational dataset provided by CHEESEHEAD19 enables 
machine-learning approaches and LES for testing hypotheses on scaling and parameteriza-
tion of subgrid processes in mesoscale meteorological models. Findings emerging from this 
project are expected to have broad implications for heterogeneous terrestrial regions beyond 
the specific study domain.
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Appendix: List of acronyms and variables
AGL	 Above ground level
ARL	 Air Resources Laboratory (NOAA)
ATDD	 Atmospheric Turbulence and Diffusion Division (NOAA)
CHEESEHEAD19	 Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled 

by a High-Density Extensive Array of Detectors 2019
CLAMPS	 Collaborative Lower Atmospheric Mobile Profiling System (NOAA NSSL)
CRL	 Compact Raman Lidar
EC	 Eddy covariance
GML	 Global Monitoring Laboratory (NOAA)
IOP	 Intensive observation period
LES	 Large-eddy simulation
Lidar	 Light detection and ranging
LSM	 Land surface model
NCAR	 National Center for Atmospheric Research
NOAA	 National Atmospheric and Oceanic Administration
NPP	 Net primary production
NSF	 National Science Foundation
NSSL	 National Severe Storms Laboratory (NOAA)
PALM	 Parallelized LES Model
PSL	 Physical Sciences Laboratory (NOAA)
Radar	 Radio detection and ranging
RASS	 Radio Acoustic Sounding System
Sodar	 Sonic detection and ranging
sUAS	 Small unmanned aircraft system
SURFRAD	 Surface Radiation Budget Network
UWKA	 University of Wyoming King Air
Cv	 volumetric soil heat capacity (J m–3 K–1)
FCO2	 CO2 flux (μmol m−2 s−1)
G	 Ground heat flux (W m−2)
H2O	 Water vapor mixing ratio (g kg−1)
HS	 Sensible heat flux (W m−2)
HL	 Latent heat flux (W m−2)
LST	 Land surface temperature (°C)
P	 Pressure (mb; 1 mb = 1 hPa)
Q	 Soil moisture (vol %)
RN	 Net surface radiation (W m−2)
T	 Temperature (°C)
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Tυ	 Virtual temperature (°C)
U	 Horizontal wind speed (m s−1)
u*	 Friction velocity (m s−1)
w	 Vertical wind speed (m s−1)
θ	 Potential temperature (°C)
θv	 Virtual potential temperature (°C)
τ	 Momentum flux (N m−2)
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